This title has been withdrawn from sale on Cambridge Books Online. Institutions who purchased this title previous to removal will continue to have access via Cambridge Books Online but this title can no longer be purchased.

Introductory Biomechanics

From Cells to Organisms

Introductory Biomechanics

Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course. C. Ross Ethier is a professor of Mechanical and Industrial Engineering, the Canada Research Chair in Computational Mechanics, and the Director of the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, with cross-appointment to the Department of Ophthalmology & Vision Sciences. His research focuses on biomechanical factors in glaucoma and blood flow and mass transfer in the large arteries. He has taught biomechanics for over ten years. Craig A. Simmons is the Canada Research Chair in Mechanobiology and an assistant professor of Mechanical and Industrial Engineering at the University of Toronto, with cross-appointments to the Institute of Biomaterials and Biomedical Engineering and the Faculty of Dentistry. His research interests include cell and tissue biomechanics and cell mechanobiology, particularly as it relates to tissue engineering and heart valve disease.


 Reviews:

Ethier and Simmons have crafted a masterful book clearly capable of introducing engineering students of multiple disciplines to the fascinating field of biomechanics. This text should find wide application in providing sufficient background for a fundamental understanding of this important, emerging area. The depth of coverage will serve well as a foundation for further investigation at the upper undergraduate or graduate level. Yet, little prior knowledge of biology is assumed. The topics covered include clinical specialties in which biomechanics has lent to the understanding and improvement of human health, including the cardiovascular, optometry, and musculoskeletal areas. Based on a long-standing course taught to non-bioengineers, the presentation of material is clear and straightforward. Illustrations are of excellent quality and rich in content. This text will inspire many students of traditional engineering areas to think of biomechanics as a fertile discipline worthy of further pursuit. - James E. Moore, Professor of Biomedical Engineering, Texas A&M University

Reference Title: References

Reference Type: reference-list

G. M. Popowicz , R. Muller , A. A. Noegel , M. Schleicher , R. Huber and T. A. Holak. . Molecular structure of the rod domain of dictyostelium filamin. Journal of Molecular Biology, 342 (2004), 1637–1646.
L. Kale , R. Skeel , M. Bhandarkar , R. Brunner , A. Gursoy , N. Krawetz et al. NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151 (1999), 283–312.
W. Humphrey , A. Dalke and K. Schulten . VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14 (1996), 33–38.
J. Wolff. Über die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, 50 (1870), 389–450.

Reference Title: References

Reference Type: reference-list

M. Mullender , A. J. El Haj , Y. Yang , M. A. van Duin , E. H. Burger et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Medical and Biological Engineering and Computing, 42 (2004), 14–21.
P. F. Davies . Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75 (1995), 519–560.
J. O. Kessler . The dynamics of unicellular swimming organisms. ASGSB Bulletin, 4 (1991), 97–105.
W. E. Brownell , A. A. Spector , R. M. Raphael and A. S. Popel . Micro- and nanomechanics of the cochlear outer hair cell. Annual Review of Biomedical Engineering, 3 (2001), 169–194.
R. A. Eatock . Adaptation in hair cells. Annual Review of Neuroscience, 23 (2000), 285–314.
H. A. Quigley . Number of people with glaucoma worldwide. British Journal of Ophthalmology, 80 (1996), 389–393.
C. R. Ethier , M. Johnson and J. Ruberti . Ocular biomechanics and biotransport. Annual Review of Biomedical Engineering, 6 (2004), 249–273.
R. Ross . The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362 (1993), 801–809.
J. P. Paul . Strength requirements for internal and external prostheses. Journal of Biomechanics, 32 (1999), 381–393.
J. T. Steigenga , K. F. Shammari al , F. H. Nociti , C. E. Misch and H. L. Wang . Dental implant design and its relationship to long-term implant success. Implant Dentistry, 12 (2003), 306–317.
Q. Yuan , L. Xu , B. K. Ngoi , T. J. Yeo and N. H. Hwang . Dynamic impact stress analysis of a bileaflet mechanical heart valve. Journal of Heart Valve Disease, 12 (2003), 102–109.
S. P. Hoerstrup , R. Sodian , S. Daebritz , J. Wang , E. A. Bacha , D. P. Martin et al. Functional living trileaflet heart valves grown in vitro. Circulation, 102 (2000), III44–III49.
S. D. Waldman , C. G. Spiteri , M. D. Grynpas , R. M. Pilliar and R. A. Kandel . Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. Journal of Orthopaedic Research, 21 (2003), 590–596.
Y. C. Fung . Biomechanics: Mechanical Properties of Living Tissues, 2nd edn (New York: Springer Verlag, 1993).
V. C. Mow and R. Huiskes (ed.) Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd edn (Philadelphia, PA: Lippincott Williams & Wilkins, 2005).
C. Murray . Human Accomplishment: The Pursuit of Excellence in the Arts and Sciences, 800 BC to 1950 (New York: HarperCollins, 2003).
A. Ascenzi . Biomechanics and Galileo Galilei. Journal of Biomechanics, 26 (1993), 95–100.
Clendening History of Medicine Library and Museum. Clendening Library Portrait Collection. Available at http://clendening.kumc.edu/dc/pc/ (2005).
W. Harvey. Exercitatio anatomica de motu cordis et sanguinis in animalibus. [An Anatomical Study of the Motion of the Heart and of the Blood in Animals.] (1628).
W. C. Harrison . Dr. William Harvey and the Discovery of Circulation (New York: MacMillan, 1967).
A. J. Thurston . Giovanni Borelli and the study of human movement: an historical review. ANZ Journal of Surgery, 69 (1999), 276–288.
S. Hales . Statical Essays, Containing Haemastaticks. [With an Introduction by Andre Cournand.] (New York: Hafner, 1964).
S. Hales . Foundations of anesthesiology. Journal of Clinical Monitoring and Computing, 16 (2000), 45–47.
M. Brillouin . Jean Leonard Marie Poiseuille. Journal of Rheology, 1 (1930), 345–348.
S. P. Sutera and R. Skalak . The history of Poiseuille law. Annual Review of Fluid Mechanics, 25 (1993), 1–19.
A. Wood . Thomas Young, Natural Philosopher 1773–1829 (New York: Cambridge University Press, 1954).
J. L. M. Poiseuille . Recherches sur la force du coeur aortique. Archives Générales de Médecine, 8 (1828), 550–554.
K. M. Pederson . Poiseuille. In Ⅺ: Dictionary of Scientific Biography, ed. C. C. Gillispie (New York: Charles Scribner's Sons, 1981), pp. 62–64.
H. J. Granger . Cardiovascular physiology in the twentieth century: great strides and missed opportunities. American Journal of Physiology, 275 (1998), H1925–H1936.
J. L. M. Poiseuille . Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 11 (1840), 961–967, 1041–1048.
T. Young . The Croonian Lecture. On the functions of the heart and the arteries. Philosophical Transactions of the Royal Society, 99 (1809), 1–31.
S. C. Cowin. The false premise in Wolff's law. In Bone Mechanics Handbook, 2nd edn, ed. S. C. Cowin . (Boca Raton, FL: CRC Press, 2001), pp. 30.1–30.15.
G. H. von Meyer . Die Architektur Der Spongiosa. Archiv für Anatomie, Physiologie und Wissenschaftliche Medizin, 34 (1867), 615–628.
J. Wolff . Das Gesetz Der Transformation Der Knochen (Berlin: A Hirschwald, 1891).
J. Wolff . The Law of Bone Remodeling (New York: Springer Verlag, 1986).
W. Roux. Über die verzweigungen der blutgefässe. [On the bifurcations of blood vessels.] Doctoral thesis, University of Jena (1878).
H. Kurz , K. Sandau and B. Christ . On the bifurcation of blood vessels: Wilhelm Roux's doctoral thesis (Jena 1878) – a seminal work for biophysical modeling in developmental biology. Anatomischer Anzeiger, 179 (1997), 33–36.
V. Hamburger . Wilhelm Roux: visionary with a blind spot. Journal of Historical Biology, 30 (1997), 229–238.
National Academy of Engineering. Awards. Available at http://www.nae.edu/nae/awardscom.nsf/weblinks/NAEW-4NHMBK? OpenDocument (2005).
Y. C. Fung . Biomechanics: Motion, Flow, Stress and Growth (New York: Springer Verlag, 1990).
Y. C. Fung . Biomechanics: Circulation, 2nd edn (New York: Springer Verlag, 1997).
K. E. Andersson and A. Arner . Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiological Reviews, 84 (2004), 935–986.
M. S. Damaser . Whole bladder mechanics during filling. Scandinavian Journal of Urology and Nephrology Supplement, 201 (1999), 51–58.
E. J. Macarak , D. Ewalt , L. Baskin , D. Coplen , H. Koo , et al. The collagens and their urologic implications. Advances in Experimental Medicine and Biology, 385 (1995), 173–177.
van Mastrigt R. Mechanical properties of (urinary bladder) smooth muscle. Journal of Muscle Research and Cell Motility, 23 (2002), 53–57.
E. H. Davidson , J. P. Rast , P. Oliveri et al. A genomic regulatory network for development. Science, 295 (2002), 1669–1678.

