A Voyage Through Turbulence


Turbulence is widely recognized as one of the outstanding problems of the physical sciences, but it still remains only partially understood despite having attracted the sustained efforts of many leading scientists for well over a century. In A Voyage Through Turbulence we are transported through a crucial period of the history of the subject via biographies of twelve of its great personalities, starting with Osborne Reynolds and his pioneering work of the 1880s. This book will provide absorbing reading for every scientist, mathematician and engineer interested in the history and culture of turbulence, as background to the intense challenges that this universal phenomenon still presents.


 Reviews:

"I highly recommend A Voyage Through Turbulence to all scientists, engineers, historians and philosophers of science, students, and to even the broader readership of anyone who is interested in the onset and nurturing of creative thoughts. Turbulence connoisseurs will savor devouring the book, but even the non-specialists will still get something utilitarian out of it."
Mohamed Gad-el-Hak, AIAA Journal

"I greatly enjoyed reading this book. It succeeds admirably in combining introductions to the original ideas and observations of celebrated 20th century scientists together with their biographies, some written by authors who knew their subjects personally."
Jonathan Healey, Mathematical Reviews

Reference Type: bibliography

AllenJ., 1970. The life and work of Osborne Reynolds. In Osborne Reynolds and Engineering Science Today, edited by D.M.McDowell and J.D.Jackson, 1–82, Manchester University Press.
CorrsinS.C., 1952. Heat transfer in isotropic turbulence, J. Appl. Phys., 23, 113–118.
CrispF.A., 1911. The Reynolds of Suffolk, Visitation of England and Wales, 17, 172–176. Privately printed by Grove Park Press, Essex.
DowsonD., TaylorC.M., GodetM. and BertheD. (Editors), 1987. Fluid-film Lubrication: Osborne Reynolds Centenary, Elsevier, Amsterdam.
EckhardtB. (Editor), 2009. Turbulent transition in pipe flow – 125th anniversary of Reynolds' paper, Phil. Trans. Roy. Soc., 367A, 448–559.
FitzgeraldR., 2004. New experiments set the scale for the onset of turbulence in pipe flow, Physics Today, 57(2), 21–23.
GibsonA.H., 1946. Osborne Reynolds and his Work in Hydraulics and Hydrodynamics, Longmans Green (commissioned by the British Council).
HagenG., 1854. Über den Einfluss der Temperatur auf die Bewegung des Wassers in Röhren, Math. Abh. Akad. Wiss. Berlin, 17–98.
HagenG., 1869. Über die Bewegung des Wassers in cylindrischen, nahe horizontalen Leitungen. Math. Abh. Akad. Wiss. Berlin, 1–29.
HofB., JuelA. and MullinT., 2003. Scaling of the turbulence transition threshold in a pipe, Phys. Rev. Lett., 91, 244502.
JacksonJ.D., 1995. Osborne Reynolds: scientist, engineer and pioneer, Proc. Roy. Soc., 451A, 41–86.
JacksonJ.D., 2010. Osborne Reynolds – Victorian scientist, engineer and pioneer, Memoirs of the Manchester Literary & Philosophical Society for the Session 2009–2010, Vol. 147.
JacksonJ.D. and LaunderB.E., 2007. Osborne Reynolds and the publication of his papers on turbulent flow, Ann. Rev. Fluid Mech., 39, 18–35.
JonesC.A., 1907. History of Dedham, Reprinted from Dedham Parish Magazine with Additions, Wilks and Son, Colchester.
LambH., 1913. Osborne Reynolds, 1842–1912, Obituary notices, Proc. Roy. Soc., 88, xv–xxi.
LaunderB.E., 2009. Osborne Reynolds: the turbulent years. Invited keynote paper, in Proc. Conf. Modelling Fluid Flow (CMFF '09), edited by J.Vad, Budapest University of Technology & Economics, Budapest, 28–40.
MullinT., 2011. Experimental studies of transition to turbulence in a pipe, Ann. Rev. Fluid Mech., 43, 1–24.
PrandtlL., 1910. Eine Beziehung zwischen Warmeaustausch und Strömungswiderstand der Flüssigkeiten. Phys. Z., 11, 1072–1078.
PrandtlL., 1913. Flüssigkeitsbewegung. In Handwörterbuch der Naturwissenschaften, 4, 101–140.
RamseyR.J., 1949. Early Essex Patents, Essex Review, LVI, C17.
ReynoldsO., 1873. On the condensation of a mixture of air and steam upon cold surfaces, Proc. Roy. Soc., 21, 274–281.
ReynoldsO., 1874. On the extent and action of heating surfaces of steam boilers, Manchester Lit. & Phil., Vol. 14, Session 1884–5.
ReynoldsO., 1879. On certain dimensional properties of matter in the gaseous state, Phil. Trans. Roy. Soc., 170, 727–845.
ReynoldsO., 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels, Phil. Trans. Roy. Soc., 174, 935–982.
ReynoldsO., 1886. On the theory of lubrication and its application to Mr Beauchamp-Tower's experiments, Phil. Trans. Roy. Soc., 187, 157–234.
ReynoldsO., 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Roy. Soc., 186A, 123–164.
ReynoldsO., 1900. Papers on Mechanical and Physical Subjects, 1870–1880, Collected Works, Volume I, Cambridge University Press.
ReynoldsO., 1901. Papers on Mechanical and Physical Subjects 1881–1900. Collected Works, Volume II, Cambridge University Press.
ReynoldsO., 1903. Papers on Mechanical and Physical Subjects – the Sub-Mechanics of the Universe. Collected Works, Volume III, Cambridge University Press.
ReynoldsO. and MoorbyW.H., 1897. On the mechanical equivalent of heat, Phil. Trans. Roy. Soc., 190A, 301–422.
RottN., 1990. Note on the history of the Reynolds number, Ann. Rev. Fluid Mech., 22, 1–12.
SchusterA., 1925. Biographical Fragments, Section VII, 228–233, MacMillan and Co. Ltd., London.
SmithR.A., 1997. Osborne Reynolds – the most distinguished engineering professor and an inspired choice, Queens College Record, 14–15.
SommerfeldA., 1908. Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flüssigkeits-bewegung. In Proc. 4th Int. Congr. Math., Rome, 3: 116–124.
ThompsonJ., 1886. The Owens College: Its Foundation and Growth; and its Connection with the Victoria University of Manchester, Cornish, Manchester.
ThomsonJ.J., 1936. Recollections and Reflections, G. Bell & Sons Ltd.
VennJ.A., 1954. Alumni Cantabrigienses, Part 11, V, 279 and 281, Cambridge University Press.
WalkerE.G., 1938. The life and work of William Cawthorne Unwin, 54–58, and 75, Unwin Memorial Committee, London.
WedlakeA.L., 1984. Old Watchet, Williton and Around, Exmoor Press.
WhiteW., 1844. History Gazetteer and Directory of Suffolk. Reissued 1970, David & Charles.
WrightA., 1912. Old Queens' Men, The Dial, 3, No. 13, 42.

