Self-Organised Criticality

Theory, Models and Characterisation

Self-Organised Criticality

Giving a detalied overview of the subject, this book takes in the results and methods that have arisen since the term self-organised criticality was coined twenty years ago. Providing an overview of numerical and analytical methods, from their theoretical foundation to the actual application and implementation, the book is an easy access point to important results and sophisticated methods. Starting with the famous Bak-Tang-Wiesenfeld sandpile, ten key models are carefully defined, together with their results and applications. Comprehensive tables of numerical results are collected in one volume for the first time, making the information readily accessible to readers. Written for graduate students and practicing researchers in a range of disciplines, from physics and mathematics to biology, sociology, finance, medicine and engineering, the book gives a practical, hands-on approach throughout. Methods and results are applied in ways that will relate to the reader's own research.

ÓdorG., 2004, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663–724, arXiv:cond-mat/0205644. → pp 20, 177, 181, 293.
ÓdorG., and N.Menyhárd, 2008, Crossovers from parity conserving to directed percolation universality, Phys. Rev. E 78(4), 041112 (7 pp). → p 155.
ČernákJ., 2002, Self-organized criticality: robustness of scaling exponents, Phys. Rev. E 65(4), 046141 (6 pp). → pp 88, 135.
⇒ HwaT., and M.Kardar, 1989a, Dissipative transport in open systems: an investigation of self-organized criticality, Phys. Rev. Lett. 62(16), 1813–1816, identical to proceedings article (Hwa and Kardar, 1989b). → pp 88, 111, 129, 130, 205, 243, 266, 267, 293, 298–300, 304, 317, 321–329, 334, 342, 343, 352, 425.
⇒CarlsonJ. M., J. T.Chayes, E. R.Grannan, and G. H.Swindle, 1990a, Self-orgainzed criticality and singular diffusion, Phys. Rev. Lett. 65(20), 2547–2550. → pp 343, 344.
⇒GrinsteinG., D.-H.Lee, and S.Sachdev, 1990, Conservation laws, anisotropy, and ‘Self-organized criticality’ in noisy nonequilibrium systems, Phys. Rev. Lett. 64(16), 1927–1930. → pp 266, 293, 298, 305, 318, 321–325, 327.
⇒MillerS. L., W. M.Miller, and P. J.McWhorter, 1993, Extremal dynamics: a unifying physical explanation of fractals, 1/f noise, and activated processes, J. Appl. Phys. 73(6), 2617–2628. → pp 320, 344.
⇒ObukhovS. P., 1990, Self-organized criticality: Goldstone modes and their interactions, Phys. Rev. Lett. 65(12), 1395–1398. → pp 342, 343.
⇒SornetteD., 1992, Critical phase transitions made self-organized: a dynamical system feedback mechanism for self-organized criticality, J. Phys. I (France) 3, 2065–2073. → p 330.
▶ KlosterM., S.Maslov, and C.Tang, 2001, Exact solution of a stochastic directed sandpile model, Phys. Rev. E 63(2), 026111 (4 pp). → pp 22, 24, 107, 172, 206, 208, 249, 264, 288, 291.
▶ MannaS. S., 1991b, Two-state model of self-organized criticality, J. Phys. A: Math. Gen. 24(7), L363–L369. → pp 22, 82, 162, 163, 164, 166–169, 185, 201, 339, 485.
▶ MaslovS., and Y.-C.Zhang, 1996, Self-organized critical directed percolation, Physica A 223(1–2), 1–6. → pp 81, 178, 179, 295, 485.
▶ PriezzhevV. B., D.Dhar, A.Dhar, and S.Krishnamurthy, 1996a, Eulerian walkers as a model of self-organized criticality, Phys. Rev. Lett. 77(25), 5079–5082. → pp 81, 485.
▶⇒DickmanR., A.Vespignani, and S.Zapperi, 1998, Self-organized criticality as an absorbing state phase transition, Phys. Rev. E 57(5), 5095–5105. → pp 10, 165, 170–172, 299, 300, 306, 307, 330–333, 339–341, 396.
▶●DharD., 1999a, The Abelian sandpile and related models, Physica A 263(1–4), 4–25, arXiv:cond-mat/9808047. → pp 6, 82, 91, 95, 99–102, 163, 164, 167, 169, 183, 199, 250, 269, 277, 285, 485.
▶●DharD., 1999c, Studying self-organized criticality with exactly solved models, arXiv: cond-mat/9909009 (unpublished). → pp 6, 94–97, 101, 135, 201, 276, 277, 285, 414.
▶●DickmanR., M. A.Muñoz, A.Vespignani, and S.Zapperi, 2000, Paths to self-organized criticality, Braz. J. Phys. 30(1), 27–41, arXiv:cond-mat/9910454v2. → pp 6, 10, 53, 56, 63, 64, 111, 170–172, 265, 266, 306, 321, 328, 330, 331, 334, 335, 485.
▶AmaralL. A. N., and K. B.Lauritsen, 1996b, Self-organized criticality in a rice-pile model, Phys. Rev. E 54(5), R4512–R4515. → pp 33, 178, 184, 185, 186, 188, 189, 191, 192, 208, 295, 296, 485.
▶BakP., and K.Sneppen, 1993, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett. 71(24), 4083–4086. → pp 17, 68, 82, 141–144, 151, 152, 161, 319, 321, 485.
▶BakP., C.Tang, and K.Wiesenfeld, 1987, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59(4), 381–384. → pp xi, 3, 4, 5, 9, 16, 18, 22, 54, 62, 82, 85–87, 89, 92, 102, 104, 204, 319, 346, 485.
▶BakP., K.Chen, and C.Tang, 1990, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147(5–6), 297–300. → pp 72, 82, 112, 113–116, 321, 485.
▶BakP., K.Chen, and M.Creutz, 1989a, Self-organized criticality in the ‘Game of Life’, Nature 342(6251), 780–782. → pp 81, 321, 322, 485.
▶ChristensenK., Á.Corral, V.Frette, J.Feder, and T.Jøssang, 1996, Tracer dispersion in a self-organized critical system, Phys. Rev. Lett. 77(1), 107–110. → pp 23, 58, 82, 180, 183, 186, 189, 192, 193, 194–196, 197, 198, 485.
▶de Sousa VieiraM., 1992, Self-organized criticality in a deterministic mechanical model, Phys. Rev. A 46(10), 6288–6293. → pp 126, 178, 485.
▶DharD., 1990a, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64(14), 1613–1616, see erratum (Dhar, 1990b). → pp 82, 85–87, 90, 91, 94, 95, 96, 103, 129, 187, 198, 243, 246, 248, 249, 269, 275, 279, 285, 354, 485.
▶DharD., and R.Ramaswamy, 1989, Exactly solved model of self-organized critical phenomena, Phys. Rev. Lett. 63(16), 1659–1662. → pp 22, 24, 101, 206, 249, 268, 285, 286, 288–290, 485.
▶DrosselB., and F.Schwabl, 1992a, Self-organized critical forest-fire model, Phys. Rev. Lett. 69(11), 1629–1632, largely identical to Proceedings article (Drossel and Schwabl, 1992b). → pp 82, 112, 115, 116, 117, 118–121, 124, 321, 391, 417, 485.
▶FederH. J. S., and J.Feder, 1991a, Self-organized criticality in a stick-slip process, Phys. Rev. Lett. 66(20), 2669–2672, see erratum (Feder and Feder, 1991b). → pp 65, 81, 126, 129, 321, 485.
▶HenleyC. L., 1989, M18.2: Self-organized percolation: a simpler model, Bull. Am. Phys. Soc. 34(3), 838, abstract of talk M18.2, 23 March 1989, of the 1989 March Meeting of The American Physical Society, St. Louis, MO, USA, March 20.24, 1989. → pp 112, 115, 116, 121.
▶JensenH. J., 1990, Lattice gas as a model of 1/f noise, Phys. Rev. Lett. 64(26), 3103–3106. → pp 15, 81, 178, 185, 485.
▶JovanovićB., S. V.Buldyrev, S.Havlin, and H. E.Stanley, 1994, Punctuated equilibrium and ‘history-dependent’ percolation, Phys. Rev. E 50(4), R2403–R2406. → pp 143, 151, 155–157, 485.
▶MohantyP. K., and D.Dhar, 2002, Generic sandpile models have directed percolation exponent, Phys. Rev. Lett. 89(10), 104303 (4 pp). → pp 178, 179, 296–298.
▶OlamiZ., H. J. S.Feder, and K.Christensen, 1992, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68(8), 1244–1247, comment (Klein and Rundle, 1993). → pp 82, 126–128, 130, 133–135, 138, 139, 321, 428, 485.
▶PaczuskiM., and K. E.Bassler, 2000, Theoretical results for sandpile models of SOC with multiple topplings, arXiv:cond-mat/0005340v2 (unpublished). → pp 22, 101, 107, 111, 165, 170, 172, 206–208, 249, 251, 268, 279, 280, 282–286, 288–290, 292, 293, 321, 327, 334.
▶Pastor-SatorrasR., and A.Vespignani, 2000e, Universality classes in directed sandpile models, J. Phys. A: Math. Gen. 33(3), L33–L39, see Pastor-Satorras and Vespignani (2000c). → pp 22, 206, 220, 277, 284, 286, 288, 292, 441.
▶PruessnerG., and H. J.Jensen, 2003, Anisotropy and universality: the Oslo model, the rice pile experiment and the quenched Edwards-Wilkinson equation, Phys. Rev. Lett. 91(24), 244303 (4 pp), arXiv:cond-mat/0307443. → pp 174, 187–189, 192, 206, 222, 286, 290, 291, 293.
▶SneppenK., 1992, Self-organized pinning and interface growth in a random medium, Phys. Rev. Lett. 69(24), 3539–3542, comment (Tang and Leschhorn, 1993). → pp 142, 149, 182, 294, 295, 299, 301, 321, 452, 485.
▶SneppenK., and M. E. J.Newman, 1997, Coherent noise, scale invariance and intermittency in large systems, Physica D 110(3–4), 209–222. → pp 81, 485.
▶StapletonM., and K.Christensen, 2005, Universality class of one-dimensional directed sandpile models, Phys. Rev. E 72(6), 066103 (4 pp). → pp 206, 208, 249, 289.
▶TadićB., and D.Dhar, 1997, Emergent spatial structures in critical sandpiles, Phys. Rev. Lett. 79(8), 1519–1522. → pp 171, 290, 295–298.
▶VespignaniA., and S.Zapperi, 1998, How self-organized criticality works: a unified mean-field picture, Phys. Rev. E 57(6), 6345–6362. → pp 111, 118, 171, 251, 328, 330, 331, 333–335.
▶ZaitsevS. I., 1992, Robin Hood as self-organized criticality, Physica A 189(3–4), 411–416. → pp 81, 142, 149, 178, 185, 485.
▶ZhangY.-C., 1989, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63(5), 470–473. → pp 22, 82, 104–110, 485.
● McKaneA., M.Droz, J.Vannimenus, and D.Wolf (editors), 1995, Scale Invariance, Interfaces, and Non-Equilibrium Dynamics (Plenum Press, New York, NY, USA), NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → p 6.
● MuñozM. A., R.Dickman, R.Pastor-Satorras, A.Vespignani, and S.Zapperi, 2001, Sandpiles and absorbing-state phase transitions: recent results and open problems, AIP Conf. Proc. 574(1), 102–110, arXiv:cond-mat/0011447. → pp 6, 177–179, 266, 305, 331, 333.
● PaczuskiM., S.Maslov, and P.Bak, 1996, Avalanche dynamics in evolution, growth, and depinning models, Phys. Rev. E 53(1), 414–443, arXiv:adap-org/9510002. → pp 6, 142–147, 149, 151, 153, 156, 157, 160, 161, 178, 187, 203, 251, 283, 293, 299, 307, 308, 310, 314, 315, 345, 393.
● PruessnerG., 2004c, Studies in Self-Organised Criticality, Ph.D. Thesis, Imperial College London, UK, accessed 19 November 2009, URL http://www.ma.imperial.ac.uk/~pruess/publications/thesis_final/. → pp 173, 174, 180, 189, 207, 395.
● RisteT., and D.Sherrington (editors), 1991, Spontaneous Formation of Space-Time Structures and Criticality (Kluwer, Dordrecht, The Netherlands), NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → p 6.
●AlavaM., 2004, Self-organized criticality as a phase transition, in Advances in Condensed Matter and Statistical Physics, edited by E.Korutcheva and R.Cuerno (Nova Science Publishers, New York, NY, USA), pp. 69–102, arXiv:cond-mat/0307688. → p 6.
●AlstrømP., T.Bohr, K.Christensen, H.Flyvbjerg, M. H.Jensen, B.Lautrup, and K.Sneppen (editors), 2004, Complexity and Criticality, Physica A 340(4), Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → p 6.
●BakP., 1996, How Nature Works (Copernicus, New York, NY, USA). → pp xii, 4, 5, 6, 17, 319.
●BakP., and C.Tang, 1989b, Self-organized criticality, Phys. Today 42(1), S-27–S-28, American Institute of Physics Special Report ‘Physics News in 1988’. → p 6.
●BakP., and K.Chen, 1991, Self-organized criticality, Sci. Am. 264(1), 26–33. → p 6.
●BakP., and M.Paczuski, 1993, Why nature is complex, Phys. World 6(12), 39–43. → p 6.
●BakP., and M.Paczuski, 1995, Complexity, contingency, and criticality, Proc. Natl. Acad. Sci. USA 92(15), 6689–6696. → pp 6, 141.
●BonachelaJ. A., 2008, Universality in Self-Organized Criticality, Ph.D. Thesis, Departmento de Electromagnetismo y Fisíca de la Materia & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain, accessed 12 September 2009, URL http://hera.ugr.es/tesisugr/17706312.pdf. → pp 44, 92, 168, 177, 184, 187–189, 209, 247, 265, 284, 293, 296, 328, 334, 393.
●ChristensenK., and N. R.Moloney, 2005, Complexity and Criticality (Imperial College Press, London, UK). → pp 6, 128, 129, 136, 138, 139, 220.
●DharD., 2006, Theoretical studies of self-organized criticality, Physica A 369(1), 29–70, Proceedings of the 11th International Summerschool on Fundamental Problems in Statistical Physics, Leuven, Belgium, September 4–17, 2005; updated from Dhar (1999c). → pp 6, 101, 193, 197, 285.
●GrinsteinG., 1995, Generic scale invariance and self-organized criticality, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A.McKane, M.Droz, J.Vannimenus, and D.Wolf (Plenum Press, New York, NY, USA), pp. 261–293, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 6, 15, 56, 172, 301, 318, 320, 321, 322, 323, 325, 329, 331, 344, 351, 352.
●HergartenS., 2002, Self-Organized Criticality in Earth Systems (Springer-Verlag, Berlin, Germany). → pp 6, 66, 139, 366.
●HergartenS., 2003, Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci. 3, 505–514. → p 139.
●IvashkevichE. V., and V. B.Priezzhev, 1998, Introduction to the sandpile model, Physica A 254(1–2), 97–116. → p 99.
●JensenH. J., 1998, Self-Organized Criticality (Cambridge University Press, New York, NY, USA). → pp xii, 6, 7, 11, 16, 56, 204, 268, 346.
●LeungK., J.Müller, and J. V.Andersen, 1997, Generalization of a two-dimensional Burridge-Knopoff model of earthquakes, J. Phys. I (France) 7, 423–429. → pp 125, 133.
●PérezC. J., Á.Corral, A.Díaz-Guilera, K.Christensen, and A.Arenas, 1996, On self-organized criticality and synchronization in lattice models of coupled dynamical systems, Int. J. Mod. Phys. B 10(10), 1111–1151. → pp 88, 109, 126, 128, 129, 203, 267.
●SornetteD., 1991, Self-organized criticality in plate tectonics, in Spontaneous Formation of Space-Time Structures and Criticality, edited by T.Riste and D.Sherrington (Kluwer, Dordrecht, The Netherlands), pp. 57–106, NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → pp 66, 139.
●SornetteD., 2006, Critical Phenomena in Natural Sciences (Springer-Verlag, Berlin, Germany), 2nd edition. → pp 6, 317, 330, 342, 344.
●StapletonM. A., 2007, Self-Organised Criticality and Non-Equilibrium Statistical Mechanics, Ph.D. Thesis, Imperial Collage London, UK, accessed 12 May 2007, URL http://www.matthewstapleton.com/thesis.pdf. → pp 100, 172, 178, 184, 187, 188, 190, 198, 229, 247–249, 261, 451.
AdamiC., and J.Chu, 2002, Critical and near-critical branching processes, Phys. Rev. E 66(1), 011907 (8 pp), arXiv:cond-mat/9903085. → p 257.
AegerterC. M., 1998, Evidence for self-organized criticality in the Bean critical state in superconductors, Phys. Rev. E 58(2), 1438–1441. → p 60.
AegerterC. M., 2003, A sandpile model for the distribution of rainfall?, Physica A 319, 1–10. → pp 187, 189, 192, 209.
AegerterC. M., K. A.Lőrincz, M. S.Welling, and R. J.Wijngaarden, 2004a, Extremal dynamics and the approach to the critical state: experiments on a three dimensional pile of rice, Phys. Rev. Lett. 92(5), 058702 (4 pp). → pp 58, 192.
AegerterC. M., M. S.Welling, and R. J.Wijngaarden, 2004b, Self-organized criticality in the Bean state in YBa2Cu3O7-x thin films, Europhys. Lett. 65(6), 753–759. → pp 60, 61.
AegerterC. M., M. S.Welling, and R. J.Wijngaarden, 2005, Dynamic roughening of the magnetic flux landscape in YBa2Cu3O7-x, Physica A 347, 363–374. → p 61.
AegerterC. M., R.Güunther, and R. J.Wijngaarden, 2003, Avalanche dynamics, surface roughening, and self-organized criticality: experiments on a three-dimensional pile of rice, Phys. Rev. E 67(5), 051306 (6 pp), arXiv:cond-mat/0305592. → pp 58, 192, 193, 301, 305.
AhlgrenP., M.Avlund, I.Klewe, J. N.Pedersen, and Á.Corral, 2002, Anomalous transport in conical granular piles, Phys. Rev. E 66(3), 031305 (5 pp). → pp 58, 192, 193, 197.
AlavaM. J., and K. B.Lauritsen, 2001, Quenched noise and over-active sites in sandpile dynamics, Europhys. Lett. 53(5), 563–569, arXiv:cond-mat/0002406v2. → pp 165, 171, 178, 180, 182, 300, 302, 307.
AlavaM. J., L.Laurson, A.Vespignani, and S.Zapperi, 2008, Comment on ‘self-organized criticality and absorbing states: lessons from the Ising model’, Phys. Rev. E 77(4), 048101 (2 pp), comment on (Pruessner and Peters, 2006), reply (Pruessner and Peters, 2008). → pp 170, 190, 227, 338, 339, 341, 445.
AlavaM., 2002, Scaling in self-organized criticality from interface depinning?, J. Phys.: Condens. Matter 14(9), 2353–2360, arXiv:cond-mat/0204226. → pp 150, 180, 203, 302, 307, 320.
AlavaM., and M. A.Muñoz, 2002, Interface depinning versus absorbing-state phase transitions, Phys. Rev. E 65(2), 026145 (8 pp), arXiv:cond-mat/0105591. → pp 61, 168, 178–180, 209, 299, 300.
AlavaM., M.Dubé, and M.Rost, 2004, Imbibition in disordered media, Adv. Phys. 53(2), 83–175. → p 155.
AlbertR., I.Albert, D.Hornbaker, P.Schiffer, and A.-L.Barabási, 1997, Maximum angle of stability in wet and dry spherical granular media, Phys. Rev. E 56(6), R6271–R6274. → p 56.
AlcarazF. C., and V.Rittenberg, 2008, Directed Abelian algebras and their application to stochastic models, Phys. Rev. E 78(4), 041126 (13 pp). → pp 208, 289.
AlessandroB., C.Beatrice, G.Bertotti, and A.Montorsi, 1990a, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory, J. Appl. Phys. 68(6), 2901–2907. → p 62–64.
AlessandroB., C.Beatrice, G.Bertotti, and A.Montorsi, 1990b, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments, J. Appl. Phys. 68(6), 2908–2915. → p 62.
AliA. A., and D.Dhar, 1995a, Breakdown of simple scaling in Abelian sandpile models in one dimension, Phys. Rev. E 51(4), R2705–R2708. → p 94.
AliA. A., and D.Dhar, 1995b, Structure of avalanches and breakdown of simple scaling in the Abelian sandpile model in one dimension, Phys. Rev. E 52(5), 4804–4816. → p 94.
AlstrømP., 1988, Mean-field exponents for self-organized critical phenomena, Phys. Rev. A 38(9), 4905–4906. → pp 130, 251, 257, 288.
AltshulerE., and T. H.Johansen, 2004, Colloquium: experiments in vortex avalanches, Rev. Mod. Phys. 76(2), 471–487. → pp 53, 61.
AltshulerE., O.Ramos, C.Martínez, L. E.Flores, and C.Noda, 2001, Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett. 86(24), 5490–5493. → pp 56, 134.
AltshulerE., O.Ramos, E.Martínez, A. J.Batista-Leyva, A.Rivera, and K. E.Bassler, 2003, Sandpile formation by revolving rivers, Phys. Rev. Lett. 91(1), 014501 (4 pp). → p 192.
AltshulerE., T. H.Johansen, Y.Paltiel, P.Jin, K. E.Bassler, O.Ramos, Q. Y.Chen, G. F.Reiter, E.Zeldov, and C. W.Chu, 2004, Vortex avalanches with robust statistics observed in superconducting niobium, Phys. Rev. B 70(14), 140505(R) (4 pp), early preprint arXiv:cond-mat/0208266. → pp 60, 61.
AmaralL. A. N., A.-L.Barabási, S. V.Buldyrev, S. T.Harrington, S.Havlin, R.Sadr-Lahijany, and H. E.Stanley, 1995, Avalanches and the directed percolation depinning model: experiments, simulations, and theory, Phys. Rev. E 51(5), 4655–4673. → pp 203, 299.
AmaralL. A. N., and K. B.Lauritsen, 1996a, Energy avalanches in a rice-pile model, Physica A 231(4), 608–614. → p 192.
AmaralL. A. N., and K. B.Lauritsen, 1997, Universality classes for rice-pile models, Phys. Rev. E 56(1), 231–234. → pp 189, 192, 284.
AmitD. J., and V.Martín-Mayor, 2005, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore), 3rd edition. → p 266.
AndersonP. E., H. J.Jensen, L. P.Oliviera, and P.Sibani, 2004, Evolution in complex systems, Complexity 10(1), 49–56. → p 149.
AndersonP. W., 1972, More is different, Science 177(4047), 393–396. → pp 4, 6, 13, 19.
AndersonT. W., 1971, The Statistical Analysis of Time Series (John Wiley & Sons, New York, NY, USA). → p 358.
AndradeR. F. S., H. J.Schellnhuber, and M.Claussen, 1998, Analysis of rainfall records: possible relation to self-organized criticality, Physica A 254(3–4), 557–568. → p 71.
ArakawaA., and W. H.Schubert, 1974, Interaction of a cumulus cloud ensemble with the Large-Scale environment, Part I, J. Atmos. Sci. 31(3), 674–701. → p 72.
AvnirD., O.Biham, D.Lidar, and O.Malcai, 1998, Is the geometry of nature fractal?, Science 279(5347), 39–40. → p 53.
AxtellR. L., 2001, Zipf distribution of U.S. firm sizes, Science 293(5536), 1818–1820. → p 76.