Reference Title: References

Reference Type: reference-list

B. Alberts , A. Johnson , J. Lewis , M. Raff , K. Roberts et al. Molecular Biology of the Cell, 4th edn (New York: Garland Science, 2002).
H. Lodish , A. Berk , S. L. Zipursky , P. Matsudaira , D. Baltimore et al. Molecular Cell Biology, 4th edn (New York: W. H. Freeman, 2000).
A. J. Vander , J. H. Sherman and D. S. Luciano . Human Physiology: The Mechanisms of Body Function, 4th edn (New York: McGraw-Hill, 1985).
A. D. Bershadsky and J. M. Vasiliev . Cytoskeleton (New York: Plenum Press, 1988).
Theoretical and Computational Biophysics Group at University of Illinois at Urbana-Champaign. Available at http://www.ks.uiuc.edu/Research/cell/motility/actin/ (2005).
M. Lorenz , D. Popp and K. C. Holmes . Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. Journal of Molecular Biology, 234 (1993), 826–836.
W. Kabsch , H. G. Mannherz , D. Suck , E. F. Pai and K. C. Holmes . Atomic structure of the actin: DNase I complex. Nature, 347 (1990), 37–44.
J. L. McGrath , E. A. Osborn , Y. S. Tardy , C. F. Dewey, Jr. and J. H. Hartwig . Regulation of the actin cycle in vivo by actin filament severing. Proceedings of the National Academy of Sciences USA, 97 (2000), 6532–6537.
H. Kojima , A. Ishijima and T. Yanagida . Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proceedings of the National Academy of Sciences USA, 91 (1994), 12962–12966.
H. E. Huxley , A. Stewart , H. Sosa and T. Irving . X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophysical Journal, 67 (1994), 2411–2421.
H. Higuchi , T. Yanagida and Y. E. Goldman . Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophysical Journal, 69 (1995), 1000–1010.
K. Wakabayashi , Y. Sugimoto , H. Tanaka , Y. Ueno , Y. Takezawa et al. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophysical Journal, 67 (1994), 2422–2435.
P. A. Janmey , J. X. Tang and C. F. Schmidt. Actin filaments, In Biophysical Society Online Textbook of Biophysics, ed. V. Bloomfield . (Heidelberg: Springer, 1999). Available at http://www.biophysics.org/education/janmey.pdf.
P. A. Coulombe and P. Wong . Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nature Cell Biology, 6 (2004), 699–706.
N. Wang and D. Stamenovic . Mechanics of vimentin intermediate filaments. Journal of Muscle Research and Cell Motility, 23 (2002), 535–540.
N. Marceau , A. Loranger , S. Gilbert , N. Daigle and S. Champetier . Keratin- mediated resistance to stress and apoptosis in simple epithelial cells in relation to health and disease. Biochemistry and Cell Biology, 79 (2001), 543–555.
H. Lodish , A. Berk , P. Matsudaira , C. A. Kaiser , M. Krieger et al. Molecular Cell Biology, 5th edn (New York: W. H. Freeman, 2004).
D. H. Cormack . Ham's Histology, 9th edn (London: Lippincott, 1987).
E. J. DuPraw . Cell and Molecular Biology (New York: Academic Press, 1968).
K. Sato , K. Yomogida , T. Wada , T. Yorihuzi , Y. Nishimune et al. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. Journal of Biological Chemistry, 277 (2002), 37678–37684.
A. L. Lehninger . Biochemistry, 2nd edn (New York: Worth, 1975).
E. Bertini and G. Pepe . Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. European Journal of Pediatric Neurology, 6 (2002), 193–198.
T. Gloe and U. Pohl . Laminin binding conveys mechanosensing in endothelial cells. News in Physiological Sciences, 17 (2002), 166–169.
J. L. Bert and R. H. Pearce. The interstitium and microvascular exchange. In The Handbook of Physiology, IV: Microcirculation, Part 1: Section 2: The Cardiovascular System, ed. E. M. Renkin and C. C. Michel . Series ed. S. R. Geiger . (Bethesda, MD: American Physiological Society: 1984), pp. 521–549.
E. D. Hay . Cell Biology of Extracellular Matrix, 2nd edn (Dordrecht, Netherlands: Kluwer Academic, 1992).
K. Vuori . Integrin signaling: tyrosine phosphorylation events in focal adhesions. Journal of Membrane Biology, 165 (1998), 191–199.
E. Zamir and B. Geiger . Molecular complexity and dynamics of cell–matrix adhesions. Journal of Cell Science, 114 (2001), 3583–3590.
R. M. Hochmuth . Micropipette aspiration of living cells. Journal of Biomechanics, 33 (2000), 15–22.
D. Leckband . Measuring the forces that control protein interactions. Annual Review of Biophysics and Biomolecular Structure, 29 (2000), 1–26.
A. Ikai , R. Afrin , H. Sekiguchi , T. Okajima , M. T. Alam et al. Nano-mechanical methods in biochemistry using atomic force microscopy. Current Protein and Peptide Science, 4 (2003), 181–193.
A. Vinckier and G. Semenza . Measuring elasticity of biological materials by atomic force microscopy. FEBS Letters, 430 (1998), 12–16.
M. Radmacher . Measuring the elastic properties of biological samples with the AFM. IEEE Engineering in Medicine and Biology Magazine, 16 (1997), 47–57.
I. N. Sneddon . The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3 (1965), 47–57.
A. C. Fischer-Cripps . Introduction to Contact Mechanics (New York: Springer Verlag, 2000).
H. Haga , S. Sasaki , K. Kawabata , E. Ito , T. Ushiki et al. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy, 82 (2000), 253–258.
A. Ashkin . Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences USA, 94 (1997), 4853–4860.
D. G. Grier . A revolution in optical manipulation. Nature, 424 (2003), 810–816.
S. C. Kuo . Using optics to measure biological forces and mechanics. Traffic, 2 (2001), 757–763.
J. Chen , B. Fabry , E. L. Schiffrin and N. Wang . Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology, Cell Physiology, 280 (2001), C1475–C1484.
M. Puig-De-Morales , M. Grabulosa , J. Alcaraz , J. Mullol , G. N. Maksym et al. Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. Journal of Applied Physiology, 91 (2001), 1152–1159.