Reference Title: References

Reference Type: bibliography

AndersonJohn D. 2005. Ludwig Prandtl's boundary layer. Physics Today, 58 42–48.
BatchelorG.K. 1946. Double velocity correlation function in turbulent motion. Nature, 158 883–884.
BattimelliGiovanni. 1984. The mathematician and the engineer: statistical theories of turbulence in the 20's. Rivista di storia della scienza, 1 73–94.
BlasiusHeinrich. 1908. Grenzschichten in Flüssigkeiten bei kleiner Reibung. Zeitschrift für Mathematik und Physik, 56 1–37.
BlasiusHeinrich. 1913. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 131.
BoussinesqM.J. 1897. Theorie de l'Ecoulement Tourbillonnant et Tumultueux des Liquides dans les Lits Rectilignes á Grandes Sections. Gauthiers-Villars et fils, Paris.
BurgersJ.M. 1925. The motion of a fluid in the boundary layer along a plane smooth surface. Proceedings of the First International Congress for Applied Mechanics, Delft, 1924, C.B.Biezeno and J.M.Burgers (eds), 113–128.
CollarA.R. 1978. Arthur Fage. 4 March 1890–7 November 1977. Biographical Memoirs of Fellows of the Royal Society, 33–53.
Comte-BellotG. and CorrsinS. 1966. The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech., 25 667–682.
DarrigolOlivier. 2005. Worlds of Flow. Oxford University Press, Oxford.
DrydenHugh L. and KuetheA.M. 1929. The measurement of fluctuations of air speed by the hot-wire anemometer. NACA Report, 320 357–382.
DrydenHugh L., SchubauerG.B., MockW.C. and SkramstadtH.K. 1937. Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Report, 581 109–140.
DrydenHugh L. 1938. Turbulence investigations at the National Bureau of Standards. Proceedings of the Fifth International Congress on Applied Mechanics, Cambridge Mass., J.P.Den Hartog and H.Peters (eds), Wiley, New York, 362–368.
DrydenHugh L. 1955. Fifty years of boundary-layer theory and experiment. Science, 121 375–380.
EckertMichael. 2006. The Dawn of Fluid Dynamics. Wiley-VCH, Weinheim.
EckertMichael. 2008. Theory from wind tunnels: empirical roots of twentieth century fluid dynamics. Centaurus, 50 233–253.
EckertMichael. 2010. The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem. European Physical Journal, History, 35(1) 29–51.
Ei.elGustave. 1912. Sur la résistance des sph`eres dans l'air en mouvement. Comptes Rendues, 155 1597–1599.
EisnerF. 1932a. Reibungswiderstand. Werft, Reederei, Hafen, 13 207–209.
EisnerF. 1932b. Reibungswiderstand. In Hydromechanische Probleme des Schiffsantriebs. Hamburg, G.Kempf and E.Foerster (eds), 1–49.
FageA. and TownendH.C.H. 1932. An examination of turbulent flow with an ultramicroscope. Proc. Roy. Soc. Lond. A, 135 656–677.
Flüigge-LotzIrmgard and FlüggeWilhelm. 1973. Ludwig Prandtl in the nineteenthirties: reminiscences. Ann. Rev. Fluid Mech. 5 1–8.
FöpplOtto. 1912. Ergebnisse der aerodynamischen Versuchsanstalt von Ei.el, verglichen mit den Göttinger Resultaten. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 3 118–121.
FritschWalter. 1928. Der Einfluss der Wandrauhigkeit auf die turbulente Geschwindigkeitsverteilung in Rinnen. Abhandlungen aus dem Aerodynamischen Institut der Technischen Hochschule Aachen, 8.
GilbertMartin. 2006. Kristallnacht: Prelude to Destruction. Harper Collins Publishers.
GörtlerH. 1942. Berechnungen von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 22 44–254.
GoldsteinSydney. 1969. Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech., 1 1–28.
GrossmannSiegfried, EckhardtBruno and LohseDetlef. 2004. Hundert Jahre Grenzschichtphysik. Physikjournal, 3(10), 31–37.
GruschwitzE. 1931. Die trubulente Reibungsschicht bei Druckabfall und Druckanstieg. Ingenieur-Archiv, 2 321–346.
GrussPeter and RürupReinhard (eds). 2011. Denkorte. Max-Planck-Gesellschaft und Kaiser-Wilhelm-Gesellschaft, Brüche und Kontinuitäten 1911–2011. Sandstein Verlagr., Dresden.
HagerW.H. 2003. Blasius: A life in research and education. Experiments in Fluids, 34 566–571.
HahnHans, HerglotzGustav and SchwarzschildKarl, 1904. Über das Strömen des Wassers in Röhren und Kanälen. Zeitschrift für Mathematik und Physik, 51 411–426.
HamelH. 1943. Streifenmethode und Ähnlichkeitsbetrachtungen zur turbulenten Bewegung. Abh. Preuss. Akad. Wiss. Physik.–Math., 8.
HeimSusanne, SachseCarola and WalkerMark (eds). 2009. The Kaiser Wilhelm Society under National Socialism. Cambridge University Press, Cambridge.
HeisenbergW. 1948. Zur statistischen Theorie der Turbulenz. Zeitschrift für Physik, 124 628–657.
HeisenbergW. 1958E. On the statistical theory of turbulence. NACA-TM-1431, 1958.
HenselSusann. 1989. Mathematik und Technik im 19. Jahrhundert in Deutschland. Soziale Auseinandersetzungen und philosophische Problematik, chapter Die Auseinandersetzungen um die mathematische Ausbildung der Ingenieure an den Technischen Hochschulen in Deutschland Ende des 19. Jahrhunderts, 1–111. Vandenhoeck und Ruprecht, Göttingen.
HopfLudwig. 1910. Hydrodynamische Untersuchungen: Turbulenz bei einem Flusse. Über Schiffswellen. Inaugural-Dissertation. Barth, Leipzig.
JakobM. and ErkS. 1924. Der Druckabfall in glatten Rohren und die Durchflussziffer von Normaldüsen. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 267.
Kármán, vonTheodore. 1921. Über laminare und turbulente Reibung. ZAMM, 1 233–252. CWTK 2, 70–97.
Kármán, vonTheodore. 1924. Über die Oberflächenreibung von Flüssigkeiten. In Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922). Theodore von Kármán und T.Levi-Civita (eds). Berlin: Springer, 146–167. CWTK 2, 133–152.
Kármán, vonTheodore. 1930a. Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 58–76. CWTK 2, 322–336.
Kármán, vonTheodore. 1930b. Mechanische Ähnlichkeit und Turbulenz. In Proceedings of the Third International Congress of Applied Mechanics, Stockholm. CWTK 337–346.
Kármán, vonTheodore. 1932. Theorie des Reibungswiderstandes. In Hydromechanische Probleme des Schiffsantriebs. Hamburg, G.Kempf, E.Foerster (eds), 50–73. CWTK 2, 394–414.
Kármán, vonTheodore. 1934. Turbulence and skin friction. Journal of the Aeronautical Sciences, 1 1–20. CWTK 3, 20–48.
Kármán, vonTheodore. 1957. Aerodynamics: Selected Topics in the Light of their Historical Development. Cornell University Press, Ithaca, New York.
Kármán, vonTheodore (with LeeEdson). 1967. The Wind and Beyond. Little, Brown and Company, Boston.
Kármán, vonTheodore and LeslieHowarth. 1938. On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A, 164 192–215.
KempfGünther. 1929. Neue Ergebnisse der Widerstandsforschung. Werft, Reederei, Hafen, 10 234–239.
KempfGünther. 1932. Weitere Reibungsergebnisse an ebenen glatten und rauhen Flächen. Hydromechanische Probleme des Schiffsantriebs. Hamburg, G.Kempf, E.Foerster (eds), 74–82.
KleinFelix. 1910. Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Zeitschrift für Mathematik und Physik, 59 259–262.
KuetheA.M. 1988. The first turbulence measurements: a tribute to Hugh L. Dryden. Ann. Rev. Fluid Mech., 20 1–3.
LorentzHendrik Antoon. 1897. Over den weerstand dien een vloeistofstroom in eene cilindrische buis ondervindt. Versl. K. Akad. Wet. Amsterdam, 6 28–49.
LorentzHendrik Antoon. 1907. Über die Entstehung turbulenter Flüssigkeitsbewegungen und über den Einfluss dieser Bewegungen bei der Strömung durch Röhren. Hendrik Antoon Lorentz: Abhandlungen über theoretische Physik. TeubnerLeipzig, 1 43–71.
LumleyJohn Leask and PanofskyHans A. 1964. The Structure of Atmospheric Turbulence. Wiley, New York.
MaierHelmut (ed.). 2002. Rüstungsforschung im Nationalsozialismus. Organisation, Mobilisierung und Entgrenzung der Technikwissenschaften. Wallstein, Göttingen, 2002.
MaierHelmut. 2007. Forschung als Waffe. Rüstungsforschung in der Kaiser-Wilhelm- Gesellschaft und das Kaiser-Wilhelm-Institut für Metallforschung 1900–1945/48. Wallstein, Göttingen, 2007.
ManegoldKarl-Heinz. 1970. Universität, Technische Hochschule und Industrie: Ein Beitrag zur Emanzipation der Technik im 19. Jahrhundert unter besonderer Berücksichtigung der Bestrebungen Felix Kleins. Duncker und Humblot, Berlin.
MeierGerd E.A. 2006. Prandtl's boundary layer concept and the work in Göttingen. IUTAMSymposium on One Hundred Years of Boundary Layer Research. Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, August 12–14, 2004. G.E.A.Meier and K.R.Sreenivasan (eds). Springer, Dordrecht, 1–18.
Mises, vonRichard. 1921. Über die Aufgaben und Ziele der angewandten Mathematik. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 1 1–15.
MotzfeldH. 1938. Vorträge aus dem Gebiet der Aero- und Hydrodynamik. Frequenzanalyse turbulenter Schwankungen. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 18 362–365.
MunkMax. 1917. Bericht über Luftwiderstandsmessungen von Streben. Mitteilung 1 der Göttinger Modell-Versuchsanstalt für Aerodynamik. Technische Berichte. Herausgegeben von der Flugzeugmeisterei der Inspektion der Fliegertruppen. Heft Nr. 4 (1. Juni 1917), 85–96, Tafel XXXX–LXIII.
NagibHassan M., ChauhanKapil A. and MonkewitzPeter A. 2007. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A, 365 755–770.
NikuradseJohann. 1926. Untersuchungen über die Geschwindigkeitsverteilung in turbulenten Strömungen. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 281.
NikuradseJohann. 1930. Über turbulente Wasserströmungen in geraden Rohren bei sehr grossen Reynoldsschen Zahlen. Vorträge aus dem Gebiete der Aerodynamik und verwandter Gebiete (Aachen 1929). A.Gilles, L.Hopf and Th. v.Kármán (eds). Springer, Berlin, 63–69.
NikuradseJohann. 1932. Gesetzmässigkeiten der turbulenten Strömung in glatten Rohren. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 356.
NikuradseJohann. 1933. Strömungsgesetze in rauhen Rohren. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 3611.
NoetherFritz. DasTurbulenzproblem. Zeitschrift für Angewandte Mathematik und Mechanik, 1 125–138, 218–219.
O'MalleyRobert E. Jr. 2010. Singular perturbation theory: a viscous flow out of Göttingen. Ann. Rev. Fluid Mech., 42 1–17.
OswatitschK. and WieghardtK. 1987. Ludwig Prandtl and his Kaiser-Wilhelm-Institut. Ann. Rev. Fluid Mech., 19 1–26.
PrandtlLudwig. 1905. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, 484–491. LPGA 2, 575–584.
PrandtlLudwig. 1910. Eine Beziehung zwischen Wärmeaustausch und Strömungswiderstand der Flüssigkeiten. Physikalische Zeitschrift, 11 1072–1078.
PrandtlLudwig. 1914. Der Luftwiderstand von Kugeln. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 177–190. (LPGA 2, 597–608).
PrandtlLudwig. 1921a. Bemerkungen über die Entstehung der Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 1 431–436.
PrandtlLudwig. 1921b. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. Oldenbourg, Berlin, München.
PrandtlLudwig. 1922. Bemerkungen über die Entstehung der Turbulenz. Physikalische Zeitschrift, 23 19–25.
PrandtlLudwig. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM, 5 136–139. LPGA 2, 714–718.
PrandtlLudwig. 1925E. Aufgaben der Strömungsforschung: Tasks of air flow research. Die Naturwissenschaften, 14(16) 355–358, 1925; NACA–TN–365, 1926.
PrandtlLudwig. 1926a. Bericht über neuere Turbulenzforschung. Hydraulische Probleme. VDI-Verlag, Berlin, 1–13. LPGA 2, 719–730.
PrandtlLudwig. 1926b. Klein und die Angewandten Wissenschaften. Sitzungsberichte der Berliner Mathematischen Gesellschaft, 81–87. LPGA 2, 719–730.
PrandtlLudwig. 1927a. Über den Reibungswiderstand strömender Luft. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. Oldenbourg, Berlin, München, 3 1–5. LPGA 2, 620-626.
PrandtlLudwig. 1927b. Über die ausgebildete Turbulenz. Verhandlungen des II. Internationalen Kongresses für Technische Mechanik. Füssli, Zürich, 62–75. LPGA 2, 736–751. NACA-TM-435, version in English.
PrandtlLudwig. 1930. Vortrag in Tokyo. Journal of the Aeronautical Research Institute, Tokyo, Imperial University, 5(65) 12–24. LPGA 2, 788–797.
PrandtlLudwig. 1931. Abriss der Strömungslehre. Vieweg, Braunschweig.
PrandtlLudwig. 1932. Zur turbulenten Strömung in Rohren und längs Platten. In Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, 4 18–29. LPGA 2, 632–648.
PrandtlLudwig. 1933. Neuere Ergebnisse der Turbulenzforschung. Zeitschrift des Vereines Deutscher Ingenieure 77 105–114. LPGA 2, 819–845.
PrandtlLudwig. 1933E1. Neuere Ergebnisse der Turbulenzforschung: Recent results of turbulence research. Zeitschrift des Vereines deutscher Ingenieure. 7(5) 105–114. NACA-TM-720. 1933.
PrandtlLudwig. 1933E2 Herstellung einwandfreier Luftstrome (Windkanale): Attaining a steady air stream in wind tunnels. Handbuch der Experimentalphysik. Vol. 4, (2) 65–106, 1932; NACA-TM-726, 1933.
PrandtlLudwig. 1934. Anwendung der turbulenten Reibungsgesetze auf atmosph ärische Strömungen. In Proceedings of the Fourth International Congress of Applied Mechanics, Cambridge, 238–239. LPGA 3, 1098–1099.
PrandtlLudwig. 1938. Beitrag zum Turbulenzsymposium. In Proceedings of the Fifth International Congress on Applied Mechanics, Cambridge MA, J.P.Den Hartog and H.Peters (eds), John Wiley, New York, 340–346. LPGA 2, 856–868.
PrandtlLudwig. 1942a. Führer durch die Strömungslehre. Vieweg, Braunschweig.
PrandtlLudwig. 1942b. Zur turbulenten Strömung in Rohren und längs Platten. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, 4 18–29. LPGA 2, 632–648.
PrandtlLudwig. 1942c. Bemerkungen zur Theorie der Freien Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 22 241–243. LPGA 2, 869–873.
PrandtlLudwig. 1945. Über die Rolle der Zähigkeit im Mechanismus der ausgebildete Turbulenz: The role of viscosity in themechanism of developed turbulence. GOAR 3712, DLR Archive.
PrandtlLudwig. 1948a. Turbulence. FIAT Review of German Science 1939–1946: Hydro- and Aero-dynamics, AlbertBetz (ed.), Office of Military Government for Germany Field Information Agency Technical, 55–78.
PrandtlLudwig. 1948b. Mein Weg zu den Hydrodynamischen Theorien. Physikalische Blätter, 3 89–92. LPGA 3, 1604–1608.
PrandtlLudwig. 1948c. Führer durch die Strömungslehre. Vieweg, Braunschweig.
PrandtlLudwig. 1949E. Bericht über Untersuchungen zur ausgebildeten Turbulenz: Report on investigation of developed turbulence. NACA-TM-1231, 1949.
PrandtlLudwig and EisnerFranz. 1932. Nachtrag zum ‘Reibungswiderstand’. In Hydromechanische Probleme des Schiffsantriebs. Hamburg, G.Kempf, E.Foerster (eds), 407.
PrandtlLudwig et al. 1932. Erörterungsbeiträge. Hydromechanische Probleme des Schiffsantriebs. Hamburg, G.Kempf, E.Foerster (eds), 87–98.
PrandtlLudwig and SchlichtingHermann. 1934. Das Widerstandsgesetz rauher Platten. Werft, Reederei, Hafen, 21 1–4. LPGA 2, 649–662.
PrandtlLudwig and ReichardtHans. 1934. Einfluss von Wärmeschichtung auf Eigenschaften einer turbulenten Strömung. Deutsche Forschung, 15 110–121. LPGA 2, 846–855.
PrandtlLudwig and WieghardtKarl. 1945. Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachrichten der Akademie der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 6–19.LPGA 2, 874–887.
RayleighLord. 1887. On the stability or instability of certain fluid motions II. Proceedings of the London Mathematical Society, 19 67–74. Reprinted in Scientific Papers by John William Strutt, Baron Rayleigh, vol. III (1887–1892). Cambridge University Press, Cambridge. 17–23.
ReichardtH. 1933. Die quadratischen Mittelwerte der Längsschwankungen in der turbulenten Kanalströmung. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 3 177–180.
ReichardtH. 1934. Berichte aus den einzelnen Instituten. Physikalisch-Chemisch-Technische Institute. Naturwissenschaften, 22 351.
ReichardtH. 1935. Die Torsionswaage als Mikromanometer. Zschr. f. Instrumentenkunde, 55 23–33.
ReichardtH. 1948E. The torsion balance as a micromanometer. NRC-TT-84, 1948-11-13.
ReichardtH. 1938a. Vorträge aus dem Gebiet der Aero- und Hydrodynamik. Über das Messen turbulenter Längs- und Querschwankungen. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 18 358–361.
ReichardtH. 1938b. Messungen turbulenter Spannungen. Naturwissenschaften, 26 404–408.
ReichardtH. 1941. Über die Theorie der freien Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 21 257–264.
ReichardtH. 1942. Gesetzmässigkeiten der freien Turbulenz. VDI Forschungsheft, 414, 22 pages.
ReichardtH. 1944. Impuls- und Wärmeaustausch in freier Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 24 268–272.
ReichardtH. 1951E. On the recording of turbulent longitudinal and transverse fluctuations. NACA-TM-1313, 1951.
RottaJulius C. 1990. Die Aerodynamische Versuchsanstalt in Göttingen, ein Werk Ludwig Prandtls. Ihre Geschichte von den Anfängen bis 1925. Vandenhoeck und Ruprecht, Göttingen.
RottaJulius C. 2000. Ludwig Prandtl und die Turbulenz. In Ludwig Prandtl, ein Führer in der Strömungslehre: Biographische Artikel zum Werk Ludwig Prandtls, Gerd E.A.Meier (ed), 53–123.
SachseCarola and WalkerMark (eds). 2005. Politics and Science in Wartime: Comparative International Perspectives on Kaiser Wilhelm Institutes. University of Chicago Press.
SaffmanP.G. 1992. Vortex Dynamics. Cambridge University Press, Cambridge.
SchillerLudwig. 1921. Experimentelle Untersuchungen zum Turbulenzproblem. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 1 436–444.
SchlichtingHermann. 1933. Zur Entstehung der Turbulenz bei der Plattenströmung. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, 181–208.
SchlichtingHermann. 1949. Lecture series “boundary layer theory”, part ii: Turbulent flows. NACA-TM-1218, 1949. Translation of “Vortragsreihe” W.S. 1941/42, Luftfahrtforschungsanstalt Hermann Göring, Braunschweig.
SchmaltzFlorian. 2005. Kampfstoff-Forschung im Nationalsozialismus. Zur Kooperation von Kaiser-Wilhelm-Instituten, Militär und Industrie. Wallstein, Göttingen.
SchuhH. 1945. Die Messungen sehr kleiner Windschwankungen (Windkanalturbulenz). Untersuchungen und Mitteilungen der Deutschen Luftfahrtforschung, 6623.
SchuhH. 1946. Windschwankungsmessungen mit Hitzdrähten. AVA Monographien, D1, Chapter 4.3.
Schultz-GrunowFritz. 1940. Neues Reibungswiderstandsgesetz für glatte Platten. Luftfahrtforschung, 17 239–246.
Schultz-GrunowFritz. 1941E. New frictional resistance law for smooth plates. NACATM- 986, 1941.
SimmonsL.F.G., SalterC. and TaylorG.I. 1938. An experimental determination of the spectrum of turbulence. Proc. Roy Soc. Lond. A, 165 73–89.
SommerfeldArnold. 1935. Zu L. Prandtls 60. Geburtstag am 4. Februar 1935. ZAMM, 15 1–2.
SpaldingD.B. 1991. Kolmogorov's two-equation model of turbulence. Proc. Roy. Soc. Math. Phys. Sci., 434 211–216.
TaniItiro. 1977. History of boundary-layer theory. Ann. Rev. Fluid Mech., 9 87–111.
TietjensOskar. 1925. Beiträge zur Entstehung der Turbulenz. ZAMM, 5 200–217.
TaylorG.I. 1929. Stability of a viscous liquid contained between two rotating cylinders. Phys. Trans. Roy. Soc., 223 289–343.
TaylorG.I. 1935a. Turbulence in a contracting stream. ZAMM, 15 91–96.
TaylorG.I. 1935b. Statistical theory of turbulence. Proc. Roy. Soc. Lond. A 151 421–444.
TaylorG.I. 1935c. Statistical theory of turbulence II. Proc. Roy. Soc. Lond. A 151 444–454.
TaylorG.I. 1935d. Statistical theory of turbulence. III. Distribution of dissipation of energy in a pipe over its cross-section. Proc. Roy. Soc. Lond. A 151 455–464.
TaylorG.I. 1935e. Statistical theory of turbulence. IV. Di.usion in a turbulent air stream. Proc. Roy. Soc. Lond. A 151 465–478.
TaylorG.I. 1936. Correlation measurements in a turbulent flow through a pipe. Proc. Roy. Soc. Lond. A 157 537–546.
TaylorG.I. 1938a. The spectrum of turbulence. Proc. Roy. Soc. Lond. A 164 476–490.
TaylorG.I. 1938b. Some recent developments in the study of turbulence. In Proceedings of the Fifth International Congress on Applied Mechanics, Cambridge MA, J.P.Den Hartog and H.Peters (eds), John Wiley, New York, 294–310.
TollmienWalter. 1926. Berechnung turbulenter Ausbreitungsvorgänge. ZAMM, 6 468–478.
TollmienWalter. 1929. Über die Entstehung der Turbulenz. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, 21–44.
TrischlerHelmuth. 1994. Self-mobilization or resistance? Aeronautical research and National Socialism. In Science, Technology and National Socialism, MonikaRenneberg and MarkWalter (eds), Cambridge University Press, Cambridge, 72–87.
Vogel-PrandtlJohanna. 1993. Ludwig Prandtl. Ein Lebensbild. Erinnerungen. Dokumente. Max-Planck-Institut für Strömungsforschung, Göttingen, 1993. (– Mitteilungen aus dem MPI für Strömungsforschung, Nr. 107).
Weizsäcker, vonC.F. 1948. Das Spektrum der Turbulenz bei grossen Reynoldsschen Zahlen. Zeitschrift für Physik, 124 614–627.
WieghardtKarl. 1941. Zusammenfassender Bericht über Arbeiten zur statistischen Turbulenztheorie. Luftfahrt-Forschung, FB 1563.
WieghardtKarl. 1942. Erhöhung des turbulenten Reibungswiderstandes durch Oberflächenstörungen. ZWB, FB 1563.
WieghardtKarl. 1942E. Correlation of data on the statistical theory of turbulence. NACA-TM-1008, 1942.
WieghardtKarl. 1943. Über die Wandschubspannung in turbulenten Reibungsschichten bei veränderlichem Aussendruck. ZWB, UM 6603.
WieghardtKarl. 1944. Zum Reibungswiderstand rauher Platten. ZWB, UM 6612.
WieghardtKarl. 1947. Der Rauhigkeitskanal des Kaiser Wilhelm-Instituts für Strömungsforschung in Göttingen. AVA-Monographien D1 3.3.
WieghardtKarl and TillmannW. 1944. Zur turbulenten Reibungsschicht bei Druckanstieg. ZWB, UM 6617.
WieghardtKarl and TillmannW. 1951E. On the turbulent friction layer for rising pressure. NACA-TM-1314, 1951.
WieselsbergerCarl. 1914. Der Luftwiderstand von Kugeln. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 5 140–145.

Reference Title: References

Reference Type: bibliography

BarenblattG.I. 1993. Scaling laws for fully developed turbulent shear flows. J. Fluid Mech., 248, 513–520.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press, xi+197 pp.
BatchelorG.K., and ProudmanI. 1956. The large-scale structure of homogeneous turbulence. Phil. Trans. Roy. Soc. A, 248, 369–405.
BatchelorG.K., and TownsendA.A. 1948. Decay of turbulence in the final period. Proc. Roy. Soc. A, 194, 527–543.
CIT von Kármán collection. Papers of Theodore von Kármán, 1881–1963. Archives of the California Insitute of Technology.
DavidsonP.A. 2004. Turbulence. Oxford University Press, xix+657 pp.
DavidsonP.A. 2009. The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329–358.
DrydenH.L. 1943. A review of the statistical theory of turbulence. Quart. Appl. Math., 1, 7–42.
DrydenH.L. 1965. Theodore von Kármán. National Academy of Sciences, Biographical Memoirs, 38, 344–384.
FalkovichG. 2011. The Russian school. In A Voyage Through Turbulence. Cambridge University Press.
GeorgeW.K., KnechtP., and CastilloL. 1992. Zero-pressure gradient boundary layer revisited. In X. B.Reed, ed., 13th Symposium on Turbulence, Rolla, MO.
HeisenbergW. 1948. Zur statistischen Theorie der Turbulenz. Z. Physik, 124, 628–657.
Kármánvon T. 1921. Über laminare und turbulente Reibung. ZAMM, 1, 233–252.
Kármánvon T. 1924. Über die Stabilität der Laminarströmung und die Theorie der Turbulenz. Proc. First Internat. Congr. Appl. Mech., Delft.
Kármánvon T. 1930. Mechanische Ähnlichkeit und Turbulenz. Gött. Nachr., 58–76.
Kármánvon T. 1931. Mechanische Ähnlichkeit und Turbulenz. Proc. Third Internat. Congr. Appl. Mech. Stockholm, 1, 85–93.
Kármánvon T. 1937a. The fundamentals of the statistical theory of turbulence. J. Aero. Sci., 4, 131–138.
Kármánvon T. 1937b. On the statistical theory of turbulence. Proc. Nat. Acad. Sci., 23, 98–105.
Kármánvon T. 1948a. Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci., 34, 530–539.
Kármánvon T. 1948b. Progress in the statistical theory of turbulence. J. Marine Res., 7, 252–264.
Kármánvon T. 1948c. Sur la théorie statistique de la turbulence. C.R. Acad. Sci. Paris, 226, 2108–2111.
Kármánvon T. 1955. The next fifty years. Interavia, 10, 20–21.
Kármánvon T., and EdsonL. 1967. Wind and Beyond. Little, Brown and Co., 376pp.
Kármánvon T., and HowarthL. 1938. On the statistical theory of isotropic turbulence. Proc. Roy. Soc. A, 164, 192–215.
Kármánvon T., and LinC.C. 1949. On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys., 21, 516–519.
Kármánvon T., and LinC.C. 1951. On the concept of similarity in the theory of isotropic turbulence. Pages 1–19 of Adv. Appl. Mech., vol. 2. Academic Press, New York.
KolmogorovA.N. 1941a. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 19–21.
KolmogorovA.N. 1941b. On decay of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR, 31, 538–540.
KraichnanR.H., and SpiegelE.A. 1962. Model for energy transfer for isotropic turbulence. Phys. Fluids, 5, 583–588.
LinC.C. 1944. On the stability of two-dimensional parallel flows. Proc. Nat. Acad. Sci., 30, 316–324.
LinC.C. 1949a. Note on the law of decay of isotropic turbulence. Proc. Nat. Acad. Sci., 34, 540–543.
LinC.C. 1949b. Remarks on the spectrum of turbulence. Pages 81–86 of Proceedings of Symposia in Applied Mathematics, Vol. 1 (Brown U., 1947). Amer. Math. Soc.
LoitsyanskiL.G. 1939. Some basic laws for isotropic turbulent flow. Trudy Tsentr. Aero.-Giedrodin. Inst., 440, 3–23.
LundgrenT. S. 2002. Kolomogorov two-thirds law by matched asymptotic expansions. Phys. Fluids, 14, 638–642.
NikuradseJ. 1926. Untersuchungen über die Geschwindigkeitsverteilung in turbulenten Strömungen, Diss. Göttingen. VDI-Forschungsheft, 281.
NikuradseJ. 1932. Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forsch. Arb. Ing.-Wes., Heft 356.
OberlackM. 2001. A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech., 427, 299–328.
PopeS.B. 2000. Turbulent Flows. Cambridge University Press, xxxiv+771 pp.
PrandtlL. 1921. Bemerkungen zur Entstehung der Turbulenz. ZAMM, 1, 431–436.
PrandtlL. 1927. Über die ausgebildete Turbulenz. Verh. des 2. Internationalen Kongresses für Technische Mechanik 1926, Zürich, 62.
PrandtlL. 1931. Abriß der Strömungslehre. Vieweg Verlag Braunschweig, 1. Auflage.
PrandtlL. 1933. Neuere Ergebnisse der Turbulenzforschung. VDI, 77, 105–114.
PullinD. I., and MeironD. I. 2011. Philip G. Saffman. In A Voyage Through Turbulence. Cambridge University Press.
SaffmanP.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech., 27, 581–593.
TaylorG.I. 1935. Statistical theory of turbulence. Proc. Roy. Soc. A, 151, 421–444.
TaylorG.I. 1937. The statistical theory of isotropic turbulence. J. Aero. Sci., 4, 311–315.
TaylorG.I., and GreenA.E. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A, 158, 499–521.
TietjensO. 1925. Articles on the formation of turbulence. ZAMM, 5, 200–217.
VincentiW. G. 1990. What Engineers Know and How They Know It. The Johns Hopkins University Press. vii + 326 pp..
WosnikM., CastilloL., and GeorgeW.K. 2000. A theory for turbulent pipe and channel flows. J. Fluid Mech., 421, 115–145.