Azimi-TafreshiN., H.Dashti-Naserabadi, and S.Moghimi-Araghi, 2008, The spatial asymmetric two-dimensional continuous Abelian sandpile model, J. Phys. A: Math. Theor. 41(43), 435002 (14 pp). → p 108.
Azimi-TafreshiN., H.Dashti-Naserabadi, S.Moghimi-Araghi, and P.Ruelle, 2010, The Abelian sandpile model on the honeycomb lattice, J. Stat. Mech. 2010(02), P02004, arXiv:0912.3331v2. → pp 23, 99.
BédardC., H.Kröoger, and A.Destexhe, 2006, Does the 1/f frequency scaling of brain signals reflect self-organized critical states?, Phys. Rev. Lett. 97(11), 118102 (4 pp). → p 70.
BabcockK. L., and R. M.Westervelt, 1989, Elements of cellular domain patterns in magnetic garnet films, Phys. Rev. A 40(4), 2022–2037. → p 62.
BabcockK. L., and R. M.Westervelt, 1990, Avalanches and self-organization in cellular magnetic-domain patterns, Phys. Rev. Lett. 64(18), 2168–2171. → p 62.
BabcockK. L., R.Seshadri, and R. M.Westervelt, 1990, Coarsening of cellular domain patterns in magnetic garnet films, Phys. Rev. A 41(4), 1952–1962. → p 62.
BagnoliF., F.Cecconi, A.Flammini, and A.Vespignani, 2003, Short-period attractors and non-ergodic behavior in the deterministic fixed-energy sandpile model, Europhys. Lett. 63(4), 512–518. → p 333.
BakP., 1990, Is the world at the border of chaos?, AIP Conf. Proc. 213(1), 110–118, Proceedings of Frontiers in Condensed Matter Theory, New York, NY, USA, July 2, 1990. → pp 16, 319.
BakP., 1992, Self-organized criticality in non-conservative models, Physica A 191(1–4), 41–46. → pp 81, 321, 322.
BakP., 1998, Life laws, Nature 391(6668), 652–653. → p 68.
BakP., and C.Tang, 1989a, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94(B11), 15635–15637. → pp 66, 67, 135, 139, 141.
BakP., and H.Flyvbjerg, 1992, Self-organization of cellular magnetic-domain patterns, Phys. Rev. A 45(4), 2192–2200. → p 62.
BakP., C.Tang, and K.Wiesenfeld, 1988, Self-organized criticality, Phys. Rev. A 38(1), 364–374. → pp 16, 62, 87–89, 102.
BakP., C.Tang, and K.Wiesenfeld, 1989b, Are earthquakes, fractals and 1/f noise selforganized critical phenomena?, in Cooperative Dynamics in Complex Physical Systems, Proceedings of the Second Yukawa International Symposium, Kyoto, Japan, August 24–27, 1988, edited by H.Takayama (Springer-Verlag, Berlin, Germany), volume 43 of Springer Series in Synergetics, pp. 274–279. → p 66.
BakP., K.Chen, J.Scheinkman, and M.Woodford, 1993, Aggregate fluctuations from independent sectoral shocks: self-organized criticality in a model of production and inventory dynamics, Ric. Econ. 47(1), 3 – 30. → p 75.
BakP., K.Christensen, L.Danon, and T.Scanlon, 2002a, Unified scaling law for earthquakes, Phys. Rev. Lett. 88(17), 178501 (4 pp). → pp 67, 68.
BakP., K.Christensen, L.Danon, and T.Scanlon, 2002b, Unified scaling law for earthquakes, Proc. Natl. Acad. Sci. USA 99(Suppl. 1), 2509–2513, colloquium. → p 68.
BallP., 2001, Long waits will always try patients, Nature News (online journal), 5 April 2001, doi:10.1038/news010404-16, comments (Smethurst and Williams, 2001), accessed 15 Jun 2010, URL http://www.nature.com/news/2001/010404/full/news010404-16.html. → p 75.
BanavarJ. R., A.Maritan, and A.Rinaldo, 1999, Size and form in efficient transportation networks, Nature 399(6732), 130–132. → p 74.
BandtC., 2005, The discrete evolution model of Bak and Sneppen is conjugate to the classical contact process, J. Stat. Phys. 120(3/4), 685–693. → p 158.
BarabásiA.-L., and H. E.Stanley, 1995, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, UK). → pp 47, 178, 195, 203, 207, 266, 267, 299, 301, 313.
BarbayJ., and C.Kenyon, 2001, On the discrete Bak-Sneppen model of self-organized criticality, in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete Algorithms 2001, Washington, DC, USA, January 7–9, 2001, pp. 928–944. → p 157.
BarberM. N., 1983, Finite-size scaling, in Phase Transitions and Critical Phenomena, edited by C.Domb and J. L.Lebowitz (Academic Press, New York, NY, USA), volume 8, pp. 145–266. → pp 12, 27.
BarenblattG. I., 1996, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, UK). → pp 25, 27, 348.
BarkerG. C., and A.Mehta, 1996, Rotated sandpiles: the role of grain reorganization and inertia, Phys. Rev. E 53(6), 5704–5713. → p 56.
BarkerG. C., and A.Mehta, 2000, Avalanches at rough surfaces, Phys. Rev. E 61(6), 6765–6772. → p 56.
BarkhausenH., 1919, Zwei mit Hilfe der neuen Verstüarker entdeckte Erscheinungen, Phys. Z. 20, 401–403. → p 62.
BarratA., A.Vespignani, and S.Zapperi, 1999, Fluctuations and correlations in sandpile models, Phys. Rev. Lett. 83(10), 1962–1965. → p 334.
BartolozziM., D. B.Leinweber, and A. W.Thomas, 2005, Self-organized criticality and stock market dynamics: an empirical study, Physica A 350(2–4), 451 – 465. → p 75.
BasslerK. E., and M.Paczuski, 1998, Simple model of superconducting vortex avalanches, Phys. Rev. Lett. 81(17), 3761–3764. → p 61.
BattermanR. W., 2002, The Devil in the Detail (Oxford University Press, New York, NY, USA). → p 6.
BattyM., and P.Longley, 1994, Fractal Cities (Academic Press, London, UK). → p 76.
BattyM., and Y.Xie, 1999, Self-organized criticality and urban development, Discrete Dyn. Nat. Soc. 3, 109–124. → p 76.
BeanC. P., 1962, Magnetization of hard superconductors, Phys. Rev. Lett. 8(6), 250–253. → p 58.
BeanC. P., 1964, Magnetization of high-field superconductors, Rev. Mod. Phys. 36(1), 31–39. → pp 58, 62.
BeckerV., and H. K.Janssen, 1994, Current-current correlation function in a driven diffusive system with nonconserving noise, Phys. Rev. E 50(2), 1114–1122. → p 298.
BeggsJ. M., 2008, The criticality hypothesis: how local cortical networks might optimize information processing, Philos. Trans. R. Soc. London, Ser. A 366(1864), 329–343. → pp 70, 319.
BeggsJ. M., and D.Plenz, 2003, Neuronal avalanches in neocortical circuits, J. Neurosci. 23(35), 11167–11177. → pp 70, 71.
BeggsJ. M., and D.Plenz, 2004, Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures, J. Neurosci. 24(22), 5216–5229. → p 70.
BehniaK., C.Capan, D.Mailly, and B.Etienne, 2000, Internal avalanches in a pile of superconducting vortices, Phys. Rev. B 61(6), R3815–R3818. → p 60.
BehniaK., C.Capan, D.Mailly, and B.Etienne, 2001, Avalanches in a pile of superconducting vortices, J. Magn. Magn. Mater. 226–230(Part 1), 370–371. → p 60.
Ben HurA., R.Hallgass, and V.Loreto, 1996, Renormalization procedure for directed self-organized critical models, Phys. Rev. E 54(2), 1426–1432. → pp 268, 286.
ben-AvrahamD., and J.Köohler, 1992, Mean-field (n,m)-cluster approximation for lattice models, Phys. Rev. A 45(12), 8358–8370. → pp 170, 181, 250, 394.
ben-AvrahamD., and S.Havlin, 2000, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, UK). → pp 243, 248, 249.
Ben-HurA., and O.Biham, 1996, Universality in sandpile models, Phys. Rev. E 53(2), R1317–R1320. → pp 19, 23, 43, 92, 101, 164, 165, 167, 168, 171, 174, 177, 183, 268, 291, 292.
BengrineM., A.Benyoussef, A. E.Kenz, M.Loulidi, and F.Mhirech, 1999a, A sharp transition between a trivial 1D BTW model and self-organized critical rice-pile model, Eur. Phys. J. B 12(1), 129–133, numerics may not be independent from Bengrine et al. (1999b). →pp 189, 193, 198, 200, 284, 403.
BengrineM., A.Benyoussef, F.Mhirech, and S. D.Zhang, 1999b, Disorder-induced phase transition in a one-dimensional model of rice-pile, Physica A 272(1–2), 1–11, numerics may not be independent from Bengrine et al. (1999a). → pp 189, 198, 403.
BentleyR. A., and H. D. G.Maschner, 1999, Subtle nonlinearity in popular album charts, Adv. Complex Syst. 2(3), 197–208. → p 76.
BentleyR. A., and H. D. G.Maschner, 2001, Stylistic change as a self-organized critical phenomenon: an archaeological study in complexity, J. Archaeol. Method Theory 8(1), 35–66. → p 76.
BentonM. J., 1993, The Fossil Record 2 (Chapman and Hall, London, UK). → p 69.
BentonM. J., 1995, Diversification and extinction in the history of life, Science 268(5207), 52–58. → pp 68, 69.
BergB. A., 1992, Double Jackknife bias-corrected estimators, Comput. Phys. Commun. 69(1), 7–14. → p 216.
BergB. A., 2004, Markov Chain Monte Carlo Simulations and Their Statistical Analysis (World Scientific, Singapore). → pp 220, 358.
BertottiG., G.Durin, and A.Magni, 1994, Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials, J. Appl. Phys. 75(10), 5490–5492, Proceedings of the 38th Annual Conference On Magnetism and Magnetic Materials, Minneapolis, MN, USA, November 15–18, 1993. → p 64.
BhagavatulaR., G.Grinstein, Y.He, and C.Jayaprakash, 1992, Algebraic correlations in conserving chaotic systems, Phys. Rev. Lett. 69(24), 3483–3486. → p 302.
BhattacharjeeS. M., and F.Seno, 2001, A measure of data collapse for scaling, J. Phys. A: Math. Gen. 34(33), 6375–6380. → p 238.
BihamO., E.Milshtein, and O.Malcai, 2001, Evidence for universality within the classes of deterministic and stochastic sandpile models, Phys. Rev. E 63(6), 061309 (8 pp). → pp 23, 100, 106, 165, 168, 178, 183, 269, 284, 291.
BihamO., E.Milshtein, and S.Solomon, 1998, Symmetries and universality classes in conservative sandpile models, arXiv:cond-mat/9805206 (unpublished). → pp 23, 106.
BinderK., 1981a, Critical Properties from Monte Carlo coarse graining and renormalization, Phys. Rev. Lett. 47(9), 693–696. → pp 39, 49, 69, 134, 227.
BinderK., 1981b, Finite Size Scaling Analysis of Ising Model Block Distribution Functions, Z. Phys. B 43, 119–140. → pp 39, 227.
BinderK., and D. W.Heermann, 1997, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, Germany), 3rd edition. → pp 213, 220, 358, 361.
BirkelandK.W., and C. C.Landry, 2002, Power-laws and snow avalanches, Geophys. Res. Lett. 29(11), 1554 (3 pp). → p 194.
BlanchardP., B.Cessac, and T.Krüger, 2000, What can one learn about self-organized criticality from dynamical systems theory?, J. Stat. Phys. 98(1/2), 375–404. → p 141.
BlanchardP., B.Cessac, and T.Krüuger, 1997, A dynamical system approach to SOC models of Zhang's type, J. Stat. Phys. 88(1/2), 307–318. → p 110.
BoettcherS., and M.Paczuski, 1996, Exact results for spatiotemporal correlations in a self-organized critical model of punctuated equilibrium, Phys. Rev. Lett. 76(3), 348–351. → pp 152, 157, 307.
BoettcherS., and M.Paczuski, 1997a, Aging in a model of self-organized criticality, Phys. Rev. Lett. 79(5), 889–892. → p 149.
BoettcherS., and M.Paczuski, 1997b, Broad universality in self-organized critical phenomena, Physica D 107(2–4), 171–173, Proceedings of the 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM, USA, May 13–17, 1996, largely identical to Paczuski and Boettcher (1996). → p 440.
BoettcherS., and M.Paczuski, 2000, dc = 4 is the upper critical dimension for the Bak-Sneppen model, Phys. Rev. Lett. 84(10), 2267–2270, arXiv:cond-mat/9911273v2. → pp 144, 152, 154, 155, 161.
BoffettaG., V.Carbone, P.Giuliani, P.Veltri, and A.Vulpiani, 1999, Power laws in solar flares: self-organized criticality or turbulence?, Phys. Rev. Lett. 83(22), 4662–4665. → p 72.
BoguñáM., and Á.Corral, 1997, Long-tailed trapping times and Leéy flights in a selforganized critical granular system, Phys. Rev. Lett. 78(26), 4950–4953. → pp 193, 195, 196.
BonabeauE., and P.Lederer, 1994, On 1/f power spectra, J. Phys. A: Math. Gen. 27(9), L243–L250. → p 15.
BonachelaJ. A., and M. A.Muñoz, 2007, How to discriminate easily between directed-percolation and Manna scaling, Physica A 384(1), 89–93, Proceedings of the International Conference on Statistical Physics, Raichak and Kolkata, India, January 5–9, 2007. → pp 177, 179, 293, 296.
BonachelaJ. A., and M. A.Muñoz, 2008, Confirming and extending the hypothesis of universality in sandpiles, Phys. Rev. E 78(4), 041102 (8 pp), arXiv:0806.4079. → pp 177–179, 183, 188, 293, 296, 305, 331.
BonachelaJ. A., and M. A.Muñoz, 2009, Self-organization without conservation: true or just apparent scale-invariance?, J. Stat. Mech. 2009(09), P09009 (37 pp). → pp 111, 265, 328, 334, 335.
BonachelaJ. A., H.Chaté, I.Dornic, and M. A.Muñoz, 2007, Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality, Phys. Rev. Lett. 98(15), 155702 (4 pp). → pp 176, 179, 180, 183, 300.
BonachelaJ. A., J. J.Ramasco, H.Chaté, I.Dornic, and M. A.Muñoz, 2006, Sticky grains do not change the universality class of isotropic sandpiles, Phys. Rev. E 74(5), 050102(R) (4 pp). → pp 178, 179, 296.
BonsP. D., and B. P.van Milligen, 2001, New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks, Geology 29(10), 919–922. → pp 65, 193.
BottaniS., and B.Delamotte, 1997, Self-organized criticality and synchronization in pulse coupled relaxation osillator system; the Olami, Feder and Christensen and the Feder and Feder model, Physica D 103(1–4), 430–441. → pp 133, 138, 140.
BouchaudJ.-P., M. E.Cates, J. R.Prakash, and S. F.Edwards, 1994, A model for the dynamics of sandpile surfaces, J. Phys. I (France) 4, 1383–1410. → pp 292, 299.
BouchaudJ.-P., M. E.Cates, J. R.Prakash, and S. F.Edwards, 1995, Hysteresis and metastability in a continuum sandpile model, Phys. Rev. Lett. 74(11), 1982–1985. → p 56.
BoulterC. J., and G.Miller, 2003, Nonuniversality and scaling breakdown in a nonconservative earthquake model, Phys. Rev. E 68(5), 056108 (6 pp). → p 137.
BrézinE., and J.Zinn-Justin, 1985, Finite size effects in phase transitions, Nucl. Phys. B 257 [FS14], 867–893. → p 251.
BröokerH.-M., and P.Grassberger, 1995, Mean-field behaviour in a local low-dimensional model, Europhys. Lett. 30(6), 319–324. → pp 250, 328.
BröokerH.-M., and P.Grassberger, 1997, Random neighbor theory of the Olami-Feder-Christensen earthquake model, Phys. Rev. E 56(4), 3944–3952. → pp 129, 131, 133, 251, 257, 261, 328.
BröokerH.-M., and P.Grassberger, 1999, SOC in a population model with global control, Physica A 267(3–4), 453 – 470, arXiv:cond-mat/9902195. → p 335.
BramwellS. T., K.Christensen, J.-Y.Fortin, P. C. W.Holdsworth, H. J.Jensen, S.Lise, J. M.López, M.Nicodemi, J.-F.Pinton, and M.Sellitto, 2000, Universal fluctuations in correlated systems, Phys. Rev. Lett. 84(17), 3744–3747, arXiv:cond-mat/991225. → pp 134, 149, 458.
BramwellS. T., K.Christensen, J.-Y.Fortin, P. C. W.Holdsworth, H. J.Jensen, S.Lise, J. M.López, M.Nicodemi, J.-F.Pinton, and M.Sellitto, 2001, Bramwell et al. reply:, Phys. Rev. Lett. 87(18), 188902 (1 p), reply to comment (Zheng and Trimper, 2001). → p 458.
BramwellS. T., P. C. W.Holdsworth, and J.-F.Pinton, 1998, Universality of rare fluctuations in turbulence and critical phenomena, Nature 396, 552–554. → p 134.
BrandtS., 1998, Data Analysis (Springer-Verlag, Berlin, Germany). → pp 214, 358.
BretzM., J. B.Cunningham, P. L.Kurczynski, and F.Nori, 1992, Imaging of avalanches in granular materials, Phys. Rev. Lett. 69(16), 2431–2434. → pp 55, 57.
British Library Science Technology and Business (STB), 2001, Welfare Reform on the Web (June 2001): National Health Service – Reform – General, Welfare Reform Digest No. 22, http://www.bl.uk/welfarereform/issue22/nhs-rfrm.html, summary of Smethurst and Williams (2001), accessed 4 March 2010. → p 75.
BroadbentS. R., 1954, Discussion on Symposium on Monte Carlo Methods, J. R. Stat. Soc. B, Stat. Method. 16(1), 68. → p 319.
BroadbentS. R., and J. M.Hammersley, 1957, Percolation processes I. crystals and mazes, Proc. Cambridge. Philos. Soc. 53(03), 629–641. → p 319.
BrowerR. C., M. A.Furman, and M.Moshe, 1978, Critical exponents for the Reggeon quantum spin model, Phys. Lett. B 76(2), 213 – 219. → pp 142, 264.
BrownJ. H., and G. B.West (editors), 2000, Scaling in Biology, Santa Fe Institute Studies on the Sciences of Complexity (Oxford University Press, New York, NY, USA). → p 53.
BrownS. R., C. H.Scholz, and J. B.Rundle, 1991, A simplified spring-block model of earthquakes, Geophys. Res. Lett. 18(2), 215–218. → p 126.
BruinsmaR., and G.Aeppli, 1984, Interface motion and nonequilibrium properties of the random-field Ising model, Phys. Rev. Lett. 52(17), 1547–1550. → pp 205, 299, 315.
BuldyrevS. V., A. L.Goldberger, S.Havlin, C.-K.Peng, M.Simons, F.Sciortino, and H. E.Stanley, 1993, Long-range fractal correlations in DNA, Phys. Rev. Lett. 71(11), 1776, comment on Voss (1992). → pp 74, 455.
BuldyrevS. V., A.-L.Barabási, F.Caserta, S.Havlin, H. E.Stanley, and T.Vicsek, 1992a, Anomalous interface roughening in porous media: experiment and model, Phys. Rev. A 45(12), R8313–R8316. → pp 149, 203, 294, 301.
BuldyrevS. V., J.Ferrante, and F. R.Zypman, 2006, Dry friction avalanches: experiment and theory, Phys. Rev. E 74(6), 066110 (12 pp). → p 65.
BuldyrevS. V., N. V.Dokholyan, A. L.Goldberger, S.Havlin, C. K.Peng, H. E.Stanley, and G. M.Viswanathan, 1998, Analysis of DNA sequences using methods of statistical physics, Physica A 249(1–4), 430 – 438. → p 74.
BuldyrevS. V., S.Havlin, and H. E.Stanley, 1992b, Anisotropic percolation and the d-dimensional surface roughening problem, Physica A 200(1–4), 200–211. → p 203.
BunzarovaN. Z., 2010, Statistical properties of directed avalanches, Phys. Rev. E 82(3), 031116 (14 pp). → pp 288, 290.
BurkhardtT. W., and J. M. J.van Leeuwen (editors), 1982, Real-Space Renormalization, Topics in Current Physics (Springer-Verlag, Berlin, Germany). → pp 101, 121, 266.
BurlandoB., 1990, The fractal dimension of taxonomic systems, J. Theor. Biol. 146(1), 99–114. → p 69.
BurlandoB., 1993, The fractal geometry of evolution, J. Theor. Biol. 163(2), 161–172. → p 69.
BurridgeR., and L.Knopoff, 1967, Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57(3), 341–371. → pp 125, 127, 128, 206, 485.
ButkovskiyA. G., 1982, Green's Functions and Transfer Functions Handbook (Ellis Horwood, Chichester, UK). → p 249.
CafieroR., A.Gabrielli, M.Marsili, and L.Pietronero, 1996, Theory of extremal dynamics with quenched disorder: invasion percolation and related models, Phys. Rev. E 54(2), 1406–1425. → p 150.
CafieroR., A.Valleriani, and J. L.Vega, 1999, Damage-spreading in the parallel Bak-Sneppen model, Eur. Phys. J. B 7(4), 505–508. → pp 156, 157.
CafieroR., P. De LosRios, F.-M.Dittes, A.Valleriani, and J. L.Vega, 1998, Power-law behavior in a nonextremal Bak-Sneppen model, Phys. Rev. E 58(3), 3993–3996. → p 150.
CafieroR., V.Loreto, L.Pietronero, A.Vespignani, and S.Zapperi, 1995, Local rigidity and self-organized criticality for avalanches, Europhys. Lett. 29(2), 111–116. → pp 109, 204, 267, 344.
CaldarelliG., C.Tebaldi, and A. L.Stella, 1996b, Branching processes and evolution at the ends of a food chain, Phys. Rev. Lett. 76(26), 4983–4986. → p 257.
CaldarelliG., F. D. DiTolla, and A.Petri, 1996a, Self-organization and annealed disorder in a fracturing process, Phys. Rev. Lett. 77(12), 2503–2506. → p 65.
CannelliG., R.Cantelli, and F.Cordero, 1993, Self-organized criticality of the fracture processes associated with hydrogen precipitation in niobium by acoustic emission, Phys. Rev. Lett. 70(25), 3923–3926. → p 64.
CanningD., L. A. N.Amaral, Y.Lee, M.Meyer, and H. E.Stanley, 1998, Scaling the volatility of GDP growth rates, Econ. Lett. 60(3), 335 – 341. → p 75.
CarboneV., R.Cavazzana, V.Antoni, L.Sorriso-Valvo, E.Spada, G.Regnoli, P.Giuliani, N.Vianello, F.Lepreti, R.Bruno, E.Martines, and P.Veltri, 2002, To what extent can dynamical models describe statistical features of turbulent flows?, Europhys. Lett. 58(3), 349–355. → p 72.
CardyJ. L. (editor), 1988, Finite-Size Scaling (North-Holland, Amsterdam, The Netherlands). → pp 12, 27.
CardyJ. L., and R. L.Sugar, 1980, Directed percolation and Reggeon field theory, J. Phys. A: Math. Gen. 13(12), L423–L427. → p 264.
CarlsonJ. M., 1991, Time intervals between characteristic earthquakes and correlations with smaller events: an analysis based on a mechanical model of a fault, J. Geophys. Res. 96(B3). → p 66.