N. Wang and D. E. Ingber . Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochemistry and Cell Biology, 73 (1995), 327–335.
A. R. Bausch , F. Ziemann , A. A. Boulbitch , K. Jacobson and E. Sackmann . Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal, 75 (1998), 2038–2049.
J. M. Mitchison and M. M. Swann . The mechanical properties of the cell surface. 1. The cell elastimeter. Journal of Experimental Biology, 31 (1954), 443–460.
J. Y. Shao and R. M. Hochmuth . Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophysical Journal, 71 (1996), 2892–2901.
J. S. Oghalai , A. A. Patel , T. Nakagawa and W. E. Brownell . Fluorescence-imaged microdeformation of the outer hair cell lateral wall. Journal of Neuroscience, 18 (1998), 48–58.
S. Chien and K. L. Sung . Effect of colchicine on viscoelastic properties of neutrophils. Biophysical Journal, 46 (1984), 383–386.
C. Dong , R. Skalak and K. L. Sung . Cytoplasmic rheology of passive neutrophils. Biorheology, 28 (1991), 557–567.
J. Y. Shao . Finite element analysis of imposing femtonewton forces with micropipette aspiration. Annals of Biomedical Engineering, 30 (2002), 546–554.
J. Y. Shao and J. Xu . A modified micropipette aspiration technique and its application to tether formation from human neutrophils. Journal of Biomechanical Engineering, 124 (2002), 388–396.
M. A. Tsai , R. S. Frank and R. E. Waugh . Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophysical Journal, 66 (1994), 2166–2172.
D. E. Discher . New insights into erythrocyte membrane organization and microelasticity. Current Opinion in Hematology, 7 (2000), 117–122.
E. Evans , K. Ritchie and R. Merkel . Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophysical Journal, 68 (1995), 2580–2587.
E. A. Evans and P. L. La Celle . Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood, 45 (1975), 29–43.
R. M. Hochmuth , H. C. Wiles , E. A. Evans and J. T. McCown . Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. Biophysical Journal, 39 (1982), 83–89.
A. W. Jay and P. B. Canham . Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette. Biophysical Journal, 17 (1977), 169–178.
D. Lerche , M. M. Kozlov and W. Meier . Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network? European Biophysics Journal, 19 (1991), 301–309.
G. B. Nash and W. B. Gratzer . Structural determinants of the rigidity of the red cell membrane. Biorheology, 30 (1993), 397–407.
T. Shiga , N. Maeda , T. Suda , K. Kon , M. Sekiya and S. Oka . A kinetic measurement of red cell deformability: a modified micropipette aspiration technique. Japanese Journal of Physiology, 29 (1979), 707–722.
W. E. Brownell , A. A. Spector , R. M. Raphael and A. S. Popel . Micro- and nanomechanics of the cochlear outer hair cell. Annual Review of Biomedical Engineering, 3 (2001), 169–194.
P. S. Sit , A. A. Spector , A. J. Lue , A. S. Popel and W. E. Brownell . Micropipette aspiration on the outer hair cell lateral wall. Biophysical Journal, 72 (1997), 2812–2819.
A. A. Spector , W. E. Brownell and A. S. Popel . A model for cochlear outer hair cell deformations in micropipette aspiration experiments: an analytical solution. Annals of Biomedical Engineering, 24 (1996), 241–249.
D. E. Discher , D. H. Boal and S. K. Boey . Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophysical Journal, 75 (1998), 1584–1597.
R. Waugh and E. A. Evans . Thermoelasticity of red blood cell membrane. Biophysical Journal, 26 (1979), 115–131.
D. E. Discher , N. Mohandas and E. A. Evans . Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science, 266 (1994), 1032–1035.
D. H. Boal . Mechanics of the Cell (Cambridge: Cambridge University Press, 2002).
R. E. Waugh and R. G. Bauserman . Physical measurements of bilayer–skeletal separation forces. Annals of Biomedical Engineering, 23 (1995), 308–321.
J. Dai and M. P. Sheetz . Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophysical Journal, 68 (1995), 988–996.
R. M. Hochmuth , J. Y. Shao , J. Dai and M. P. Sheetz . Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophysical Journal, 70 (1996), 358–369.
L. Klaus . Integration of inflammatory signals by rolling neutrophils. Immunological Reviews, 186 (2002), 8–18.
D. W. Schmidtke and S. L. Diamond . Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. Journal of Cell Biology, 149 (2000), 719–730.
D. Stamenovic and M. F. Coughlin . A quantitative model of cellular elasticity based on tensegrity. Journal of Biomechanical Engineering, 122 (2000), 39–43.
D. E. Ingber . Tensegrity II. How structural networks influence cellular information processing networks. Journal of Cell Science, 116 (2003), 1397–1408.
Y. C. Fung . Biomechanics: Mechanical Properties of Living Tissues, 2nd edn (New York: Springer Verlag, 1993).
D. Stamenovic and D. E. Ingber . Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1 (2002), 95–108.
N. Wang , K. Naruse , D. Stamenovic , J. J. Fredberg , S. M. Mijailovich et al. Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences USA, 98 (2001), 7765–7770.
N. Wang , I. M. Tolic-Norrelykke , J. Chen , S. M. Mijailovich , J. P. Butler et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology, Cell Physiology, 282 (2002), C606–C616.
D. Stamenovic and M. F. Coughlin . The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. Journal of Theoretical Biology, 201 (1999), 63–74.
D. Stamenovic and N. Wang . Invited review: engineering approaches to cytoskeletal mechanics. Journal of Applied Physiology, 89 (2000), 2085–2090.
B. P. Helmke , A. B. Rosen and P. F. Davies . Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophysical Journal, 84 (2003), 2691–2699.
L. J. Gibson and M. F. Ashby . Cellular Solids: Structure and Properties, 2nd edn (Cambridge: Cambridge University Press, 1997).
R. L. Satcher, Jr. and C. F. Dewey, Jr. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal, 71 (1996), 109–118.