Reference Title: References

Reference Type: bibliography

AndereckC.D., LiuS.S. & SwinneyH.L. 1986. Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155–183.
AshfordO. 1985. Prophet or Professor: The Life and Work of L.F. Richardson. Bristol: Hilger.
BarenblattG.I. 1979. Similarity, Self-similarity, and Intermediate Asymptotics. New York and London: Consultants Bureau, Plenum Press.
BarenblattG.I. 1996. Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.
BarenblattG.I. 2006. What I remember and will remember forever. In Kolmogorov in Memories of Disciples, A.N.Shiryaev (ed.), Moscow: Publishing House MTsNMO, pp. 54–98 (in Russian).
BatchelorG.K. 1951. Pressure fluctuations in isotropic turbulence. Camb. Phil. Soc. 47, 359–374.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.
BatchelorG.K. (ed.) 1960. The Scientific Papers of Sir Geoffrey Ingram Taylor, vols. I–IV. Cambridge University Press.
BatchelorG.K. 1975. An unfinished dialogue with G.I.Taylor. J. Fluid Mech. 70, 625–638.
BatchelorG.K. 1976. Geoffrey Ingram Taylor. 7 March 1886–27 June 1975. Biographical Memoirs of Fellows of the Roy. Soc. Lond. 22, 565–633.
BatchelorG.K. 1986. Geoffrey Ingram Taylor. 7 March 1886–27 June 1975. J. Fluid Mech. 173, 1–14.
BatchelorG.K. 1996. The Life and Legacy of G.I. Taylor. Cambridge University Press.
BatchelorG.K. & ProudmanI. 1954. The effect of rapid distortion on a fluid in turbulent motion. Quart. J. Mech. Appl. Math. 7, 83–103.
BatemanH. 1915. Some recent researches on the motion of fluids. Monthly Weather Rev. 43, 163–170.
BellJ.F. 1995. A retrospect on the contributions of G.I. Taylor to the continuum physics of solids. Exper. Mech 35, 1–10. (The paper was presented by Bell as the 15th Sir Geoffrey Taylor Memorial Lecture at the University of Florida on 9 March 1980).
BenziR. 2011. Lewis Fry Richardson. Chapter 5 of this volume. Binnie, A.M. 1978. Some notes on the study of fluid mechanics in Cambridge, England. Ann. Rev. Fluid Mech. 10, 1–11.
BlasiusH. 1913. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forsschungsarbeiten des Ver. Deutsch. Ing. No. 131, Berlin.
BodenschatzE. & EckertM. 2011. Prandtl and the Göttingen school. Chapter 2 of this volume.
BoussinesqJ. 1870. Essai théorique sur les lois trouvées expérimentalement par M. Bazin pour l'écoulment unifrome de l'eau dans les canaux découverts. C. R. Acad. Sci. Paris 71, 389–393.
BrachetM.E., MeironD.I., OrszagS.A., NickelB.G., MorfR.H. & FrischU. 1983. Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411–452.
BurgersJ.M. 1939. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verhand. Kon. Neder. Akad. Wetenschappen, Afd. Natuurkunde, Eerste Sectie 17, 1–53.
BurgersJ.M. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199.
BurgersJ.M. 1974. The Nonlinear Diffusion Equation. Dordrecht: D. Reidel.
BurgersJ.M. 1975. Some memories of early work in fluid mechanics at the Technical University of Delft. Ann. Rev. Fluid Mech. 7, 1–12.
ChekhlovA. & YakhotV. 1995. Kolmogorov turbulence in a random-force-driven Burgers equation. Phys.Rev.E, 51, R2739–R2742.
CichowlasC. & BrachetM.E. 2006. Evolution of complex singularities in Kida–Pelz and Taylor–Green inviscid flows. Fluid Dyn. Res. 36, 239–248.
ColeJ.D. 1951. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–236.
ColesD. 1965. Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
Comte-BellotG. & CorrsinS. 1971. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273–337.
CorrsinS. 1968. Review of: Theodore von Kármán with Lee Edson: The Wind and Beyond. ISIS, 59, 240–242.
DrydenH.L., 1943. A review of the statistical theory of turbulence. Quart. J. Appl. Math. 1, 7–42.
DrydenH.L. & KuetheA.M. 1929. The measurement of fluctuation of airspeed by the hot-wire anemometer. NACA Tech. Rep. 342.
DrydenH.L., SchubauerG.B., MockW.C. & SkramstadH.K. 1937. Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Tech. Rep. 581.
EagleA. & FergusonR.M. 1930. On the coeffcient of heat transfer from the internal surface of tube walls. Proc. Roy. Soc. Lond. 127, 540–556.
EckertM. 2010. The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem. Eur. Phys. J. H 35, 29–51.
EiffelG. 1912. Sur la résistance des sphéres dans l'air en mouvement. Compt. Rend. 155, 1587–1599.
EyinkG.L. & SreenivasanK.R. 2006. Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phy. 78, 87–135.
EyinkG.L., FrischU., MoreauR. & SobolevskiiA. 2008. Euler Equations: 250 Years On. Physica D 237, 1825–2246.
FalkovichG. 2011. The Russian school. Chapter 6 of this volume. Frisch, U. 1995. Turbulence: The Legacy of A.N. Kolmogrov. Cambridge University Press.
GoldsteinS. 1937. The similarity theory of turbulence, and flow between parallel planes and through pipes. Proc. Roy. Soc. Lond. A159, 473–496.
GoldsteinS. 1969. Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech. 1, 1–29.
GollubJ.P. & SwinneyH.L. 1975. Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930.
HopfE. 1950. The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 3, 201–230.
HuntJ.C.R. 1998. Lewis Fry Richardson and his contributions to mathematics, meterology, and models of conflict. Ann. Rev. Fluid Mech. 30, xiii–xxxvi.
Kampéde Fériet 1939. Some recent researches on turbulence. In Proc. 5th Int. Cong. Appl. Mech. Cambridge, MA, pp. 352–355.
KardarM., ParisiG. & ZhangY.Z. 1986. Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56, 889–893.
KármánTh. v. 1930. Mechanische Ahnlichkeit und Turbulenz. Nach. Ges. Wiss. Gottingen, Math.-Phys. Kl, 58–76.
KármánTh. v. 1937a. On the statistical theory of turbulence. Proc. Nat. Acad. Sci. 23, 98–107.
KármánTh. v. 1937b. The fundamentals of the statistical theory of turbulence. J. Aero. Sci. 4, 131–138.
KármánTh. v. (with LeeEdson) 1967. The Wind and Beyond. Boston: Little, Brown and Co.
KármánTh. v. & HowarthL. 1938. On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A164, 192–215.
KellerL.V. & FriedmanA.A. 1924. Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. 1st Intern. Cong. Appl. Mech. Delft, pp. 395–405.
KingL.V. 1914. On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with applications to hot-wire anemometry. Proc. Roy. Soc. 90, 563–570.
KolmogorovA.N. 1941a. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 9–13. Reprinted in Proc. Roy. Soc. Lond. A434, 9–13.
KolmogorovA.N. 1941b. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18. Reprinted in Proc. Roy. Soc. Lond. A434, 15–17.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85.
LanchesterF.W. 1907. Aerodynamics. London: Constable & Co. Ltd.
LauferJ. 1954. The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. 1174.
LaunderB.E. & JacksonD. 2011. Osborne Reynolds: a turbulent life. Chapter 1 of this volume.
LeonardA. & PetersN. 2011. Theodore von Kármán. Chapter 3 of this volume.
LighthillM.J. 1956. Viscosity effects in sound waves of finite amplitude. In Surveys in Mechanics, G.K.Batchelor & R.M.Davies (eds.), pp. 250–351.
MockW.C. Jr. 1937. Alternating current equipment for the measurement of fluctuation of air speed in a turbulent flow. NACA Tech. Rep. 598.
MockW.C. Jr. & DrydenH.L. 1932. Improved apparatus for the measurement of fluctuation of airspeed in turbulent flow. NACA Tech. Rep. 448.
MoffattH.K. 2011. George Batchelor: the post-war renaissance of research in turbulence. Chapter 8 of this volume.
NarasimhaR. & SreenivasanK.R. 1979. Relaminarization of fluid flows. Adv. Appl. Mech. 19, 221–301.
NieuwstadtF.T.M. & SteketeeJ.A. 1995. Selected Works of J.M. Burgers. Dordrecht: Kluwer.
OrrW.M. 1907. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. Roy. Irish Acad. A 27, 9–68; 69–138.
PippardB.A. 1975. Obituaries: Sir Geoffrey Taylor. Phys. Today 28, 67.
PolyakovA.M. 1995. Turbulence without pressure. Phys. Rev. E 52, 6183–6188.
PrandtlL. 1905. Über Flüssigkeitsbewegnung bei sehr kleiner Reibung. In Verhandlungen des dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904, A.Krazer (ed.), Leipzig: Teubner, Leipzig, pp. 574–584. English translation in Early Developments of Modern Aerodynamics, J.A.K.Ackroyd, B.P.Axcell & A.I.Ruban (eds.), Oxford: Butterworth–Heinemann (2001), pp. 77–87.
PrandtlL. 1914. Der Luftwiderstand von Kugelin. Nachrichten der Gesselschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, 177–190.
PrandtlL. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136–139.
PrandtlL. 1927. Über den Reibungswiderstand strömer Luft. In Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. Munich, Berlin: Oldenbourg 3, 1–5.
PrandtlL. 1930. Attaining a steady air stream in wind tunnels. NACA Technical Memorandum No. 726, 1933. Originally published in The Physics of Solids and Fluids, P.P.Ewald, Th. PöschlL. Prandtl (eds.). English translation by J.Dougall and W.M.Deans. Glasgow: Blackie and Son, Ltd. (1930), p. 358.
PullinD.I. & MeironD.I. 2011. Philip G.Saffman. Chapter 12 of this volume.
RayleighLord 1892. On the question of stability of the flow of fluids. Phil. Mag. 34, 59–70.
ReynoldsO. 1874. On the extent and action of the heating surface for steam boilers. Proc. Manchester Lit. Phil. Soc. 14, 7–12.
ReynoldsO. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. 174, 935–982.
ReynoldsO. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Tran. Roy. Soc. Lond. 86, 123–164.
RichardsonL.F. 1920. Some measurements of atmospheric turbulence. Phil. Trans. Roy. Soc. 221, 1–29.
RichardsonL.F. 1922. Weather Prediction by Numerical Methods. Cambridge University Press.
RichardsonL.F. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. Lond. A110, 709–737.
RouseH. & InceS. 1957. History of Hydraulics. Dover Publications, Inc.
SaffmanP.G. 1960. On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech. 8, 273–283.
SaffmanP.G. 1968. Lectures on homogeneous turbulence. In Topics in Nonlinear Physics, N.J.Zabusky (ed.), Springer, pp. 485–614
Saint-VenantA.J.C. 1851. Formules et tables nouvelles pour les eaux courantes. Ann. Mines 20, 49.
SchubauerG.B. 1935. Air flow in a separating laminar boundary layer. NACA Tech. Rep. 527.
SchubauerG.B. & SkramstadH.K. 1947. Laminar boundary-layer oscillations and stability of laminar flow. J. Aero. Sci. 14, 69–76.
SengersJ.V. & OomsG. (eds) 2007. Autobiographical notes of Burgers. In J.M. Burgers Centre at 15 years, J.M. Burgers Centre, The Netherlands, pp. 20–59; also available at http://www.ipst.umd.edu/aboutus/history.php.
ShandarinS.F. 1989. The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185–220.
SheZ.S., AurellE. & FrischU. 1992. The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641.
SimmonsL.F.G. & SalterC. 1934. Experimental investigation and analysis of the velocity variations in turbulent flow. Proc. Roy. Soc. Lond. A145, 212–234.
SimmonsL.F.G. & SalterC. 1938. An experimental determination of the spectrum of turbulence. Proc. Roy. Soc. Lond. A165 73–89.
SinaiYa. 1992. Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–622.
SommerfeldA. 1908. Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. Proc. 4th Internat. Cong. Math. Rome 3, 116–124.
SouthwellR.V. 1956. G.I. Taylor: a biographical note. In Surveys in Mechanics. G.K.Batchelor & R.M.Davies (eds.), Cambridge University Press, pp. 1–6.
SpaldingD.B. 1962. An interview with Sir Geoffrey Taylor. The Chartered Mech. Engineer 9, 186–191.
SreenivasanK.R. 1984. On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27, 1048–1050.
SreenivasanK.R. & StrykowskiP.J. 1983. Stabilization effects in flow through helically coiled pipes. Exp. in Fluids 1, 31–36.
StewartR.W. & TownsendA.A. 1951. Similarity and self-preservation in isotropic turbulence. Phil. Trans. Roy. Soc. Lond. A243, 359–386.
StuartJ.T. 1986. Keith Stewartson: his life and work. Ann. Rev. Fluid Mech. 18, 1–14.
TaylorG.I. 1910. The conditions necessary for discontinuous motion in gases. Proc. Roy. Soc. Lond. A84, 371–377.
TaylorG.I. 1915. Eddy motion in the atmosphere. Phil. Trans. Roy. Soc. Lond. A215, 1–26.
TaylorG.I. 1916. Skin friction of the wind on the Earth's surface. Proc. Roy. Soc. Lond. 112, 196–199.
TaylorG.I. 1917a. The formation of fog and mist. Quart. J. Roy. Met. Soc. 43, 241–268.
TaylorG.I. 1917b. Phenomena connected with turbulence in the lower atmosphere. Proc. Roy. Soc. Lond. 94, 137–155.
TaylorG.I. 1917c. Observations and speculations on the nature of turbulent motion. Reports and Memoranda of the Advisory Committee for Aeronautics, 345.
TaylorG.I. 1918. Skin friction on a flat surface. Reports and Memoranda of the Advisory Committee for Aeronautics, 604.
TaylorG.I. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212.
TaylorG.I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. Lond. A223, 289–343.
TaylorG.I. 1929. The criterion for turbulence in curved pipes. Proc. Roy. Soc. Lond. A124, 243–249.
TaylorG.I. 1930. The application of Osborne Reynolds's theory of heat transfer to flow through a pipe. Proc. Roy. Soc. Lond. A129, 25–30.
TaylorG.I. 1931a. Effect of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. Lond. 132, 499–523.
TaylorG.I. 1931a. Internal waves and turbulence in a fluid of variable density. Rapports et Procés-Verbaux des Réunions du Council Permanent International pour d'Exploration de la Mer 76, 35–42.
TaylorG.I. 1932a. Note on the distribution of turbulent velocities in a fluid near a solid wall. Proc. Roy. Soc. Lond. A135, 678–684.
TaylorG.I. 1932b. The transport of vorticity and heat through fluids in turbulent motion. Proc. Roy. Soc. Lond. A135, 685–705.
TaylorG.I. 1935a. Statistical theory of turbulence. I. Proc. Roy. Soc. Lond. A151, 421–444.
TaylorG.I. 1935b. Statistical theory of turbulence. II. Proc. Roy. Soc. Lond. A151, 444–454.
TaylorG.I. 1935c. Statistical theory of turbulence. III. Distribution of dissipation of energy in a pipe over its cross-section. Proc. Roy. Soc. Lond. A151, 455–464.
TaylorG.I. 1935d. Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc. Roy. Soc. Lond. A151, 465–478.
TaylorG.I. 1935e. Turbulence in a contracting stream. Z. Angew. Math. Mech. 15, 91–96.
TaylorG.I. 1935f. Distribution of velocity and temperature between concentric rotating cylinders. Proc. Roy. Soc. Lond. 151, 494–512.
TaylorG.I. 1936a. Statistical theory of turbulence. V. Effect of turbulence on boundary layer. Theoretical discussion of relationship between scale of turbulence and critical resistance of spheres. Proc. Roy. Soc. Lond. A156, 307–317.
TaylorG.I. 1936b. Correlation measurements in a turbulent flow through a pipe. Proc. Roy. Soc. Lond. A157, 537–546.
TaylorG.I. 1936c. The mean value of the fluctuations in pressure and pressure gradient in a turbulent stream. Proc. Camb. Phil. Soc. 32, 580–584.
TaylorG.I. 1937a. Flow in pipes and between parallel planes. Proc. Roy. Soc. Lond. A159, 496–506.
TaylorG.I. 1937b. The statistical theory of isotropic turbulence. J. Aero. Sci. 4, 311–315.
TaylorG.I. 1938a. Production and dissipation of vorticity in a turbulent fluid. Proc. Roy. Soc. Lond. A164, 15–25.
TaylorG.I. 1938b. The spectrum of turbulence. Proc. Roy. Soc. Lond. A164, 476–481.
TaylorG.I. 1938c. Turbulence. Chapter 5 of Modern Developments in Fluid Dynamics, vol. 1, S.Goldstein (ed.), pp. 191–233. Oxford University Press.
TaylorG.I. 1939. Some recent developments in the study of turbulence. Proc. 5th Int. Congr. Appl. Mech., Cambridge, MA. pp. 294–310, Wiley.
TaylorG.I. 1950a. The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. Roy. Soc. Lond. A201, 159–174.
TaylorG.I. 1950b. The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. Lond. A201, 171–186.
TaylorG.I. 1954. The dispersion of matter in turbulent flow through a pipe. Proc. Roy. Soc. Lond. A223, 446–468.
TaylorG.I. 1970. Some early ideas about turbulence. J. Fluid Mech. 41, 5–11.
TaylorG.I. 1973a. Memories of Kármán. J. Fluid Mech. 16, 478–480.
TaylorG.I. 1973b. Memories of von Kármán. SIAM Rev. 15, 447–452.
TaylorG.I. 1974. The interaction between experiment and theory in fluid mechanics. Ann. Rev. Fluid Mech. 6, 1–16.
TaylorG.I. & BatchelorG.K. 1949. The effect of wire gauze on small disturbances in a uniform stream. Quart. J. Mech. Appl. Math., 2, 1–26.
TaylorG.I. & CaveC.J.P. 1916. Variation of wind velocity close to the ground. Reports and Memoranda of the Advisory Committee for Aeronautics, 296, part 1.
TaylorG.I. & GreenA.E. 1937. Mechanism of the production of small eddies from large eddies. Proc. Roy. Soc. Lond. A158, 499–521.
TownendH.C.H. 1934. Statistical measurements of turbulence in the flow through a pipe. Proc. Roy. Soc. Lond. A145, 180–211.
TownsendA.A. 1954. The diffusion behind a line source in homogeneous turbulence. Proc. Roy. Soc. Lond. 224, 487–512.
TownsendA.A. 1956. The Structure of Turbulent Shear Flow. Cambridge University Press.
TownsendA.A. 1990. Early days of turbulence research in Cambridge. J. Fluid Mech. 212, 1–5.
TurnerJ.S. 1997. G.I. Taylor in his later years. Ann. Rev. Fluid Mech. 29, 1–25.
UberoiM.S. & CorrsinS. 1953. Diffusion of heat from a line source in isotropic turbulence. NACA Tech. Rep. 1142. White, C.M. 1929. Streamline flow through curved pipes. Proc. Roy. Soc. Lond. A123, 645–663.
WienerN. 1939. The use of statistical theory in the study of turbulence. Proc. 5th Int. Congr. Appl. Mech., Cambridge, MA. pp. 356–358, Wiley.
van der Hegge ZijnenB.G. 1924. Measurements of the velocity distribution in the boundary layer along a plane surface. Doctoral Dissertation, University of Delft.
Vogel-PrandtlJ. 1993. Ludwig Prandtl: Ein Lebensbild, Erinnerungen, Dokumente, Max-Planck Institute Report 107, Göttingen.
WienerN. 1933. The Fourier Integral and Certain of Its Applications, Cambridge University Press, (see p. 70, Theorem 9.09).
YaglomA.M. 1994. A.N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Ann. Rev. Fluid Mech. 26, 1–23.
Zel'dovichYa.B. & RaizerYu.P. 1969. Shock waves and radiation. Ann. Rev. Fluid Mech. 1, 385–412.
ZieglerM. 1930. The application of hot wire anemometer for the investigation of the turbulence of an airstream. Versl. d. Kon. Akad. v. Wetensch Amsterdam 33, 723–736.