CarlsonJ. M., and J. S.Langer, 1989, Properties of earthquakes generated by fault dynamics, Phys. Rev. Lett. 62(22), 2632–2635. → p 125.
CarlsonJ. M., and J.Doyle, 1999, Highly optimized tolerance: a mechanism for power laws in designed systems, Phys. Rev. E 60(2), 1412–1427. → p 345.
CarlsonJ. M., and J.Doyle, 2000, Highly optimized tolerance: robustness and design in complex systems, Phys. Rev. Lett. 84(11), 2529–2532. → p 345.
CarlsonJ. M., J. S.Langer, and B. E.Shaw, 1994, Dynamics of earthquake faults, Rev. Mod. Phys. 66(2), 657–670. → p 66.
CarlsonJ. M., J. T.Chayes, E. R.Grannan, and G. H.Swindle, 1990b, Self-organized criticality in sandpiles: nature of the critical phenomenon, Phys. Rev. A 42(4), 2467–2470. → p 343.
CarrerasB. A., D. E.Newman, I.Dobson, and A. B.Poole, 2004, Evidence for self-organized criticality in a time series of electric power system blackouts, IEEE Trans. Circuits Syst. I 51(9), 1733–1740. → p 76.
CarrerasB. A., D.Newman, V. E.Lynch, and P. H.Diamond, 1996, A model realization of self-organized criticality for plasma confinement, Phys. Plasmas 3(8), 2903–2911. → pp 72, 193.
CarrerasB. A., V. E.Lynch, D. E.Newman, and G. M.Zaslavsky, 1999, Anomalous diffusion in a running sandpile model, Phys. Rev. E 60(4), 4770–4778. → pp 193, 195.
CarrilloL., L.Mañosa, J.Ortín, A.Planes, and E.Vives, 1998, Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions, Phys. Rev. Lett. 81(9), 1889–1892. → p 63.
CasartelliM., L.Dall'Asta, A.Vezzani, and P.Vivo, 2006, Dynamical invariants in the deterministic fixed-energy sandpile, Eur. Phys. J. B 52(1), 91–105, arXiv:cond-mat/0502208v2. → p 334.
CessacB., P.Blanchard, and T.Krüger, 2001, Lyapunov exponents and transport in the Zhang model of self-organized criticality, Phys. Rev. E 64(1), 016133 (16 pp). → p 110.
CevaH., 1995, Influence of defects in a coupled map lattice modeling earthquakes, Phys. Rev. E 52(1), 154–158. → p 134.
CevaH., 1998, On the asymptotic behavior of an earthquake model, Phys. Lett. A 245(5), 413–418. → pp 128, 129, 134–136, 140, 358, 367.
ChabanolM.-L., and V.Hakim, 1997, Analysis of a dissipative model of self-organized criticality with random neighbors, Phys. Rev. E 56(3), R2343–R2346. → pp 131, 328.
ChaikinP. M., and T. C.Lubensky, 1995, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK). → p 47.
ChangT., 1992, Low-dimensional behavior and symmetry breaking of stochastic systems near criticality – can these effects be observed in space and in the laboratory?, IEEE Trans. Plasma Sci. 20(6), 691–694. → p 72.
ChangT., 1999, Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Phys. Plasmas 6(11), 4137–4145. → p 72.
ChapmanS. C., 2000, Inverse cascade avalanche model with limit cycle exhibiting period doubling, intermittency, and self-similarity, Phys. Rev. E 62(2), 1905–1911. → p 193.
ChapmanS. C., R. O.Dendy, and B.Hnat, 2001, Sandpile model with Tokamaklike enhanced confinement phenomenology, Phys. Rev. Lett. 86(13), 2814–2817. → pp 72, 193, 209.
ChapmanS. C., R. O.Dendy, and G.Rowlands, 1999, A sandpile model with dual scaling regimes for laboratory, space and astrophysical plasmas, Phys. Plasmas 6(11), 4169–4177. → p 72.
ChattoA., R.Lee, R.Duncan, and D.Goodstein, 2007, Experiments on the self-organized critical state of 4He, J. Low Temp. Phys. 148(5), 519–526. → p 62.
ChauH. F., 1994, Generalized Abelian sandpile model, Physica A 205(1–3), 292–298. → p 101.
ChauH. F., and K. S.Cheng, 1992, Relations of 1/f and 1/f2 power spectra to self-organized criticality, Phys. Rev. A 46(6), R2981–R2983. → p 185.
ChauH. F., and K. S.Cheng, 1993, Generalized Abelian sandpile model, J. Math. Phys. 34(11), 5109–5117. → p 101.
ChauveP., and P. LeDoussal, 2001, Exact multilocal renormalization group and applications to disordered problems, Phys. Rev. E 64(5), 051102 (27 pp). → pp 266, 267.
ChenC.-C., and M.den Nijs, 2002, Interface view of directed sandpile dynamics, Phys. Rev. E 65(3), 031309 (4 pp). → p 299.
ChenC.-F., and C.-Y.Lin, 2009, Scalings of amodified Manna model with bulk dissipation, Int. J. Mod. Phys. C 20(2). → p 169.
ChenD.-M., S.Wu, A.Guo, and Z. R.Yang, 1995, Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons, J. Phys. A: Math. Gen. 28(18), 5177–5182. → p 70.
ChenK., P.Bak, and M. H.Jensen, 1990, A deterministic critical forest fire model, Phys. Lett. A 149(4), 207–210. → pp 114, 116.
ChenK., P.Bak, and S. P.Obukhov, 1991, Self-organized criticality in a crack-propagation model of earthquakes, Phys. Rev. A 43(2), 625–630. → pp 66, 129.
ChenY., M.Ding, and J. A. S.Kelso, 1997, Long memory processes (1/fα type) in human coordination, Phys. Rev. Lett. 79(22), 4501–4504. → p 76.
ChessaA., A.Vespignani, and S.Zapperi, 1999b, Critical exponents in stochastic sandpile models, Comput. Phys. Commun. 121–122, 299–302. → pp 168, 183, 284, 409.
ChessaA., E.Marinari, and A.Vespignani, 1998, Energy constrained sandpile models, Phys. Rev. Lett. 80(19), 4217–4220. → pp 171, 305–307, 331, 333, 334, 340.
ChessaA., H. E.Stanley, A.Vespignani, and S.Zapperi, 1999a, Universality in sandpiles, Phys. Rev. E 59(1), R12–R15, numerics may not be independent from Chessa et al. (1999b). → pp 30, 31, 39, 43, 44, 92, 103, 164, 166, 168, 183.
CheX., and H.Suhl, 1990, Magnetic domain patterns as self-organizing critical systems, Phys. Rev. Lett. 64(14), 1670–1673. → p 62.
ChialvoD. R., 2004, Critical brain networks, Physica A 340(4), 756–765, Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → p 71.
ChiancaC. V., J. S. SáMartins, and P. M. C.de Oliveira, 2009, Mapping the train model for earthquakes onto the stochastic sandpile model, Eur. Phys. J. B 68(4), 549–555. → pp 178, 206.
ChristensenK., 1992, Self-Organization in Models of Sandpiles, Earthquakes, and Flashing Fireflies, Ph.D. Thesis, Institute of Physics and Astronomy, University of Aarhus, Denmark. → pp 88, 99, 104, 128, 129, 134, 290.
ChristensenK., 1993, Christensen replies, Phys. Rev. Lett. 71(8), 1289, reply to comment (Klein and Rundle, 1993). → pp 136, 428.
ChristensenK., 2004, On self-organised criticality in one dimension, Physica A 340(4), 527–534, Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → pp 184, 188–190, 209, 236, 315.
ChristensenK., 2008, personal communication. → p 185.
ChristensenK., and Z.Olami, 1992a, Scaling, phase transitions, and nonuniversality in a self-organized critical cellular-automaton model, Phys. Rev. A 46(4), 1829–1838. → pp 68, 128, 129, 133, 135, 136, 138, 139, 141.
ChristensenK., and Z.Olami, 1992b, Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model of earthquakes, J. Geophys. Res. 97(B6), 8729–8735. → pp 67, 68, 76, 128.
ChristensenK., and Z.Olami, 1993, Sandpile models with and without an underlying spatial structure, Phys. Rev. E 48(5), 3361–3372. → pp 43, 103, 131, 247, 290.
ChristensenK., D.Hamon, H. J.Jensen, and S.Lise, 2001, Comment on ‘self-organized criticality in the Olami-Feder-Christensen model’, Phys. Rev. Lett. 87(3), 039801, comment on (de Carvalho and Prado, 2000), reply (de Carvalho and Prado, 2001). → pp 131, 413.
ChristensenK., H. C.Fogedby, and H. J.Jensen, 1991, Dynamical and spatial aspects of sandpile cellular automata, J. Stat. Phys. 63(3/4), 653–684. → pp 16, 42, 92, 93, 102, 104.
ChristensenK., H.Flyvbjerg, and Z.Olami, 1993, Self-organized critical forest-fire model: mean-field theory and simulation results in 1 to 6 dimensions, Phys. Rev. Lett. 71(17), 2737–2740. → pp 120, 121, 124, 125, 251.
ChristensenK., N. R.Moloney, O.Peters, and G.Pruessner, 2004, Avalanche behavior in an absorbing state Oslo model, Phys. Rev. E 70(6), 067101 (4 pp), arXiv:cond-mat/0405454. → pp 248, 282, 306, 307, 333, 339, 340.
ChristensenK., N.Farid, G.Pruessner, and M.Stapleton, 2008, On the scaling of probability density functions with apparent power-lawexponents less than unity, Eur. Phys. J. B 62(3), 331–336. → pp 27, 29, 32, 57, 58, 192, 391.
ChristensenK., R.Donangelo, B.Koiller, and K.Sneppen, 1998, Evolution of random networks, Phys. Rev. Lett. 81(11), 2380–2383. → p 159.
ChristensenK., Z.Olami, and P.Bak, 1992, Deterministic 1/f noise in nonconservative models of self-organized criticality, Phys. Rev. Lett. 68(16), 2417–2420. → pp 15, 135.
ChuaA., 2003, Creation and annihilation operators for the Manna model, personal communication (unpublished). → p 173.
ChuaA., and G.Pruessner, 2003, The Markov matrix of the Oslo rice pile (unpublished). → p 202.
ChuaA., and K.Christensen, 2002, Exact enumeration of the critical states in the Oslo Model, arXiv:cond-mat/0203260v2 (unpublished). → pp 186, 187, 343.
CieplakM., and M. O.Robbins, 1988, Dynamical transition in quasistatic fluid invasion in porous media, Phys. Rev. Lett. 60(20), 2042–2045. → p 301.
CilibertoS., and C.Laroche, 1994, Experimental evidence of self organized criticality in the stick-slip dynamics of two rough elastic surfaces, J. Phys. I (France) 4, 223–235. → p 65.
ClarS., B.Drossel, and F.Schwabl, 1994, Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E 50(2), 1009–1018. → pp 120, 121, 123–125.
ClarS., B.Drossel, and F.Schwabl, 1996, Forest fires and other examples of self-organized criticality, J. Phys.: Condens. Matter 8(37), 6803–6824. →p 118.
ClausetA., C. R.Shalizi, and M. E. J.Newman, 2009, Power-law distributions in empirical data, SIAM Rev. 51(4), 661–703, arXiv:0706.1062v2. → pp 220, 229.
ConiglioA., and W.Klein, 1980, Clusters and Ising critical droplets: a renormalisation group approach, J. Phys. A: Math. Gen. 13(8), 2775–2780. → p 115.
CormenT. H., C. E.Leiserson, and R. L.Rivest, 1996, Introduction to Algorithms (MIT Press, Cambridge, MA, USA). → pp 123, 160, 358, 367.
CorralÁ., 2003, Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E 68(3), 035102(R) (4 pp). → p 68.
CorralÁ., 2004a, Calculation of the transition matrix and of the occupation probabilities for the states of the Oslo sandpile model, Phys. Rev. E 69(2), 026107 (12 pp), arXiv: cond-mat/0310181v1. → pp 17, 93, 187, 200–203.
CorralÁ., 2004b, Long-term clustering, scaling, and universality in the temporal occurrence in earthquakes, Phys. Rev. Lett. 92(10), 108501 (4 pp). → p 68.
CorralÁ., 2004c, Universal local versus unified global scaling laws in the statistics of seismicity, Physica A 340(4), 590–597. → p 68.
CorralÁ., and A.Díaz-Guilera, 1997, Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality, Phys. Rev. E 55(3), 2434–2445, arXiv:cond-mat/9612100. → pp 101, 109, 203, 266, 267.
CorralÁ., and K.Christensen, 2006, Comment on ‘earthquakes descaled: on waiting time distributions and scaling laws’, Phys. Rev. Lett. 96(10), 109801 (1 p), comment on (Lindman et al., 2005), reply (Lindman et al., 2006). → pp 68, 431.
CorralÁ., and M.Paczuski, 1999, Avalanche merging and continuous flow in a sandpile model, Phys. Rev. Lett. 83(3), 572–575. → pp 193, 194, 300, 302, 322.
CorralÁ., C. J.Pérez, A.Díaz-Guilera, and A.Arenas, 1995, Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators, Phys. Rev. Lett. 74(1), 118–121. → p 70.
CorralÁ., L.Telesca, and R.Lasaponara, 2008, Scaling and correlations in the dynamics of forest-fire occurrence, Phys. Rev. E 77(1), 016101 (7 pp). → p 73.
CortéL., P. M.Chaikin, J. P.Gollub, and D. J.Pine, 2008, Random organization in periodically driven systems, Nat. Phys. 4(5), 420–424. → p 58.
CortéL., S. J.Gerbode, W.Man, and D. J.Pine, 2009, Self-organized criticality in sheared suspensions, Phys. Rev. Lett. 103(24), 248301 (4 pp). → pp 58, 61.
CostelloR. M., K. L.Cruz, C.Egnatuk, D. T.Jacobs, M. C.Krivos, T. S.Louis, R. J.Urban, and H.Wagner, 2003, Self-organized criticality in a bead pile, Phys. Rev. E 67(4), 041304 (9 pp). → pp 56, 134.
CoteP. J., and L. V.Meisel, 1991, Self-organized criticality and the Barkhausen effect, Phys. Rev. Lett. 67(10), 1334–1337. → p 62.
CoteP. J., and L. V.Meisel, 1993, Self-organized criticality and the Barkhausen effect in amorphous and polycrystallinemetals, Int. J. Mod. Phys. B 7(1–3), 934–937, Proceedings of the International Conference on the Physics of TransitionMetals, Darmstadt, Germany, July 20–24, 1992. → p 63.
CreedM., 2004, Work 370: Balls (image of the work), multiple parts; overall dimensions variable. Installation view at Hauser & Wirth, London. Courtesy of the artist and Hauser & Wirth. Photo: Hugo Glendinning. → p xvi.
CreutzM., 1991, Abelian sandpiles, Comput. Phys. 5(2), 198–203. → p 283.
CreutzM., 2004, Playing with sandpiles, Physica A 340(4), 521 – 526, Proceedings of the symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → pp 97, 283.
CrisantiA., M. H.Jensen, A.Vulpiani, and G.Paladin, 1992, Strongly intermittent chaos and scaling in an earthquake model, Phys. Rev. A 46(12), R7363–R7366. → p 141.
CrossM. C., and P. C.Hohenberg, 1993, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65(3), 851. → p 318.
CrovellaM. E., and A.Bestavros, 1997, Self-similarity in World Wide Web traffic: evidence and possible causes, IEEE Trans. Network. 5(6), 835–846. → p 76.
CrutchfieldJ., M.Nauenberg, and J.Rudnick, 1981, Scaling for external noise at the onset of chaos, Phys. Rev. Lett. 46(14), 933–935. → p 319.
CuleD., and T.Hwa, 1996, Tribology of sliding elastic media, Phys. Rev. Lett. 77(2), 278–281. → pp 178, 206, 302.
Díaz-GuileraA., 1992, Noise and dynamics of self-organized critical phenomena, Phys. Rev. A 45(2), 8551–8558. → pp 104, 106, 108, 109, 243, 266, 267, 299, 322.
Díaz-GuileraA., 1994, Dynamic renormalization group approach to self-organized critical phenomena, Europhys. Lett. 26(3), 177–182, arXiv:cond-mat/9403036v1. → pp 101, 106, 109, 110, 203, 266, 299, 420.
da SilvaL., A. R. R.Papa, and A. M. C.de Souza, 1998, Criticality in a simple model for brain functioning, Phys. Lett. A 242(6), 343–348. →pp 70, 149.
DaerdenF., and C.Vanderzande, 1996, 1/f noise in the Bak-Sneppen model, Phys. Rev. E 53(5), 4723–4728, comment (Davidsen and Lüthje, 2001). → pp 152, 154, 252.
DaerdenF., and C.Vanderzande, 1998, Sandpiles on a Sierpinski gasket, Physica A 256(3–4), 533–546. → pp 24, 101.
DahlstedtK., and H. J.Jensen, 2001, Universal fluctuations and extreme-value statistics, J. Phys. A: Math. Gen. 34(50), 11193–11200. → p 149.
DahmenK., and J. P.Sethna, 1993, Hysteresis loop critical exponents in 6-ε dimensions, Phys. Rev. Lett. 71(19), 3222–3225. → p 63.
DahmenK., and J. P.Sethna, 1996, Hysteresis, avalanches, and disorder-induced critical scaling: a renormalization-group approach, Phys. Rev. B 53(22), 14872–14905. → p 63.
DahmenK., S.Kartha, J. A.Krumhansl, B. W.Roberts, J. P.Sethna, and J. D.Shore, 1994, Disorder-driven first-order phase transformations: a model for hysteresis, J. Appl. Phys. 75(10), 5946–5948, Proceedings of the 38th Annual Conference On Magnetism and Magnetic Materials, Minneapolis, MN, USA, November 15–18, 1993. → p 63.
Dall'AstaL., 2006, Exact solution of the one-dimensional deterministic fixed-energy sandpile, Phys. Rev. Lett. 96(5), 058003 (4 pp). → p 333.
DantasW. G., and J. F.Stilck, 2006, Generalized Manna sandpile model with height restrictions, Braz. J. Phys. 36(3A). → pp 333, 340.
Das SarmaS., S.V.Ghaisas, and J. M.Kim, 1994, Kinetic super-roughening and anomalous dynamic scaling in nonequilibrium growth models, Phys. Rev. E 49(1), 122–125. → pp 313, 314.
DattaA. S., K.Christensen, and H. J.Jensen, 2000, On the physical relevance of extremal dynamics, Europhys. Lett. 50(2), 162–168. → pp 150, 161.
DavidsenJ., and C.Goltz, 2004, Are seismic waiting time distributions universal?, Geophys. Res. Lett. 31(21), L21612 (4 pp). → p 68.
DavidsenJ., and M.Paczuski, 2005, Analysis of the spatial distribution between successive earthquakes, Phys. Rev. Lett. 94(4), 048501 (4 pp), comment(Werner and Sornette, 2007). → pp 68, 456.
DavidsenJ., and M.Paczuski, 2007, Davidsen and Paczuski reply:, Phys. Rev. Lett. 99(17), 179802, reply to comment (Werner and Sornette, 2007). → pp 68, 456.
DavidsenJ., and N.Lüthje, 2001, Comment on ‘1/f noise in the Bak-Sneppen model’, Phys. Rev. E 63(6), 063101 (2 pp), arXiv:cond-mat/0201201. → pp 15, 154, 412.
de ArcangelisL., C.Perrone-Capano, and H. J.Herrmann, 2006, Self-organized criticality model for brain plasticity, Phys. Rev. Lett. 96(2), 028107 (4 pp). → pp 70, 71.
de BoerJ., A. D.Jackson, and T.Wettig, 1995, Criticality in simple models of evolution, Phys. Rev. E 51(2), 1059–1074. → pp 152, 153, 251.
de BoerJ., B.Derrida, H.Flyvbjerg, A. D.Jackson, and T.Wettig, 1994, Simple model of self-organized biological evolution, Phys. Rev. Lett. 73(6), 906–909. → pp 143, 152, 158, 251.
de CarvalhoJ. X., and C. P. C.Prado, 2000, Self-organized criticality in the Olami-Feder-Christensen model, Phys. Rev. Lett. 84(17), 4006–4009, comment (Christensen et al., 2001). → pp 131, 410.
de CarvalhoJ. X., and C. P. C.Prado, 2001, de Carvalho and Prado reply:, Phys. Rev. Lett. 87(3), 039802 (1 p), reply to comment (Christensen et al., 2001). → p 410.
de GennesP. G., 1966, Superconductivity of Metals and Alloys (Physica B, Reading, MA, USA), translated by P. A.Pincus. → p 58.
De Los RiosP., and Y.-C.Zhang, 1999, Universal 1/f noise from dissipative self-organized criticality models, Phys. Rev. Lett. 82(3), 472–475. → p 15.
De Los RiosP., M.Marsili, and M.Vendruscolo, 1998, High-dimensional Bak-Sneppen Model, Phys. Rev. Lett. 80(26), 5746–5749. → pp 143, 150, 152, 161.
De MenechM., A. L.Stella, and C.Tebaldi, 1998, Rare events and breakdown of simple scaling in the Abelian sandpile model, Phys. Rev. E 58(3), R2677–R2680. → pp 37, 51, 92, 102, 103, 220, 229.
De MenechM., and A. L.Stella, 2000, From waves to avalanches: two different mechanisms of sandpile dynamics, Phys. Rev. E 62(4), R4528–R4531. → pp 92, 100, 170.
de OliveiraM.M., and R.Dickman, 2005, How to simulate the quasistationary state, Phys. Rev. E 71(1), 016129 (5 pp). → p 336.
de Sousa VieiraM., 2000, Simple deterministic self-organized critical system, Phys. Rev. E 61(6), R6056–R6059. → pp 126, 178, 302.
de Sousa VieiraM., 2002, Breakdown of self-organized criticality in sandpiles, Phys. Rev. E 66(5), 051306 (5 pp). → p 192.
DendyR. O., and P.Helander, 1998, Appearance and nonappearance of self-organized criticality in sandpiles, Phys. Rev. E 57(3), 3641–3644. → pp 55, 193.
DendyR. O., P.Helander, and M.Tagger, 1998, On the role of self-organised criticality in accretion systems, Astron. Astrophys. 337(3), 962–965, updated in Dendy et al. (1999). → p 414.
DendyR. O., P.Helander, and M.Tagger, 1999, Self-organised criticality in astrophysical accretion systems, Phys. Scripta T82, 133–136, Topical Issue, Nonlinear Plasma Science: Special Issue in Honour of Professor Lennart Stenflo on the Occasion of his 60th Birthday, essentially identical to Dendy, Helander, and Tagger (1998). → pp 4, 72, 193, 414.
DerridaB., and M. R.Evans, 1997, The asymmetric exclusionmodel: exact results through a matrix approach, in Nonequilibrium Statistical Mechanics in One Dimension, edited by V.Privman (Cambridge University Press, Cambridge, UK), pp. 277–304. → p 202.
DerridaB., M. R.Evans, V.Hakim, and V.Pasquier, 1993, Exact solution of a 1D asymmetric exclusionmodel using a matrix formulation, J. Phys. A: Math. Gen. 26(7), 1493–1517. → p 176.
DharD., 1990b, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64(23), 2837, erratum regarding numbering of references. → p 414.
DharD., 1999b, Some results and a conjecture for Manna's stochastic sandpile model, Physica A 270(1–2), 69–81, arXiv:cond-mat/9902137. → pp 167, 169, 181, 277, 279, 286.