W. A. Hodge , R. S. Fijan , K. L. Carlson , R. G. Burgess , W. H. Harris et al. Contact pressures in the human hip-joint measured in vivo. Proceedings of the National Academy of Sciences USA, 83 (1986), 2879–2883.
F. Guilak . The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology, 37 (2000), 27–44.
C. A. Hansen , A. G. Schroering , D. J. Carey and J. D. Robishaw . Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. Journal of Cell Biology, 126 (1994), 811–819.
P. F. Davies . Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75 (1995), 519–560.
A. J. Maniotis , C. S. Chen and D. E. Ingber . Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences USA, 94 (1997), 849–854.
F. G. Giancotti and E. Ruoslahti . Integrin signaling. Science, 285 (1999), 1028–1032.
T. D. Brown . Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 33 (2000), 3–14.
J. A. Frangos (ed.) Physical Forces and the Mammalian Cell (San Diego: Academic Press, 1993).
R. B. Bird , W. E. Stewart and E. N. Lightfoot . Transport Phenomena (New York: John Wiley, 1960).
J. A. Gilbert , P. S. Weinhold , A. J. Banes , G. W. Link and G. L. Jones . Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics, 27 (1994), 1169–1177.
J. L. Schaffer , M. Rizen , G. J. L' Italien , A. Benbrahim , J. Megerman et al. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. Journal of Orthopaedic Research, 12 (1994), 709–719.
S. Timoshenko and J. N. Goodier . Theory of Elasticity (New York: McGraw-Hill, 1970).
G. Helmlinger , R. V. Geiger , S. Schreck and R. M. Nerem . Effects of pulsatile flow on cultured vascular endothelial cell morphology. Journal of Biomechanical Engineering, 113 (1991), 123–131.
N. DePaola , P. F. Davies , W. F. Pritchard, Jr. , L. Florez , N. Harbeck et al. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proceedings of the National Academy of Sciences USA, 96 (1999), 3154–3159.
M. H. Ross and E. J. Reith . Histology: A Text and Atlas (New York: Harper and Rowe, 1985).
S. Noria , F. Xu , S. McCue , M. Jones , A. I. Gotlieb and B. L. Langille . Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. American Journal of Pathology, 164 (2004), 1211–1223.
B. L. Langille and F. O' Donnell . Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science, 231 (1986), 405–407.
C. K. Zarins , M. A. Zatina , D. P. Giddens , D. N. Ku and S. Glagov . Shear stress regulation of artery lumen diameter in experimental atherogenesis. Journal of Vascular Surgery, 5 (1987), 413–420.
I. Mills , C. R. Cohen , K. Kamal , G. Li , T. Shin et al. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. Journal of Cellular Physiology, 170 (1997), 228–234.
G. K. Owens . Regulation of differentiation of vascular smooth muscle cells. Physiological Reviews, 75 (1995), 487–517.
B. S. Kim , J. Nikolovski , J. Bonadio and D. J. Mooney . Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 17 (1999), 979–983.
A. J. Grodzinsky , M. E. Levenston , M. Jin and E. H. Frank . Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2 (2000), 691–713.
R. L. Sah , Y. J. Kim , J. Y. Doong , A. J. Grodzinsky , A. H. Plaas et al. Biosynthetic response of cartilage explants to dynamic compression. Journal of Orthopaedic Research, 7 (1989), 619–636.
B. Kurz , M. Jin , P. Patwari , D. M. Cheng , M. W. Lark et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. Journal of Orthopaedic Research, 19 (2001), 1140–1146.
M. E. Levenston , E. H. Frank and A. J. Grodzinsky. Electrokinetic and poroelastic coupling during finite deformations of charged porous media, Journal of Applied Mechanics, 66 (1999), 323–333.
E. H. Frank , M. Jin , A. M. Loening , M. E. Levenston and A. J. Grodzinsky . A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. Journal of Biomechanics, 33 (2000), 1523–1527.
R. L. Mauck , M. A. Soltz , C. C. Wang , D. D. Wong , P. H. Chao et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. Journal of Biomechanical Engineering, 122 (2000), 252–260.
D. B. Burr , A. G. Robling and C. H. Turner . Effects of biomechanical stress on bones in animals. Bone, 30 (2002), 781–786.
P. G. Ziros , A. P. Gil , T. Georgakopoulos , I. Habeos , D. Kletsas et al. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. Journal of Biological Chemistry, 277 (2002), 23934–23941.
S. P. Fritton and C. T. Rubin. In vivo measurement of bone deformations using strain gauges. In Bone Mechanics Handbook, 2nd edn, ed. S. C. Cowin . (Boca Raton, FL: CRC Press, 2001), pp. 8.10–8.34.
E. H. Burger and J. Klein-Nulend . Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB Journal, 13 Suppl (1999), S101–S112.
R. Smalt , F. T. Mitchell , R. L. Howard and T. J. Chambers . Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. American Journal of Physiology, 273 (1997), E751–E758.
J. You , C. E. Yellowley , H. J. Donahue , Y. Zhang , Q. Chen et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. Journal of Biomechanical Engineering, 122 (2000), 387–393.
S. Weinbaum , S. C. Cowin and Y. Zeng . A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics, 27 (1994), 339–360.
G. N. Bancroft , V. I. Sikavitsas , J. van den Dolder , T. L. Sheffield , C. G. Ambrose , J. A. Jansen et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proceedings of the National Academy of Sciences USA, 99 (2002), 12600–12605.
B. P. Helmke , D. B. Thakker , R. D. Goldman and P. F. Davies . Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophysical Journal, 80 (2001), 184–194.
M. Kurachi , M. Hoshi and H. Tashiro. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motility and the Cytoskeleton, 30 (1995), 221–228.
H. Felgner , R. Frank and M. Schliwa. Flexural rigidity of microtubules measured with the use of optical tweezers. Journal of Cell Science, 109 (1996), 509–516.