Reference Title: References

Reference Type: bibliography

AshfordO. 1985. Prophet or Professor: The Life and Work of L.F. Richardson. Hilger.
BatchelorG.K. 1950. The applicaton of the similarity theory of turbulence to atmospheric diffusion. Quart. J. R. Meteorol. Soc. 76 133–146.
BiferaleL., BoffettaG., CelaniA., DevenishB.J., LanotteA. & ToschiF. 2005. Lagrangian statistics of particle pairs in homogeneous and isotropic turbulence. Phys. Fluids 17 115101.
BjerkensJ. & SolbergH. 1922. Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publ. 3 1–18.
BoffettaG. & SokolovI.M. 2002. Relative dispersion in fully developed turbulence: the Richardson law and intermittency corrections. Phys. Rev. Lett. 88 094501.
CharneyJ.G., FjørtoftR. & von NeumannJ. 1950. Numerical integrations of the barotropic vorticity equations. Tellus 2 237–254.
FalcovichG., GawedzkiK. & VergassolaM. 2001. Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 914–973.
GoldE. 1971. Lewis Fry Richardson. Dictionary of National Biography, Supp. (1951–60), London 1971, 837–839.
HuntJ.C.R. 1987. Lewis Fry Richardson and his contribution to mathematics, meteorology, and models of conflict. Ann. Rev. Fluid. Mech. 30 xiii–xxxvi.
IsichenkoM.B. 1992. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64 961–1043.
KolmogorovA.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. USSR 30 301.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at large Reynolds number. J. Fluid. Mech. 13 82–85.
LewisJ.M. 1998. Clarifying the dynamics of the general circulation: Phillips's 1956 experiment. Bull. Am. Met. Soc. 79 38–60.
LorenzE.N. 1963. Deterministic non-periodic flows. J. Atmos. Sci. 20 130–141.
MandelbrotB. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156 636–638.
MandelbrotB. 1969. On intermittent free turbulence. In Turbulence of Fluids and Plasmas, 1968, Brooklyn Polytechnic Institute, E.Weber, ed., Interscience, pp. 483–492.
OuelletteN.T., XuH., BurgoinM., & BodenschatzE. 2006. An experimental study of turbulent relative dispersion models. New J. Phys. 8 109.
PhillipsN.A. 1956. The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Met. Soc. 82 123–164.
PhillipsN.A. 1973. Principles of large scale numerical weather prediction. In Dynamic Meteorology, P.Morel, ed., D. Reidel Publ. Co.
PrandtlL. 1931. Abriss de Stomunglere. Vieweg.
RichardsonL.F. 1920. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London A 97 354–373.
RichardsonL.F. 1922. Weather Prediction by Numerical Process. Cambridge University Press.
RichardsonL.F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. London Ser. A 110 709–737.
RichardsonL.F. & StommelH. 1949. Note on eddy diffusion in the sea. J. Met. 5 238–240.
Richardson L.F. 1961. The problem of contiguity: an appendix to statistics of deadly quarrels. General Systems Yearbook 6 139–187.
SalazarJ.P.L.C. & CollinsL.R. 2009. Two-particle dispersion in isotropic turbulent flows. Ann. Rev. Fluid Mech. 41 405–32.
SmagorinskyJ. 1981. The beginning of numerical weather prediction and general circulation modeling: early recollections. Adv. Geophys. 25 3–37.
SreenivasanK.R., RamshankarR. & MeneveauC. 1989. Mixing, entrainment, and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421 79–108.
ToschiF. & BodenschatzE. 2009. Lagrangian properties of particles in turbulence. Ann. Rev. Fluid. Mech. 41 375–404.
TaylorG.I. 1958. The present position in the theory of turbulent diffusion. Adv. Geophys. 6 101–111.
WoolardE.W. 1922. L.F. Richardson on weather prediction by numerical processes. Mon. Weather Rev. 50 72–74.

Reference Title: References

Reference Type: bibliography

ArnoldV.I. and B.A.Khesin. 1998. Topological Methods in Hydrodynamics, Appl. Math. Sci. Series 125, Springer-Verlag.
BattimelliG. and A.Vulpiani. 1982. Kolmogorov, Heisenberg, von Weizsäcker, Onsager: un caso di scoperta simultanea. In Atto III Congresso Nazionale di Storia della Fisica (Palermo 11–16.10.1982), 169–175.
BarenblattG.I. 1953. Motion of suspended particles in a turbulent flow. Prikl. Mat. Mekh., 17, 261–74; 1955. Motion of suspended particles in a turbulent flow occupying a half-space or plane channel of finite depth. ibid., 19, 61–68.
BohmD. et al. 1949. In The Characteristics of Electrical Discharges in Magnetic Fields, A.Guthrie and R.K.Wakerling (eds), McGraw–Hill.
BolgianoR. 1959. Turbulence spectra in a stably-stratified atmosphere, J. Geophys. Res. 64, 2226–9; 1962. Structure of turbulence in stratified media, ibid., 67, 3015–23.
CamacM. et al. 1962. Shock waves in collision-free plasmas. Nuclear Fusion Supplement 2, 423.
DrydenH.L. et al. 1937. Nat. Adv. Com. Aeronaut., Rep 581.
FalkovichG., K.Gawȩdzki, and M.Vergassola. 2001. Particles and fields in fluid turbulence, Rev. Mod. Phys., 73, 913.
FalkovichG. and K.R.Sreenivasan. 2006. Lessons from hydrodynamic turbulence, Physics Today, 59(4), 43.
FrenkelV. 1988. Alexander Alexandrovich Friedman, Biography, Sov. Phys. Uspekhi., 155, 481.
FriedmanA.A. 1922. Über die Krümmung des Raumes, Z. Physik, 10, H6, 377–387.
FriedmanA.A. and L.V.Keller. 1925. Differentialgleichungen für die turbulente Bewegung einer compressibelen Flüssigkeit. In Proc. First. Internat. Congress Appl. Mech. Delft, C.Beizano and J.Burgers (eds), 395–405.
FrischU. 1995. Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press.
GledzerE.B., F.V.Dolzhanskii and A.M.Obukhov. 1981. In Systems of Hydrodynamic Type and Their Application, Nauka, Moscow (in Russian).
GolitsynG.S. 1973. An Introduction to Dynamics of Planetary Atmospheres, Leningrad, Gidrometeoizdat (in Russian).
GolitsynG.S. 2009, 2010. Private communications.
GurvitzA.S. 1960. Experimental study of the frequency spectra of the vertical wind in the atmospheric boundary layer, Dokl. Akad. Nauk, 132, 806–809.
KanerE.A. and V.M.Yakovenko. 1970. Weak turbulence spectrum and second sound in a plasma, Sov. Phys. JETP, 31, 316–30.
KendallD. et al. 1990. Andrei Nikolaevich Kolmogorov (1903–1987), Bull. London Math. Soc., 22(1), 31–100.
KolmogorovA.N. 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag.
KolmogorovA.N. 1941a. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, C. R. Acad. Sci. URSS, 30, 301–305.
KolmogorovA.N. 1941b. On decay of isotropic turbulence in an incompressible viscous fluid, C. R. Acad. Sci. URSS, 31, 538–540.
KolmogorovA.N. 1941c. Energy scattering in locally isotropic turbulence in incompressible viscous fluid for very large Reynolds number, C. R. Acad. Sci. URSS, 32, 19–21.
KolmogorovA.N. 1941d. Logarithmically normal distribution of the size of particles under fragmentation, Dokl. Akad. Nauk SSSR, 31, 99–101.
KolmogorovA.N. 1949. On the disintegration of drops in a turbulent flow, Dokl. Akad. Nauk SSSR, 66, 825–828.
KolmogorovA.N. 1962. Precisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds é1evés (in French and Russian). In Mécanique de la Turbulence (Coll. Int. du CNRS a Marseille), 447–58. Paris: CNRS; A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech., 13, 82–85.
KolmogorovA.N. 2001. Private Recollections, translated from Russian, http://www.kolmogorov.info/curriculum-vitae.html.
LandauL.D. and E.Lifshitz. 1987. Fluid Mechanics, Pergamon Press.
LandauL.D. and Yu.B.Rumer. 1937. On sound absorption in solids, Phys. Zs. Sovjet., 11, 8–15.
MandelbrotB. 1974. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech., 62, 331–58.
MillionschikovM.D. 1939. Decay of homogeneous isotropic turbulence in a viscous incompressible fluid, Dokl. Akad. Nauk SSSR. 22, 236.
MillionschikovM.D. 1941. Theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk SSSR, 22, 241–42; Izv. Akad. Nauk SSSR, Ser. Geogr. Geojiz., 5, 433–46
MeneveauC. and K.R.Sreenivasan. 1987. Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett., 59, 1424–1427.
MoninA.S. 1958. Report to the Party Central Committee, published in Moskovskaya Pravda, 137, (735), 19 June 1994.
MoninA.S. 1959. The theory of locally isotropic turbulence, Sov. Phys. Doklady, 4, 271.
MoninA.S., and A.M.Yaglom. 1979. Statistical Fluid Mechanics, MIT Press.
Nikol'skiiS.M. 2006. The Great Kolmogorov. In Mathematical Events of the Twentieth Century, BolibruchA.A et al. (eds), Springer-Verlag.
NovikovS.P. 2006. Mathematics at the threshold of the XXI century (Historical Mathematical Researches) (in Russian). http://www.rsuh.ru/print.html?id=50768.
NovikovE.A. and R.W.Stewart. 1964. The intermittency of turbulence and the spectrum of energy dissipation, Izv. Akad. Nauk SSSR, Ser. Geogr. Geojiz., 3, 408–413.
ObukhovA.M. 1941. On the spectral energy distribution in a turbulent flow, Izv. Akad. Nauk SSSR, Geogr. Geofiz., 5, 453–466.
ObukhovA.M. 1949a. The structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Geogr. Geofiz., 13, 58.
ObukhovA.M. 1949b. Pulsations of pressure in a turbulent flow, Dokl. Akad. Nauk., 66, 17–20.
ObukhovA.M. 1951. Properties of wind microstructure in the near-ground atmospheric layer, Izv. Akad. Nauk SSSR, Geofiz., 3, 49–68.
ObukhovA.M. 1959. Influence of Archimedes force on the temperature field in a turbulent flow, Dokl. Akad. Nauk., 125, 1246–1248.
ObukhovA.M. 1962. Some specific features of atmospheric turbulence. J. Geophys. Res., 67, 311–314; J. Fluid Mech., 13, 77–81.
ObukhovA.M. 1969. Integral invariants in systems of hydrodynamic type, Dokl. Akad. Nauk., 184, 309–312.
ObukhovA.M. 1971. Turbulence in an atmosphere with a non-uniform temperature, Boundary-layer Meteorology, 2, 7–29.
ObukhovA.M. 1988. Selected Works, Gydrometeoizdat (in Russian).
ObukhovA.M. 1990. Interest in Geophysics. In Recollections about Academician M.A. Leontovich, Nauka, Moscow (in Russian).
ParisiG. and U.Frisch. 1985. On the singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics, Proc. Int. School ‘E. Fermi’, 1983, Varenna, Italy, 84–87, M.Ghil, R.Benzi and G.Parisi (eds), North-Holland, Amsterdam.
PeierlsR. 1929. Zur kinetischen Theorie der Würmeleitung in Kristallen, Annalen der Physik, 3, 1055–1101; On kinetic theory of thermal conduction in crystals. In Selected Scientific Papers by Sir Rudolf Peierls with Commentary, World Scientific, 1997.
PeixotoJ. and A.Oort. 1984. Physics of climate, Rev. Mod. Phys., 56, 365–429.
SchwingerJ. 1951. On gauge invariance and vacuum polarization, Phys. Rev., 82, 664–679.
ShiryaevA.N. (ed.) 2006. Kolmogorov in Memoirs of Students (in Russian). Nauka, Moscow.
SreenivasanK.R. and G.Eyink. 2006. Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., 78, 87–135.
YaglomA.M., 1949a. On a local structure of the temperature field in a turbulent flow, Dokl. Akad. Nauk. SSSR, 69, 743.
YaglomA.M. 1949b. On acceleration field in a turbulent flow, Dokl. Akad. Nauk. SSSR, 67, 795.
YaglomA.M. 1988. Obukhov's works on turbulence. In Obukhov (1988).
YaglomA.M. 1994. A.N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research, Ann. Rev. Fluid Mech., 26, 1–22.
ZakharovV.E. 1965. Weak turbulence in a media with a decay spectrum, J. Appl. Mech. Tech. Phys., 4, 22–24.
ZakharovV.E. 1966. On a nonlinear theory of surface waves, PhD Thesis, Ac. Sci. USSR Siberian Branch (in Russian).
ZakharovV.E. 1967. Weak-turbulence spectrum in a plasma without a magnetic field, Sov. Phys. JETP, 24, 455; 1972. 35, 908.
ZakharovV. 2009a. The Paradise for Clouds, Ancient Purple Translations.
Zakharov's poem (fragment), from Zakharov (2009a). Translated by A. Shafarenko. ZakharovV.E. and N.N.Filonenko. 1966. The energy spectrum for stochastic oscillations of a fluid surface, Doklady Akad. Nauk SSSR, 170, 1292–1295; English: Sov. Phys. Dokl., 11 (1967), 881–884.
ZakharovV., V.Lvov and G.Falkovich. 1992. Kolmogorov Spectra of Turbulence, Springer-Verlag.