DharD., 2004, Steady state and relaxation spectrum of the Oslo rice-pile model, Physica A 340(4), 535–543, arXiv:cond-mat/0309490. → pp 95, 163, 186–188, 198–200, 201, 275, 277, 296, 301.
DharD., and P. B.Thomas, 1992, Hysteresis and self-organized criticality in the O(N) model in the limit N → ∞, J. Phys. A: Math. Gen. 25(19), 4967–4984. → p 343.
DharD., and P.Pradhan, 2004, Probability distribution of residence times of grains in sand-pile models, J. Stat. Mech. 2004(05), P05002 (12 pp), includes erratum. → p 196.
DharD., and S. N.Majumdar, 1990, Abelian sandpile model on the Bethe lattice, J. Phys. A: Math. Gen. 23(19), 4333–4350. → pp 100, 101, 243, 251, 320, 343.
DharD., and S. S.Manna, 1994, Inverse avalanches in the Abelian sandpile model, Phys. Rev. E 49(4), 2684–2697. → p 99.
DharD., P.Ruelle, S.Sen, and D.-N.Verma, 1995, Algebraic aspects of Abelian sandpile models, J. Phys. A: Math. Gen. 28(4), 805–831. → pp 87, 95, 96.
DiamondP. H., and T. S.Hahm, 1995, On the dynamics of turbulent transport near marginal stability, Phys. Plasmas 2(10), 3640–3649. → p 72.
DickmanR., 1994, Numerical study of a field theory for directed percolation, Phys. Rev. E 50(6), 4404–4409. → p 182.
DickmanR., 2002a, n-site approximations and coherent-anomaly-method analysis for a stochastic sandpile, Phys. Rev. E 66(3), 036122 (6 pp). → p 181.
DickmanR., 2002b, Nonequilibrium phase transitions in epidemics and sandpiles, Physica A 306, 90–97, arXiv:cond-mat/0110043. → pp 171, 177, 293.
DickmanR., 2004a, Fractal rain distributions and chaotic advection, Braz. J. Phys. 34(2A), 337–346, arXiv:physics/0311083. → p 71.
DickmanR., 2004b, personal communication. → p 390.
DickmanR., 2006, Critical exponents for the restricted sandpile, Phys. Rev. E 73(3), 036131 (5 pp). → pp 44, 168, 170, 177–180, 285, 294, 316.
DickmanR., and J. Kamphorst Leal daSilva, 1998, Moment ratios for absorbing-state phase transitions, Phys. Rev. E 58(4), 4266–4270. → p 39.
DickmanR., and J. M. M.Campelo, 2003, Avalanche exponents and corrections to scaling for a stochastic sandpile, Phys. Rev. E 67(6), 066111 (5 pp). → pp 32, 165, 168, 169, 171, 180, 339.
DickmanR., and R.Vidigal, 2002, Path-integral representation for a stochastic sandpile, J. Phys. A 35(34), 7269–7285. → p 182.
DickmanR., L.Rolla, and V.Sidoravicius, 2010, Activated random walkers: facts, conjectures and challenges, J. Stat. Phys. 138(1), 126–142. → p 330.
DickmanR., M.Alava, M. A.Muñoz, J.Peltola, A.Vespignani, and S.Zapperi, 2001, Critical behavior of a one-dimensional fixed-energy stochastic sandpile, Phys. Rev. E 64(5), 056104 (7 pp). → pp 168, 177, 179, 299, 313, 315, 331, 333, 337, 339, 340.
DickmanR., T.Tomé, and M. J.de Oliveira, 2002, Sandpiles with height restrictions, Phys. Rev. E 66(1), 016111 (8 pp). → pp 40, 168, 170, 171, 177, 178, 180, 181, 182, 283, 285, 292, 293.
DimriV. P., and M. R.Prakash, 2001a, Reply to comments by Dr. James W. Kirchner on ‘scaling of power spectrum of extinction events in the fossil record’, Earth Planet. Sci. Lett. 192(4), 623 – 625, reply to Kirchner (2001). → pp 69, 428.
DimriV. P., and M. R.Prakash, 2001b, Scaling of power spectrum of extinction events in the fossil record, Earth Planet. Sci. Lett. 186(3–4), 363 – 370, comment (Kirchner, 2001). → pp 69, 428.
DingE. J., Y. N.Lu, and H. F.Ouyang, 1992, Theoretical sandpile with stochastic slide, Phys. Rev. A 46(10), R6136–R6139. → pp 56, 184.
DiodatiP., F.Marchesoni, and S.Piazza, 1991, Acoustic emission from volcanic rocks: an example of self-organized criticality, Phys. Rev. Lett. 67(17), 2239–2243. → p 64.
DoiM., 1976, Second quantization representation for classical many-particle system, J. Phys. A: Math. Gen. 9(9), 1465–1477. → p 266.
DomanyE., and W.Kinzel, 1984, Equivalence of cellular automata to Ising models and directed percolation, Phys. Rev. Lett. 53(4), 311–314. → p 298.
DornicI., H.Chaté, and M. A.Muñoz, 2005, Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions, Phys. Rev. Lett. 94(10), 100601 (4 pp). → pp 177, 182.
DornP. L., D. S.Hughes, and K.Christensen, 2001, On the avalanche size distribution in the BTW model, preprint from http://www.cmth.ph.ic.ac.uk/kim/papers/preprints/preprint_btw.pdf, accessed 19 October 2010 (unpublished). → p 103.
DoughertyD., 1992, sed & awk (O'Reilly, Sebastopol, CA, USA). → p 358.
DowdK., and C.Severance, 1998, High Performance Computing (O'Reilly, Sebastopol, CA, USA), 2nd edition. → pp 358, 361, 369, 380.
DrosselB., 1997, Renormalization group approach to the critical behavior of the forest-fire model, Phys. Rev. Lett. 78(7), 1392. → p 119.
DrosselB., 1999a, An alternative view of the Abelian sandpile model, arXiv:cond-mat/9904075v1 (unpublished). → p 104.
DrosselB., 1999b, On the scaling behavior of the Abelian sandpile model, arXiv: cond-mat/9904075v2 (unpublished). → p 104.
DrosselB., 2000, Scaling behavior of the Abelian sandpile model, Phys. Rev. E 61(3), R2168–R2171, arXiv:cond-mat/9904075v2. → pp 55, 103, 104, 137, 169, 321.
DrosselB., 2002, Complex scaling behavior of nonconserved self-organized critical systems, Phys. Rev. Lett. 89(23), 238701 (4 pp), arXiv:cond-mat/0205658. → pp 134, 137, 140, 358, 376.
DrosselB., and F.Schwabl, 1992b, Self-organized criticality in a forest-firemodel, Physica A 191(1–4), 47–50, Proceedings of the International Conference on Fractals and Disordered Systems, Hamburg, Germany, July 29–31, 1992, largely identical to Drossel and Schwabl (1992a). → pp 115, 417.
DrosselB., S.Clar, and F.Schwabl, 1993, Exact results for the one-dimensional self-organized critical forest-fire model, Phys. Rev. Lett. 71(23), 3739–3742. → pp 116, 120, 121, 124.
DuarteJ. A. M. S., 1990, cited by Manna (1990) as private communication for studying the BTW model on a triangular lattice. → p 23.
DurinG., and S.Zapperi, 2000, Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets, Phys. Rev. Lett. 84(20), 4705–4708. → p 64.
DurinG., G.Bertotti, and A.Magni, 1995, Fractals, scaling and the question of self-organized criticality in magnetization processes, Fractals 3(2), 351–370. → p 64.
DuttaP., and P. M.Horn, 1981, Low-frequency fluctuations in solids: 1/f noise, Rev. Mod. Phys. 53(3), 497–516. → p 4.
EdwardsS. F., and D. R.Wilkinson, 1982, The surface statistics of a granular aggregate, Proc. R. Soc. London, Ser. A 381(1780), 17–31. → p 320.
EfetovK. B., and A. I.Larkin, 1977, Charge-density wave in a random potential, Sov. Phys. JETP 45, 1236, original Zh. Eksp. Teor. Fiz. 72, 2350–2361 (1971), translated by J. G.Adashko. → p 315.
EfronB., 1982, The Jackknife, the Bootstrap and Other Resampling Plans (SIAM, Philadelphia, PA, USA). → p 216.
EldredgeN., and S. J.Gould, 1972, Punctuated equilibria: an alternative to phyletic gradualism, in Models in Paleobiology, edited by T. J. M.Schopf (Freeman, Cooper & Company, San Francisco, CA, USA), pp. 82–115. → pp 68, 141.
EliazarI., 2008, Intrinsic fractality of classic shot noise, Phys. Rev. E 77(6), 061103 (5 pp). → p 301.
ErzanA., L.Pietronero, and A.Vespignani, 1995, The fixed-scale transformation approach to fractal growth, Rev. Mod. Phys. 67(3), 545–604. → p 267.
EverndenJ. F., 1970, Study of regional seismicity and associated problems, Bull. Seismol. Soc. Am. 60(2), 393–446. → p 66.
EvesqueP., 1991, Analysis of the statistics of sandpile avalanches using soil-mechanics results and concepts, Phys. Rev. A 43(6), 2720–2740. → p 56.
EvesqueP., and J.Rajchenbach, 1989, Instability in a sand heap, Phys. Rev. Lett. 62(1), 44–46. → pp 53, 54.
FaillettazJ., F.Louchet, and J.-R.Grasso, 2004, Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett. 93(20), 208001 (4 pp). → p 57.
FamilyF., and T.Vicsek, 1985, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. A: Math. Gen. 18(2), L75–L81. → p 313.
FederH. J. S., and J.Feder, 1991b, Self-organized criticality in a stick-slip process, Phys. Rev. Lett. 67(2), 283, erratum. → pp 126, 418.
FederJ., 1988, Fractals (Plenum Press, London, UK). → p 17.
FederJ., 1995, The evidence for self-organized criticality in sandpiles dynamics, Fractals 3(3), 431–443. → pp 55, 57.
FellerW., 1966, An Introduction to Probability Theory and its Applications, volume II (John Wiley & Sons, New York, NY, USA). → pp 37, 261.
FellerW., 1968, An Introduction to Probability Theory and its Applications, volume I (John Wiley & Sons, New York, NY, USA), 3rd edition. → p 261.
FengerN. P., 1976, Dimensional analysis of swirl atomizers, Engineering 216(12), 896–899. → p 22.
FerreiraA. L. C., and S. K.Mendiratta, 1993, Mean-field approximation with coherent anomaly method for a non-equilibrium model, J. Phys. A: Math. Gen. 26(4), L145–L150. → pp 181, 250, 394.
FerrenbergA. M., and R. H.Swendsen, 1988, New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61(23), 2635–2638. → p 358.
FerrenbergA. M., D. P.Landau, and K.Binder, 1991, Statistical and systematic errors in Monte Carlo sampling, J. Stat. Phys. 63(5/6), 867–882. → p 225.
Fey-den BoerA., and F.Redig, 2005, Organized versus self-organized criticality in the Abelian sandpile model, Markov Process. Relat. Fields 11(3), 425–442, arXiv: math-ph/0510060. → p 101.
Fey-den BoerA., and F.Redig, 2008, Limiting shapes for deterministic centrally seeded growth models, J. Stat. Phys. 130(3), 579–597. → p 110.
FeyA., L.Levine, and D. B.Wilson, 2010b, Approach to criticality in sandpiles, Phys. Rev. E 82(3), 031121 (14 pp), arXiv:1001.3401v1. → pp 101, 338, 342.
FeyA., L.Levine, and D. B.Wilson, 2010c, Driving sandpiles to criticality and beyond, Phys. Rev. Lett. 104(14), 145703 (4 pp), arXiv:0912.3206v3. → pp 101, 338, 342, 426.
FeyA., L.Levine, and Y.Peres, 2010a, Growth rates and explosions in sandpiles, J. Stat. Phys. 138(1), 143–159, arXiv:0901.3805v2. → p 101.
FeyA., R.Meester, and F.Redig, 2009, Stabilizability and percolation in the infinite volume sandpile model, Ann. Probab. 37(2), 654–675, arXiv:0710.0939v2. → p 101.
FeynmanR. P., R. B.Leighton, and M.Sands, 1964, The Feynman Lectures on Physics, volume 2 (Addison-Wesley, Reading, MA, USA). → p 62.
FieldS., J.Witt, F.Nori, and X.Ling, 1995, Superconducting vortex avalanches, Phys. Rev. Lett. 74(7), 1206–1209. → pp 59, 60.
FisherD. S., 1998, Collective transport in random media: from superconductors to earthquakes, Phys. Rep. 301(1–3), 113 – 150. → pp 58, 62, 299.
FisherM. E., 1984, Walks, walls, wetting, and melting, J. Stat. Phys. 34(5/6), 667–729. → pp 243, 249, 286, 291, 318.
FisherM. E., 1986, Interface wandering in adsorbed and bulk phases, pure and impure, J. Chem. Soc., Faraday Trans.2 82, 1596–1603 (Faraday Symposium 20). → pp 301, 314.
FisherM. E., and M. F.Sykes, 1959, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114(1), 45–58. → p 23.
FlyvbjergH., and H. G.Petersen, 1989, Error estimates on averages of correlated data, J. Chem. Phys. 91(1), 461–466. → p 217.
FlyvbjergH., K.Sneppen, and P.Bak, 1993, Mean field theory of a simple model of evolution, Phys. Rev. Lett. 71(24), 4087–4090. → pp 152, 251.
ForsterD., D. R.Nelson, and M. J.Stephen, 1977, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16(2), 732–749. → pp 267, 324, 325.
FraysseN., A.Sornette, and D.Sornette, 1993, Critical phase transitions made selforganized: proposed experiments, J. Phys. I (France) 3, 1377–1386. → p 330.
FreckletonR. P., and W. J.Sutherland, 2001, Hospital waiting-lists (communication arising): do power laws imply self-regulation?, Nature 413(6854), 382–382. → p 76.
FretteV., 1993, Sandpile models with dynamically varying critical slopes, Phys. Rev. Lett. 70(18), 2762–2765. → pp 58, 87, 184, 185, 190, 205, 206, 299, 301, 302, 318, 327.
FretteV., 2009, personal communication. → p 185.
FretteV., J.Feder, T.Jøssang, and P.Meakin, 1993, ‘Stick-slip’ motion during slow fluid migration in porous media, personal comunication from Vidar Frette, March 2009 (unpublished). → p 185.
FretteV., K.Christensen, A.Malthe-Sørenssen, J.Feder, T.Jøssang, and P.Meakin, 1996, Avalanche dynamics in a pile of rice, Nature 379, 49–52. → pp 55, 57, 184–186, 190, 191, 192, 193, 195, 203, 301.
FriggR., 2003, Self-organised criticality – what it is and what it isn't, Stud. Hist. Philos. Sci. 34, 613–632. → p 6.
FrischU., 1995, Turbulence (Cambridge University Press, Cambridge, UK). → pp 112, 320.
GabaixX., P.Gopikrishnan, V.Plerou, and H. E.Stanley, 2003, A theory of power-law distributions in financial market fluctuations, Nature 423(6937), 267–270. → p 75.
GabrielliA., M.Marsili, R.Cafiero, and L.Pietronero, 1996, Comment on the run time statistics in models of growth in disordered media, J. Stat. Phys. 84(3/4), 889–893, erratum of Marsili (1994b). → pp 150, 152, 434.
GabrielliA., R.Cafiero, M.Marsili, and L.Pietronero, 1997, Theory of self-organized criticality for problems with extremal dynamics, Europhys. Lett. 38(7), 491–496, arXiv: cond-mat/9702176. → p 345.
GalambosJ., 1978, The Asymptotic Theory of Extreme Order Statistics (John Wiley & Sons, New York, NY, UK). → p 344.
GalassiM., J.Davies, J.Theiler, B.Gough, G.Jungman, P.Alken, M.Booth, and F.Rossi, 2009, GNU Scientific Library Reference Manual (Network Theory Ltd.), 3rd (v1.12) edition, http://www.network-theory.co.uk/gsl/manual/, accessed 18 August 2009. → p 371.
García-PelayoR., 1994a, Dimension of branching processes and self-organized criticality, Phys. Rev. E 49(6), 4903–4906, erratum (García-Pelayo, 1994b). → p 131.
García-PelayoR., 1994b, Erratum: dimension of branching processes and self-organized criticality, Phys. Rev. E 50(6), 5146. → p 420.
GarciaG. J. M., and R.Dickman, 2004, On the thresholds, probability densities, and critical exponents of Bak-Sneppen-like model, Physica A 342(1–2), 164–170. → p 151.
GarcimartínA., A.Guarino, L.Bellon, and S.Ciliberto, 1997, Statistical properties of fracture precursors, Phys. Rev. Lett. 79(17), 3202–3205. → p 64.
GardinerC. W., 1997, Handbook of Stochastic Methods (Springer-Verlag, Berlin, Germany), 2nd edition. → p 15.
GarridoP. L., J. L.Lebowitz, C.Maes, and H.Spohn, 1990, Long-range correlations for conservative dynamics, Phys. Rev. A 42(4), 1954–1968. → pp 266, 293, 298, 321, 326.
GattassR., and R.Desimone, 1996, Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque, Rev. Bras. Biol. 56(Su 1 Pt 2), 257–279. → p 70.
GauntD. S., M. E.Fisher, M. F.Sykes, and J. W.Essam, 1964, Critical isotherm of a ferromagnet and of a fluid, Phys. Rev. Lett. 13(24), 713–715. → p 23.
GaveauB., and L. S.Schulman, 1991, Mean-field self-organized criticality, J. Phys. A: Math. Gen. 24(9), L475–L480. → pp 250, 251.
GawlinskiE. T., and S.Redner, 1983, Monte-Carlo renormalisation group for continuum percolation with excluded-volume interactions, J. Phys. A: Math. Gen. 16(5), 1063–1071. → p 113.
GentleJ. E., 1998, Random Number Generation and Monte Carlo Methods (Springer-Verlag, Berlin, Germany). → p 371.
GeoffroyO., and J. L.Porteseil, 1991a, On the fractal nature of Barkhausen noise in magnetically soft materials, J. Magn. Magn. Mater. 97(1–3), 205 – 209. → p 62.
GeoffroyO., and J. L.Porteseil, 1991b, Sandpile simulation of Barkhausen noise in soft magnetic materials, J. Magn. Magn. Mater. 97(1–3), 198 – 204. → p 62.
GeoffroyO., and J. L.Porteseil, 1994, Scaling properties of irreversible magnetization and their consequences on the macroscopic behaviour of soft materials, J. Magn. Magn. Mater. 133(1–3), 1 – 5. → p 62.
GhaffariP., and H. J.Jensen, 1996, Comment on dynamical renormalization group approach to self-organized critical phenomena, Europhys. Lett. 35(5), 397–398, comment on Díaz-Guilera (1994). → pp 106, 110.
GhaffariP., S.Lise, and H. J.Jensen, 1997, Nonconservative sandpile models, Phys. Rev. E 56(6), 6702–6709. → pp 88, 109, 334.
GhashghaieS., W.Breymann, J.Peinke, P.Talkner, and Y.Dodge, 1996, Turbulent cascades in foreign exchange markets, Nature 381(6585), 767–770. → p 75.
GiacomettiA., and A.Díaz-Guilera, 1998, Dynamical properties of the Zhang model of self-organized criticality, Phys. Rev. E 58(1), 247–253. → pp 104–106, 109.
GildenD. L., T.Thornton, and M.W.Mallon, 1995, 1/f noise in human cognition, Science 267(5205), 1837–1839. → p 76.
GilletF., 2003, Asymptotic behaviour of watermelons, arXiv:math/0307204v1 (unpublished). → p 249.
GisigerT., 2001, Scale invariance in biology: coincidence or footprint of a universal mechanism?, Biol. Rev. 76, 161–209. → pp 3, 4, 53, 68, 70, 71, 158, 159, 319.
GleiserP. M., 2001, Damage spreading in a rice pile model, Physica A 295(1–2), 311–315. → pp 192, 270.
GleiserP. M., S. A.Cannas, F. A.Tamarit, and B.Zheng, 2001, Long-range effects in granular avalanching, Phys. Rev. E 63(4), 042301 (4 pp). → p 192.
GodrècheC. (editor), 1992, Solids Far From Equilibrium (Cambridge University Press, Cambridge, UK). → p 301.
GoldbergD., 1991, What every computer scientist should know about floating-point arithmetic, ACM Comput. Surv. 23(1), 5–48. → p 379.
GopalA. D., and D. J.Durian, 1995, Nonlinear bubble dynamics in a slowly driven foam, Phys. Rev. Lett. 75(13), 2610–2613. → p 62.
GopikrishnanP., V.Plerou, L. A. N.Amaral, M.Meyer, and H. E.Stanley, 1999, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60(5), 5305–5316. → p 75.
GouldS. J., 2002, The Structure Of Evolutionary Theory (Belknap Press of Harvard University Press, Cambridge, MA, USA). → p 141.
GouldS. J., and N.Eldredge, 1993, Punctuated equilibrium comes of age, Nature 366, 223–227. → pp 68, 141.
GrassbergerP., 1982, On phase transitions in Schlöogels second model, Z. Phys. B 47, 365–374. → pp 155, 177, 293.
GrassbergerP., 1986, Toward a quantitative theory of self-generated complexity, Int. J. Theor. Phys. 25(9), 907–938. → pp 16, 17.
GrassbergerP., 1992, Spreading and backbone dimensions of 2D percolation, J. Phys. A: Math. Gen. 25(21), 5475–5484. → p 117.
GrassbergerP., 1993, On a self-organized forest-fire model, J. Phys. A: Math. Gen. 26(9), 2081–2089. → pp 116, 117, 118–121, 123–125.
GrassbergerP., 1994, Efficient large-scale simulations of a uniformly driven system, Phys. Rev. E 49(3), 2436–2444. → pp 127, 128, 133–136, 140, 141, 358, 361, 362, 365, 376, 384.
GrassbergerP., 1995, The Bak-Sneppen model for punctuated evolution, Phys. Lett. A 200(3–4), 277–282. → pp 143, 151, 154–158, 160, 161.
GrassbergerP., 2002, Critical behaviour of the Drossel-Schwabl forest fire model, New J. Phys. 4(1), 17 (15 pp), arXiv:cond-mat/0202022. → pp 116, 119–122, 124, 125, 282.
GrassbergerP., and H.Kantz, 1991, On a forest-fire model with supposed self-organized criticality, J. Stat. Phys. 63(3–4), 685–700. → pp 113, 114, 116, 391.
GrassbergerP., and S. S.Manna, 1990, Some more sandpiles, J. Phys. France 51, 1077–1098. → pp 91, 92, 99, 101, 104, 156, 163, 233, 243, 295, 301, 320.
GrassbergerP., and Y.-C.Zhang, 1996, ‘Self-organized’ formulation of standard percolation phenomena, Physica A 224(1–2), 169–179. → pp 294, 296, 321, 330.
GravesJ. P., R. O.Dendy, K. I.Hopcraft, and E.Jakeman, 2002, The role of clustering effects in interpreting nondiffusive transport measurements in tokamaks, Phys. Plasmas 9(5), 1595–1605. → pp 72, 193.
GribovV. N., 1967, Reggeon diagram technique, Zh. Eksp. Teor. Fiz. 53, 654–672 (Sov. Phys. JETP 26, 414–422 (1968)). → pp 142, 264.
GrinsteinG., 1991, Generic scale invariance in classical nonequilibrium systems (invited), J. Appl. Phys. 69(8), 5441–5446, Proceedings of the 35th Annual Conference on Magnetism and Magnetic Materials, San Diego, CA, USA October 29. Nov 1, 1990. → pp 266, 293, 298, 325.