Reference Title: References

Reference Type: reference-list

A. J. Vander , J. H. Sherman and D. S. Luciano . Human Physiology: The Mechanisms of Body Function, 4th edn (New York: McGraw-Hill, 1985).
C. G. Caro , T. J. Pedley , R. C. Schroter and W. A. Seed . The Mechanics of the Circulation (Oxford: Oxford University Press, 1978).
H. Schmid-Schönbein. Rheology of leukocytes. In Handbook of Bioengineering, ed. R. Skalak and S. Chien . (New York: McGraw-Hill, 1987), pp. 13.1–13.25.
W. C. O. Tsang. The size and shape of human red blood cells. M.Sc. thesis, University of California at San Diego (1975).
Y. C. Fung . Biomechanics: Mechanical Properties of Living Tissues (New York: Springer Verlag, 1981).
D. W. Fawcett . Bloom and Fawcett: A Textbook of Histology (Philadelphia, PA: W. B. Saunders, 1986).
S. Chien , S. Usami , H. M. Taylor , J. L. Lundberg and M. I. Gregersen . Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. Journal of Applied Physiology, 21 (1966), 81–87.
H. L. Goldsmith. The microrheology of human erythrocyte suspensions. In Theoretical and Applied Mechanics; Proceedings of the Thirteenth International Congress of Theoretical and Applied Mechanics (Moscow University, August 21–26, 1972), ed. E. Becker and G. K. Mikhailov . (New York: Springer Verlag, 1973), pp. 85–103.
G. R. Cokelet. The rheology of human blood. In Biomechanics: Its Foundations and Objectives, ed. Y. C. Fung , N. Perrone and M. Anliker . (Englewood Cliffs, NJ: Prentice-Hall, 1972), pp. 63–103.
D. N. Ku , D. P. Giddens , C. K. Zarins and S. Glagov . Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis, 5 (1985), 293–302.
M. Ojha , R. S. C. Cobbold and K. W. Johnston . Hemodynamics of a side-to-end proximal arterial anastomosis model. Journal of Vascular Surgery, 17 (1993), 646–655.
C. R. Ethier , D. A. M. Ojha. Comparisons between computational hemodynamics, photochromic dye flow visualization and MR velocimetry. In The Haemodynamics of Internal Organs: Comparison of Computational Predictions with in vivo and in vitro Data, ed. X. Y. Xu and M. W. Collins . (Ashurst, UK: Computational Mechanics, 1999), pp. 131–184.
K. Perktold and G. Rappitsch . Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics, 28 (1995), 845–856.
D. A. Steinman and C. R. Ethier . Numerical modeling of flow in a distensible end-to-side anastomosis. Journal of Biomechanical Engineering, 116 (1994), 294–301.
J. E. Moore, Jr. , E. S. Weydahl and A. Santamarina . Frequency dependence of dynamic curvature effects on flow through coronary arteries. Journal of Biomechanical Engineering, 123 (2001), 129–133.
A. Santamarina , E. Weydahl , J. M. Siegel, Jr. and J. E. Moore, Jr. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26 (1998), 944–954.
W. R. Milnor . Hemodynamics, 2nd edn (Baltimore, MD: Williams & Wilkins, 1989).
M. Eriksen . Effect of pulsatile arterial diameter variations on blood flow estimated by Doppler ultrasound. Medical and Biological Engineering and Computing, 30 (1992), 46–50.
S. Uematsu , A. Yang , T. J. Preziosi , R. Kouba and T. J. Toung . Measurement of carotid blood flow in man and its clinical application. Stroke, 14 (1983), 256–266.
D. A. Steinman , B. Vinh , C. R. Ethier , M. Ojha , R. S. Cobbold et al. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. Journal of Biomechanical Engineering, 115 (1993), 112–118.
S. T. Hussain , R. E. Smith , A. L. Clark and R. F. Wood . Blood flow in the lower-limb after balloon angioplasty of the superficial femoral artery. British Journal of Surgery, 83 (1996), 791–795.
D. N. Ku , S. Glagov , J. E. J. Moore and C. K. Zarins . Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. Journal of Vascular Surgery, 9 (1989), 309–316.
J. E. Moore , Jr., D. N. Ku , C. K. Zarins and S. Glagov . Pulsatile flow visualization in the abdominal aorta under differing physiological conditions: implications for increased susceptibility to atherosclerosis. Journal of Biomechanical Engineering, 114 (1992), 391–397.
D. N. Ku and C. Zhu. The mechanical environment of the artery. In Hemodynamic Forces and Vascular Cell Biology, ed. B. E. Sumpio . (Austin, TX: R. G. Landes, 1993), pp. 1–23.
W. W. Nichols and M. F. O' Rourke . McDonald's Blood Flow in Arteries (Philadelphia, PA: Lea & Febiger, 1990).
M. Ojha, R. S. C. Cobbold, K. W. Johnston and C. R. Ethier. Visualization of pulsatile flow in a modeled arterial anastomosis. In Proceedings of the Second International Symposium on Biofluid Mechanics and Biorheology, ed. D. Liepsch. (1989), pp. 369–379.
P. D. Ballyk , D. A. Steinman and C. R. Ethier . Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology, 31 (1994), 565–586.
K. Perktold , R. O. Peter , M. Resch and G. Langs . Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. Journal of Biomedical Engineering, 13 (1991), 507–515.
T. Sexl . Uber Den Von E. G. Richardson Entdeckten ‘Annulareffekt.’ Zeitschrift für Physik, 61 (1930), 349–362.
F. M. White . Viscous Fluid Flow, 2nd edn (New York: McGraw-Hill, 1991).
M. Abramowitz and I. A. Stegun . Handbook of Mathematical Functions (New York: Dover, 1972).
J. H. Barbee and G. R. Cokelet . Prediction of blood flow in tubes with diameters as small as 29 microns. Microvascular Research, 3 (1971), 17–21.
J. H. Barbee and G. R. Cokelet . The Fahraeus effect. Microvascular Research, 3 (1971), 6–16.
R. H. Haynes . Physical basis of the dependence of blood viscosity on tube radius. American Journal of Physiology, 198 (1960), 1193–1200.
L. Dintenfass . Inversion of the Fahraeus–Lindqvist phenomenon in blood flow through capillaries of diminishing radius. Nature, 215 (1967), 1099–1100.
G. B. Thurston . Plasma release-cell layering theory for blood flow. Biorheology, 26 (1989), 199–214.
R. I. Litvinov , H. Shuman , J. S. Bennett and J. W. Weisel . Binding strength and activation state of single fibrinogen–integrin pairs on living cells. Proceedings of the National Academy of Sciences USA, 99 (2002), 7426–7431.