Reference Title: References

Reference Type: bibliography

BatchelorG.K. 1948. Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Maths., 6, 97–116.
BatchelorG.K. 1952. The e.ect of homogeneous turbulence on material lines and surfaces. Proc. Roy. Soc. A, 213, 349–366.
BatchelorG.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. 1. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133.
BatchelorG.K., and TownsendA.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. A, 199, 238–255.
BatchelorG.K., HowellsI.D., and TownsendA.A. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity. J. Fluid Mech., 5, 134–139.
BrasseurJ.G., and CorrsinS. 1987. Spectral evolution of the Navier–Stokes equations for low order couplings of Fourier modes. In Advances in Turbulence; Proceedings of the First European Turbulence Conference, Ecully, France, July 1–4, 1986, Springer Verlag, 152–162.
ChampagneF.H., HarrisV.G., and CorrsinS. 1970. Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech., 41, 81–139.
ClauserF.H. 1954. Turbulent boundary layers in adverse pressure gradients. J. Aeronautical Sciences, 21, 91–108.
CockeW.J. 1969. Turbulent hydrodynamic line stretching. Consequences of isotropy. Phys. Fluids, 12, 2488–2492.
Comte-BellotG., and CorrsinS. 1966. The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech., 25, 657–682.
Comte-BellotG., and CorrsinS. 1971. Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech., 48, 273–337.
CorrsinS. 1942. Decay of Turbulence behind Three Similar Grids. Aeronautical Engineering Thesis, Caltech.
CorrsinS. 1943. Investigation of flow in an axially symmetrical heated jet of air. NACA Wartime Report – ACR No. 3L23.
CorrsinS. 1944. Investigation of the behavior of parallel two-dimensional air jets. NACA Wartime Report – ACR No. 4H24.
CorrsinS. 1947. I. Extended Applications of the Hot-Wire Anemometer – II. Investigations of the Flow in Round Turbulent Jets. PhD Thesis, Caltech.
CorrsinS. 1949. An experimental verification of local isotropy. J. Aero Sci., 16, 757–758.
CorrsinS. 1951a. The decay of isotropic temperature fluctuations in an isotropic turbulence. J. Aeronautical Sci., 18(6), 417–423.
CorrsinS. 1951b. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469.
CorrsinS. 1952. Patterns of chaos. The Johns Hopkins Magazine, III(v), 2–8.
CorrsinS. 1953. Remarks on turbulent heat transfer. In Proc. First Iowa Symp. Thermodynamics, 5–30.
CorrsinS. 1955. A measure of the area of a homogeneous random surface in space. Quart. Appl. Math., 12(4), 404–408.
CorrsinS. 1958. Statistical behavior of a reacting mixture in isotropic turbulence. Phys. Fluids, 1(1), 42–47.
CorrsinS. 1959. Progress report on some turbulent di.usion research. Adv. Geophysics, 6, 161–164.
CorrsinS. 1961a. The reactant concentration spectrum in turbulent mixing with a firstorder reaction. J. Fluid Mech., 11, 407–416.
CorrsinS. 1961b. Turbulent flow. American Scientist, 49, 300–325.
CorrsinS. 1962a. Some statistical properties of the product of a turbulent first-order reaction. In Fluid Dynamics and Applied Mathematics. Edited by J.B.Diaz and S.I.Pai. Gordon and Breach, 105–124.
CorrsinS. 1962b. Theories of turbulent dispersion. In Mécanique de la Turbulence, Editions du CNRS Paris, 27–52.
CorrsinS. 1962c. Turbulent dissipation fluctuations. Phys. Fluids, 5, 1301–1302.
CorrsinS. 1963. Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci., 20(2), 115–119.
CorrsinS. 1964. Further generalizations of Onsager cascade model for turbulent spectra. Phys. Fluids, 7(8), 1156–1159.
CorrsinS. 1972. Simple proof of fluid line growth in stationary homogeneous turbulence. Phys. Fluids, 15(8), 1370–1372.
CorrsinS. 1974. Limitations of gradient transport models in random walks and in turbulence. Adv. Geophysics, 18A, 25–71.
CorrsinS., and KarweitM. 1969. Fluid line growth in grid-generated isotropic turbulence. J. Fluid Mech., 39, 87–96.
CorrsinS., and KistlerA.L. 1955. Free-stream boundaries of turbulent flows. NACA Report, 1244.
CorrsinS., and KovasznayL.S.G. 1949. On the hot-wire length correction. Phys. Rev., 75, 1954.
CorrsinS., and PhillipsO.M. 1961. Contour length and surface area of multiple-valued random variables. J. Soc. Indust. Appl. Math., 9(3), 395–404.
CorrsinS., and UberoiM. 1950. Further experiments on the flow and heat transfer in a heated turbulent air jet. NACA Report 998–formerly NACA TN 1865.
CorrsinS., and UberoiM. 1951. Spectra and di.usion in a round turbulent jet. NACA Report, 1040.
DavidsonP.A. 2004. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
DavisS.H., and LumleyJ.L. (eds.) 1985. Frontiers in Fluid Mechanics: A Collection of Research Papers Written in Commemoration of the 65th Birthday of Stanley Corrsin. Springer Verlag.
de Bruyn KopsS. M., and RileyJ. J. 1998. Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids, 10, 2125–2127.
EinsteinA. 1905. On the movement of small particles suspended in stationary liquids required by molecular-kinetic theory of hear. Annalen der Physik, 17, 549–560.
FrischU. 1995. Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press.
GeorgeW.K. 1990. The nature of turbulence. In FED-Forum on Turbulent Flows. Edited by W.M.Bower, M.J.Morris and M.Samimy. Am. Soc. Mech. Eng. Book No H00599, 94, 1–10.
GeorgeW.K., and ArndtR. (eds.) 1988. Advances in Turbulence. Taylor & Francis.
GoldsteinS. 1951. On di.usion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math., 4(2), 129–156.
Hamburger Archives, JHU. 2009. The Ferdinand Hamburger Archives of The Johns Hopkins University. Department of Aeronautics (http://ead.library.jhu.edu/rg06-080.xml#id39664206), Record Group Number 06.080.
HarrisV.G., GrahamJ.A.H., and CorrsinS. 1977. Further measurements in nearly homogeneous turbulent shear flow. J. Fluid Mech., 81, 657–687.
HeisenbergW. 1948. Zur statischen theorie der turbulenz. Z. Physik, 134, 628–657.
HinzeJ.O. 1959. Turbulence: An Introduction to its Mechanism and Theory. McGraw-Hill.
KangH.S., ChesterS., and MeneveauC. 2003. Decaying turbulence in an active-gridgenerated flow and comparisons with large-eddy simulation. J. Fluid Mech., 480, 129–160.
Kármánvon T., and HowarthL. 1938. On statistical theory of isotropic turbulence. Proc. Roy. Soc. (London) A, 164, 192–215.
KelloggR.M., and CorrsinS. 1980. Evolution of a spectrally local disturbance in gridgenerated, nearly isotropic turbulence. J. Fluid Mech., 96, 641–669.
KistlerA.L., O'brienV., and CorrsinS. 1954. Preliminary measurements of turbulence and temperature fluctuations behind a heated grid. NACA Research Memorandum, 54D19.
KolmogorovA.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C.R. Acad. Sci. USSR, 30, 301.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 82–85.
KovasznayL.S.G., UberoiM., and CorrsinS. 1949. The transformation between oneand three-dimensional power spectra for an isotropic scalar fluctuation field. Phys. Rev., 76, 1263–1264.
KraichnanR.H. 1974. On Kolmogorov's inertial-range theories. J. Fluid Mech., 62, 305–330.
KuoA.Y-S., and CorrsinS. 1971. Experiments on internal intermittency and finestructure distribution functions in fully turbulent fluid. J. Fluid Mech., 50, 285–319.
KuoA.Y-S., and CorrsinS. 1972. Experiment on the geometry of the fine-structure regions in fully turbulent fluid. J. Fluid Mech., 56, 447–479.
LandauL.D., and LifshitzE. 1959. Fluid Mechanics. Addison-Wesley (1944–1st Russian edition, Moscow).
LiepmannH.W. 1989. Stanley Corrsin: 1920–1986. Memorial Tributes: National Academy of Engineering (The National Academies Press), 3.
LumleyJ.L. 1962. Approach to Eulerian–Lagrangian problem. J. Math. Phys., 3, 309–312.
LumleyJ.L., and CorrsinS. 1959. A random walk with both Lagrangian and Eulerian statistics. Adv. Geophysics, 6, 179–183.
LumleyJ.L., and DavisS.H. 2003. Stanley Corrsin: 1920–1986. Ann. Rev. Fluid Mech., 35, 1–10.
MillsR.R., KistlerA.L., O'brienV., and CorrsinS. 1958. Turbulence and temperature fluctuations behind a heated grid. NACA Tech. Note, 4288.
MoinP., SquiresK., CabotW., and LeeS. 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A, 3, 2746–2757.
ObukhovA.M. 1949. Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR, Ser. Geofiz., 13, 58–69.
ObukhovA.M. 1962. Some specific features of atmospheric turbulence. J. Fluid Mech., 13, 77.
OnsagerL. 1949. Statistical hydrodynamics. Nuovo Cim., 6(2), 279–287.
OrszagS.A. 1970. Comments on turbulent hydrodynamic line stretching–consequences of isotropy. Phys. Fluids, 13(8), 2203–2204.
PattersonG.S. Jr., and CorrsinS. 1966. Computer experiments on random walks with both Eulerian and Lagrangian statistics. In Dynamics of Fluids and Plasmas, Proceedings of the Symposium held in honor of Professor Johannes M. Burgers, 7–9 October, 1965, at University of Maryland. Edited by S.I.Pai, A.J.Faller, T.L.Lincoln, D.A.Tidman, G.N.Trytton, and T.D.Wilkerson. Academic Press, 275–307.
PhillipsO.M. 1986. Book review of Frontiers in Fluid Mechanics. J. Fluid Mech., 171, 563–567.
PoinsotT., and VeynanteD. 2001. Theoretical and Numerical Combustion. R.T. Edwards, Inc.
RiceS.O. 1944. Mathematical analysis of random noise. Bell Systems Tech. J., 23(3), 282–332.
RiceS.O. 1945. Mathematical analysis of random noise.. Bell Systems Tech. J., 24(1), 46–156.
RichardsonL.F. 1922. Weather Prediction by Numerical Process. Cambridge University Press.
RileyJ.J., and CorrsinS. 1971. Simulation and computation of dispersion in turbulent shear flow. Conf. on Air Pollution Met. AMS.
RileyJ.J., and CorrsinS. 1974. The relation of turbulent di.usivities to Lagrangian velocity statistics for the simplest shear flow. J. Geophys. Res., 79(12), 1768–1771.
SaffmanP.G. 1967. The large scale structure of homogeneous turbulence. J. Fluid Mech., 27, 581–594.
ShlienD.J., and CorrsinS. 1974. A measurement of Lagrangian velocity autocorrelation in approximately isotropic turbulence. J. Fluid Mech., 62, 255–271.
Sreenivasan. 1996. The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids, 8, 189–196.
SreenivasanK.R., TavoularisS., HenryR., and CorrsinS. 1980. Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech., 100, 597–621.
SreenivasanK.R., TavoularisS., and CorrsinS. 1981. A test of gradient transport and its generalizations. In Turbulent Shear Flows 3. Edited by L.J.S.Bradbury, F.Durst, B.E.Launder, F.W.Schmidt and J.H.Whitelaw. Springer Verlag, 96–112.
TavoularisS., and CorrsinS. 1981a. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech., 104, 311–347.
TavoularisS., and CorrsinS. 1981b. Theoretical and experimental determination of the turbulent di.usivity tensor in homogeneous turbulent shear flow. In 3rd Symp. Turb. Shear Flows, Univ. California, Davis, pp. 15.24–15.27.
TaylorG.I. 1921. Di.usion by continuous movements. Proc. London Math. Soc. Ser. A, 20, 196–211.
TennekesH. 1968. Simple model for small-scale structure of turbulence. Phys. Fluids, 11, 669–670.
TennekesH., and LumleyJ.L. 1972. A First Course in Turbulence. MIT Press.
TerrellR. 1959. Nobody hits it. Sports Illustrated, June 29 issue.
TownsendA.A. 1948. Local isotropy in the turbulent wake of a cylinder. Austral. J. Sci. Res. A, 1(2), 161–174.
TownsendA.A. 1956. The Structure of Turbulent Shear Flow. Cambridge University Press.
UberoiM., and CorrsinS. 1953. Di.usion of heat from a line source in isotropic turbulence. NACA Report 1142.

Reference Title: References

Reference Type: bibliography

BarenblattG.I. 2001. George Keith Batchelor (1920–2000) and David George Crighton (1942–2000): Applied Mathematicians. Notices Amer. Math. Soc. 48, 800–806.
BatchelorG.K. 1946a. The theory of axisymmetric turbulence. Proc. Roy. Soc. A 186, 480–502.
BatchelorG.K. 1946b. Double velocity correlation function in turbulent motion. Nature 158, 883–884.
BatchelorG.K. 1947. Kolmogoroff's theory of locally isotropic turbulence. Proc. Cam. Phil. Soc. 43, 533–559.
BatchelorG.K. 1949a. The role of big eddies in homogeneous turbulence. Proc. Roy. Soc. A 195, 513–532.
BatchelorG.K. 1949b. Diffusion in a field of homogeneous turbulence. I. Eulerian analysis. Australian Journal of Scientific Research Series A – Physical Sciences 2, 437–450.
BatchelorG.K. 1950a. On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. A 201, 405–416.
BatchelorG.K. 1950b. The application of the similarity theory of turbulence to atmospheric diffusion. Quarterly Journal of the Royal Meteorological Society 76, 133–146.
BatchelorG.K. 1951. Magnetic fields and turbulence in a fluid of high conductivity. In: Proceedings of the Symposium on the motion of gaseous masses of cosmical dimensions, Paris, August 16–19, 1949, “Problems of Cosmical Aerodynamics”, Central Air Documents Office, 149–155.
BatchelorG.K. 1952a. Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Cam. Phil. Soc. 48, 345–362.
BatchelorG.K. 1952b. The effect of homogeneous turbulence on material lines and surfaces. Proc. Roy. Soc. A 213, 349–366.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.
BatchelorG.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133.
BatchelorG.K. 1964. Diffusion from sources in a turbulent boundary layer. Arch. Mech. Stosowanech 16, 661–670.
BatchelorG.K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.
BatchelorG.K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. High-speed computing in fluid dynamics. The Physics of Fluids Supplement 11, 233–239.
BatchelorG.K. 1980. Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech. 98, 609–623.
BatchelorG.K. 1992. Fifty years with fluid mechanics. Proc. 11th Australian Fluid Mechanics Conf., Dec. 1992, 1–8.
BatchelorG.K. 1996. The Life and Legacy of G.I. Taylor, Cambridge University Press.
BatchelorG.K. 1997. Research as a life style. Appl. Mech. Rev. 50, R11–R20.
BatchelorG.K. & ProudmanI. 1954. The effect of rapid distortion of a fluid in turbulent motion. Quart. Journ. Mech. and Applied Math. 7, 83–103.
BatchelorG.K. & ProudmanI. 1956. The large-scale structure of homogeneous turbulence. Phil. Trans. Roy. Soc. London Series A. Mathematical and Physical Sciences, No. 949, 248, 369–405.
BatchelorG.K. & TownsendA.A. 1947. Decay of vorticity in isotropic turbulence. Proc. Roy. Soc. A 190, 534–550.
BatchelorG.K. & TownsendA.A. 1948a. Decay of isotropic turbulence in the initial period. Proc. Roy. Soc. A 193, 539–558.
BatchelorG.K. & TownsendA.A. 1948b. Decay of turbulence in the final period. Proc. Roy. Soc. A 194, 527–543.
BatchelorG.K. & TownsendA.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. A 199, 238–255.
BatchelorG.K. & TownsendA.A. 1956. Turbulent diffusion. In: Surveys in Mechanics: a collection of surveys of the present position of research in some branches of mechanics: written in commemoration of the 70th birthday of Geoffrey Ingram Taylor. Cambridge University Press, 352–399.
BatchelorG.K., BinnieA.M. & PhillipsO.M. 1955. The mean velocity of discrete particles in turbulent flow in a pipe. Proc. Phys. Soc. B 68, 1095–1104.
BatchelorG.K., CanutoV.M. & ChasnovJ.R. 1992. Homogeneous buoyancy-generated turbulence. J. Fluid Mech. 235, 349–378.
BatchelorG.K., HowellsI.D. & TownsendA.A. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech. 5, 134–139.
CorrsinS. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469–473.
CowlingT.G. 1957. Magnetohydrodynamics. Interscience Publishers Inc.
EyinkG., FrischU., MoreauR. & SobolevskiiA. (eds) 2008. Euler equations: 250 years on. Physics D 237.
FavreA. (ed) 1962. Mécanique de la Turbulence. No. 108, Editions du CNRS.
FrischU. 1995. Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press.
GrantH.L., StewartR.W. & MoillietA. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–268.
IshidaT., DavidsonP.A. & KanedaY. 2006. On the decay of isotropic turbulence. J. Fluid Mech. 564, 455–475.
KolmogorovA.N. 1941a. The local structure of turbulence in an incompressible fluid with very large Reynolds number. C.R. Acad. Sci. URSS 309, 301–5.
KolmogorovA.N. 1941b. Dissipation of energy under locally isotropic turbulence. C.R. Acad. Sci. URSS 32, 16–18.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85.
KraichnanR.H. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543.
KraichnanR.H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423.
KulsrudR.M. 1999. A critical review of galactic dynamos. Ann. Rev. Astron. Astrophys. 37, 37–64.
MoffattH.K. 1970. Turbulent dynamo action at low magnetic Reynolds number. J. Fluid Mech. 41, 435–452.
MoffattH.K. 2002. George Keith Batchelor, 8 March 1920–30 March 2000. Biog. Mems. Fell. R.Soc. Lond. 48, 25–41.
MoffattH.K. 2010. George Batchelor: a personal tribute, ten years on. J. Fluid Mech. 663, 2–7.
MoffattH.K. & SaffmanP.G. 1964. Comment on “Growth of a weak magnetic field in a turbulent conducting fluid with large magnetic Prandtl number”. Phys. Fluids 7, 155.
ObukhovA.M. 1949. Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk, SSSR, Geogr. i Geofiz. 13, 58–69.
SaffmanP.G. 1963. On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech. 16, 542–572.
SaffmanP.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593.
SaffmanP.G. 1971. On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Studies in Applied Mathematics 50, 377–383.
SagautP. & CambonC. 2008. Homogeneous Turbulence Dynamics. Cambridge University Press.
SchlüterA. & BiermannL. 1950. Interstellare Magnetfelder. Z. Naturforsch. 5a, 237–251.
SteenbeckM., KrauseF. & RädlerK.-H. 1966. Berechnung der mittleren LorentzFeldstärke für ein elektrisch leitendes Medium in turbulenter, durch CoriolisKräfte beeinfluster Bewegung. Z. Naturforsch. 21a, 369–376.
TaylorG.I. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212.
TaylorG.I. 1935. Turbulence in a contracting stream. Z. angew. Math. Mech. 15, 91–96.
TaylorG.I. 1954. The dispersion of matter in turbulent flow through a pipe. Proc. Roy. Soc. A 223, 446–68.
TaylorG.I. & BatchelorG.K. 1949. The effect of wire gauze on small disturbances in a uniform stream. Quart. J. Mech. Appl. Math. 2, 1–29.
TaylorG.I. & GreenA.E. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A 158, 499–521.
TownsendA.A. 1951a. The passage of turbulence through wire gauzes. Quart. J. Mech. Appl. Math. 4, 308–329.
TownsendA.A. 1951b. On the fine-scale structure of turbulence. Proc. Roy. Soc. A 208, 534–542.
TownsendA.A. 1990. Early days of turbulence research in Cambridge. J. Fluid Mech. 212, 1–5.
ZeldovichYa. B. 1957. The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460–462.