GrinsteinG., and D.-H.Lee, 1991, Generic scale invariance and roughening in noisy model sandpiles and other driven interfaces, Phys. Rev. Lett. 66(2), 177–180. → p 305.
GrinsteinG., T.Hwa, and H. J.Jensen, 1992, 1/fα noise in dissipative transport, Phys. Rev. A 45(2), R559–R562. → p 323.
GrumbacherS. K., K. M.McEwen, D. A.Halverson, D. T.Jacobs, and J.Lindner, 1993, Self-organized criticality: an experiment with sandpiles, Am. J. Phys. 61(4), 329–335. → p 56.
GuarinoA., A.Garcimartín, and S.Ciliberto, 1998, An experimental test of the critical behaviour of fracture precursors, Eur. Phys. J. B 6(1), 13–24. → p 64.
GucluH., G.Korniss, and Z.Toroczkai, 2007, Extreme fluctuations in noisy task-completion landscapes on scale-free networks, Chaos 17, 026104 (13 pp), arXiv: cond-mat/0701301v1. → p 149.
GumbelE. J., 1958, Statistics of Extremes (Columbia University Press, New York, NY, USA). → pp 132, 149, 344.
GutenbergB., and C. F.Richter, 1954, Seismicity of the Earth and Associated Phenomena (Princeton University Press, Princeton, NJ, USA), 2nd edition. → p 66.
HalleyJ. M., 1996, Ecology, evolution and 1/f -noise, Trends Ecol. Evol. 11(1), 33 – 37. → pp 69, 74.
Halpin-HealyT., and Y.-C.Zhang, 1995, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rep. 254(4–6), 215–414. → p 301.
HansenA., and S.Roux, 1987, Application of ‘logical transport’ to determine the directed and isotropic percolation thresholds, J. Phys. A: Math. Gen. 20(13), L873–L878. → pp 294, 296, 321.
HardnerH. T., M. B.Weissman, M. B.Salamon, and S. S. P.Parkin, 1993, Fluctuation-dissipation relation for giant magnetoresistive 1/f noise, Phys. Rev. B 48(21), 16156–16159. → p 63.
HarrisT. E., 1963, The Theory of Branching Processes (Springer-Verlag, Berlin, Germany). → pp 154, 251, 257, 258, 261.
HarrisT. E., 1974, Contact interactions on a lattice, Ann. Prob. 2(6), 969–988. → p 341.
HastingsA., C. L.Holm, S.Ellner, P.Turchin, and H. C. J.Godfray, 1993, Chaos in ecology: is mother nature a strange attractor?, Annu. Rev. Ecol. Syst. 24, 1–33. → p 319.
HastyJ., and K.Wiesenfeld, 1997, Renormalization of one-dimensional avalanche models, J. Stat. Phys. 86(5/6), 1179–1201. → pp 182, 268.
HastyJ., and K.Wiesenfeld, 1998a, Renormalization group for directed sandpile models, Phys. Rev. Lett. 81(8), 1722–1725. → pp 268, 286.
HastyJ., and K.Wiesenfeld, 1998b, Renormalization of self-organized critical models, Ann. NY Acad. Sci. 848, 9–17. → p 182.
HaussmannR., 1999, Liquid 4He near the superfluid transition in the presence of a heat current and gravity, Phys. Rev. B 60(17), 12349–12372. → p 61.
HeadD. A., and G. J.Rodgers, 1997, Crossover to self-organized criticality in an inertial sandpile model, Phys. Rev. E 55(3), 2573–2579. → pp 192, 203.
HeadD. A., and G. J.Rodgers, 1998, The anisotropic Bak-Sneppen model, J. Phys. A: Math. Gen. 31(17), 3977–3988. → p 157.
HeadD. A., and G. J.Rodgers, 1999, Stretched exponentials and power laws in granular avalanching, J. Phys. A: Math. Gen. 32(8), 1387–1393. → pp 192, 193.
HeidenC., and G. I.Rochlin, 1968, Flux jump size distribution in low-k type-II superconductors, Phys. Rev. Lett. 21(10), 691–694. → p 59.
HeldG. A., D. H.Solina, H.Solina, D. T.Keane, W. J.Haag, P. M.Horn, and G.Grinstein, 1990, Experimental study of critical-mass fluctuations in an evolving sandpile, Phys. Rev. Lett. 65(9), 1120–1123. → pp 54–56, 102, 192.
HelmstetterA., Y. Y.Kagan, and D. D.Jackson, 2006, Comparison of short-term and time-independent earthquake forecast models for southern California, Bull. Seismol. Soc. Am. 96(1), 90–106. → p 67.
HenkelM., H.Hinrichsen, and S.Lübeck, 2008, Non-Equilibrium Phase Transitions (Springer-Verlag, Berlin, Germany). → pp 20, 300, 325, 330.
HenleyC. L., 1993, Statics of a ‘self-organized’ percolation model, Phys. Rev. Lett. 71(17), 2741–2744. → pp 117, 120, 123.
HergartenS., and H. J.Neugebauer, 2002, Foreshocks and aftershocks in the Olami-Feder-Christensen model, Phys. Rev. Lett. 88(23), 238501 (4 pp). → p 67.
HerrmannH. J., and S.Luding, 1998, Modeling granular media on the computer, Continuum Mech. Thermodyn. 10, 189–231. → p 56.
HerzA. V. M., and J. J.Hopfield, 1995, Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements, Phys. Rev. Lett. 75(6), 1222–1225. → p 70.
HethcoteH.W., 2000, The mathematics of infectious diseases, SIAM Rev. 42(4), 599–653. → p 115.
HinrichsenH., 2000, Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys. 49, 815–958, arXiv:cond-mat/0001070v2. → pp 155, 157, 176, 202, 290, 293, 302, 306, 330, 333, 336.
HohenbergP. C., and B. I.Halperin, 1977, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435–479. → pp 19, 177, 267, 282, 300, 316, 318, 323, 352.
HoneckerA., and I.Peschel, 1997, Length scales and power laws in the two-dimensional forest-fire model, Physica A 239(4), 509–530. → pp 116, 119, 120, 123.
HoogeF. N., and P. A.Bobbert, 1997, On the correlation function of 1/f noise, Physica B 239(3–4), 223 – 230. → p 16.
HoogeF. N., T. G. M.Kleinpenning, and L. K. J.Vandamme, 1981, Experimental studies on 1/f noise, Rep. Progr. Phys. 44(5), 479–532. → p 4.
HopcraftK. I., E.Jakeman, and R. M. J.Tanner, 1999, Lévy random walks with fluctuating step number and multiscale behavior, Phys. Rev. E 60(5), 5327–5343. → p 195.
HopcraftK. I., E.Jakeman, and R. M. J.Tanner, 2001a, Characterization of structural reorganization in rice piles, Phys. Rev. E 64(1), 016116 (10 pp). → p 195.
HopcraftK. I., R. M. J.Tanner, E.Jakeman, and J. P.Graves, 2001b, Fractional non-Brownian motion and trapping-time distributions of grains in rice piles, Phys. Rev. E 64(2), 026121 (6 pp). → p 195.
HopfieldJ. J., 1994, Neurons, dynamics and computation, Phys. Today 47(2), 40–46, special issue, Physics and Biology. → pp 69, 70.
HorganJ., 1995, From complexity to perplexity, Sci. Am. 272(6), 74–79. → p 6.
HoshenJ., 1997, Percolation and cluster structure parameters: the radius of gyration, J. Phys. A: Math. Gen. 30(24), 8459–8469. → p 124.
HoshenJ., and R.Kopelman, 1976, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14(8), 3438–3445. → p 124.
HoshenJ., M. W.Berry, and K. S.Minser, 1976, Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm, Phys. Rev. E 56(2), 1455–1460. → p 124.
HouleP. A., and J. P.Sethna, 1996, Acoustic emission from crumpling paper, Phys. Rev. E 54(1), 278–283. → p 65.
HubermanB. A., and L. A.Adamic, 1999, Internet: growth dynamics of the World Wide Web, Nature 401(6749), 131. → p 76.
HubermanB. A., P. L. T.Pirolli, J. E.Pitkow, and R. M.Lukose, 1998, Strong regularities in World Wide Web surfing, Science 280(5360), 95–97. → p 76.
HuC.-K., and C.-Y.Lin, 2003, Universality in critical exponents for toppling waves of the BTW sandpile model on two-dimensional lattices, Physica A 318(1–2), 92–100. → pp 23, 99.
HughesD., and M.Paczuski, 2002, Large scale structures, symmetry, and universality in sandpiles, Phys. Rev. Lett. 88(5), 054302 (4 pp). → pp 22, 23, 107, 206, 269, 283, 284, 286, 288, 292.
HughesD., M.Paczuski, R. O.Dendy, P.Helander, and K. G.McClements, 2003, Solar flares as cascades of reconnecting magnetic loops, Phys. Rev. Lett. 90(13), 131101 (4 pp), arXiv:cond-mat/0210201. → p 72.
HuynhH. N., L. Y.Chew, and G.Pruessner, 2010, The Abelian Manna model on two fractal lattices, arXiv:1006.5807 (unpublished). → p 24.
HwaT., and M.Kardar, 1989b, Fractals and self-organized criticality in dissipative dynamics, Physica D 38(1–3), 198–202, identical to Hwa and Kardar (1989a); Proceedings of a Conference Held in Honour of Benoit B. Mandelbrot's 65th Birthday, Les Mas d'Artigny (Vence), France, October 1 – 4, 1989. → p 425.
HwaT., and M.Kardar, 1992, Avalanches, hydrodynamics, and discharge events in models of sandpiles, Phys. Rev. A 45(10), 7002–7023. → pp 193, 194, 322, 343.
ItoK., 1995, Punctuated-equilibrium model of biological evolution is also a self-organized-criticality model of earthquakes, Phys. Rev. E 52(3), 3232–3233. → p 68.
ItoK., and M.Matsuzaki, 1990, Earthquakes as self-organized critical phenomena, J. Geophys. Res. 95(B5), 6853–6860. → p 66.
IvashkevichE. V., 1994, Boundary height correlations in the two-dimensional Abelian sandpile, J. Phys. A: Math. Gen. 27(11), 3643–3653. → p 99.
IvashkevichE. V., 1996, Critical behavior of the sandpile model as a self-organized branching process, Phys. Rev. Lett. 76(18), 3368–3371. → pp 257, 268.
IvashkevichE. V., A. M.Povolotsky, A.Vespignani, and S.Zapperi, 1999, Dynamical real space renormalization group applied to sandpile models, Phys. Rev. E 60(2), 1239–1251. → p 268.
IvashkevichE. V., D. V.Ktitarev, and V. B.Priezzhev, 1994a, Critical exponents for boundary avalanches in a two-dimensional Abelian sandpile, J. Phys. A: Math. Gen. 27(16), L585–L590. → pp 100, 178, 248.
IvashkevichE. V., D. V.Ktitarev, and V. B.Priezzhev, 1994b, Waves of topplings in an Abelian sandpile, Physica A 209(3–4), 347–360. → pp 99, 100, 170, 292.
JánosiI. M., 1990, Effect of anisotropy on the self-organized critical state, Phys. Rev. A 42(2), 769–774. → pp 105, 106, 108.
JánosiI. M., and J.Kertész, 1993, Self-organized criticality with and without conservation, Physica A 200(1–4), 179–188. → pp 128, 129, 134, 135, 138, 140, 236.
JánosiI. M., and V. K.Horváth, 1989, Dynamics of water droplets on a window pane, Phys. Rev. A 40(9), 5232–5237. → pp 57, 102.
JaegerH. M., and S. R.Nagel, 1992, Physics of the granular state, Science 255(5051), 1523–1531. → p 56.
JaegerH. M., C.-h.Liu, and S. R.Nagel, 1989, Relaxation at the angle of repose, Phys. Rev. Lett. 62(1), 40–43. → pp 52, 53, 54, 55, 57, 102.
JaegerH. M., S. R.Nagel, and R. P.Behringer, 1996, Granular solids, liquids, and gases, Rev. Mod. Phys. 68(4), 1259–1273. → pp 53, 197.
JanowskyS. A., and C. A.Laberge, 1993, Exact solutions for a mean-field Abelian sandpile, J. Phys. A: Math. Gen. 26(19), L973–L980. → pp 100, 251.
JanssenH. K., 1981, On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state, Z. Phys. B 42, 151–154. → pp 155, 177, 264, 293.
JanssenH. K., and B.Schmittmann, 1986, Field theory of long time behaviour in driven diffusive systems, Z. Phys. B 63(4), 517–520. → p 266.
JanssenH.-K., 2005, Survival and percolation probabilities in the field theory of growth models, J. Phys.: Condens. Matter 17(20), S1973–S1993. → p 179.
JengM., 2005a, Conformal field theory correlations in the Abelian sandpile model, Phys. Rev. E 71(1), 016140 (12 pp). → p 99.
JengM., 2005b, Four height variables, boundary correlations, and dissipative defects in the Abelian sandpile model, Phys. Rev. E 71(3), 036153 (17 pp). → p 99.
JengM., G.Piroux, and P.Ruelle, 2006, Height variables in the Abelian sandpile model: scaling fields and correlations, J. Stat. Mech. 2006(10), P10015-1–63, arXiv: cond-mat/0609284. → pp 99, 100.
JensenH. J., K.Christensen, and H. C.Fogedby, 1989, 1/f noise, distribution of lifetimes, and a pile of sand, Phys. Rev. B 40(10), 7425–7427. → pp 12, 15, 16, 42, 54, 55, 62, 102.
JensenI., 1992, Critical behavior of the three-dimensional contact process, Phys. Rev. A 45(2), R563–R566. → p 294.
JensenI., 1999, Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice, J. Phys. A: Math. Gen. 32(28), 5233–5249. → p 294.
JettestuenE., and A.Malthe-Sørenssen, 2005, Scaling properties of a one-dimensional sandpile model with grain dissipation, Phys. Rev. E 72(6), 062302 (4 pp). → pp 184, 207, 289, 291, 327, 334.
JiH., and M. O.Robbins, 1992, Percolative, self-affine, and faceted domain growth in random three-dimensional magnets, Phys. Rev. B 46(22), 14519–14527. → p 63.
JinghuaF., M.Ta-chung, R.Rittel, and K.Tabelow, 2001, Criticality in quark-gluon systems far beyond thermal and chemical equilibrium, Phys. Rev. Lett. 86(10), 1961–1964. → p 72.
JoH.-H., and H.-C.Jeong, 2010, Comment on ‘Driving Sandpiles to Criticality and Beyond’, Phys. Rev. Lett. 105(1), 019601 (1 p), comment on (Fey et al., 2010c), no reply. → pp 101, 342.
JoH.-H., and M.Ha, 2008, Relevance of Abelian symmetry and stochasticity in directed sandpiles, Phys. Rev. Lett. 101(21), 218001 (4 pp). → pp 269, 284, 286, 287.
JohansenA., P.Dimon, C.Ellegaard, J. S.Larsen, and H. H.Rugh, 1993, Dynamic phases in a spring-block system, Phys. Rev. E 48(6), 4779–4790. → p 65.
JuanicoD. E., C.Monterola, and C.Saloma, 2007a, Dissipative self-organized branching in a dynamic population, Phys. Rev. E 75(4), 045105(R) (4 pp), see Juanico et al. (2007b). → pp 334, 335, 427.
JuanicoD. E., C.Monterola, and C.Saloma, 2007b, Self-organized critical branching in systems that violate conservation laws, New J. Phys. 9(4), 92 (18 pp), see Juanico et al. (2007a). → pp 265, 328, 334, 335, 427.
KadanoffL. P., 1966, Scaling laws for Ising models near T*c, Physics 2(6), 263–272. → pp 4, 25, 266.
KadanoffL. P., 1986, Fractals: where's the physics?, Phys. Today 39(2), 6–7. → pp 4, 16, 319, 347.
KadanoffL. P., 1990, Scaling and universality in statistical physics, Physica A 163(1), 1 – 14. → pp 25, 51, 320.
KadanoffL. P., 2000, Statistical Physics (World Scientific, Singapore). → p 6.
KadanoffL. P., A. B.Chhabra, A. J.Kolan, M. J.Feigenbaum, and I.Procaccia, 1992, Critical indices for singular diffusion, Phys. Rev. A 45(8), 6095–6098. → p 343.
KadanoffL. P., S. R.Nagel, L.Wu, and S.-m.Zhou, 1989, Scaling and universality in avalanches, Phys. Rev. A 39(12), 6524–6537. → pp 12, 18, 19, 22, 23, 25, 51, 54, 89, 93, 139, 203, 243, 284, 286, 292, 293, 327.
KaganY. Y., 1991a, Likelihood analysis of earthquake catalogues, Geophys. J. Int. 106(1), 135–148. → p 66.
KaganY. Y., 1991b, Seismic moment distribution, Geophys. J. Int. 106(1), 123–134. → p 66.
KaganY. Y., 2003, Accuracy of modern global earthquake catalogs, Phys. Earth Planet. Inter. 135(2–3), 173–209. → p 66.
KakaliosJ., 2005, Resource letter GP-1: granular physics or nonlinear dynamics in a sandbox, Am. J. Phys. 73(1), 8–22. → pp 53, 85, 193.
KanekoK., 1983, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking – in connection with coupled-logistic map –, Progr. Theor. Phys. 69(5), 1427–1442. → p 126.
KanekoK., 1984, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice – towards a prelude of a ‘field theory of chaos’ –, Progr. Theor. Phys. 72(3), 480–486. → p 126.
KanekoK., 1989, Spatiotemporal chaos in one- and two-dimensional coupled map lattices, Physica D 37(1–3), 60–82. → pp 126, 127.
KantzH., and T.Schreiber, 2005, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, UK), 2nd edition. → p 358.
KardarM., 1996, Avalanche theory in rice, Nature 379, 22. → pp 19, 71, 192.
KardarM., 1998, Nonequilibrium dynamics of interfaces and lines, Phys. Rep. 301, 85–112. → p 301.
KardarM., G.Parisi, and Y.-C.Zhang, 1986, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56(9), 889–892. → pp 301, 320.
KarmakarR., S. S.Manna, and A. L.Stella, 2005, Precise toppling balance, quenched disorder, and universality for sandpiles, Phys. Rev. Lett. 94(8), 088002 (4 pp). → pp 23, 95, 100, 104, 165, 178, 181, 204, 287.
KatoriM., and H.Kobayashi, 1996, Mean-field theory of avalanches in self-organized critical states, Physica A 229(3–4), 461–477. → p 251.
KauffmanS. A., and S.Johnsen, 1991, Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol. 149(4), 467–505. → pp 158, 319.
KaulkeM., 1999, Anwendung der Dichtematrix-Renormierung auf nichthermitesche Probleme, Ph.D. Thesis, Fachbereich Physik, Freie Universität Berlin, Germany. → pp 176, 202.
KeittT. H., and P. A.Marquet, 1996, The introduced Hawaiian avifauna reconsidered: evidence for self-organized criticality?, J. Theor. Biol. 182(2), 161 – 167. → p 74.
KellogD., 1975, The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria), Paleobiology 1(4), 359–370. → p 141.
KernighanB. W., and D. M.Ritchie, 1988, The C Programming Language (Prentice Hall, Englewood Cliffs, NJ, USA), 2nd edition. → p 358.
KernighanB. W., and R.Pike, 2002, The Practice of Programming (Addison-Wesley, Boston, MA, USA). → p 359.
KertészJ., and L. B.Kiss, 1990, The noise spectrum in the model of self-organised criticality, J. Phys. A: Math. Gen. 23(9), L433–L440. → pp 16, 102.
KesslerD. A., H.Levine, and Y.Tu, 1991, Interface fluctuations in random media, Phys. Rev. A 43(8), 4551–4554. → p 302.
KhfifiM., and M.Loulidi, 2008, Scaling properties of a rice-pile model: inertia and friction effects, Phys. Rev. E 78(5), 051117 (8 pp). → pp 135, 192.
KinouchiO., S. T. R.Pinho, and C. P. C.Prado, 1998, Random-neighbor Olami-Feder-Christensen slip-stick model, Phys. Rev. E 58(3), 3997–4000. → pp 131, 328.
KirchnerJ. W., 2001, Fractal power spectra plotted upside-down: comment on ‘scaling of power spectrum of extinction events in the fossil record’ by V. P. Dimri and M. R. Prakash, Earth Planet. Sci. Lett. 192(4), 617 – 621, comment on (Dimri and Prakash, 2001b), reply (Dimri and Prakash, 2001a). → pp 69, 416.
KirchnerJ. W., and A.Weil, 1998, No fractals in fossil extinction statistics, Nature 395(6700), 337–338. → pp 52, 69, 158.
KleinW., and J.Rundle, 1993, Comment on ‘self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes’, Phys. Rev. Lett. 71(8), 1288, comment on (Olami et al., 1992), reply (Christensen, 1993). → pp 128, 136, 410, 439.
KnuthD. E., 1997a, The Art of Computer Programming, Volumes 1–3 (Addison-Wesley, Reading, MA, USA). → p 358.
KnuthD. E., 1997b, Fundamental Algorithms, volume 1 of The Art of Computer Programming (Addison-Wesley, Reading, MA, USA), 3rd edition. → p 253.
KnuthD. E., 1997c, Seminumerical Algorithms, volume 2 of The Art of Computer Programming (Addison-Wesley, Reading, MA, USA), 2nd edition. → pp 371, 389.
KobaZ., H. B.Nielsen, and P.Olesen, 1972, Scaling of multiplicity distributions in high energy hadron collisions, Nucl. Phys. B 40, 317–334. → p 221.
KochC., 1997, Computation and the single neuron, Nature 385, 207–210. → p 69.
KockelkorenJ., and H.Chaté, 2003, Absorbing phase transitions with coupling to a static field and a conservation law, arXiv:cond-mat/0306039v1 (unpublished). → pp 179, 300.
KolmogorovA. N., 1991, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Proc. R. Soc. London, Ser. A 434(1890), 9–13, original Dokl. Akad. Nauk SSSR 30, 299–303 (1941), translated by V.Levin. → p 320.
KoplikJ., and H.Levine, 1985, Interface moving through a random background, Phys. Rev. B 32(1), 280–292. → pp 205, 299.
Koscielny-BundeE., A.Bunde, S.Havlin, H. E.Roman, Y.Goldreich, and H.-J.Schellnhuber, 1998, Indication of a universal persistence law governing atmospheric variability, Phys. Rev. Lett. 81(3), 729–732. → p 71.
KrimJ., and J. O.Indekeu, 1993, Roughness exponents: a paradox resolved, Phys. Rev. E 48(2), 1576–1578. → p 312.
KrugJ., 1995, Statistical physics of growth processes, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A.McKane, M.Droz, J.Vannimenus, and D.Wolf (Plenum Press, New York, NY, USA), pp. 1–61, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 301, 320, 321, 396.
KrugJ., 1997, Origins of scale invariance in growth processes, Adv. Phys. 46(2), 139–282. → pp 251, 301, 313, 315.
KrugJ., 2007, Records in a changing world, J. Stat. Mech. 2007(07), P07001 (13 pp). → p 149.
KrugJ., and H.Spohn, 1991, Kinetic roughening of growing surfaces, in Solids far from Equilibrium, edited by C.Godrèche (Cambridge University Press, Cambridge, UK), pp. 479–582. → pp 301, 313, 314.
KrugJ., J. E. S.Socolar, and G.Grinstein, 1992, Surface fluctuations and criticality in a class of one-dimensional sandpile models, Phys. Rev. A 46(8), R4479–R4482. → pp 56, 192, 197, 314.
KtitarevD. V., S.Lübeck, P.Grassberger, and V. B.Priezzhev, 2000, Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model, Phys. Rev. E 61(1), 81–92. → p 100.