Reference Title: References

Reference Type: reference-list

J. B. d. C. M. Saunders and C. D. O'Malley . The Illustrations from the Works of Andreas Vesalius of Brussels (Cleveland: World Publishing, 1950).
A. Vesalius . Fabric of the Human Body. Books III & IV: Veins, Arteries, Nerves. (San Francisco, CA: Norman, 2002).
A. Despopoulos and S. Silbernagl . Color Atlas of Physiology (New York: Georg Thieme Verlag, 1986).
W. R. Milnor . Hemodynamics, 2nd edn (Baltimore, MD: Williams & Wilkins, 1989).
R. S. Vasan , M. G. Larson and D. Levy . Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation, 91 (1995), 734–740.
T. Fujiwara and Y. Uehara . The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: a scanning electron microscopic observation. American Journal of Anatomy, 170 (1984), 39–54.
J. W. Rohen , C. Yokochi and E. Lütjen-Drecoll . Color Atlas of Anatomy: A Photographic Study of the Human Body, 5th edn (Philadelphia, PA: Lippincott Williams & Wilkins, 2002).
W. W. Nichols and M. F. O' Rourke . McDonald's Blood Flow in Arteries (Philadelphia, PA: Lea & Febiger, 1990).
K. Sagawa , W. L. Maughan , K. Sunagawa and H. Suga . Cardiac Contraction and the Pressure–Volume Relationship (New York: Oxford University Press, 1988).
A. J. Vander , J. H. Sherman and D. S. Luciano . Human Physiology: The Mechanisms of Body Function, 4th edn (New York: McGraw-Hill, 1985).
A. D. McCulloch. Cardiac biomechanics. In Biomechanics: Principles and Applications, ed. D. J. Schneck and J. D. Bronzino . (Boca Raton, FL: CRC Press, 2003), pp. 163–188.
C. S. Hayward , W. V. Kalnins and R. P. Kelly . Gender-related differences in left ventricular chamber function. Cardiovascular Research, 49 (2001), 340–350.
O. Frank . Die Grundform Des Arteriellen Pulses Erste Abhandlung: Mathematische Analyse. Zeitschrift für Biologie, 37 (1899), 483–526.
K. Sagawa , R. K. Lie and J. Schaefer . Translation of Otto Frank's Paper “Die Grundform Des Arteriellen Pulses” Zeitschrift für Biologie, 37: 483–526 (1899). Journal of Molecular and Cell Cardiology, 22 (1990), 253–277.
N. Westerhof , G. Elzinga and P. Sipkema . An artificial arterial system for pumping hearts. Journal of Applied Physiology, 31 (1971), 776–781.
M. Yoshigi and B. B. Keller . Characterization of embryonic aortic impedance with lumped parameter models. American Journal of Physiology: Heart and Circulatory Physiology, 273 (1997), H19–H27.
C. G. Caro , T. J. Pedley , R. C. Schroter and W. A. Seed . The Mechanics of the Circulation (Oxford: Oxford University Press, 1978).
C. J. Mills , I. T. Gabe , J. H. Gault , D. T. Mason , J. Ross, Jr. et al. Pressure–flow relationships and vascular impedance in man. Cardiovascular Research, 4 (1970), 405–417.
D. W. Vaughan . A Learning System in Histology (Oxford: Oxford University Press, 2002).
M. A. Zulliger , A. Rachev and N. Stergiopulos . A constitutive formulation of arterial mechanics including vascular smooth muscle tone. American Journal of Physiology: Heart and Circulatory Physiology, 287 (2004), H1335–H1343.
P. B. Canham , E. A. Talman , H. M. Finlay and J. G. Dixon . Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connective Tissue Research, 26 (1991), 121–134.
L. H. Peterson , R. E. Jensen and J. Parnell . Mechanical properties of arteries in vivo. Circulation Research, 8 (1960), 622–639.
S. Jin , J. Oshinski and D. P. Giddens . Effects of wall motion and compliance on flow patterns in the ascending aorta. Journal of Biomechanical Engineering, 125 (2003), 347–354.
D. J. Patel, Jr. and D. L. Fry. In vivo pressure–length–radius relationship of certain blood vessels in man and dog. In Pulsatile Blood Flow, ed. E. O. Attinger . (New York: McGraw-Hill, 1964), pp. 293–302.
P. C. Luchsinger , M. Sachs and D. J. Patel . Pressure–radius relationship in large blood vessels of man. Circulation Research, 11 (1962), 885–888.
J. O. Arndt . [On the mechanism of the intact human common carotid artery under various circulatory conditions.] Archiv fArchiv für Kreislaufforschung, 59 (1969), 153–197.
W. A. Riley , D. S. Freedman , N. A. Higgs , R. W. Barnes , S. A. Zinkgraf et al. Decreased arterial elasticity associated with cardiovascular disease risk factors in the young. Bogalusa Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 6 (1986), 378–386.
J. C. Greenfield and D. M. Griggs . Relation between pressure and diameter in main pulmonary artery of man. Journal of Applied Physiology, 18 (1963), 557–559.
B. S. Gow and M. G. Taylor . Measurement of viscoelastic properties of arteries in the living dog. Circulation Research, 23 (1968), 111–122.
R. P. Vito and S. A. Dixon . Blood vessel constitutive models 1995–2002. Annual Review of Biomedical Engineering, 5 (2003), 413–439.
R. L. Daugherty , J. B. Franzini and E. J. Finnemore . Fluid Mechanics With Engineering Applications, 8th edn (New York: McGraw-Hill, 1985).
E. M. Landis . Micro-injection studies of capillary permeability: II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. American Journal of Physiology, 82 (1927), 217–238.
R. L. Wesly , R. N. Vaishnav , J. C. Fuchs , D. J. Patel and J. C. Greenfield, Jr . Static linear and nonlinear elastic properties of normal and arterialized venous tissue in dog and man. Circulation Research, 37 (1975), 509–520.
R. Gottlob and R. May . Venous Valves (New York: Springer Verlag, 1986).
C. R. White and R. S. Seymour . Mammalian basal metabolic rate is proportional to body mass2/3 . Proceedings of the National Academy of Sciences USA, 100 (2003), 4046–4049.
A. C. Guyton , C. E. Jones and T. G. Coleman . Circulatory Physiology: Cardiac Output and Its Regulation (Philadelphia, PA: W. B. Saunders, 1973).
T. K. Lam and D. T. Leung . More on simplified calculation of body-surface area. New England Journal of Medicine, 318 (1988), 1130.
R. D. Mosteller . Simplified calculation of body-surface area. New England Journal of Medicine, 317 (1987), 1098.
O. L. Wade and J. M. Bishop . Cardiac Output and Regional Blood Flow (Oxford: Blackwell, 1962).
L. Lindstedt and P. J. Schaeffer . Use of allometry in predicting anatomical and physiological parameters of mammals. Laboratory Animals, 36 (2002), 1–19.
E. F. Adolph . Quantitative relations in the physiological constitutions of mammals. Science, 109 (1949), 579–585.
W. R. Stahl . Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22 (1967), 453–460.
J. P. Holt , E. A. Rhode and H. Kines . Ventricular volumes and body weight in mammals. American Journal of Physiology, 215 (1968), 704–715.
G. Juznic and H. Klensch . [Comparative physiological studies on the behavior of the indices for energy consumption and performance of the heart.] [In German]. Pflugers Archiv für Die Gesamte Physiologie Des Menschen und Der Tiere, 280 (1964), 38–45.
J. L. Patterson, Jr. , R. H. Goetz , J. T. Doyle , J. V. Warren , O. H. Gauer et al. Cardiorespiratory dynamics in the ox and giraffe, with comparative observations on man and other mammals. Annals of the New York Academy of Sciences, 127 (1965), 393–413.
B. Gunther and E. Guerra . Biological similarities. Acta Physiologica Latino Americana, 5 (1955), 169–186.
J. K.-J. Li. Arterial System Dynamics (New York: New York University Press, 1987).
J. P. Holt , E. A. Rhode , W. W. Holt and H. Kines . Geometric similarity of aorta, venae cavae, and certain of their branches in mammals. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 241 (1981), R100–R104.
J. K.-J. Li. Comparative Cardiovascular Dynamics of Mammals (Boca Raton, FL: CRC Press, 1996).
N. Westerhof , N. Stergiopulos and M. I. M. Noble . Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education (New York: Springer, 2005).
N. R. Tai , H. J. Salacinski , A. Edwards , G. Hamilton and A. M. Seifalian . Compliance properties of conduits used in vascular reconstruction. British Journal of Surgery, 87 (2000), 1516–1524.
B. S. Massey . Mechanics of Fluids, 6th edn (London: Van Nostrand Reinhold, 1989).
C. D. Murray . The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences USA, 12 (1926), 207–214.
A. Katchalsky and P. F. Curran . Nonequilibrium Thermodynamics in Biophysics (Cambridge, MA: Harvard University Press, 1965).
O. Kedem and A. Katchalsky . Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochimica et Biophysica Acta, 27 (1958), 229–246.
J. D. Ferry . Statistical evaluation of sieve constants in ultrafiltration. Journal of General Physiology, 20 (1936), 95–104.

Reference Title: References

Reference Type: reference-list

C. A. Helm , M. E. Fleury , A. H. Zisch , F. Boschetti and M. A. Swartz . Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proceedings of the National Academy of Sciences USA, 102 (2005), 15779–15784.
H. P. G. Darcy . Les Fontaines Publiques De La Ville De Dijon (Paris: Dalmont, 1856).
P. Bobeck (translater). The Public Fountains of the City of Dijon by Henry Darcy (1856). (Dubuque, IA: Kendall/Hunt, 2004).
J. R. Casely-Smith. Lymph and lymphatics. In Microcirculation, ed. G. Kaley and B. M. Altura . (Baltimore, MD: University Park Press, 1977), pp. 423–500.
P. J. Flory . Principles of Polymer Chemistry (Ithaca, NY: Cornell University Press, 1971).
M. Johnson. Transport through the aqueous outflow system of the eye. Ph. D. thesis, Massachusetts Institute of Technology (1987).