Reference Title: References

Reference Type: bibliography

AdrianR.J. 2007. Hairpin vortex organization in wall turbulence. Phys. Fluids, 19, 041301.
BatchelorG.K., and TownsendA.A. 1947. Decay of vorticity in isotropic turbulence. Proc. Roy. Soc. Lond. A, 190(1023), 534–550.
BatchelorG.K., and TownsendA.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. Lond. A, 199(1057), 238–255.
BatchelorG.K., and TownsendA.A. 1955. Singing corner vanes. Nature, 3930, 236.
BradshawP. 1967. The turbulence structure of equilibrium boundary layers. J. Fluid Mech., 29, 625–645.
BradshawP. 1976. Review: The structure of tubulent shear flow, 2nd edition by A.A. Townsend. J. Fluid Mech., 76, 622–624.
ElliottC.J., and TownsendA.A. 1981. The development of a turbulent wake in a distorting duct. J. Fluid Mech., 113, 187–217.
GrantH.L. 1958. The large eddies of turbulent motion. J. Fluid Mech., 4, 149–190.
HuntJ.C.R., and CarlottiP. 2001. Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66, 453–475.
HuntJ.C.R., and GrahamJ.M.R. 1978. Free-stream turbulence near plane boundaries. J. Fluid Mech, 84, 209–235.
JimenezJ. 2004. Turbulent flows over rough walls. Ann. Rev. Fluid Mech., 36, 173–196.
JimenezJ., and HoyasS. 2008. Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech., 611, 215–236.
JimenezJ., and KawaharaG. 2011. Dynamics of wall-bounded turbulence. In: DavidsonP.A., SreenivasanK.R., and KanedaY. (eds), The Nature of Turbulence. Cambridge University Press.
KlineS.J., ReynoldsW.C., SchaubF.A., and RundstadlerP.W. 1967. The structure of turbulent boundary layers. J. Fluid Mech., 30, 741–773.
LauferJ. 1955. The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. no. 1174.
MannJ. 1994. The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech, 273, 141–148.
MarusicI., McKeonB.J., MonkewitzP.A., NagibH.M., SmitsA.J., and SreenivasanK.R. 2010. Wall-bounded turbulent flows: Recent advances and key issues. Phys. Fluids, 22, 065103.
NickelsT.B. (ed). 2010. IUTAM Symposium on Rough Wall Turbulence. IUTAM Book-series. Springer.
NickelsT.B., and PerryA.E. 1996. An experimental and theoretical study of the turbulent coflowing jet. J. Fluid Mech., 309, 157–182.
NickelsT.B., MarusicI., HafezS.M., and ChongM.S. 2005. Evidence of the k−1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Letters, 95, 074501.
NickelsT.B., MarusicI., HafezS.M., HutchinsN., and ChongM.S. 2007. Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. Roy. Soc. Lond. A, 365, 807–822.
PanofskyH.A., and TownsendA.A. 1964. Change of terrain roughness and the wind profile. Quart. J. Roy. Met. Soc., 90, 147–155.
PerryA.E., and AbellC.J. 1977. Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech., 79, 785–799.
PerryA.E., and ChongM.S. 1982. On the mechanism of wall turbulence. J. Fluid Mech., 119, 173–217.
PerryA.E., and MarusicI. 1995. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech., 298, 361–388.
PerryA.E., HenbestS.M., and ChongM.S. 1986. A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165, 163–199.
RottaJ.C. 1962. Turbulent boundary layers in incompressible flow. Prog. Aero. Sci., 2, 1–219.
SchultzM.P., and FlackK.A. 2007. The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech., 580, 381–405.
SmitsA.J., McKeonB.J., and MarusicI. 2011. High Reynolds number wall turbulence. Ann. Rev. Fluid Mech., 43, 353–375.
StewartR.W., and GrantH.L. 1999. Early measurements of turbulence in the ocean: motives and techniques. J. Atmos. Ocean. Tech., 16, 1467–1473.
TownsendA.A. 1941. Beta-ray spectra of light elements. Proc. Roy. Soc. Lond. A, 177, 357–366.
TownsendA.A. 1947a. Measurements in the turbulent wake of a cylinder. Proc. Roy. Soc. Lond. A, 190(1023), 551–561.
TownsendA.A. 1947b. The structure of the turbulent boundary layer. Proc. Camb. Phil. Soc., 2, 375–395.
TownsendA.A. 1948. Local isotropy in the turbulent wake of a cylinder. Aust. J. Sci. Res., 1(2), 161–174.
TownsendA.A. 1956. The Structure of Turbulent Shear Flow. Cambridge University Press.
TownsendA.A. 1958a. The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech., 4, 361–375.
TownsendA.A. 1958b. Turbulent flow in a stably stratified atmosphere. J. Fluid Mech., 3, 361–375.
TownsendA.A. 1959. Temperature fluctuations over a heated horizontal surface. J. Fluid Mech., 209–241.
TownsendA.A. 1961. Equilibrium layers and wall turbulence. J. Fluid Mech., 11, 97–120.
TownsendA.A. 1962. Natural convection in the Earth's boundary layer. Quart. J. Roy. Met. Soc., 88, 51–56.
TownsendA.A. 1964. Natural convection in water over an ice surface. Quart. J. Roy. Met. Soc., 90, 147–155.
TownsendA.A. 1965. Excitation of internal waves by a turbulent boundary layer. J. Fluid Mech., 22, 241–252.
TownsendA.A. 1967. Wind and formation of inversions. Atmos. Environ., 1, 173–175.
TownsendA.A. 1972. Mixed convection over a heated horizontal plane. J. Fluid Mech., 55, 209–227.
TownsendA.A. 1976. The Structure of Turbulent Shear Flow. 2nd edn. Cambridge University Press.
TownsendA.A. 1980. The response of sheared turbulence to additional distortion. J. Fluid Mech., 98, 171–191.
TownsendA.A. 1990. Early days of turbulence research in Cambridge. J. Fluid Mech., 212, 1–5.
TurnerJ.S. 1997. G.I. Taylor in his later years. Ann. Rev. Fluid Mech., 29, 1–25.

Reference Title: References

Reference Type: bibliography

AbeR. 1973. Expansion of a critical exponent in inverse powers of spin dimensionality, Prog. Theor. Physics 49, 113–128.
AlfvénH. 1942. Existence of electromagnetic-hydrodynamic waves, Nature 150, 405–406.
BatchelorG.K. 1950. On the spontaneous magnetic field in a conducting liquid in turbulent motion, Proc. Roy. Soc. Lond. Ser. A 201, 405–416.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK.
BatchelorG.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133.
BatchelorG.K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids Suppl. II 12, 233–239.
BatchelorG.K. & TownsendA.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238–255.
BaudetC., CilibertoS. & PintonJ.F. 1991. Spectral analysis of the von Kármán flow using ultrasound scattering, Phys. Rev. Lett. 67, 193–195.
BelinicherV.I. & L'vovV.S. 1987. The scale-invariant theory of developed hydrodynamic turbulence, Zhurn. Eksp. Teor. Fiz. 93, 533–551.
BoffettaG. 2007. Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence, J. Fluid Mech. 589, 253–260.
BoffettaG. & MusacchioS. 2010. An update of the double cascade in two-dimensional turbulence, Phys. Rev. E 82, 016307.
BorueV. 1993. Spectral exponents of enstrophy cascade in stationary two-dimensional homogeneous turbulence, Phys. Rev. Lett. 71, 3967–3970.
BouchetF. & SimonnetE. 2009. Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Lett. 102, 094504.
BoussinesqJ. V. 1870. Essai théorique sur les lois trouvées expérimentalement par M. Bazin pour l'écoulement uniforme de l'eau dans les canaux découverts, C. R. Acad. Sci. Paris 71, 389–393.
BrayR.W. 1966. A study of turbulence and convection using Fourier and numerical analysis, PhD dissertation available in the library of the Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge [all chapters but the last on thermal convection are also available at http://www.oca.eu/etc7/bray-phd1966.pdf].
ChandrasekharS. 1955. A theory of turbulence, Proc. R. Soc. Lond. A 229, 1–19.
CharneyJ.G. 1947. The dynamics of long waves in a baroclinic westerly current, J. Meteor. 4, 135–163.
ChavanneX., ChillàF., ChabaudB., CastaingB. & HébralB. 2001. Turbulent Rayleigh–Bénard convection in gaseous and liquid He, Phys. Fluids 13, 1300–1320.
ChenS., EckeR.E., EyinkG.L., RiveraM., WanM.-P., & XiaoZ. 2006. Physical mechanism of the two-dimensional inverse energy cascade, Phys. Rev. Lett. 96, 084502
ChertkovM., ConnaughtonC, KolokolovI. & LebedevV. 2007. Dynamics of energy condensation in two-dimensional turbulence, Phys. Rev. Lett. 99, 084501.
ChertkovM., FalkovichG., KolokolovI. & LebedevV. 1995. Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar, Phys.Rev.E 52, 4924–4941.
ChoJ.Y.N. & LindborgE. 2001. Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations, J. Geophys. Res. 106, 10223–32.
CichowlasC., BonaïtiC., DebbaschF. & BrachetM. 2005. Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett. 95, 264502.
CorrsinS. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys. 22, 469–473.
DonzisD.A. & SreenivasanK.R. 2010. The bottleneck effect and the Kolmogorov constant in isotropic turbulence, J. Fluid Mech. 657, 171–188.
FalkovichG., GawȩdzkiK. & VergassolaM. 2001. Particles and fields in fluid turbulence, Rev. Mod. Phys. 73, 913–975.
FjørtoftR. 1953. On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow, Tellus 5, 225–230.
ForsterD., NelsonD.R. & StephenM.J. 1977. Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16, 732–749.
di FrancescoP., GinspargP. & Zinn-JustinJ. 1995. 2D gravity and random matrices, Phys. Rep. 254, 1–133.
FrischU. 1995. Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press.
FrischU. & BourretR. 1970. Parastochastics, J. Math. Phys. 11, 364–390.
FrischU., LesieurM. & BrissaudA. 1974. A Markovian random coupling model for turbulence, J. Fluid Mech. 65, 145–152.
FrischU., MazzinoA. & VergassolaM. 1998. Intermittency in passive scalar advection, Phys. Rev. Lett. 80, 5532–5537.
FrischU., MazzinoA., NoullezA. & VergassolaM. 1999. Lagrangian method for multiple correlations in passive scalar advection, Phys. Fluids 11, 2178–2186.
FrischU. & MorfR. 1981. Intermittency in nonlinear dynamics and singularitites at complex times, Phys. Rev. A 23, 2673–2705.
FrischU., PouquetA., LeoratJ. & MazureA. 1975. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence, J. Fluid Mech. 68, 769–778.
FrischU., SulemP.-L. & NelkinM. 1978. A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87, 719–736.
FrischU. & WirthA. 1996. Inertial-diffusive range for a passive scalar advected by a white-in-time velocity field, Europhys. Lett. 35, 683–687.
FyfeD. & MontgomeryD. 1976. High-beta turbulence in two-dimensional magneto-hydrodynamics, J. Plasma Phys. 16, 181–191.
GaltierS., NazarenkoS.V., NewellA.C. & PouquetA. 2000. A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys. 63, 447–488.
GatO., ProcacciaI. & ZeitakR. 1998. Anomalous scaling in passive scalar advection: Monte Carlo Lagrangian trajectories, Phys. Rev. Lett. 80, 5536–5539.
GawȩdzkiK. & KupiainenA. 1995. Anomalous scaling of the passive scalar, Phys. Rev. Lett. 75, 3834–3837.
GoldreichP. & SridharS. 1997. Magnetohydrodynamic turbulence revisited, Astrophys. J. 485, 680–688.
GotohT. 1998. Energy spectrum in the inertial and dissipation ranges of two-dimensional steady turbulence, Phys. Rev. E 57, 2984–2991.
GotohT. & KraichnanR.H. 2004. Turbulence and Tsallis statistics, Physica D 193, 231–244.
GrantH.L., StewartR.W. & MoillietA. 1962. Turbulent spectra from a tidal channel, J. Fluid Mech. 12, 241–268.
HashminskiiR.Z. 1966. A limit theorem for the solutions of differential equations with random righthand sides, Theor. Prob. Appl. 11, 390–406.
HerringJ.R. & KraichnanR.H. 1972. Comparison of some approximations for isotropic turbulence. In Statistical Models and Turbulence, RosenblattM. & Van AttaC., eds., Springer-Verlag, New York, 148–194.
HopfE. 1952. Statistical hydromechanics and functional calculus, J. Rat. Mech. Anal. 1, 87–123.
't HooftG. 1974. A planar diagram theory for strong interactions, Nucl. Phys. B 72, 461–473.
IroshnikovP.S. 1963. Turbulence of a conducting fluid in a strong magnetic field, Astronomicheskii Zhurnal 40, No. 4, 742–750 (in Russian); translated in Soviet Astronomy 7, 566–571 (1964). [The Russian version has the correct initial ‘R’ for his given name ‘Ruslan’; this was incorrectly translated as a ‘P’.]
KawasakiK. 1970. Kinetic equations and time correlation functions of critical fluctuations, Ann. Phys. (N.Y.) 61, 1–56.
KimuraY. and KraichnanR.H. 1993. Statistics of an advected passive scalar, Phys. Fluids A 5, 2264–2277.
KitL.G. & TsinoberA.B. 1971. Possibility of creating and investigating two-dimensional turbulence in a strong magnetic field, Magnitnaya Gidrodinamika, 7, 27–34.
KolmogorovA.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR 30, 299–303.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13, 82–85.
KraichnanR.H. 1953. Scattering of sound in a turbulent medium, J. Acoust. Soc. Am. 25, 1096–1104.
KraichnanR.H. 1955a. Statistical mechanics of an adiabatically compressible fluid, J. Acoust. Soc. Am. 27, 438–441.
KraichnanR.H. 1955b. Special-relativistic derivation of generally covariant gravitation theory, Phys. Rev. 98, 1118–1122.
KraichnanR.H. 1956a. Pressure field within homogeneous anisotropic turbulence, J. Acoust. Soc. Am. 28, 64–72.
KraichnanR.H. 1956b. Pressure fluctuations in turbulent flow over a flat plate, J. Acoust. Soc. Am. 28, 378–390.
KraichnanR.H. 1957a. Noise transmission from boundary-layer pressure fluctuations, J. Acoust. Soc. Am. 29, 65–80.
KraichnanR.H. 1957b. Relation of fourth-order to second-order moments in stationary isotropic turbulence, Phys. Rev. 107, 1385–1490.
KraichnanR.H. 1958a. Irreversible statistical mechanics of incompressible hydromagnetic turbulence, Phys. Rev. 109, 1407–1422.
KraichnanR.H. 1958b. Higher order interactions in homogeneous turbulence theory, Phys. Fluids 1, 358–359.
KraichnanR.H. 1958c. A theory of turbulence dynamics. In Second Symposium on Naval Hydrodynamics, Ref. ACR-38, Office of Naval Research, Washington, DC, pp. 29–44.
KraichnanR.H. 1959a. Structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech. 5, 497–543.
KraichnanR. H. 1959b. Classical fluctuation–relaxation theorem, Phys. Rev. 113, 1181–1182.
KraichnanR.H. 1961. Dynamics of nonlinear stochastic systems, J. Math. Phys. 2, 124–148.
KraichnanR.H. 1962. Mixing-length analysis of turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids 5, 1374–1389.
KraichnanR.H. 1964a. Direct-interaction approximation for shear and thermally driven turbulence, Phys. Fluids 7, 1048–1062.
KraichnanR.H. 1964b. Kolmogorov's hypotheses and Eulerian turbulence theory, Phys. Fluids 7, 1723–1734.
KraichnanR.H. 1965a. Lagrangian-history closure approximation for turbulence, Phys. Fluids 8, 575–598.
KraichnanR.H. 1965b. Inertial-range spectrum of hydrodynamic turbulence, Phys. Fluids 8, 1385–1387.
KraichnanR.H. 1966a. Isotropic turbulence and inertial-range structure, Phys. Fluids 9, 1728–1752.
KraichnanR.H. 1966b. Dispersion of particle pairs in homogeneous turbulence, Phys. Fluids 9, 1937–1943.
KraichnanR.H. 1967a. Condensate turbulence in a weakly coupled boson gas, Phys. Rev. Lett. 18, 202–206.
KraichnanR.H. 1967b. Inertial ranges in two-dimensional turbulence, Phys. Fluids 10, 1417–1423.
KraichnanR.H. 1967c. Intermittency in the very small scales of turbulence, Phys. Fluids 10, 2081–2082.
KraichnanR.H. 1968a. Lagrangian-history statistical theory for Burgers equation, Phys. Fluids 11, 266–277.
KraichnanR.H. 1968b. Small-scale structure of a scalar field convected by turbulence, Phys. Fluids 11, 945–953.
KraichnanR.H. 1968c. Convergents to infinite series in turbulence theory. Phys. Rev. 174, 240–246.
KraichnanR.H. 1970a. Turbulent diffusion: evaluation of primitive and renormalized perturbation series by Padé approximants and by expansion of Stieltjes transforms into contributions from continuous orthogonal functions. In The Padé Approximant in Theoretical Physics, BakerG.A. & GammelJ.L., eds., Academic Press, New York, pp. 129–170.
KraichnanR.H. 1970b. Instability in fully-developed turbulence, Phys. Fluids 13, 569–575.
KraichnanR.H. 1970c. Convergents to turbulence functions, J. Fluid Mech. 41, 189–218.
KraichnanR.H. 1971a. An almost-Markovian Galilean-invariant turbulence model, J. Fluid Mech. 47, 513–524.
KraichnanR.H. 1971b. Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech. 47, 525–535.
KraichnanR.H. 1972. Some modern developments in the statistical theory of turbulence. In Statistical Mechanics: New Concepts, New Problems, New Applications, RiceS.A., FreedK.F. and LightJ.C., eds., University of Chicago Press, Chicago, pp. 201–228.
KraichnanR.H. 1974a. On Kolmogorov's inertial-range theories, J. Fluid Mech. 62, 305–330.
KraichnanR.H. 1974b. Passive-scalar convection by a quasi-uniform random straining field, J. Fluid Mech. 64, 737–762.
KraichnanR.H. 1975a. Remarks on turbulence theory, Adv. Math. 16, 305–331.
KraichnanR.H. 1975b. Statistical dynamics of two-dimensional flow, J. Fluid Mech. 67, 155–175.
KraichnanR.H. 1976a. Diffusion of weak magnetic fields by isotropic turbulence. J. Fluid Mech. 75, 657–676.
KraichnanR.H. 1976b. Eddy viscosity in two and three dimensions, J. Atmos. Sci. 33, 1521–1536.
KraichnanR.H. 1976c. Diffusion of passive-scalar and magnetic fields by helical turbulence, J. Fluid Mech. 77, 753–768.
KraichnanR.H. 1979a. Variational method in turbulence theory, Phys. Rev. Lett. 42, 1263–1266.
KraichnanR.H. 1979b. Consistency of the alpha-effect turbulent dynamo, Phys. Rev. Lett. 42 1677–1680.
KraichnanR.H. 1985. Decimated amplitude equations in turbulence dynamics. In Theoretical Approaches to Turbulence, DwoyerD.L., HussainiM.Y. and VoigtR.G., eds., Springer-Verlag, New York, pp. 91–135.
KraichnanR.H. 1988. Reduced description of hydrodynamic turbulence, J. Stat. Phys. 51, 949–963.
KraichnanR.H. 1991. Turbulent cascade and intermittency growth, Proc. Roy. Soc. Lond. A 434, 65–78.
KraichnanR.H. 1994. Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett. 72, 1016–1019.
KraichnanR.H. 1999. Note on forced Burgers turbulence, Phys. Fluids 11, 3738–3742.
KraichnanR.H. & ChenS. 1989. Is there a statistical mechanics of turbulence? Physica D 37, 160–172.
KraichnanR.H., ChenH. & ChenS. 1989. Probability distribution of a stochastically advected scalar field, Phys. Rev. Lett. 63, 2657–2657.
KraichnanR.H. & GotohT. 1993. Statistics of decaying Burgers turbulence, Phys. Fluids A 5, 445–457.
KraichnanR.H. & LeithC.E. 1972. Predictability of turbulent flows, J. Atmos. Sci. 29, 1041–1058.
KraichnanR.H. & MontgomeryD. 1980. Two-dimensional turbulence, Rep. Prog. Phys. 43, 547–618.
KraichnanR.H. & NagarajanS. 1967. Growth of turbulent magnetic fields, Phys. Fluids 10, 859–870.
KraichnanR.H. & OrszagS.A. 1967. Model equations for strong turbulence in a Vlasov plasma, Phys. Fluids 10, 1720–1736.
LandauL.D. & LifshitzE.M. 1987. Fluid Mechanics, 2nd ed., Pergamon Press, Oxford.
LeeT.D. 1951. Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid, J. Appl. Phys. 22, 524–524.
LeeT.D. 1952. On some statistical properties of hydrodynamic and hydromagnetic fields, Quarterly Appl. Math. 10, 69–72.
LeithC.E. 1967. Diffusion approximation to inertial energy transfer in isotropic turbulence, Phys. Fluids 10, 1409–1416.
LesieurM. 2008. Turbulence in Fluids, 4th ed., Springer, Heidelberg.
LeslieD.C. 1973. Developments in the Theory of Turbulence, Oxford University Press, Clarendon.
LesieurM., FrischU. & BrissaudA. 1971. ThéoriedeKraichnandelaturbulence.Application àl'étude d'une turbulence possédant de l'hélicité, Ann. Géophys. (Paris) 27, 151–165.
LewisR.M. & KraichnanR.H. 1962. A space-time functional formalism for turbulence, Commun. Pure Appl. Math. 15, 397–411.
LighthillM.J. 1952. On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A 211, 564–587.
LighthillM.J. 1953. On the energy scattered from the interaction of turbulence with sound or shock waves, Proc. Camb. Phil. Soc. 49, 531–551.
LundF. & RojasC. 1989. Ultrasound as a probe of turbulence, Physica D 37, 508–514.
MakeenkoY.M. & MigdalA.A. 1979. Exact equation for the loop average in multi-color QCD, Phys. Lett. B 88, 135–137.
MandelbrotB.B. 1968. On intermittent free turbulence. In Turbulence of Fluids and Plasmas. New York, April 16–18, Brooklyn Polytechnic Inst., New York (abstract).
MandelbrotB.B. 1974. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech. 62, 331–358.
MartinP.C., SiggiaE.D. & RoseH.A. 1973. Statistical dynamics of classical systems, Phys. Rev. A 8, 423–437.
MigdalA.A. 1983. Loop equations and 1/N expansion, Phys. Rep. 102, 199–290.
MillionschikovM. 1941. On the theory of homogeneous isotropic turbulence, Dokl. Akad. Nauk SSSR 32, 615–618.
MoninA.S. & YaglomA.M. 1975. Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, MA.
NazarenkoS.V. 2011. Wave Turbulence, Lect. Notes in Phys., Vol. 825 Springer, Heidelberg.
NazarenkoS.V., NewellA.C. & GaltierS. 2001. Non-local MHD turbulence, Physica D 152, 646–652.
NeumannJ. von. 1949. Recent theories of turbulence. In Collected Works (1949–1963) 6, 437–472, ed. A.H.Taub. Pergamon Press, New York (1963).
NgC.S. & BhattacharjeeA. 1996. Interaction of shear-Alfven wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas, Astrophys. J. 465, 845–854.
NiemelaJ.J., SkrbekL., SreenivasanK.R. & DonnellyR.J. 2000. Turbulent convection at high Rayleigh numbers, Nature 404, 837–841.
NovikovE.A. & StewartR. 1964. Intermittency of turbulence and spectrum of fluctuations in energy-dissipation, Izv. Akad. Nauk. SSSR. Ser. Geofiz 3, 408–413.
ObukhovA.M. 1949. Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Ser. Geogr. i Geofiz. 13, 58–69.
ObukhovA.M. 1962. Some specific features of atmospheric turbulence, J. Fluid Mech. 13, 77–81.
OguraY. 1963. A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech. 16, 33–40.
OnsagerL. 1949. Statistical hydrodynamics, Nuovo Cim. Suppl. 6, 279–287.
OrszagS.A. 1966. Dynamics of fluid turbulence, Princeton Plasma Physics Laboratory, report PPL-AF-13.
OrszagS.A. 1977. Statistical theory of turbulence. In Fluid Dynamics, Les Houches 1973, eds. R.Balian & J.L.Peube. Gordon and Breach, New York, pp. 237–374.
OrszagS.A. & KruskalM.D. 1966. Theory of turbulence, Phys. Rev. Lett. 16, 441–444.
OttS. & MannJ. 2000. An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow, J. Fluid Mech. 422, 207–223.
ParisiG. & FrischU. 1985. On the singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics, Proceedings of the International School of Physics ‘E. Fermi’, 1983, Varenna, Italy. Eds. M.Ghil, R.Benzi & G.Parisi, North Holland, Amsterdam, pp. 84–87.
PasqueroC. & FalkovichG. 2002. Stationary spectrum of vorticity cascade in two-dimensional turbulence, Phys. Rev. E 65, 056305.
PierottiD. 1997. Intermittency in the large-N limit of a spherical shell model for turbulence, Europhys. Lett. 37, 323–328
PierottiD., L'vovV.S., PomyalovA. & ProcacciaI. 2000. Anomalous scaling in a model of hydrodynamic turbulence with a small parameter, Europhys. Lett. 50, 473–479.
PrandtlL. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zs. angew. Math. Mech. 5, 136–139.
PriestleyC.H.B. 1959. Turbulent Transfer in the Lower Atmosphere, University of Chicago Press, Chicago.
ProudmanI. 1961. On Kraichnan's theory of turbulence. In Mécanique de la Turbulence. Colloques Internat. CNRS 108, 107–112, ed. A.Favre, CNRS, Paris.
ReidW.H. 1959. Tech. Rept. No. 23, Division of Applied Mathematics, Brown University. Rhines, P.B. 1979. Geostrophic turbulence, Ann. Rev. Fluid Mech. 11, 401–441.
RoseH.A. & SulemP.-L. 1978. Fully developed turbulence and statistical mechanics, J. Phys. France 39, 441–484.
RotaG.-C. 1996. Indiscrete Thoughts, Birkhäuser, Boston.
RüdigerG. 1974. The influence of a uniform magnetic field of arbitrary strength on turbulence, Astron. Nachr. 295, 275–284.
SalmonR. 1980. Baroclinic instability and geostrophic turbulence, Geophys. Astrophys. Fluid Dyn. 15, 167–211.
SalmonR. 1998. Lectures on Geophysical Fluid Dynamics, Oxford University Press.
ScottR.B. & WangF. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry, J. Phys. Ocean. 35, 1650–1666.
SemikozD.V. & TkachevI.I. 1997. Condensation of bosons in the kinetic regime, Phys. Rev. D 55, 489–502.
ShebalinJ.V., MatthaeusW.H. & MontgomeryD. 1983. Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys. 29, 525–547.
ShraimanB.I. & SiggiaE.D. 1995. Anomalous scaling and small scale anisotropy of a passive scalar in turbulent flow, C.R. Acad. Sci. 321, 279–284.
SmithL.M. & YakhotV. 1993. Bose condensation and small-scale structure generation in a random force driven 2D turbulence, Phys. Rev. Lett. 71, 352–355.
SpiegelE.A. 1971. Convection in stars, Ann. Rev. Astron. Astrophys. 9, 323–352.
SpiegelE.A. 2011. Chandrasekhar's lecture notes on the theory of turbulence (1954). Lect. Notes in Phys. Vol. 810 Springer, Heidelberg.
StarrV.P. 1968. Physics of Negative Viscosity Phenomena, McGraw-Hill, New York.
TatsumiT. 1957. The theory of decay processes of incompressible isotropic turbulence. Proc. R. Soc. Lond. A 239, 16–45.
TaylorG.I. 1917. Observations and speculations on the nature of turbulence motion, Reports and Memoranda of the Advisory Committee for Aeronautics, no. 345; reproduced in G.I. Taylor's Scientific Papers, BatchelorG.K., ed., Cambridge University Press, 1960, Vol. II, paper no. 7, pp. 69–78.
TingL. & MiksisM.J. 1990. On vortical flow and sound generation, Siam. J. Appl. Math. 50, 521–536.
XiaoZ., WanM., ChenS. & EyinkG.L. 2008. Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation, J. Fluid Mech. 619, 1–44.
YaglomA.M. 1949. Local structure of the temperature field in a turbulent flow, Dokl. Akad. Nauk SSSR 69, 743–746.
YaglomA.M. 1966. The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval, Dokl. Akad. Nauk. SSSR 166, 49–52.
ZakharovV.E. 1966. Some aspects of nonlinear theory of surface waves (in Russian), PhD Thesis, Budker Institute for Nuclear Physics for Nuclear Physics, Novosibirsk, USSR.
ZakharovV., L'vovV. & FalkovichG. 1992. Kolmogorov Spectra of Turbulence, Springer-Verlag, Berlin.