KulkarniR. V., E.Almaas, and D.Stroud, 1999, Evolutionary dynamics in the Bak-Sneppen model on small-world networks, arXiv:cond-mat/9905066 (unpublished). → p 159.
Kutnjak-UrbancB., S.Zapperi, S.Milošević, and H. E.Stanley, 1996, Sandpile model on the Sierpinski gasket fractal, Phys. Rev. E 54(1), 272–277. → pp 24, 101.
LässigM., 1998, On growth, disorder, and field theory, J. Phys.: Condens. Matter 10(44), 9905–9950. → p 301.
LópezC., and M. A.Muñoz, 1997, Numerical analysis of a Langevin equation for systems with infinite absorbing states, Phys. Rev. E 56(4), 4864–4867. → p 182.
LópezJ. M., 1999, Scaling approach to calculate critical exponents in anomalous surface roughening, Phys. Rev. Lett. 83(22), 4594–4597. → p 313.
LübeckS., 1997, Large-scale simulations of the Zhang model, Phys. Rev. E 56(2), 1590–1594. → pp 105, 106, 108, 109.
LübeckS., 1998, Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension, Phys. Rev. E 58(3), 2957–2964. → pp 104, 250.
LübeckS., 2000, Moment analysis of the probability distribution of different sandpile models, Phys. Rev. E 61(1), 204–209. → pp 42–44, 92, 101–104, 165, 168, 183, 292, 294, 306, 316.
LübeckS., 2002a, Scaling behavior of the conserved transfer threshold process, Phys. Rev. E 66(4), 046114 (6 pp). → pp 170, 337.
LübeckS., 2002b, Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition around the upper critical dimension, Phys. Rev. E 65(4), 046150 (7 pp). → pp 179, 305, 306, 337.
LübeckS., 2003, Mean-field theory for self-organized critical sandpile models, personal communication (unpublished). → pp 251, 333.
LübeckS., 2004, Universal scaling behavior of non-equilibrium phase transitions, Int. J. Mod. Phys. B 18(31/32), 3977–4118. → pp x, 20, 44, 155, 168, 179, 261, 294, 305, 306, 316, 330, 339, 340.
LübeckS., and H.-K.Janssen, 2005, Finite-size scaling of directed percolation above the upper critical dimension, Phys. Rev. E 72(1), 016119 (4 pp). → p 39.
LübeckS., and K. D.Usadel, 1993, SOC in a class of sandpile models with stochastic dynamics, Fractals 1(4), 1030–1036. → pp 135, 197, 284, 314.
LübeckS., and K. D.Usadel, 1997a, Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension, Phys. Rev. E 56(5), 5138–5143. → pp 92, 101, 104.
LübeckS., and K. D.Usadel, 1997b, Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model, Phys. Rev. E 55(4), 4095–4099. → pp 92, 102, 103.
LübeckS., and P. C.Heger, 2003a, Universal finite-size scaling behavior and universal dynamical scaling behavior of absorbing phase transitions with a conserved field, Phys. Rev. E 68(5), 056102 (11 pp). → pp 44, 168–170, 178, 179, 183, 283, 294, 305–307, 316, 336–338, 340.
LübeckS., and P. C.Heger, 2003b, Universal scaling behavior at the upper critical dimension of nonequilibrium continuous phase transitions, Phys. Rev. Lett. 90(23), 230601 (4 pp). → pp x, 164, 167, 169, 179, 183, 337, 339, 340.
LübeckS., B.Tadić, and K. D.Usadel, 1996, Nonequilibrium phase transition and self-organized criticality in a sandpile model with stochastic dynamics, Phys. Rev. E 53(3), 2182–2189. → p 135.
LübeckS., N.Rajewsky, and D. E.Wolf, 2000, A deterministic sandpile automaton revisited, Eur. Phys. J. B 13(4), 715–721, 10.1007/s100510050090. → pp 97, 134.
LőrinczK. A., and R. J.Wijngaarden, 2007, Edge effect on the power law distribution of granular avalanches, Phys. Rev. E 76(4), 040301(R) (4 pp). → pp 58, 192.
LőrinczK. A., and R. J.Wijngaarden, 2008, Influence of the driving rate in a two-dimensional rice pile model, Phys. Rev. E 77(6), 066110 (4 pp). → pp 189, 194, 322.
LaherrèreJ., and D.Sornette, 1998, Stretched exponential distributions in nature and economy: ‘fat tails’ with characteristic scales, Eur. Phys. J. B 2(4), 525–539. → p 57.
LandauD. P., and K.Binder, 2005, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, UK), 2nd edition. → pp 39, 220, 227, 358.
LangtonC. G., 1990, Computation at the edge of chaos: phase transitions and emergent computation, Physica D 42(1–3), 12 – 37. → pp 17, 319, 345.
LauritsenK. B., S.Zapperi, and H. E.Stanley, 1996, Self-organized branching processes: avalanche models with dissipation, Phys. Rev. E 54(3), 2483–2488. → pp 265, 328, 334, 335.
Le BellacM., 1991, Quantum and Statistical Field Theory (Phenomenes critiques aux champs de jauge) (Oxford University Press, New York, NY, USA), translated by G.Barton. → pp 266, 319, 325.
Le DoussalP., K. J.Wiese, and P.Chauve, 2002, Two-loop functional renormalization group theory of the depinning transition, Phys. Rev. B 66(17), 174201 (34 pp), arXiv: cond-mat/0205108. → pp 179, 205, 267, 315.
LeadbetterM. R., G.Lindgren, and H.Rootzén, 1983, Extremes and Related Properties of Random Sequences and Processes (Springer-Verlag, New York, NY, USA). → p 344.
LeeB. P., and J.Cardy, 1995, Renormalization group study of the A + B ∅ diffusion-limited reaction, J. Stat. Phys. 80(5/6), 971–1007. → p 266.
LeschhornH., 1993, Interface depinning in a disordered medium – numerical results, Physica A 195(3–4), 324–335, arXiv:cond-mat/9302039. → pp 207, 315.
LeschhornH., 1994, Grenzflächen in ungeordneten Medien, Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany. → pp 182, 205, 315.
LeschhornH., and L.-H.Tang, 1994, Avalanches and correlations in driven interface depinning, Phys. Rev. E 49(2), 1238–1245. → pp 182, 295.
LeschhornH., T.Nattermann, S.Stepanow, and L.-H.Tang, 1997, Driven interface depinning in a disordered medium, Ann. Phys. 6, 1–34, arXiv:cond-mat/9603114. → pp 182, 205, 267, 299, 315, 316, 329, 438.
LevinaA., J. M.Herrmann, and T.Geisel, 2006, Dynamical synapses give rise to a power-law distribution of neuronal avalanches, in Advances in Neural Information Processing Systems 18, edited by Y.Weiss, B.Schölkopf, and J.Platt (MIT Press, Cambridge, MA, USA), pp. 771–778. → p 71.
LevinaA., J. M.Herrmann, and T.Geisel, 2007, Dynamical synapses causing self-organized criticality in neural networks, Nat. Phys. 3(12), 857–860. → p 71.
LiggettT. M., 2000, Interacting Particle Systems, volume 276 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, Berlin, Germany). → pp 142, 264, 341.
LiggettT. M., 2005, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer-Verlag, Berlin, Germany). → p 389.
LinC.-Y., A.-C.Cheng, and T.-M.Liaw, 2007, Numerical renormalization-group approach to a sandpile, Phys. Rev. E 76(4), 041114 (7 pp). → pp 268, 292.
LinC.-Y., and C.-K.Hu, 2002, Renormalization-group approach to an Abelian sandpile model on planar lattices, Phys.Rev. E 66(2), 021307 (12 pp). → pp 92, 101, 267, 268, 455.
LinC.-Y., C.-F.Chen, C.-N.Chen, C.-S.Yang, and I.-M.Jiang, 2006, Effects of bulk dissipation on the critical exponents of a sandpile, Phys. Rev. E 74(3), 031304 (11 pp). → pp 88, 94, 169, 306, 334.
LindmanM., K.Jónsdóttir, R.Roberts, B.Lund, and R.Bödvarsso, 2005, Earthquakes descaled: on waiting time distributions and scaling laws, Phys. Rev. Lett. 94(10), 108501 (4 pp), comment (Corral and Christensen, 2006). → pp 68, 411.
LindmanM., K.Jónsdóttir, R.Roberts, B.Lund, and R.Bödvarsso, 2006, Lindman et al. Reply:, Phys. Rev. Lett. 96(10), 109802 (1 p), reply to comment (Corral and Christensen, 2006). → pp 68, 411.
LingX. S., D.Shi, and J. L.Budnick, 1991, Self-organized critical state in High-Tc superconductors, Physica C 185–189(Part 4), 2181 – 2182. → p 59.
Linkenkaer-HansenK., V. V.Nikouline, and R. J.Ilmoniemi, 2000, Critical dynamics in the human brain, NeuroImage 11(5, Supplement 1), S760. → p 70.
Linkenkaer-HansenK., V. V.Nikouline, J. M.Palva, and R. J.Ilmoniemi, 2001, Long-range temporal correlations and scaling behavior in human brain oscillations, J. Neurosci. 21(4), 1370–1377. → pp 52, 70.
LiseS., 2002, Self-organization to criticality in a system without conservation law, J. Phys. A: Math. Gen. 35(22), 4641–4649, arXiv:cond-mat/0204490. → pp 134, 135, 137, 172, 238.
LiseS., and H. J.Jensen, 1996, Transitions in nonconserving models of self-organized criticality, Phys. Rev. Lett. 76(13), 2326–2329. → pp 130, 131, 132, 328.
LiseS., and M.Paczuski, 2001a, Scaling in a nonconservative earthquake model of self-organized criticality, Phys. Rev. E 64(4), 046111 (5 pp). → pp 128, 134, 137, 141, 169.
LiseS., and M.Paczuski, 2001b, Self-organized criticality and universality in a non-conservative earthquake model, Phys. Rev. E 63(3), 036111 (5 pp). → pp 128, 136, 141.
LoisonD., C. L.Qin, K. D.Schotte, and X. F.Jin, 2004, Canonical local algorithms for spin systems: heat bath and Hasting's methods, Eur. Phys. J. B 41, 395–412. → p 389.
LoretoV., A.Vespignani, and S.Zapperi, 1996, Renormalization scheme for forest-fire models, J. Phys. A: Math. Gen. 29(21), 2981–3004. → p 121.
LoretoV., L.Pietronero, A.Vespignani, and S.Zapperi, 1995, Renormalization group approach to the critical behavior of the forest-fire model, Phys. Rev. Lett. 75(3), 465–468. → pp 119–121, 268.
LoretoV., L.Pietronero, A.Vespignani, and S.Zapperi, 1997, Loreto et al Reply:, Phys. Rev. Lett. 78(7), 1393, reply to comment (Torcini, Livi, Politi, and Ruffo, 1997). → pp 119, 453.
LowenS. B., and M. C.Teich, 1993, Fractal renewal processes generate 1/f noise, Phys. Rev. E 47(2), 992–1001. → p 15.
LowenS. B., S. S.Cash, M.-m.Poo, and M. C.Teich, 1997, Quantal neurotransmitter secretion rate exhibits fractal behavior, J. Neurosci. 17(15), 5666–5677. → p 70.
LudingS., 1996, Langkorn- oder Kurzkornreis?, Phys. Bl. 52(3), 203. → p 192.
LuE. T., and R. J.Hamilton, 1991, Avalanches and the distribution of solar flares, Astrophys. J. 380(2), L89–L92. → p 72.
LuijtenE., and H. W. J.Blöte, 1995, Monte Carlo method for spin models with long-range interactions, Int. J. Mod. Phys. C 6(3), 359–370. → p 251.
LuxT., and M.Marchesi, 1999, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature 397(6719), 498–500. → p 75.
MachtaJ., D.Candela, and R. B.Hallock, 1993, Self-organized criticality in 4He with a heat current, Phys. Rev. E 47(6), 4581. → p 344.
MaddoxJ., 1994, Punctuated equilibrium by computer, Nature 371, 197. → pp 68, 158.
MaddoxJ., 1995, The case for great many journals, Nature 375, 11. → p 158.
MaesC., A. VanMoffaert, H.Frederix, and H.Strauven, 1998, Criticality in creep experiments on cellular glass, Phys. Rev. B 57(9), 4987–4990. → p 64.
MahanG. D., 1990, Many-Particle Physics (Plenum Press, New York, NY, USA), 2nd edition. → p 175.
MahieuS., and P.Ruelle, 2001, Scaling fields in the two-dimensional Abelian sandpile model, Phys. Rev. E 64(6), 066130 (19 pp), arXiv:hep-th/0107150. → p 99.
MainI. G., and P. W.Burton, 1986, Long-term earthquake recurrence constrained by tectonic seismic moment release rates, Bull. Seismol. Soc. Am. 76(1), 297–304. → p 66.
MainiP. K., K. J.Paintera, and H. N. P.Chaub, 1997, Spatial pattern formation in chemical and biological systems, J. Chem. Soc., Faraday Trans. 93, 3601–3610. → p 114.
MajumdarS. N., and A.Comtet, 2004, Exact maximal height distribution of fluctuating interfaces, Phys. Rev. Lett. 92(22), 225501 (4 pp). → pp 149, 208, 232, 250.
MajumdarS. N., and A.Comtet, 2005, Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces, J. Stat. Phys. 119(3/4), 777–826. → pp 208, 232, 250.
MajumdarS. N., and D.Dhar, 1991, Height correlations in the Abelian sandpile model, J. Phys. A: Math. Gen. 24(7), L357–L362. → pp 98, 99, 246.
MajumdarS. N., and D.Dhar, 1992, Equivalence between the Abelian sandpile model and the q → 0 limit of the Potts model, Physica A 185(1–4), 129–145. → pp 95, 99, 100.
MalamudB. D., G.Morein, and D. L.Turcotte, 1998, Forest fires: an example of self-organized critical behavior, Science 281(5384), 1840–1842. → pp 73, 120, 122, 123.
MalamudB. D., J. D. A.Millington, and G. L. W.Perry, 2004, Characterizing wildfire regimes in the United States, Proc. Natl. Acad. Sci. USA 102(13), 4694–4699. → pp 73, 122.
MalcaiO., D. A.Lidar, O.Biham, and D.Avnir, 1997, Scaling range and cutoffs in empirical fractals, Phys. Rev. E 56(3), 2817–2828. → p 53.
MalcaiO., Y.Shilo, and O.Biham, 2006, Dissipative sandpile models with universal exponents, Phys. Rev. E 73(5), 056125 (5 pp). → pp 169, 246, 306, 328, 334.
Malthe-SørenssenA., 1996, Kinetic grain model for sandpiles, Phys. Rev. E 54(3), 2261–2265. → p 178.
Malthe-SørenssenA., 1999, Tilted sandpiles, interface depinning and earthquake models, Phys. Rev. E 59(4), 4169–4174. → pp 177, 178, 187, 193, 227.
Malthe-SørenssenA., J.Feder, K.Christensen, V.Frette, and T.Jøssang, 1999, Surface fluctuations and correlations in a pile of rice, Phys. Rev. Lett. 83(4), 764–767. → pp 193, 197.
MandelbrotB. B., 1983, The Fractal Geometry of Nature (Freeman, New York, NY, USA). → pp 4, 74.
MannaS. S., 1990, Large-scale simulation of avalanche cluster distribution in sand pile model, J. Stat. Phys. 59(1/2), 509–521. → pp 23, 88, 92, 99, 102, 103, 134, 339, 417.
MannaS. S., 1991a, Critical exponents of the sand pile models in two dimensions, Physica A 179(2), 249–268. → pp 23, 92, 93, 100, 103.
MannaS. S., A. D.Chakrabarti, and R.Cafiero, 1999, Critical states in a dissipative sandpile model, Phys. Rev. E 60(5), R5005–R5008. → p 289.
MannaS. S., L. B.Kiss, and J.Kertész, 1990, Cascades and self-organized criticality, J. Stat. Phys. 61(3/4), 923–932. → pp 88, 129, 225, 327, 334.
MantegnaR. N., and H. E.Stanley, 1995, Scaling behaviour in the dynamics of an economic index, Nature 376(6535), 46–49. → p 75.
MantegnaR. N., and H. E.Stanley, 1997, Stock market dynamics and turbulence: parallel analysis of fluctuation phenomena, Physica A 239(1–3), 255–266. → p 75.
MariD. D., and S.Kotz, 2001, Correlation and Dependence (Imperial College Press, London, UK). → p 212.
MarinariE., G.Parisi, D.Ruelle, and P.Windey, 1983, Random walk in a random environment and 1/f noise, Phys. Rev. Lett. 50(17), 1223–1225. → p 15.
MarkošováM., 2000a, Ricepiles: experiments and models, Prog. Theor. Phys. Suppl. 139, 489–495. → pp 189, 192, 284, 296.
MarkošováM., 2000b, Universality classes for the ricepile model with absorbing properties, Phys. Rev. E 61(1), 253–260. → pp 23, 189, 192, 284, 295, 296.
MarkošováM., and P.Markoš, 1992, Analytical calculation of the attractor periods of deterministic sandpiles, Phys. Rev. A 46(6), 3531–3534. → p 96.
MarroJ., and R.Dickman, 1999, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, New York, NY, USA). → pp 155, 301, 305, 307, 330, 336, 337.
MarsiliM., 1994a, Renormalization group approach to the self-organization of a simple model of biological evolution, Europhys. Lett. 28(6), 385–390. → pp 143, 152, 156, 161, 268.
MarsiliM., 1994b, Run time statistics in models of growth in disordered media, J. Stat. Phys. 77(3/4), 733–754, erratum (Gabrielli et al., 1996). → pp 149, 150, 152, 419.
MarsiliM., G.Caldarelli, and M.Vendruscolo, 1996, Quenched disorder, memory, and self-organization, Phys. Rev. E 53(1), R13–R16. → pp 149, 157.
MarsiliM., P. De LosRios, and S.Maslov, 1998, Expansion around the mean-field solution of the Bak-Sneppen model, Phys. Rev. Lett. 80(7), 1457–1460. → pp 143, 152, 157.
MartysN., M. O.Robbins, and M.Cieplak, 1991, Scaling relations for interface motion through disordered media: application to two-dimensional fluid invasion, Phys. Rev. B 44(22), 12294–12306. → p 301.
MaS.-K., 1976, Modern Theory of critical Phenomena (Addison-Wesley, Reading, MA, USA). → pp 251, 267.
MaslovS., 1995, Time directed avalanches in invasion models, Phys. Rev. Lett. 74(4), 562–565. → p 145.
MaslovS., 1996, Infinite series of exact equations in the Bak-Sneppen model of biological evolution, Phys. Rev. Lett. 77(6), 1182–1185. → pp 143, 157.
MaslovS., and M.Paczuski, 1994, Scaling theory of depinning in the Sneppen model, Phys. Rev. E 50(2), R643–R646. → p 295.
MaslovS., and Y.-C.Zhang, 1995, Exactly solved model of self-organized criticality, Phys. Rev. Lett. 75(8), 1550–1553. → pp 206, 288.
MasudaN., K.-I.Goh, and B.Kahng, 2005, Extremal dynamics on complex networks: analytic solutions, Phys. Rev. E 72(6), 066106 (6 pp), arXiv:cond–mat/0508623v1. → p 159.
MatsumotoM., 2008, Mersenne Twister Home Page, available from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html, accessed 9 October 2008. → pp 371, 380.
MatsumotoM., and T.Nishimura, 1998, Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator, ACM Trans. Model. Comput. Sim. 8(1), 3–30. → p 380.
MaunukselaJ., M.Myllys, O.-P.Kähkönen, J.Timonen, N.Provatas, M. J.Alava, and T.Ala-Nissila, 1997, Kinetic roughening in slow combustion of paper, Phys. Rev. Lett. 79(8), 1515–1518. → p 301.
MazzoniA., F. D.Broccard, E.Garcia-Perez, P.Bonifazi, M. E.Ruaro, and V.Torre, 2007, On the dynamics of the spontaneous activity in neuronal networks, PLoS ONE 2(5), e439. → p 70.
McCombW. D., 2004, Renormalization Methods (Oxford University Press, New York, NY, USA). → pp 266, 394.
MeakinP., 1998, Fractals, Scaling and Growth far from Equilibrium (Cambridge University Press, Cambridge, UK). → pp 205, 301, 302, 313.
MedinaE., T.Hwa, M.Kardar, and Y.-C.Zhang, 1989, Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth, Phys. Rev. A 39(6), 3053–3075. → pp 267, 320, 324.
MeesterR., and C.Quant, 2005, Connections between ‘self-organised’ and ‘classical’ criticality, Markov Process. Relat. Fields 11(2), 355–370. → pp 101, 330.
MeesterR., and D.Znamenski, 2002, Non-triviality of the discrete Bak-Sneppen evolution model, J. Stat. Phys. 109(5/6), 987–1004, arXiv:cond-mat/0301480. → p 158.
MeesterR., and D.Znamenski, 2003, Limit behavior of the Bak–Sneppen evolution model, Ann. Probab. 31(4), 1986–2002, arXiv:cond-mat/0301479. → pp 151, 157.
MehtaA. P., A. C.Mills, K. A.Dahmen, and J. P.Sethna, 2002, Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise, Phys. Rev. E 65(4), 046139 (6 pp). → p 64.
MehtaA., 1992, Real sandpiles: dilatancy, hysteresis and cooperative dynamics, Physica A 186(1–2), 121 – 153. → pp 56, 85.
MehtaA., 2007, Granular Physics (Cambridge University Press, Cambridge, UK). → p 56.
MehtaA., and G. C.Barker, 1994, Disorder, memory and avalanches in sandpiles, Europhys. Lett. 27(7), 501–506. → pp 17, 56, 134, 207.
MehtaA., and G.Barker, 1991, The self-organising sand pile, New Sci. 130(1773), 40–43. → p 56.
MehtaA., J. M.Luck, and R. J.Needs, 1996, Dynamics of sandpiles: physical mechanisms, coupled stochastic equations, and alternative universality classes, Phys. Rev. E 53(1), 92. → p 299.
MeiselL. V., and P. J.Cote, 1992, Power laws, flicker noise, and the Barkhausen effect, Phys. Rev. B 46(17), 10822–10828. → p 63.
MelbyP., J.Kaidel, N.Weber, and A.Hübler, 2000, Adaptation to the edge of chaos in the self-adjusting logistic map, Phys. Rev. Lett. 84(26), 5991–5993. → p 332.
MendesJ. F. F., 2000, Critical behavior of models with infinitely many absorbing states, Braz. J. Phys. 30(1). → p 177.
MendesJ. F. F., R.Dickman, M.Henkel, and M. C.Marques, 1994, Generalized scaling for models with multiple absorbing states, J. Phys. A: Math. Gen. 27(9). → pp 170, 178.
MengT.-c., R.Rittel, and Y.Zhang, 1999, Inelastic diffraction and color-singlet gluon clusters in high-energy hadron-hadron and lepton-hadron collisions, Phys. Rev. Lett. 82(10), 2044–2047. → p 72.
MetropolisN., A. W.Rosenbluth, M. N.Rosenbluth, A. H.Teller, and E.Teller, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087–1092. → p 357.
MiddletonA. A., 1992, Asymptotic uniqueness of the sliding state for charge-density waves, Phys. Rev. Lett. 68(5), 670–673. → pp 205, 302.
MiddletonA. A., and C.Tang, 1995, Self-organized criticality in nonconserved systems, Phys. Rev. Lett. 74(5), 742–745. → pp 133–136, 139, 140, 321, 328.
MikeskaB., 1996, A Renormalization-Group approach to Self-Organized Criticality, Ph.D. Thesis, Universität Hamburg, Hamburg, Germany. → p 268.