Reference Title: References

Reference Type: reference-list

H. F. Krey and H. Bräuer . Chibret Augenatlas: Eine Repetition für Ärtze mit Zeigetafeln Für Patienten (Munich: Chibret Medical Service, 1998).
S. Karim , R. A. Clark , V. Poukens and J. L. Demer . Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Investigative Ophthalmology and Visual Science, 45 (2004), 1047–1051.
J. L. Demer . The orbital pulley system: a revolution in concepts of orbital anatomy. Annals of the New York Academy of Sciences, 956 (2002), 17–32.
S. P. Bartels. Aqueous humor formation: fluid production by a sodium pump. In The Glaucomas, ed. R. Ritch , M. B. Shields and T. Krupin . (St. Louis, MO: Mosby, 1989), pp. 199–218.
E. M. Schottenstein . Intraocular pressure. In The Glaucomas, ed. R. Ritch , M. B. Shields and T. Krupin . (St. Louis, MO: Mosby, 1989), pp. 301–317.
H. A. Quigley . Number of people with glaucoma worldwide. British Journal of Ophthalmology, 80 (1996), 389–393.
H. A. Quigley . Neuronal death in glaucoma. Progress in Retinal and Eye Research, 18 (1999), 39–57.
J. Gloster. Tonometry and Tonography (London: J. & A. Churchill, 1966).
M. J. Doughty and M. L. Zaman . Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Survey of Ophthalmology, 44 (2000), 367–408.
C. Y. Shih , J. S. Graff Zivin , S. L. Trokel and J. C. Tsai . Clinical significance of central corneal thickness in the management of glaucoma. Archives of Ophthalmology, 122 (2004), 1270–1275.
J. D. Brandt . Corneal thickness in glaucoma screening, diagnosis, and management. Current Opinion in Ophthalmology, 15 (2004), 85–89.
R. F. Brubaker. Measurement of aqueous flow by fluorophotometry. In The Glaucomas, ed. R. Ritch , M. B. Shields and T. Krupin . (St. Louis, MO: Mosby, 1989), pp. 337–344.
A. D. Beck . Review of recent publications of the Advanced Glaucoma Intervention Study. Current Opinion in Ophthalmology, 14 (2003), 83–85.
B. Becker and A. H. Neufeld . Pressure dependence of uveoscleral outflow. Journal of Glaucoma, 11 (2002), 545.
C. Linden and A. Alm . Prostaglandin analogues in the treatment of glaucoma. Drugs and Aging, 14 (1999), 387–398.
M. J. Hogan , J. A. Alvarado and J. E. Weddel . Histology of the Human Eye (Philadelphia, PA: W. B. Saunders, 1971).
C. R. Ethier , A. T. Read and D. Chan . Biomechanics of Schlemm's canal endothelial cells: influence on F-actin architecture. Biophysical Journal, 87 (2004), 2828–2837.
O. Mäepea and A. Bill . The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Experimental Eye Research, 49 (1989), 645–663.
O. Mäepea and A. Bill . Pressures in the juxtacanalicular tissue and schlemm's canal in monkeys. Experimental Eye Research, 54 (1992), 879–883.
C. R. Ethier . The inner wall of schlemm's canal. Experimental Eye Research, 74 (2002), 161–172.
R. F. Brubaker . Determination of episcleral venous pressure in the eye. A comparison of three methods. Archives of Ophthalmology, 77 (1967), 110–114.
C. D. Phelps and M. F. Armaly . Measurement of episcleral venous pressure. American Journal of Ophthalmology, 85 (1978), 35–42.
M. Johnson and R. D. Kamm . The role of schlemm's canal in aqueous outflow from the human eye. Investigative Ophthalmology and Visual Science, 24 (1983), 320–325.
F. M. White . Viscous Fluid Flow, 2nd edn (New York: McGraw-Hill, 1991).
R. F. Brubaker . The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Investigative Ophthalmology, 14 (1975), 286–292.
R. K. Shah and A. L. London . Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data (New York: Academic Press, 1978).
R. R. Allingham , A. W. de Kater and C. R. Ethier . Schlemm's canal and primary open angle glaucoma: correlation between schlemm's canal dimensions and outflow facility. Experimental Eye Research, 62 (1996), 101–109.
C. R. Ethier , R. D. Kamm , B. A. Palaszewski , M. C. Johnson and T. M. Richardson . Calculation of flow resistance in the juxtacanalicular meshwork. Investigative Ophthalmology and Visual Science, 27 (1986), 1741–1750.
J. P. Alexander , J. R. Samples and T. S. Acott . Growth factor and cytokine modulation of trabecular meshwork matrix metalloproteinase and TIMP expression. Current Eye Research, 17 (1998), 276–285.
J. M. Bradley , M. J. Kelley , X. Zhu , A. M. Anderssohn , J. P. Alexander et al. Effects of mechanical stretching on trabecular matrix metalloproteinases. Investigative Ophthalmology and Visual Science, 42 (2001), 1505–1513.
J. M. Bradley , J. Vranka , C. M. Colvis , D. M. Conger , J. P. Alexander et al. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Investigative Ophthalmology and Visual Science, 39 (1998), 2649–2658.
J. R. Levick . Flow through interstitium and other fibrous matrices. Quarterly Journal of Experimental Physiology, 72 (1987), 409–437.
M. Johnson and K. Erickson. Mechanisms and routes of aqueous humor drainage. In 4: Principles and Practices of Ophthalmology, ed. D. M. Albert and F. A. Jakobiec . (Philadelphia, PA: W. B. Saunders, 2000), pp. 2577–2595.
W. Ye , H. Gong , A. Sit , M. Johnson and T. F. Freddo . Interendothelial junctions in normal human schlemm's canal respond to changes in pressure. Investigative Ophthalmology and Visual Science, 38 (1997), 2460–2468.
M. Johnson , A. Shapiro , C. R. Ethier and R. D. Kamm . The modulation of outflow resistance by the pores of the inner wall endothelium. Investigative Ophthalmology and Visual Science, 33 (1992), 1670–1675.
C. R. Canning , M. J. Greaney , J. N. Dewynne and A. D. Fitt . Fluid flow in the anterior chamber of a human eye. IMA Journal of Mathematics Applied in Medicine and Biology, 19 (2002), 31–60.
J. J. Heys and V. H. Barocas . A Boussinesq model of natural convection in the human eye and the formation of krukenberg's spindle. Annals of Biomedical Engineering, 30 (2002), 392–401.
J. Heys and V. H. Barocas . Mechanical characterization of the bovine iris. Journal of Biomechanics, 32 (1999), 999–1003.
J. J. Heys and V. H. Barocas . Computational evaluation of the role of accommodation in pigmentary glaucoma. Investigative Ophthalmology and Visual Science, 43 (2002), 700–708.
J. J. Heys , V. H. Barocas and M. J. Taravella . Modeling passive mechanical interaction between aqueous humor and iris. Journal of Biomechanical Engineering, 123 (2001), 540–547.
D. S. Minckler . Histology of optic nerve damage in ocular hypertension and early glaucoma. Survey of Ophthalmology, 33(Suppl) (1989), 401–402.
H. Lodish , A. Berk , S. L. Zipursky , P. Matsudaira , D. Baltimore et al. Molecular Cell Biology, 4th edn (New York: Freeman, 2000).
D. R. Anderson and A. Hendrickson . Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investigative Ophthalmology, 13 (1974), 771–783.
D. S. Minckler , A. H. Bunt and I. B. Klock . Radioautographic and cytochemical ultrastructural studies of axoplasmic transport in the monkey optic nerve head. Investigative Ophthalmology, 717 (1978), 33–50.
H. A. Quigley and D. R. Anderson . The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Investigative Ophthalmology, 15 (1976), 606–616.