Reference Title: References

Reference Type: bibliography

Abu-GhannamB.J. and ShawR. 1980. Natural transition of boundary layers – the effects of turbulence, pressure gradient and flow history. J. Mech. Engg. Sci. 22, 213–228.
AckeretJ., FeldmannF. and RottN. 1946. Inst. Aerodyn. ETH, Report no. 10.
AdamsonT.C. Jr. and MessiterA.F. 1980. Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech. 12, 103–138.
ColesD.E. 1953. Measurements in the boundary layer on a smooth flat plate in super-sonic flow. PhD thesis, Caltech.
ColesD.E. 1954a. Measurements of turbulent friction on a smooth flat plate in super-sonic flow. J. Aero Sci. 21, 433–448.
ColesD. 1954b. The problem of the turbulent boundary layer. ZAMP 5, 182–203.
DhawanS. 1953. Direct measurements of skin friction. NACA Report 1121.
DhawanS. 1981. A glimpse of fluid mechanics research in Bangalore 25 years ago. Proc. Ind. Acad. Sci. (Engg. Sci.) 4, 95–109.
DhawanS. and NarasimhaR. 1958. Some properties of boundary layer flow during transition from laminar to turbulent motion. J. Fluid Mech. 3, 418–436.
DrydenH.L. 1936. Air flow in the boundary layer near a plate. NACA Report 562.
DrydenH.L. 1953. Review of published data on the effect of roughness. J. Aero. Sci. 20, 477–482.
EmmonsH.W. 1951. The laminar-turbulent transition in a boundary layer – Part I. J. Aero. Sci. 18, 490–498.
EmmonsH.W. and BrysonA.E. 1952. The laminar-turbulent transition in a boundary layer (Part II). Proc. 1st US Natl. Cong. Appl. Mech., 859–868.
Kármán, vonT. 1936. The problem of resistance in compressible fluids. Att. dei Convegni 5, R.Accad. d'Italia, pp. 222–277.
LiepmannH.W. 1943. Investigations in laminar boundary-layer stability and transition on curved boundaries. NACA ACR 3H30.
LiepmannH.W. 1945. Investigation of boundary layer transition on concave walls. NACA ACR 4J28.
LiepmannH.W. 1946. The interaction between boundary layer and shock waves in transonic flow. J. Aero. Sci. 13, 623–637.
LiepmannH.W. 2002. Remembering Satish Dhawan. Engineering & Science (Caltech) 65(4), 41–43.
LiepmannH.W., RoshkoA. and DhawanS. 1951. On reflection of shock waves from boundary layers. NACA Report 1100.
MarusicI., McKeonB.J., MonkewitzP.A., NagibH.M., SmitsA.J. and SreenivasanK.R. 2010. Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.
NarasimhaR. 1957. On the distribution of intermittency in the transition region of a boundary layer. J. Aero. Sci. 24, 711–712.
NarasimhaR. 1958. A study of transition from laminar to turbulent flow in the boundary layer of a flat plate. AIISc thesis, Dept. Aero. Eng., Ind. Inst. Sci., Bangalore.
NarasimhaR. 1985. The laminar–turbulent transition zone in the boundary layer. Prog. Aerospace. Sci. 22, 29–80.
NarasimhaR. 2002. Satish Dhawan. Current Science 82, 222–225.
NarasimhaR. and DeshpandeS.M. 1982. Surveys in Fluid Mechanics. Indian Academy of Sciences, Bangalore.
ReynoldsO. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. A 174, 935–982.
SchlichtingH. 1955. Boundary Layer Theory. Pergamon Press.
SchubauerG.B and KlebanoffP.S. 1955. Contributions on the mechanics of boundary-layer transition. NACA Tech. Note 3489.
Shultz-GrunowF. 1940. Neues Reibungswiderstandsgesetz für glatte Platten. Luftfahrtforschung, 17, 239–246. Available in English as NACA Tech. Mem. 986 (1941).
WygnanskiI.J., HaritonidisJ.H. and KaplanR.E. 1979. On a Tollmien–Schlichting wave packet produced by a turbulent spot. J. Fluid Mech. 92, 505–528.

Reference Title: References

Reference Type: bibliography

BatchelorG.K. 1951. Pressure fluctuations in isotropic turbulence. Proceedings of the Cambridge Philosophical Society, 47, 359.
BatchelorG.K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 213, 349–366.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.
BatchelorG.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. Journal of Fluid Mechanics, 5(01), 113–133.
BatchelorG.K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Physics of Fluids (Supp. 2), 12, 233.
BatchelorG.K. and ProudmanI. 1956. The large-scale structure of homogeneous turbulence. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 248(949), 369–405.
BatchelorG.K. and TownsendA.A. 1956. Turbulent diffusion. In Surveys in Mechanics, G.K.Batchelor, ed., Cambridge University Press, 352–399.
BerkoozG., HolmesP. and LumleyJ.L. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25, 539–575.
BradshawP. 1977. Complex turbulent flows. In Theoretical and Applied Mechanics; Proceedings of the Fourteenth International Congress, Delft, Netherlands, August 30–September 4, 1976. (A78-13990 03–31) Amsterdam, North-Holland Publishing Co., 1977, 103–113.
BrownG.L. and RoshkoA. 1974. Density effects and large structure in turbulent mixing layers. Journal of Fluid Mechanics, 64, 775–816.
CockeW.J. 1969. Turbulent hydrodynamic line stretching. Consequences of isotropy. Physics of Fluids, 12, 2488.
CohenS. 1999. Philip Saffman, a memoir. Caltech Archives, 1, 1–91.
DavidsonP.A. 2009. The role of angular momentum conservation in homogeneous turbulence. Journal of Fluid Mechanics, 32, 329–358.
EtemadiN. 1990. On curve and surface stretching in isotropic turbulent flow. Journal of Fluid Mechanics, 221, 685–692.
ForsterD., NelsonD.R. and StephenM.J. 1977. Large-distance and long-time properties of a randomly stirred fluid. Physical Review A, 16(2), 732–749.
GovindarajuS.P. and SaffmanP.G. 1971. Flow in a turbulent trailing vortex. Physics of Fluids, 14, 2074.
HoffmannE.R. and JoubertP.N. 1963. Turbulent line vortices. Journal of Fluid Mechanics, 16, 395–411.
HoggeH.D. and MeechamW.C. 1978. The Wiener–Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base. Journal of Fluid Mechanics, 85, 325–347.
JiménezJ. 2003. Computing high-Reynolds-number turbulence: will simulations ever replace experiments? Journal of Turbulence, 4, 1–13.
KlineS.J., ReynoldsW.C., SchraubF.A. and RunstadlerP.W. 1967. The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30, 741–773.
KnightD. 1975. Turbulence-model predictions for a flat plate boundary layer. AIAA Journal, 13, 945–947.
KnightD.D. and SaffmanP.G. 1978. Turbulence model predictions for flows with significant mean streamline curvature. In AIAA, Aerospace Sciences Meeting.
KolmogorovA.N. 1941. Dissipation of energy in locally isotropic turbulence. Izv. Akad. Nauk. SSR Seria fizichka, 32, 16–18.
KolmogorovA.N. 1942. Equations of turbulent motion in an incompressible liquid. Izv. Akad. Nauk. SSR Seria fizichka, VI, 56.
KolmogorovA.N. 1962a. Precisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds élevés. In Mecanique de la Turbulence; Colloques Internationaux du Centre National de la Recherche Scientifique. CNRS, 447–458.
KolmogorovA.N. 1962b. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. Journal of Fluid Mechanics, 13, 82–85.
KraichnanR.H. 1967. Inertial ranges in two-dimensional turbulence. Physics of Fluids, 10, 1417.
KrogstadP.A., and DavidsonP.A. 2010. Is grid turbulence Saffman turbulence? Journal of Fluid Mechanics, 642, 373–394.
KuznetsovE.A., NaulinV., NielsenA.H. and RasmussenJ.J. 2007. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence. Physics of Fluids, 19, 105110.
LandauL., and LifshitzE. 1987. Fluid Mechanics. Butterworth-Heinemann.
LeonardA. 1974a. Energy cascade in large-eddy simulations of turbulent fluid flows. Advance in Geophysics, 18A, 237–248.
LeonardA. 1974b. Numerical studies of turbulence using vortex filaments. Bulletin of the Americal Physical Society, 19, 1163–1164.
LeslieD.C. 1973. Developments in the Theory of Turbulence. Oxford University Press.
LiepmannH.W. 1979. The rise and fall of ideas in turbulence. American Scientist, 67, 221–228.
LivescuD., RistorcelliJ.R., GoreR.A., DeanS.H., CabotW.H. and CookA.W. 2009. High-Reynolds number Rayleigh–Taylor turbulence. Journal of Turbulence, 10(13), 1–32.
LoitsyanskiL.G. 1939. Some basic laws for isotropic turbulent flow. Trudy Tsentr. Aero.-Gidrodyn, 3, 33.
LundgrenT.S. 1967. Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10, 969.
LundgrenT.S. 1982. Strained spiral vortex model for turbulent fine structure. Physics of Fluids, 25, 2193.
MeechamW.C. and SiegelA. 1964. Wiener–Hermite expansion in model turbulence at large Reynolds number. Physics of Fluids, 7, 1178.
MicheliP.L. 1968. Dispersion in a turbulent field. PhD Thesis, Stanford University. Mickelsen, W.R. 1960. Measurements of the effect of molecular diffusivity in turbulent diffusion. Journal of Fluid Mechanics, 7, 397–400.
MoffattH.K. 1970. Turbulent dynamo action at low magnetic Reynolds number. Journal of Fluid Mechanics, 41, 435–452.
MoffattH.K. 2007. The birth and adolescence of MHD turbulence. In Magnetohydro-dynamics – Historical Evolution and Trends, S.Molokov, R.Moreau and H.K.Moffatt, eds., 213–222.
MoninA.S. and YaglomA.M. 1971. Statistical Fluid Mechanics, vols 1&2. MIT Press.
MooreD.W. and SaffmanP.G. 1973. Axial flow in laminar trailing vortices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 333(1595), 491–508.
MooreD.W. and SaffmanP.G. 1975. The density of organized vortices in a turbulent mixing layer. Journal of Fluid Mechanics, 69, 465–473.
MoserR.D., and RogersM.M. 1993. The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. Journal of Fluid Mechanics, 247, 275–320.
OhkitaniK. 2002. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Physical Review E, 65(4), 046304.
OrszagS. and PattersonG. 1972. The numerical simulation of 3-dimensional homogeneous isotropic turbulence. Phys. Rev. Letters, 76.
OrszagS.A. 1970. Comments on turbulent hydrodynamic line stretching. Consequences of isotropy. Physics of Fluids, 13, 2203.
PopeS.B. 1975. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 72, 331–340.
ProudmanI. and ReidW.H. 1954. On the decay of a normally distributed and homogeneous turbulent velocity field. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 247, 163–189.
RuelleD. 1976. Statistical mechanics and dynamical systems. Chapter I of Statistical Mechanics and Dynamical Systems by David Ruelle and papers from the 1976 Duke Turbulence Conference, Duke University Mathematics Series III.
SaffmanP.G. 1960. On the effect of the molecular diffusivity in turbulent diffusion. Journal of Fluid Mechanics, 8, 273–283.
SaffmanP.G. 1962. Some aspects of the effects of the molecular diffusivity in turbulent diffusion. Colloques Internationaux du Centre National de la Recherche Scientifique, 53.
SaffmanP.G. 1963. On the fine-scale structure of vector fields convected by a turbulent fluid. Journal of Fluid Mechanics, 16, 545–572.
SaffmanP.G. 1967. The large-scale structure of homogeneous turbulence. Journal of Fluid Mechanics, 27(03), 581–593.
SaffmanP.G. 1968. Lectures on homogeneous turbulence. Topics in Nonlinear Physics, 485–614.
SaffmanP.G. 1969. Application of Wiener–Hermite expansion to diffusion of a passive scalar in a homogeneous turbulent field. Physics of Fluids, 12, 1786–1789.
SaffmanP.G. 1970a. A model for inhomogeneous turbulent flow. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317, 417–433.
SaffmanP.G. 1970b. Dependence on Reynolds number of high-order moments of velocity derivatives in issotropic turbulence. Physics of Fluids, 13, 2193.
SaffmanP.G. 1971. On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Studies in Applied Mathematics, 50, 377–383.
SaffmanP.G. 1973. Structure of turbulent line vortices. Physics of Fluids, 16, 1181.
SaffmanP.G. 1974. Model equations for turbulent shear flow. Studies in Applied Mathematics, 53, 17–34.
SaffmanP.G. 1976. Development of a complete model for the calculation of turbulent shear flows. Chapter II of Statistical mechanics and Dynamical Systems by David Ruelle and papers from the 1976 Duke Turbulence Conference, Duke University Mathematics Series III.
SaffmanP.G. 1977. Results of a two equation model for turbulent flows and development of a relaxation stress model for application to straining and rotating flows. In Turbulence in Internal Flows: Turbomachinery and Other Engineering Applications; Proceedings of the SQUID Workshop, Warrenton, VA., June 14, 15, 1976. (A78-34826 14–34) Washington, DC. Hemisphere Publishing Corp., 1977, 191–226; Discussion, 226–231.
SaffmanP.G. 1978. Problems and progress in the theory of turbulence. In Structure and Mechanisms of Turbulence II, 273–306.
SaffmanP.G. and TurnerJ.S. 1956. On the collision of drops in turbulent clouds. Journal of Fluid Mechanics, 1, 16–30.
SchlatterP. and ÖrlüR. 2010. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 659, 116–126.
SchumannU. 1977. Realizability of Reynolds-stress turbulence models. Physics of Fluids, 20, 721.
SreenivasanK.R. 1984. On the scaling of the turbulent energy dissipation rate. Physics of Fluids, 5, 1048.
SyngeJ.L. and LinC.C. 1943. On a statistical model of isotropic turbulence. Trans. Roy. Soc. Canada, 37, 45–63.
TaylorG.I. 1922. Diffusion by continuous movements. Proc. London Math. Soc, 2(20), 196–212.
TaylorG.I. 1935. Statistical theory of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 151(873), 421–444.
TownsendA.A. 1951. On the fine-scale structure of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 208, 534–542.
TownsendA.A. 1954. The diffusion behind a line source in homogeneous turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 224(1159), 487–512.
TsinoberA. and GalantiB. 2003. Exploratory numerical experiments on the difference between genuine and ‘passive’ turbulence. Physics of Fluids, 15, 3514–3531.
WilcoxD.C. 1975. Turbulence-model transition predictions. AIAA Journal, 13, 241–243.
WinantC.D. and BrowandF.K. 1974. Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. Journal of Fluid Mechanics, 63(02), 237–255.
YaglomA.M. 1994. A.N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Annual Review of Fluid Mechanics, 26(1), 1–23.