MilshteinE., O.Biham, and S.Solomon, 1998, Universality classes in isotropic, Abelian, and non-Abelian sandpile models, Phys. Rev. E 58(1), 303–310. → pp 23, 100, 106, 164, 166, 277, 284, 285.
MineshigeS., M.Takeuchi, and H.Nishimori, 1994b, Is a black hole accretion disk in a self-organized critical state?, Astrophys. J. 435, L125–L128. → p 72.
MineshigeS., N. B.Ouchi, and H.Nishimori, 1994a, On the generation of 1/f Fluctuations in X-rays from black-hole objects, Publ. Astron. Soc. Jpn. 46, 97–105. → p 72.
MiramontesO., and P.Rohani, 1998, Intrinsically generated coloured noise in laboratory insect populations, Proc. R. Soc. London, Ser. B 265(1398), 785–792. → p 74.
MoßnerW. K., B.Drossel, and F.Schwabl, 1992, Computer simulations of the forest-fire model, Physica A 190(3–4), 205–217. → pp 113, 115.
MoeurW. A., P. K.Day, F.-C.Liu, S. T. P.Boyd, M. J.Adriaans, and R. V.Duncan, 1997, Observation of self-organized criticality near the superfluid transition in 4He, Phys. Rev. Lett. 78(12), 2421–2424. → p 62.
MohantyP. K., and D.Dhar, 2007, Critical behavior of sandpile models with sticky grains, Physica A 384(1), 34–38, Proceedings of the International Conference on Statistical Physics, Raichak and Kolkata, India, January 5–9, 2007. → pp 178, 179, 296.
MoloneyN. R., and G.Pruessner, 2003, Asynchronously parallelized percolation on distributed machines, Phys. Rev. E 67(3), 037701 (4 pp), arXiv:cond-mat/0211240. → p 124.
MontakhabA., and J. M.Carlson, 1998, Avalanches, transport, and local equilibrium in self-organized criticality, Phys. Rev. E 58(5), 5608–5619. → pp 333, 343.
MontrollE. W., and M. F.Shlesinger, 1982, On 1/f noise and other distributions with long tails, Proc. Natl. Acad. Sci. USA 79(10), 3380–3383. → p 15.
MorandJ., G.Pruessner, and K.Christensen, 2010, Correlations of avalanche sizes in the Oslo model (unpublished). → p 396.
MorenoY., and A.Vazquez, 2002, The Bak-Sneppen model on scale-free networks, Europhys. Lett. 57(5), 765–771. → p 159.
MorenoY., J. B.Gómez, and A. F.Pacheco, 1999, Modified renormalization strategy for sandpile models, Phys. Rev. E 60(6), 7565–7568. → p 268.
MousseauN., 1996, Synchronization by disorder in coupled systems, Phys. Rev. Lett. 77(5), 968–971. → p 134.
MuñozM. A., 2003, Multiplicative noise in non-equilibrium phase transitions: a tutorial, arXiv:cond-mat/0303650v2 (unpublished). → p 302.
MuñozM. A., R.Dickman, A.Vespignani, and S.Zapperi, 1999, Avalanche and spreading exponents in systems with absorbing states, Phys. Rev. E 59(5), 6175–6179. → pp 177, 305, 306, 336, 340–342.
MurrayJ. D., 2003, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, Berlin, Germany), 3rd edition. → pp 112, 114, 115.
NagelK., and H. J.Herrmann, 1993, Deterministic models of traffic jams, Physica A 199(2), 254–269. → p 76.
NagelS. R., 1992, Instabilities in a sandpile, Rev. Mod. Phys. 64(1), 321–325. → p 56.
NakanishiH., 1990, Cellular-automaton model of earthquakes with deterministic dynamics, Phys. Rev. A 41(12), 7086–7089. → p 126.
NakanishiH., and K.Sneppen, 1997, Universal versus drive-dependent exponents for sandpile models, Phys. Rev. E 55(4), 4012–4016. → pp 21, 23, 44, 100, 165, 168, 170, 175, 177, 178, 180, 183, 184, 186, 187, 198, 227, 245, 248, 294, 306, 316, 339.
NarayanO., 1996, Self-similar Barkhausen noise in magnetic domain wall motion, Phys. Rev. Lett. 77(18), 3855–3857. → p 64.
NarayanO., and A. A.Middleton, 1994, Avalanches and the renormalization group for pinned charge-density waves, Phys. Rev. B 49(1), 244–256. → p 299.
NarayanO., and D. S.Fisher, 1992a, Critical behavior of sliding charge-density waves in 4-epsilon dimensions, Phys. Rev. B 46(18), 11520–11549. → p 299.
NarayanO., and D. S.Fisher, 1992b, Dynamics of sliding charge-density waves in 4-epsilon dimensions, Phys. Rev. Lett. 68(24), 3615–3618. → p 299.
NarayanO., and D. S.Fisher, 1993, Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B 48(10), 7030–7042. → pp 299, 315.
NattermannT., S.Stepanow, L.-H.Tang, and H.Leschhorn, 1992, Dynamics of interface depinning in a disordered medium, J. Phys. II (France) 2, 1483–1488, for details see Leschhorn et al. (1997). → pp 179, 182, 205, 266, 267, 299, 315.
NeelinJ. D., O.Peters, and K.Hales, 2009, The transition to strong convection, J. Atmos. Sci. 66(8), 2367–2384. → p 72.
NemethE., G.Snyder, S.Seebass, and T. R.Hein, 1995, UNIX® System Administration Handbook (Prentice Hall, Upper Saddle River, NJ, USA), 2nd edition. → p 358.
NeroneN., and S.Gabbanelli, 2001, Surface fluctuations and the inertia effect in sandpiles, Gran. Matter 3(1), 117–120. → p 56.
NewmanD. E., B. A.Carreras, P. H.Diamond, and T. S.Hahm, 1996, The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport, Phys. Plasmas 3(5), 1858–1866. → pp 72, 193.
NewmanM. E. J., 1996, Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London, Ser. B 263(1376), 1605–1610, see Newman (1997a,b). → pp 69, 135, 158, 159, 438.
NewmanM. E. J., 1997a, Evidence for self-organized criticality in evolution, Physica D 107(2–4), 293–296, Proceedings of the 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM, USA, May 13–17, 1996, see Newman (1996, 1997b). → pp 69, 159, 438.
NewmanM. E. J., 1997b, A model of mass extinction, J. Theor. Biol. 189, 235–252, see Newman (1996, 1997a). → pp 69, 159, 438.
NewmanM. E. J., and B. W.Roberts, 1995, Mass extinction: evolution and the effects of external influences on unfit species, Proc. R. Soc. London, Ser. B 260(1357), 31–37, arXiv:adap-org/9410004v1. → p 159.
NewmanM. E. J., and G. J.Eble, 1999, Power spectra of extinction in the fossil record, Proc. R. Soc. London, Ser. B 266(1425), 1267–1270. → p 69.
NewmanM. E. J., and G. T.Barkema, 1999, Monte Carlo Methods in Statistical Physics (Oxford University Press, New York, NY, USA). → pp 220, 358, 361, 371.
NewmanM. E. J., and K.Sneppen, 1996, Avalanches, scaling, and coherent noise, Phys. Rev. E 54(6), 6226–6231. → pp 159, 192, 193, 342.
NewmanM. E. J., and R. M.Ziff, 2000, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104–4107. → p 319.
NewmanM. E. J., M.Girvan, and J. D.Farmer, 2002, Optimal design, robustness, and risk aversion, Phys. Rev. Lett. 89(2), 028301 (4 pp), arXiv:cond-mat/0202330. → p 345.
NewmanT. J., A. J.Bray, and M. A.Moore, 1990, Growth of order in vector spin systems and self-organized criticality, Phys. Rev. B 42(7), 4514–4523. → p 343.
NoeverD. A., 1993, Himalayan sandpiles, Phys. Rev. E 47(1), 724–725. → p 57.
NowakE. R., O. W.Taylor, L.Liu, H. M.Jaeger, and T. I.Selinder, 1997, Magnetic flux instabilities in superconducting niobium rings: tuning the avalanche behavior, Phys. Rev. B 55(17), 11702–11705. → p 60.
NowakU., and K. D.Usadel, 1990, Slow relaxation of diluted antiferromagnets, Physica B 165–166(Part 1), 211 – 212, Proceedings of the 19th International Conference on Low Temperature Physics, Brighton, UK, August 16–22, 1990. → p 343.
NowakU., and K. D.Usadel, 1991, Nonexponential relaxation of diluted antiferromagnets, Phys. Rev. B 43(1), 851–853. → p 343.
O'BrienK. P., and M. B.Weissman, 1994, Statistical characterization of Barkhausen noise, Phys. Rev. E 50(5), 3446–3452. → pp 63, 185.
OlamiZ., and K.Christensen, 1992, Temporal correlations, universality, and multifractality in a spring-block model of earthquakes, Phys. Rev. A 46(4), R1720–R1723. → p 67.
OlamiZ., I.Procaccia, and R.Zeitak, 1994, Theory of self-organized interface depinning, Phys. Rev. E 49(2), 1232–1237. → pp 295, 299.
OlamiZ., I.Procaccia, and R.Zeitak, 1995, Interface roughening in systems with quenched disorder, Phys. Rev. E 52(4), 3402–3414. → pp 295, 299.
OlsonC. J., C.Reichhardt, and F.Nori, 1997, Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: effect of the microscopic pinning landscape on the macroscopic properties, Phys. Rev. B 56(10), 6175–6194. → p 61.
OmoriF., 1894, On the aftershocks of earthquakes, J. Coll. Sci., Imp. Univ. Tokyo 7, 111–200. → p 67.
OnukiA., 1987, The He I-He II interface in He4 and He3-He4near the Superfluid transition, Jpn. J. Appl. Phys. 26S3(Supplement 26-3-1), 365–366, proceedings of the 18th International Conference on Low Temperature Physics, Kyoto, Japan, August 20–26, 1987. → p 61.
OnukiA., 1996, Superfluid transition in 4He in gravity and heat flow, J. Low Temp. Phys. 104(3), 133–142. → p 61.
OoiS., T.Shibaushi, and T.Tamegai, 2000, Vortex avalanches in the vortex lattice phase of Bi2Sr2CaCu2O8+y, Physica B 284–288(Part 1), 775 – 776. → p 60.
OpperM., and D.Saad (editors), 2001, Advanced Mean Field Methods, Neural Information Processing Series (MIT Press, Cambridge, MA, USA). → p 394.
OtsukaM., 1971, A simulation of earthquake occurrence, part 1, A mechanical model (in Japanese), Jishin (also Zisin, J. Seismol. Soc. Jpn.) 24, 13–25. → p 125.
OtsukaM., 1972a, A chain-reaction-type source model as a tool to interpret the magnitude-frequency relation of earthquakes, J. Phys. Earth 20, 34–45. → p 125.
OtsukaM., 1972b, A simulation of earthquake occurrence, Phys. Earth Planet. Inter. 6, 311–315. → p 125.
PachecoJ. F., C. H.Scholz, and L. R.Sykes, 1992, Changes in frequency-size relationship from small to large earthquakes, Nature 355(6355), 71–73. → pp 66, 67, 139.
PaczuskiM., 1995, Dynamic scaling: distinguishing self-organized from generically critical systems, Phys. Rev. E 52(3), R2137–R2140. → p 321.
PaczuskiM., and P.Bak, 1993, Theory of the one-dimensional forest-fire model, Phys. Rev. E 48(5), R3214–R3216. → pp 116, 121, 124.
PaczuskiM., and S.Boettcher, 1996, Universality in sandpiles, interface depinning, and earthquake models, Phys. Rev. Lett. 77(1), 111–114, largely identical to proceedings article (Boettcher and Paczuski, 1997b). → pp 125, 126, 162, 177, 178, 180, 182, 183, 184 187, 189, 190, 197, 198, 203, 206, 268, 299, 300, 302, 393, 404.
PaczuskiM., and S.Boettcher, 1997, Avalanches and waves in the Abelian sandpile model, Phys. Rev. E 56(4), R3745–R3748. → p 100.
PaczuskiM., P.Bak, and S.Maslov, 1995, Laws for stationary states in systems with extremal dynamics, Phys. Rev. Lett. 74(21), 4253–4256. → p 149.
PaczuskiM., S.Boettcher, and M.Baiesi, 2005, Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile model: a comparison with the observed statistics of solar flares, Phys. Rev. Lett. 95(18), 181102 (4 pp). → p 72.
PaczuskiM., S.Maslov, and P.Bak, 1994a, Erratum: field theory for a model of self-organized criticality, Europhys. Lett. 28(4), 295–296. → pp 142, 147, 155, 157, 293.
PaczuskiM., S.Maslov, and P.Bak, 1994b, Field theory for a model of self-organized criticality, Europhys. Lett. 27(2), 97–102. → pp 142, 143, 145, 146, 150, 154, 155, 157, 293.
PanG.-J., D.-M.Zhang, H.-Z.Sun, and Y.-P.Yin, 2005b, Universality class in Abelian sandpile models with stochastic toppling rules, Commun. Theor. Phys. 44(3), 483–486. → pp 177, 178, 187.
PanG.-J., D.-M.Zhang, Y.-P.Yin, and M.-H.He, 2006, Avalanche dynamics in quenched random directed sandpile models, Chin. Phys. Lett. 23(10), 2811–2814. → p 287.
PanG.-J., D.-M.Zhang, Z.-H.Li, H.-Z.Sun, and Y.-P.Ying, 2005a, Critical behavior in non-Abelian deterministic directed sandpile, Phys. Lett. A 338(3–5), 163–168. → pp 286, 287.
PapaA. R. R., and L.da Silva, 1997, Earthquakes in the brain, Theor. Biosci. 116, 321–327. → pp 70, 149.
PapadopoulosM. C., M.Hadjitheodossiou, C.Chrysostomou, C.Hardwidge, and B. A.Bell, 2001, Is the National Health Service at the edge of chaos?, J. R. Soc. Med. 94(12), 613–616. → p 75.
PapoyanV. V., and A. M.Povolotsky, 1997, Renormalization group study of sandpile on the triangular lattice, Physica A 246(1–2), 241 – 252. → p 268.
ParisiG., 1998, Statistical Field Theory (Physica B, Reading, MA, USA). → p 343.
ParkK., S.Kang, and I.Kim, 2005, Absorbing phase transition with a conserved field, Phys. Rev. E 71(6), 066129 (5 pp). → p 177.
ParkS.-C., 2010, Absence of the link between self-organized criticality and deterministic fixed energy sandpiles, arXiv:1001.3359 (unpublished). → pp 338, 342.
Pastor-SatorrasR., 1997, Multifractal properties of power-law time sequences: application to rice piles, Phys. Rev. E 56(5), 5284–5294. → p 195.
Pastor-SatorrasR., and A.Vespignani, 2000a, Anomalous scaling in the Zhang model, Eur. Phys. J. B 18(2), 197–200. → pp 104, 106, 107, 110, 178.
Pastor-SatorrasR., and A.Vespignani, 2000b, Corrections to scaling in the forest-fire model, Phys. Rev. E 61(5), 4854–4859. → pp 120, 125.
Pastor-SatorrasR., and A.Vespignani, 2000c, Critical behavior and conservation in directed sandpiles, Phys. Rev. E 62(5), 6195–6205, see Pastor-Satorras and Vespignani (2000e). → pp 286, 328, 334, 441.
Pastor-SatorrasR., and A.Vespignani, 2000d, Field theory of absorbing phase transitions with a nondiffusive conserved field, Phys. Rev. E 62(5), R5875–R5878. → pp 162, 177, 178, 182, 266, 333.
Pastor-SatorrasR., and A.Vespignani, 2001, Reaction-diffusion system with self-organized critical behavior, Eur. Phys. J. B 19(4), 583–587, arXiv:cond-mat/0101358. → pp 44, 168, 178, 294, 306, 316.
PatzlaffH., and S.Trimper, 1994, Analytical approach to the forest-fire model, Phys. Lett. A 189(3), 187–192. → pp 120, 122.
PeixotoT. P., and C. P. C.Prado, 2004, Statistics of epicenters in the Olami-Feder-Christensen model in two and three dimensions, Physica A 342(1–2), 171–177. → pp 138, 141.
PelitiL., 1985, Path integral approach to birth-death processes on a lattice, J. Phys. (Paris) 46, 1469–1483. → p 266.
PengC. K., S. V.Buldyrev, A. L.Goldberger, S.Havlin, F.Sciortino, M.Simons, and H. E.Stanley, 1992, Long-range correlations in nucleotide sequences, Nature 356(6365), 168–170. → p 74.
PengC.-K., J.Mietus, J. M.Hausdorff, S.Havlin, H. E.Stanley, and A. L.Goldberger, 1993, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70(9), 1343–1346. → p 74.
PengC.-K., S.Havlin, H. E.Stanley, and A. L.Goldberger, 1995, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos 5(1), 82–87. → p 74.
PengG., 1992, Self-organized critical state in a directed sandpile automaton on Bethe lattices: equivalence to site percolation, J. Phys. A: Math. Gen. 25(20), 5279–5282. → p 292.
PengG., and H. J.Herrmann, 1993, Boundary-induced anisotropy of the avalanches in the sandpile automaton, Physica A 199(3–4), 476 – 484. → p 324.
PepkeS. L., and J. M.Carlson, 1994, Predictability of self-organizing systems, Phys. Rev. E 50(1), 236–242. → pp 67, 355.
PerkovićO., K.Dahmen, and J. P.Sethna, 1995, Avalanches, Barkhausen noise, and plain old criticality, Phys. Rev. Lett. 75(24), 4528–4531. → pp 63, 64.
PeschelI., X.Wang, M.Kaulke, and K.Hallberg (editors), 1999, Density-Matrix Renormalization, volume 528 of Lecture Notes in Physics (Springer-Verlag, Berlin, Germany). → pp 176, 202.
PeskinC. S., 1975, Mathematical Aspects of Heart Physiology (Courant Insititute of Mathematical Sciences, New York, NY, USA). → p 135.
PetersO., and J. D.Neelin, 2006, Critical phenomena in atmospheric precipitation, Nat. Phys. 2(6), 393–396. → p 71.
PetersO., and K.Christensen, 2002, Rain: relaxations in the sky, Phys. Rev. E 66(3), 036120 (9 pp). → p 71.
PetersO., and M.Girvan, 2009, Universality under conditions of self-tuning, arXiv: 0902.1956 (unpublished). → pp 330, 342.
PetersO., C.Hertlein, and K.Christensen, 2002, A complexity view of rainfall, Phys. Rev. Lett. 88(1), 018701 (4 pp), arXiv:cond-mat/0201468. → p 71.
PetriA., G.Paparo, A.Vespignani, A.Alippi, and M.Costantini, 1994, Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Lett. 73(25), 3423–3426. → p 64.
PfeutyP., and G.Toulouse, 1977, Introduction to the Renormalization Group and to Critical Phenomena (John Wiley & Sons, Chichester, UK). → pp 38, 337.
PietroneroL., A.Erzan, and C.Evertsz, 1988, Theory of fractal growth, Phys. Rev. Lett. 61(7), 861–864. → p 267.
PietroneroL., A.Vespignani, and S.Zapperi, 1994, Renormalization scheme for self-organized criticality in sandpile models, Phys. Rev. Lett. 72(11), 1690–1693. → pp 92, 101, 110, 121, 165, 168, 182, 267, 268, 292.
PietroneroL., and W. R.Schneider, 1991, Fixed scale transformation approach to the nature of relaxation clusters in self-organized criticality, Phys. Rev. Lett. 66(18), 2336–2339. → p 267.
PietroneroL., P.Tartaglia, and Y.-C.Zhang, 1991, Theoretical studies of self-organized criticality, Physica A 173(1–2), 22–44. → pp 108, 126, 133.
PimpinelliA., and J.Villain, 1998, Physics of Crystal Growth (Cambridge University Press, Cambridge, UK). → p 301.
PinhoS. T. R., and R. F. S.Andrade, 2004, Power law sensitivity to initial conditions for abelian directed self-organized critical models, Physica A 344(3–4), 601–607, Proceedings of the International Workshop on Trends and Perspectives in Extensive and Non-extensive Statistical Mechanics, in Honor of the 60th birthday of Constantino Tsallis, Angra dos Reis, Brazil, Nov 19–21, 2003. → p 17.
PinhoS. T. R., C. P. C.Prado, and O.Kinouchi, 1998, Absence of self-organized criticality in a random-neighbor version of the OFC stick-slip model, Physica A 257(1–4), 488–494. → pp 131, 328.
PlanetR., S.Santucci, and J.Ortín, 2009, Avalanches and non-Gaussian fluctuations of the global velocity of imbibition fronts, Phys. Rev. Lett. 102(9), 094502 (4 pp), comment (Pruessner, 2010). → pp 240, 445.
PlanetR., S.Santucci, and J.Ortín, 2010, Planet, Santucci, and Ort in reply:, Phys. Rev. Lett. 105(2), 029402 (1 p), reply to comment (Pruessner, 2010). → pp 240, 445.
PlaO., and F.Nori, 1991, Self-organized critical behavior in pinned flux lattices, Phys. Rev. Lett. 67(7), 919–922. → p 59.
PlaO., N. K.Wilkin, and H. J.Jensen, 1996, Avalanches in the Bean critical state: a characteristic of the random pinning potential, Europhys. Lett. 33(4), 297–302. → pp 60, 61.
PlourdeB., F.Nori, and M.Bretz, 1993, Water droplet avalanches, Phys. Rev. Lett. 71(17), 2749–2752. → p 57.
PolitzerP. A., 2000, Observation of avalanchelike phenomena in a magnetically confined plasma, Phys. Rev. Lett. 84(6), 1192–1195. → p 72.
PortugaliJ., 2000, Self-organization and the City (Springer-Verlag, Berlin, Germany). → p 76.
PradhanP., and D.Dhar, 2006, Probability distribution of residence times of grains in models of rice piles, Phys. Rev. E 73(2), 021303 (12 pp), arXiv:cond-mat/0608144. → pp 187, 197, 209.
PradhanP., and D.Dhar, 2007, Sampling rare fluctuations of height in the Oslo ricepile model, J. Phys. A: Math. Theor. 40(11), 2639–2650, arXiv:cond-mat/0511237. → p 197.
PradhanS., and B. K.Chakrabarti, 2001, Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna, and random-fiber-bundle models of failure, Phys. Rev. E 65(1), 016113 (7 pp). → pp 165, 339.
PradoC. P. C., and Z.Olami, 1992, Inertia and break of self-organized criticality in sandpile cellular-automata models, Phys. Rev. A 45(2), 665–669. → p 56.
PressW. H., 1978, Flicker noises in astronomy and elsewhere, Comments Astrophys. 7(4), 103–119. → p 4.
PressW. H., S. A.Teukolsky, W. T.Vetterling, and B. P.Flannery, 2007, Numerical Recipes (Cambridge University Press, Cambridge, UK), 3rd edition. → pp 220–222, 358, 371, 376, 380, 389.
PriezzhevV. B., 1994, Structure of two-dimensional sandpile. I. Height probabilities, J. Stat. Phys. 74(5/6), 955–979. → pp 99, 100.
PriezzhevV. B., 2000, The upper critical dimension of the Abelian sandpile model, J. Stat. Phys. 98(3/4), 667–684, arXiv:cond-mat/9904054. → p 104.
PriezzhevV. B., D. V.Ktitarev, and E. V.Ivashkevich, 1996b, Formation of avalanches and critical exponents in an Abelian sandpile model, Phys. Rev. Lett. 76(12), 2093–2096. → pp 92, 99, 100, 103.
PriezzhevV. B., E. V.Ivashkevich, A. M.Povolotsky, and C.-K.Hu, 2001, Exact phase diagram for an asymmetric avalanche process, Phys. Rev. Lett. 87(8), 084301 (4 pp). → pp 206, 288.
PrivmanV., and M. E.Fisher, 1984, Universal critical amplitudes in finite-size scaling, Phys. Rev. B 30(1), 322–327. → pp 12, 14, 27, 39.
PrivmanV., P. C.Hohenberg, and A.Aharony, 1991, Universal critical-point amplitude relations, in Phase Transitions and Critical Phenomena, edited by C.Domb and J. L.Lebowitz (Academic Press, New York, NY, USA), volume 14, chapter 1, pp. 1–134. → pp 18, 20, 25, 39, 189, 227, 338, 339.
PruessnerG., 2003a, Oslo rice pile model is a quenched Edwards-Wilkinson equation, Phys. Rev. E 67(3), 030301(R) (4 pp), arXiv:cond-mat/0209531. → pp 162, 178, 180, 182, 184, 186, 199, 203–205, 278, 282, 299, 300.
PruessnerG., 2003b, Universality in the Oslo model (unpublished). → pp 107, 229, 284.
PruessnerG., 2004a, Drift causes anomalous exponents in growth processes, Phys. Rev. Lett. 92(24), 246101 (4 pp), arXiv:cond-mat/0404007v2. → pp 207, 251, 291, 293.
PruessnerG., 2004b, Exact solution of the totally asymmetric Oslo model, J. Phys. A: Math. Gen. 37(30), 7455–7471, arXiv:cond-mat/0402564. → pp 174, 201, 206, 207, 222, 223, 232, 249, 271, 286, 289, 310.
PruessnerG., 2007, Equivalence of conditional and external field ensembles in absorbing-state phase transitions, Phys. Rev. E 76(6), 061103 (4 pp), arXiv:0712.0979v1. → pp 39, 181, 307, 336, 337, 395.
PruessnerG., 2008, Block scaling in the directed percolation universality class, New J. Phys. 10(11), 113003 (13 pp), arXiv:0706.1144. → pp 21, 49, 134, 336, 337.
PruessnerG., 2009, Probability densities in complex systems, measuring, in Encyclopedia of Complexity and Systems Science, edited by R. A.Meyers (Springer-Verlag, New York, NY, USA), volume 7, pp. 6990–7009. → pp 230, 236, 388.
PruessnerG., 2010, Comment on ‘avalanches and non-gaussian fluctuations of the global velocity of imbibition fronts’, Phys. Rev. Lett. 105(2), 029401 (1 p), comment on (Planet et al., 2009), reply (Planet et al., 2010). → pp 240, 443.
PruessnerG., and H. J.Jensen, 2002a, Broken scaling in the forest-fire model, Phys. Rev. E 65(5), 056707 (8 pp), arXiv:cond-mat/0201306. → pp 116, 119–121, 124, 125, 224.
PruessnerG., and H. J.Jensen, 2002b, A solvable non-conservative model of self-organised criticality, Europhys. Lett. 58(2), 250–256, arXiv:cond-mat/0104567. → pp 130, 265, 328, 334.
PruessnerG., and H. J.Jensen, 2004, Efficient algorithm for the forest fire model, Phys. Rev. E 70(6), 066707 (25 pp), arXiv:cond-mat/0309173. → pp 44, 45, 119, 120, 124, 125, 224, 385.
PruessnerG., and N. R.Moloney, 2003, Numerical results for crossing, spanning and wrapping in two-dimensional percolation, J. Phys. A: Math. Gen. 36(44), 11213–11228, arXiv:cond-mat/0309126. → p 226.
PruessnerG., and N. R.Moloney, 2006, Asynchronously parallelised percolation on distributed machines, in Computer Simulation Studies in Condensed-Matter Physics XVIII; Proceedings of the Eighteens Workshop, Athens, GA, USA, March 7–11, 2005 (Springer-Verlag, Berlin, Germany), volume 105 of Springer Proceedings in Physics, pp. 121 – 125. → p 124.
PruessnerG., and O.Peters, 2006, Self-organized criticality and absorbing states: lessons from the Ising model, Phys. Rev. E 73(2), 025106(R) (4 pp), arXiv:cond-mat/0411709. → pp 52, 265, 330, 337–341, 399.
PruessnerG., and O.Peters, 2008, Reply to ‘Comment on “self-organized criticality and absorbing states: lessons from the Ising model”’, Phys. Rev. E 77(4), 048102 (2 pp), reply to comment (Alava et al., 2008). → pp 170, 339, 399.
PruessnerG., D.Loison, and K.-D.Schotte, 2001, Monte Carlo simulation of an Ising model on a Sierpiński carpet, Phys. Rev. B 64(13), 134414 (10 pp). → pp 216, 229.
PuhlH., 1992, On the modelling of real sand piles, Physica A 182(3), 295 – 319. → pp 56, 85, 324.
PuhlH., 1993, Sandpiles on random lattices, Physica A 197(1–2), 14 – 22. → p 56.
QuartierL., B.Andreotti, S.Douady, and A.Daerr, 2000, Dynamics of a grain on a sandpile model, Phys. Rev. E 62(6), 8299–8307. → p 192.
RamascoJ. J., J. M.López, and M. A.Rodríguez, 2000, Generic dynamic scaling in kinetic roughening, Phys. Rev. Lett. 84(10), 2199–2202. → pp 313, 314.
RamascoJ. J., J. M.López, and M. A.Rodríguez, 2001, Interface depinning in the absence of an external driving force, Phys. Rev. E 64(6), 066109 (5 pp). → p 300.
RamascoJ. J., M. A.Muñoz, and C. A. da SilvaSantos, 2004, Numerical study of the Langevin theory for fixed-energy sandpiles, Phys. Rev. E 69(4), 045105(R) (4 pp). → pp 177, 182, 183, 333, 340.
RamosO., E.Altshuler, and K. J.Måløy, 2009, Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett. 102(7), 078701 (4 pp). → pp 67, 134.
RaupD. M., 1976, Species diversity in the Phanerozoic; a tabulation, Paleobiology 2(4), 279–288. → p 68.
RaupD. M., 1986, Biological extinction in earth history, Science 231(4745), 1528–1533. → pp 68, 69.
RaupD. M., 1991, A kill curve for Phanerozoic marine species, Paleobiology 17(1), 37–48. → p 69.
RaupD. M., and G. E.Boyajian, 1988, Patterns of generic extinction in the fossil record, Paleobiology 14(2), 109–125. → p 68.
RaupD. M., and J. J.SepkoskiJr., 1984, Periodicity of extinctions in the geologic past, Proc. Natl. Acad. Sci. USA 81(3), 801–805. → p 68.
RayT. S., and N.Jan, 1994, Anomalous approach to the self-organized critical state in a model for ‘life at the edge of chaos’, Phys. Rev. Lett. 72(25), 4045–4048. → pp 145, 155, 319.
RednerS., 2001, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, UK). → pp 243, 256.
ReedW. J., and K. S.McKelvey, 2002, Power-law behaviour and parametric models for the size-distribution of forest-fires, Ecol. Modell. 150, 239–254. → pp 73, 122.
RhodesC. J., and R. M.Anderson, 1996, Power laws governing epidemics in isolated populations, Nature 381, 600–602. → p 73.
RhodesC. J., H. J.Jensen, and R. M.Anderson, 1997, On the critical behaviour of simple epidemics, Proc. R. Soc. London, Ser. B 264(1388), 1639–1646. → pp 73, 74.
RhodesT. L., R. A.Moyer, R.Groebner, E. J.Doyle, R.Lehmer, W. A.Peebles, and C. L.Rettig, 1999, Experimental evidence for self-organized criticality in tokamak plasma turbulence, Phys. Lett. A 253(3–4), 181 – 186. → p 72.
RicottaC., G.Avena, and M.Marchetti, 1999, The flaming sandpile: self-organized criticality and wildfires, Ecol. Modell. 119, 73–77. → p 73.
RicottaC., M.Arianoutsou, R.Díaz-Delgado, B.Duguy, F.Lloret, E.Maroudi, S.Mazzoleni, J. M.Moreno, S.Rambal, R.Vallejo, and A.Vázquez, 2001, Self-organized criticality of wildfires ecologically revisited, Ecol. Modell. 141, 307–311. → p 73.
RittelR., 2000, Selbstorganisierte Kritikalität auf der Ebene von Quarks und Gluonen und deren Manifestation in inelastisch diffraktiven hochenergetischen Streuprozessen, Ph.D. Thesis, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany. → p 252.
RobertsD. C., and D. L.Turcotte, 1998, Fractality and self-organized criticality of wars, Fractals 6(4), 351–357. → p 76.
RoeringJ. J., J. W.Kirchner, L. S.Sklar, and W. E.Dietrich, 2001, Hillslope evolution by nonlinear creep and landsliding: an experimental study, Geology 29(2), 143–146, comment (van Milligen and Pons, 2002). → p 454.
RoeringJ. J., J. W.Kirchner, L. S.Sklar, and W. E.Dietrich, 2002, Hillslope evolution by nonlinear creep and landsliding: an experimental study: comment and reply: reply, Geology 30(5), 482, reply to comment (van Milligen and Pons, 2002). → p 454.
RolandC., and M.Grant, 1989, Lack of self-averaging, multiscaling, and 1/f noise in the kinetics of domain growth, Phys. Rev. Lett. 63(5), 551–554. → p 318.
RollaL. T., and V.Sidoravicius, 2009, Absorbing-state phase transition for stochastic sandpiles and activated random walks, arXiv:0908.1152v1 (unpublished). → p 330.
RosendahlJ., M.Vekić, and J. E.Rutledge, 1994, Predictability of large avalanches on a sandpile, Phys. Rev. Lett. 73(4), 537–540. → p 57.
RosendahlJ., M.Vekić, and J.Kelley, 1993, Persistent self-organization of sandpiles, Phys. Rev. E 47(2), 1401–1404. → pp 56, 57.
RossiM., R.Pastor-Satorras, and A.Vespignani, 2000, Universality class of absorbing phase transitions with a conserved field, Phys. Rev. Lett. 85(9), 1803–1806. → pp 170, 171, 177, 178–180, 330, 333.
RouxS., and A.Hansen, 1994, Interface roughening and pinning, J. Phys. I (France) 4, 515–538. → pp 178, 299, 314.
RoyerS., and D.Pare, 2003, Conservation of total synaptic weight through balanced synaptic depression and potentiation, Nature 422(6931), 518–522. → p 71.
RubioM. A., C. A.Edwards, A.Dougherty, and J. P.Gollub, 1989, Self-affine fractal interfaces from immiscible displacement in porous media, Phys. Rev. Lett. 63(16), 1685–1688. → p 301.
RudnickJ., and G.Gaspari, 2004, Elements of the Random Walk (Cambridge University Press, Cambridge, UK). → p 243.
RuelleP., 2002, A c = –2 boundary changing operator for the Abelian sandpile model, Phys. Lett. B 539(1), 172–177, arXiv:hep-th/0203105. → p 99.
RuelleP., and S.Sen, 1992, Toppling distributions in one-dimensional Abelian sandpiles, J. Phys. A: Math. Gen. 25(22), L1257–L1264. → pp 87, 92–94, 174, 202.
SánchezR., D. E.Newman, and B. A.Carreras, 2002, Waiting-time statistics of self-organized-criticality systems, Phys. Rev. Lett. 88(6), 068302 (4 pp). → p 76.
SaberiA. A., S.Moghimi-Araghi, H.Dashti-Naserabadi, and S.Rouhani, 2009, Direct evidence for conformal invariance of avalanche frontiers in sandpile models, Phys. Rev. E 79(3), 031121 (5 pp). → p 99.
SadhuT., and D.Dhar, 2008, Emergence of quasiunits in the one-dimensional Zhang model, Phys. Rev. E 77(3), 031122 (6 pp). → p 109.
SadhuT., and D.Dhar, 2009, Steady state of stochastic sandpile models, J. Stat. Phys. 134(3), 427–441. → pp 173, 202.
SalasJ., and A. D.Sokal, 2000, Universal amplitude ratios in the critical two-dimensional Ising model on a torus, J. Stat. Phys. 98(3–4), 551–588, arXiv:cond-mat/9904038v2. → pp 20, 39.
SaleurH., and B.Duplantier, 1987, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58(22), 2325–2328. → p 319.
SanchezR., D. E.Newman, and B. A.Carreras, 2001, Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices, Nucl. Fusion 41(3), 247–256. → pp 72, 193.
SapovalB., M.Rosso, and J. F.Gouyet, 1985, The fractal nature of a diffusion front and the relation to percolation, J. Phys. (Paris) Lett. 46(4), 149–156. → p 320.
SarkarA., and P.Barat, 2006, Analysis of rainfall records in India: self-organized criticality and scaling, Fractals 14(4), 289–293, arXiv:physics/0512197. → p 71.
ScheideggerA. E., 1967, A stochastic model for drainage patterns into an intramontane trench, Bull. Int. Assoc. Sci. Hydrol. 12, 15–20. → p 102.
ScheinkmanJ. A., and M.Woodford, 1994, Self-organized criticality and economic fluctuations, Am. Econ. Rev. 84(2), 417–421. → p 75.
SchenkK., B.Drossel, and F.Schwabl, 2002, Self-organized critical forest-fire model on large scales, Phys. Rev. E 65(2), 026135 (8 pp), arXiv:cond-mat/0105121. → pp 116, 120–122.
SchenkK., B.Drossel, S.Clar, and F.Schwabl, 2000, Finite-size effects in the self-organized critical forest-fire model, Eur. Phys. J. B 15(1), 177–185, arXiv:cond-mat/9904356. → pp 116, 123.
SchickK. L., and A. A.Verveen, 1974, 1/f noise with a low frequency white noise limit, Nature 251(5476), 599–601. → pp 53, 85.
SchildtH., 2000, C: The Complete Reference (McGraw-Hill, Berkeley, CA, USA), 4th edition. → pp 359, 380.
SchmittmannB., and R. K. P.Zia, 1995, Statistical mechanics of driven diffusive systems, in Phase Transitions and Critical Phenomena, edited by C.Domb and J. L.Lebowitz (Academic Press, New York, NY, USA), volume 17, pp. 1–220. → pp 266, 293, 301, 303, 321, 324, 325, 334.
SchmittmannB., G.Pruessner, and H.-K.Janssen, 2006, Strongly anisotropic roughness in surfaces driven by an oblique particle flux, Phys. Rev. E 73(5), 051603 (10 pp), arXiv:cond-mat/0604363. → pp 318, 329.
ScholzC. H., 1991, Earthquakes and faulting: self-organized critical phenomena with a characteristic dimension, in Spontaneous Formation of Space-Time Structures and Criticality, edited by T.Riste and D.Sherrington (Kluwer, Dordrecht, The Netherlands), pp. 41–56, NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → p 66.
SchotteK. D., 1999, personal communication. → p 251.
SchwollH., 2004, (Danfoss), personal communication. → p 22.
SedgewickR., 1990, Algorithms in C (Addison-Wesley, Reading, MA, USA). → p 358.
SegevR., M.Benveniste, E.Hulata, N.Cohen, A.Palevski, E.Kapon, Y.Shapira, and E.Ben-Jacob, 2002, Long term behavior of lithographically prepared in vitro neuronal networks, Phys. Rev. Lett. 88(11), 118102 (4 pp). → p 70.
SepkoskiJ. J.Jr., 1982, A compendium of fossil marine families, Milwaukee Public Museum Contrib. Biol. Geol. 51, 1–125. → pp 68, 69.
SepkoskiJ. J.Jr., 1993, Ten years in the library: new data confirm paleontological patterns, Paleobiology 19(1), 43–51. → pp 68, 158.
SepkoskiJ. J.Jr., 2002, A compendium of fossil marine animal genera, Bull. Am. Paleo. 363, 1–560, published posthumously, edited by D.Jablonski and M.Foote. → p 68.
SethnaJ. P., K. A.Dahmen, and C. R.Myers, 2001, Crackling noise, Nature 410(6825), 242–250. → p 62.
SethnaJ. P., K.Dahmen, S.Kartha, J. A.Krumhansl, B. W.Roberts, and J. D.Shore, 1993, Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations, Phys. Rev. Lett. 70(21), 3347–3350. → p 63.
ShiK., and C.-Q.Liu, 2009, Self-organized criticality of air pollution, Atmos. Environ. 43(21), 3301–3304. → p 71.
ShiloY., and O.Biham, 2003, Sandpile models and random walkers on finite lattices, Phys. Rev. E 67(6), 066102 (8 pp). → pp 198, 245, 246, 249.
ShlesingerM. F., and B. J.West, 1991, Complex fractal dimension of the bronchial tree, Phys. Rev. Lett. 67(15), 2106–2108. → p 74.
SlaninaF., 2002, Self-organized branching process for a one-dimensional rice-pile model, Eur. Phys. J. B 25(2), 209–216. → pp 199, 257.
SmethurstD. P., and H. C.Williams, 2001, Power laws: are hospital waiting lists self-regulating?, Nature 410(6829), 652–653. → pp 75, 401, 406.
SneppenK., 1995a, Extremal dynamics and punctuated co-evolution, Physica A 221(1–3), 168–179. → pp 144, 149.
SneppenK., 1995b, Minimal SOC: intermittency in growth and evolution, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A.McKane, M.Droz, J.Vannimenus, and D.Wolf (Plenum Press, New York, NY, USA), pp. 295–302, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 149, 151.
SneppenK., and M. H.Jensen, 1993, Sneppen and Jensen reply, Phys. Rev. Lett. 70(24), 3833, reply to comment (Tang and Leschhorn, 1993). → pp 142, 151, 452.
SneppenK., P.Bak, H.Flyvbjerg, and M. H.Jensen, 1995, Evolution as a self-organized critical phenomenon, Proc. Natl. Acad. Sci. USA 92(11), 5209–5213. → pp 69, 158.
SocolarJ. E. S., G.Grinstein, and C.Jayaprakash, 1993, On self-organized criticality in nonconserving systems, Phys. Rev. E 47(4), 2366–2376. → pp 133, 134, 266, 293, 298, 305, 319, 321, 322, 328, 329.
SoléR. V., and J.Bascompte, 1996, Are critical phenomena relevant to large-scale evolution?, Proc. R. Soc. London, Ser. B 263(1367), 161–168. → pp 69, 158, 159.
SoléR. V., and S. C.Manrubia, 1995, Self-similarity in rain forests: evidence for a critical state, Phys. Rev. E 51(6), 6250–6253. → p 74.
SoléR. V., S. C.Manrubia, M.Benton, and P.Bak, 1997, Self-similarity of extinction statistics in the fossil record, Nature 388(6644), 764–767. → p 69.
SolerJ. M., 1982, Alternative exact method for random walks on finite and periodic lattices with traps, Phys. Rev. B 26(2), 1067–1070. → p 249.
SolomonT. H., E. R.Weeks, and H. L.Swinney, 1994, Chaotic advection in a two-dimensional flow: Lévy flights and anomalous diffusion, Physica D 76(1–3), 70–84. → p 72.
SomfaiE., A.Czirok, and T.Vicsek, 1994, Power-law distribution of landslides in an experiment on the erosion of a granular pile, J. Phys. A: Math. Gen. 27(20), L757–L763. → p 56.
SongW., F.Weicheng, W.Binghong, and Z.Jianjun, 2001, Self-organized criticality of forest fire in China, Ecol. Modell. 145, 61–68. → p 73.
SornetteA., and D.Sornette, 1989, Self-organized criticality and earthquakes, Europhys. Lett. 9(3), 197–202. → p 66.
SornetteD., 1994, Sweeping of an instability: an alternative to self-organized criticality to get powerlaws without parameter tuning, J. Phys. I (France) 4, 209–221. → pp 7, 11, 71, 330, 332, 342.
SornetteD., 2002, Mechanism for powerlaws without self-orgnization, Int. J. Mod. Phys. C 13(2), 133–136, arXiv:cond-mat/0110426. → pp 76, 342.
SornetteD., A.Johansen, and I.Dornic, 1995, Mapping self-organized criticality onto criticality, J. Phys. I (France) 5, 325–335. → pp 301, 320, 321, 330.
SornetteD., and I.Dornic, 1996, Parallel Bak-Sneppen model and directed percolation, Phys. Rev. E 54(4), 3334–3338. → pp 150, 156, 296, 320.
SornetteD., and J. V.Andersen, 1998, Scaling with respect to disorder in time-to-failure, Eur. Phys. J. B 1(3), 353–357. → p 65.
SornetteD., and M. J.Werner, 2009, Seismicity, statistical physics approaches to, in Encyclopedia of Complexity and Systems Science, edited by R. A.Meyers (Springer-Verlag, New York, NY, USA), volume 9, pp. 7872–7891, arXiv:0803.3756v2. → pp 67, 68, 139.
SpasojevićD., S.Bukvić, S.Milošević, and H. E.Stanley, 1996, Barkhausen noise: elementary signals, power laws, and scaling relations, Phys. Rev. E 54(3), 2531–2546. → p 63.
SpeerE. R., 1993, Asymmetric Abelian sandpile models, J. Stat. Phys. 71(1/2), 61–76. → p 95.
SpitzerF., 2001, Principles of Random Walk (Springer-Verlag, Berlin, Germany). → pp 246, 249.
StanleyH. E., 1971, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, NY, USA). → pp 3, 23, 25, 318, 348.
StanleyH. E., L. A. N.Amaral, P.Gopikrishnan, V.Plerou, and M. A.Salinger, 2002, Scale invariance and universality in economic phenomena, J. Phys.: Condens. Matter 14(9), 2121–2131. → p 75.
StanleyH. E., L. A. N.Amaral, S. V.Buldyrev, A. L.Goldberger, S.Havlin, B. T.Hyman, H.Leschhorn, P.Maass, H. A.Makse, C. K.Peng, M. A.Salinger, M. H. R.Stanley, and G. M.Viswanathan, 1996, Scaling and universality in living systems, Fractals 4(3), 427–451. → p 53.
StanleyH. E., P. J.Reynolds, S.Redner, and F.Family, 1982, Position-space renormalization group for models of linear polymers, in Real-Space Renormalization, edited by T. W.Burkhardt and J. M. J.van Leeuwen (Springer-Verlag, Berlin, Germany), Topics in Current Physics, pp. 169–206. → p 113.
StanleyR. P., 1999, Enumerative Combinatorics, Volume II, number 62 in Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, UK). → pp 252, 253.
StapletonM. A., and K.Christensen, 2006, One-dimensional directed sandpile models and the area under a Brownian curve, J. Phys. A: Math. Gen. 39(29), 9107–9126, table B1 seems to contain typos (Stapleton, 2007). → pp 206, 208, 223, 228, 232, 249, 271.
StapletonM., M.Dingler, and K.Christensen, 2004, Sensitivity to initial conditions in self-organized critical systems, J. Stat. Phys. 117(5/6), 891–900. → pp 17, 270, 319.
StassinopoulosD., and P.Bak, 1995, Democratic reinforcement: a principle for brain function, Phys. Rev. E 51(5), 5033–5039. → p 71.
StaufferD., and A.Aharony, 1994, Introduction to Percolation Theory (Taylor & Francis, London, UK). → pp 12, 103, 112, 121, 124.
StellaA. L., and M. DeMenech, 2001, Mechanisms of avalanche dynamics and forms of scaling in sandpiles, Physica A 295(1–2), 101–107. → pp 103, 165.
StevensW. R., and S. A.Rago, 2005, Advanced Programming in the UNIX® Environment (Addison-Wesley, Reading, MA, USA), 2nd edition. → pp 358, 371, 372.