Reference Type: bibliography

ArnoldV.I. 1963. Proof of a theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Usp. Math. Nauk 18, 13–40.
BarenblattG.I. 2003. Scaling. Cambridge University Press. This book is a summary and accessible account of many years of work of the author with Ya.B. Zeldovich.
BatchelorG.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press. Besides systematizing the then-available statistical theory of turbulence, the book brought Kolmogorov's work to the attention of the Western world. For a fuller account of Batchelor's contributions, see the accompanying article by H.K. Moffatt.
BatchelorG.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–33.
BatchelorG.K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. 11 233–239.
BatchelorG.K. & ProudmanI. 1956. The large-scale structure of homogeneous turbulence. Phil. Trans. Roy. Soc. Lond. A 248, 369–405.
BatchelorG.K. & TownsendA.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. Lond. A 199, 238–55.
BlasiusH. 1913. Das Ähnlichkeitsgesetz bei Reibúngsvorgängen in Flüssigkeiten. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens no. 131, Berlin.
BoussinesqJ. 1870. Essai théorique sur les lois trouvées expérimentalement par M. Bazin pour l'écoulment unifrome de l'eau dans les canaux découverts. C.R. Acad. Sci. Paris 71, 389–393.
BrownG.L. & RoshkoA. 1974. Density effect and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816.
BurgersJ.M. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199. For a brief description of Burgers' work, see the accompanying article by K.R. Sreenivasan.
CorrsinS. 1951. On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469–473. For a fuller account of Corrsin's contributions, see the accompanying article by C.Meneveau & J.J.Riley.
CorrsinS. & KistlerA.L. 1955. The free-stream boundaries of turbulent flows. NASA Tech. Rep. 1244.
DhawanS. 1952. Direct measurement of skin friction. NASA Tech. Note 2567. For a fuller account of Dhawan's contributions, see the accompanying article by R.Narasimha.
EiffelG. 1912. Sur la résistance des sphéres dans l'air en mouvement. Compt. Rend. 155, 1587–1599.
EmmonsH.W. 1951. The laminar turbulent transition in a boundary layer. J. Aero Sci. 18, 490–498.
FavreA., 1965. Equations des gaz turbulents compressibles. J. de Mécanique 4, 361–390.
FeynmanR.P. 1955. Application of quantum mechanics to liquid helium. Prog. Low Temp. Phys. 1, 17–53.
GrantH.L., StewartR.W. & MoillietA. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 263–272. Obukhov verified the equivalent result of the 2/3 power for the second-order structure function in 1949, using the data of K. Gödecke, obtained in 1935.
HagenG. 1939. Über die Bewegnung des Wassers in engen zylindrichen Röhren. Pogg. Ann. 46, 423–442.
HinzeJ.O. 1959. Turbulence. An Introduction to its Mechanisms and Theory. McGraw Hill Co. New York.
HopfE. 1948. A mathematical example displaying the features of turbulence. Commun. Pure Appl. Math. 1, 303–322.
KármánTh. von 1930. Mechanische Ahnlichkeit und Turbulenz. Nach. Ges. Wiss. Göttingen, Math.-Phys. Kl, 58–76. For various nuances of shared credit for the log-law between Kármán and Prandtl, see the accompanying article by A.Leonard & N.Peters on Kármán and that on Prandtl by E.Bodenschatz & M.Eckert in this volume.
KármánTh. von & HowarthL. 1938. On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A164, 192–215. For scientific exchanges between Kármán and Taylor on this problem, see the accompanying article by A.Leonard & N.Peters on Kármán and that on Taylor by K.R.Sreenivasan in this volume.
KellerL.V. & FriedmanA.A. 1924. Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit. Proc. 1st Intern. Cong. Appl. Mech. Delft, pp. 395–405.
KelvinLord. 1887. On the propagation of laminar motion through a turbulently moving inviscid liquid. Phil. Mag. 24, 342–353.
KingL.V. 1914. On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with applications to hot-wire anemometry. Proc. Roy. Soc. 90, 563–570.
KlineS.J., ReynoldsW.C., SchraubF.A. & RunstadlerP.W. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773.
KolmogorovA.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 9–13. (reprinted in Proc. Roy. Soc. Lond. A434, 9–13). The main results were rederived independently by Onsager: ‘The distribution of energy in turbulence’. Phys. Rev. 68, 286 (1945); by Heisenberg: ‘Zur statistichen Theorie der Turbulenz’. Z. Phys. 124, 628–657 (1948) and Proc. Roy. Soc. Lond. A. 195, 402–406 (1948); and by von Weizsäcker: ‘Das Spektrum der Turbulenz bei grossen Reynoldschen Zahlen’. Zeit. f. Phys. 124, 614–627 (1948). Kolmogorov followed up this seminal paper of his by two others on different aspects of the same topic: they appeared in the same journal. For a more complete list of references, and for a discussion of further contributions by Kolmogorov, see the accompanying article by G.Falkovich.
KolmogorovA.N. 1942. Equations of turbulent motion of an incompressible fluid. Izv. AN SSSR. Ser. Fiz. 6, 56–58.
KolmogorovA.N. 1954. On the conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR 98, 525–530.
KolmogorovA.N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85.
KovasznayL.S.G., KibensV. & BlackwelderR.F. 1970. Large scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283–325.
KraichnanR.H. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543. For a fuller account of Kraichnan's work, including his passive scalar work not included here, see the accompanying article by G.L.Eynik & U.Frisch.
KraichnanR.H. 1965. Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575–598.
KraichnanR.H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423.
LandauL.D. 1944. On the problem of turbulence. Akad. Nauk. 44 339–342.
LandauL.D. & LifschitzE.M. 1944. Fluid Mechanics (published in English by Pergamon Press in 1963). The book contains other important contributions to turbulence, not touched upon here.
LerayJ. 1934. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63, 193–248. The work on weak solutions was extended by W. Hopf in 1951 and O.A. Ladyzhenskaya in late 1950s. The latter has summarized the essentials in 2003 as: ‘Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness’, Usp. Mat. Nauk 58, 45–78.
LighthillM.J. 1952. On sound generated aerodynamically. Proc. Roy. Soc. Lond. A 211, 564–587. Subsequent papers of Lighthill on this topic followed in the same journal.
LillyD.K., 1967. The representation of small-scale turbulence in numerical simulation experiments. Proc. of the IBM Sci. Comp. Symp. on Env. Sci., IBM-Form No. 320–1951.
LorenzE.N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.
MandelbrotB.B. 1974. Intermittent turbulence in self-similar cascades; divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358. Mandelbrot (1983) contains a vivid description of his work on turbulence.
MandelbrotB.B. 1983. The Fractal Geometry of Nature. W.H. Freeman and Co. New York.
MillionshchikovM.D. 1939. Decay of homogeneous isotropic turbulence in viscous incompressible fluids. Dokl. AN SSSR, 22, 236–240.
MoffattH.K. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129.
MoninA.S. & YaglomA.M. 1971. Statistical Fluid Mech., vol. I. MIT Press (Russian edition 1965)
MoninA.S. & YaglomA.M. 1975. Statistical Fluid Mech., vol. II. MIT Press (Russian edition 1965). The two volumes made a valiant effort to bring together much of the knowledge available at that time.
MoreauJ.-J. 1961. Constants d'un ilôt tourbillonaire en fluide parfait barotrope. Comptes Rendus, Acad. des Sciences 252, 2810–2813.
MoserJ.K. 1962. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II. 1, 1–20.
NikuradseJ. 1932. Gesetzmässigkeiten der turbulenten Strömung in glatten Röhren. VDI-Forschungsheft no. 356. The work on rough pipes appeared in 1933 as: Strömungs gesetze in rauhen Röhren, in VDI-Forschungsheft no. 361.
ObukhovA.M. 1941. Energy distribution in the spectrum of a turbulent flow. Izv. AN SSSR Ser. Geogr. Geofiz. 5, 453–466.
ObukhovA.M. 1949. Structure of temperature fields in a turbulent flow. Izv. AN SSSR Ser. Geogr. Geofiz. 13, 58–69.
ObukhovA.M. 1962. Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81.
OnsagerL. 1949. Statistical hydrodynamics. Neuvo Cimento 6, Suppl. no. 2, 279–287. This article is about both the statistical equilibria of point vortices in two dimensions and the energy spectrum in three-dimensional turbulence. For a fuller account of Onsager's turbulence work, see G.L.Eyink, & K.R.Sreenivasan ‘Onsager and the theory of hydrodynamic turbulence’. Rev. Mod. Phys. 78, 87–135 (2006).
OrrW.M. 1907. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. Roy. Irish Acad. A 27, 9–68; 69–138.
OrszagS.A. 1970. Analytical theories of turbulence. J. Fluid Mech. 41, 363–386.
PrandtlL. 1904. Über Flüssigkeitsbewegnung bei sehr kleiner Reibung. In Verhandlungen des dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904, edited by A.Krazer, Teubner, Leipzig (1905), 574–584. (English translation in Early Developments of Modern Aerodynamics, edited by J.A.K. Ackroyd, B.P.Axcell & A.I.Ruban, Butterworth–Heinemann, Oxford, UK (2001), pp. 77–87.) For several other lasting contributions to turbulence by Prandtl and his school, see the accompanying article by E.Bodenschatz & M.Eckert, this volume.
PrandtlL. 1914. Der Luftwiderstand von Kugelin. Nachrichten der Gesselschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, 177–190.
PrandtlL., 1925. Bericht uber Untersuchungen zur ausgebildeten Turbulenz. ZAMM 5, 136–139.
PrandtlL. 1932. Zur turbulenten Strömung in Rohren und längs Platten. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. 4, 18–29.
PrandtlL. 1945 Über die Rolle der Zähigkeit im Mechanismus der ausgebildete Turbulenz (The role of viscosity in the mechanism of developed turbulence). Göttinger Archiv des DLR, Göttingen 3712.
ProudmanI. & ReidW.H. 1954. On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. Roy. Soc. Lond. A 247, 163–189.
RaoK.N., NarasimhaR. & Badri NarayananM.A. 1971. The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339–352.
RayleighLord. 1892. On the question of stability of the flow of fluids. Phil. Mag. 34, 59–70.
ReynoldsO. 1874. On the extent and action of the heating surface for steam boilers. Proc. Manchester Lit. Phil. Soc. 14, 7–12. For Reynolds' contributions to turbulence and his place in history, see the article by B.E.Launder & J.D.Jackson, this volume.
ReynoldsO. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. 174, 935–982.
ReynoldsO. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Tran. Roy. Soc. Lond. 86, 123–164.
RichardsonL.F. 1922. Weather Prediction by Numerical Methods. Cambridge University Press. For Richardson's other contributions to turbulence and his eclectic work, see the article by R.Benzi, this volume.
RichardsonL.F. 1926, Atmospheric diffusion shown on a distance–neighbour graph. Proc. Roy. Soc. Lond. A 110, 709–737.
RuelleD. & TakensF. 1971. On the nature of turbulence. Commun. Math. Phys. 20, 167–192.
SaffmanP.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593. For Saffman's other contributions to turbulence, see the article by D.I.Pullin & D.I.Meiron, this volume.
Saint-VenantA.J.C. 1850. Mémoire sur des formulaes nouvelles pour la solution des problémes relatifs aux eaux courantes. C. R. Acad. Sci. Paris 31, 283–286.
SchubauerG.B. & SkramstadH.K. 1947. Laminar boundary-layer oscillations and stability of laminar flow. J. Aero. Sci. 14, 69–76.
SmagorinskyJ. 1963. General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Rev. 91, 99–164.
SommerfeldA. 1908. Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. Proc. 4th Internat. Cong. Math. Rome, 3, 116–124.
SteenbeckM., KrauseF. & RadlerK.-H. 1966. Berechnung der mittleren LorentzFeldstarke fur ein elektrisch leitendes Medium in turbulenter, durch CoriolisKrafte beeinflusster Bewegung. 2. Naturf. 21a, 369–376.
TatsumiT. 1957. The theory of decay process of incompressible isotropic turbulence. Proc. Roy. Soc. Lond. A 239, 16–45.
TaylorG.I. 1915. Eddy motion in the atmosphere. Phil. Trans. Roy. Soc. Lond. A 215, 1–26.
TaylorG.I. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212.
TaylorG.I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. Lond. A 223, 289–343.
TaylorG.I. 1935. Statistical theory of turbulence. I. Proc. Roy. Soc. Lond. A 151, 421–444. Subsequent parts II–V on this topic appeared in the same journal. For a full list of references and a more complete description of Taylor's contributions, see the article in this volume by K.R.Sreenivasan.
TaylorG.I. 1937. Flow in pipes and between parallel planes. Proc. Roy. Soc. Lond. A 159, 496–506.
TaylorG.I. 1938. The spectrum of turbulence. Proc. Roy. Soc. Lond. A 164, 476–481.
TownsendA.A. 1956. The Structure of Turbulent Shear Flow. Cambridge University Press. Townsend's book emphasized the presence of structure within statistical description. See the article by I.Marusic & T.Nichols, this volume, for an elaboration of this aspect and the other work of Townsend. Similar recognitions of the importance of flow structures were made by others, e.g., T.Theodorsen, ‘Mechanism of turbulence’, in Proc. Second Midwestern Conf. on Fluid Mech. Ohio State University, Columbus, Ohio, pp. 1–19 (1952). Townsend initiated the modeling of small scales through vortex sheets and tubes in ‘On the fine-scale structure of turbulence’, Proc. Roy. Soc. A, 208, 534–642 (1951).
TollmienW. 1929. Über die Entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen Math-Phys. Kl, II, 21–44
UedaY. 1970. In 1961, Ueda posed a mathematical model on an analog computer that displayed chaotic dynamics. However, this work was not published until 1970; see Y.Ueda, C.Hayashi, N.Akamatsu, & H.Itakura, On the behavior of self-oscillatory systems with external force. Electronics & Communication in Japan 53, 31–39 (1970).
YaglomA.M. 1949. Local structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk. SSSR 69, 743–746.
YehY. & CumminsH.Z. 1964. Localized fluid flow measurements with an He–Ne laser spectrometer. Appl. Phys. Lett. 4, 176–178.