H. A. Quigley , R. W. Flower , E. M. Addicks and D. S. McLeod . The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Investigative Ophthalmology and Visual Science, 19 (1980), 505–517.
L. A. Kerrigan-Baumrind , H. A. Quigley , M. E. Pease , D. F. Kerrigan and R. S. Mitchell . Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investigative Ophthalmology and Visual Science, 41 (2000), 741–748.
H. A. Quigley , E. M. Addicks , W. R. Green and A. E. Maumenee . Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of Ophthalmology, 99 (1981), 635–649.
H. A. Quigley and E. M. Addicks . Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Archives of Ophthalmology, 99 (1981), 137–143.
M. R. Hernandez . The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Progress in Retinal and Eye Research, 19 (2000), 297–321.
D. R. Anderson. Optic nerve blood flow. In Optic Nerve in Glaucoma, ed. S. M. Drance and D. R. Anderson . (New York: Kluger, 1995), pp. 311–331.
G. A. Cioffi. Vascular anatomy of the anterior optic nerve. In Current Concepts on Ocular Blood Flow in Glaucoma, ed. L. E. Pillunat , A. Harris , D. A. Anderson and E. L. Greve . (The Hague, Netherlands: Kugler, 1999), pp. 45–48.
S. S. Hayreh. Blood supply of the optic nerve head. A ‘reality check.’ In Current Concepts on Ocular Blood Flow in Glaucoma, ed. L. E. Pillunat , A. Harris , D. A. Anderson and E. L. Greve . (The Hague, Netherlands: Kugler, 1999), pp. 3–31.
E. M. van Buskirk and G. A. Cioffi. Microvasculature of the optic disc and glaucoma. In Glaucoma: Decision Making in Therapy, ed. M. G. Bucci . (Milan: Springer Verlag, 1996).
A. P. Nesterov and E. A. Egoriv. Pathological physiology of primary open angle glaucoma. In Glaucoma, ed. J. Cairns . (Miami, FL: Grune and Stratton, 1986), pp. 382–396.
D. B. Yan , A. Metheetrairut , F. M. Coloma , G. E. Trope , J. G. Heathcote et al. Deformation of the lamina cribrosa by elevated intraocular pressure. British Journal of Ophthalmology, 78 (1994), 643–648.
N. S. Levy and E. E. Crapps . Displacement of optic nerve head in response to short-term intraocular pressure elevation in human eyes. Archives of Ophthalmology, 102 (1984), 782–786.
N. S. Levy , E. E. Crapps and R. C. Bonney . Displacement of the optic nerve head. Response to acute intraocular pressure elevation in primate eyes. Archives of Ophthalmology, 99 (1981), 2166–2174.
D. B. Yan , J. G. Flanagan , T. Farra , G. E. Trope and C. R. Ethier . Study of regional deformation of the optic nerve head using scanning laser tomography. Current Eye Research, 17 (1998), 903–916.
D. Q. He and Z. Q. Ren . A biomathematical model for pressure-dependent lamina cribrosa behavior. Journal of Biomechanics, 32 (1999), 579–584.
M. E. Edwards and T. A. Good . Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation. Current Eye Research, 23 (2001), 215–225.
S. Timoshenko and S. Woinowsky-Krieger . Theory of Plates and Shells (New York: McGraw-Hill, 1959).
J. B. Jonas , C. Y. Mardin , U. Schlotzer-Schrehardt and G. O. Naumann . Morphometry of the human lamina cribrosa surface. Investigative Ophthalmology and Visual Science, 32 (1991), 401–405.
S. Timoshenko and J. N. Goodier . Theory of Elasticity (New York: McGraw-Hill, 1970).
I. A. Sigal , J. G. Flanagan , I. Tertinegg and C. R. Ethier . Finite element modeling of optic nerve head biomechanics. Investigative Ophthalmology and Visual Science, 45 (2004), 4378–4387.
M. E. Edwards , S. S. Wang and T. A. Good . Role of viscoelastic properties of differentiated SH-SY5Y human neuroblastoma cells in cyclic shear stress injury. Biotechnology Progress, 17 (2001), 760–767.
S. S. Margulies and L. E. Thibault . A proposed tolerance criterion for diffuse axonal injury in man. Journal of Biomechanics, 25 (1992), 917–923.
B. Morrison III , H. L. Cater , C. B. Wang , F. C. Thomas , C. T. Hung et al. A tissue level tolerance criteria for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash Journal, 47 (2003), 93–105.
D. H. Triyoso and T. A. Good . Pulsatile shear stress leads to DNA fragmentation in human SH-SY5Y neuroblastoma cell line. Journal of Physiology, 515(Pt 2) (1999), 355–365.
A. J. Bellezza , R. T. Hart and C. F. Burgoyne . The optic nerve head as a biomechanical structure: initial finite element modeling. Investigative Ophthalmology and Visual Science, 41 (2000), 2991–3000.
H. Gray . Anatomy of the Human Body, 20th edn: thoroughly reviewed and reedited by W. H. Lewis (Philadelphia, PA: Lea and Febiger, 1918).
H. Kolb , E. Fernandez and R. Nelson . Webvision: The Organization of the Retina and Visual System. Available at http://webvision.med.utah.edu/sretina.html (2005).
R. Collins and T. J. van der Werff . Mathematical Models of the Dynamics of the Human Eye, No. 34 of Lecture Notes in Biomathematics (Berlin: Springer Verlag, 1980).
A. Bill . Blood circulation and fluid dynamics in the eye. Physiological Reviews, 55 (1975), 383–416.
N. D. Wangsa-Wirawan and R. A. Linsenmeier . Retinal oxygen: fundamental and clinical aspects. Archives of Ophthalmology, 121 (2003), 547–557.
R. D. Kamm. Flow through collapsible tubes. In Handbook of Bioengineering, ed. R. Skalak and S. Chien . (New York: McGraw-Hill, 1987), pp. 23.1–23.19.
A. H. Shapiro . Steady flow in collapsible tubes. Journal of Biomechanical Engineering, 99 (1977), 126–147.
D. F. Cole . Aqueous humour formation. Documenta Ophthalmologica, 21 (1966), 116–238.
O. Mäepea . Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Experimental Eye Research, 54 (1992), 731–736.
J. E. Grunwald , B. L. Petrig and F. Robinson . Retinal blood flow autoregulation in response to an acute increase in blood pressure. Investigative Ophthalmology and Visual Science, 27 (1986), 1706–1712.
C. B. Stalford . Update for nurse anesthetists. The Starling resistor: a model for explaining and treating obstructive sleep apnea. AANA Journal, 72 (2004), 133–138.
L. Huang , S. J. Quinn , P. D. M. Ellis and J. E. Ffowcs Williams . Biomechanics of snoring. Endeavour, 19 (1995), 96–100.
N. Gavriely , K. B. Kelly , J. B. Grotberg and S. H. Loring . Forced expiratory wheezes are a manifestation of airway flow limitation. Journal of Applied Physiology, 62 (1987), 2398–2403.
B. S. Brook and T. J. Pedley . A model for time-dependent flow in (giraffe jugular) veins: uniform tube properties. Journal of Biomechanics, 35 (2002), 95–107.
M. Bathe and R. D. Kamm . A fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. Journal of Biomechanical Engineering, 121 (1999), 361–369.

Reference Title: References

Reference Type: reference-list

A. J. Vander , J. H. Sherman and D. S. Luciano . Human Physiology: The Mechanisms of Body Function, 4th edn (New York: McGraw-Hill, 1985).
E. R. Weibel . The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System (Cambridge, MA: Harvard University Press, 1984).
E. R. Weibel . Morphometry of the Human Lung (New York: Academic Press, 1963).
D. W. Fawcett. Bloom and Fawcett: A Textbook of Histology (Philadephia, PA: W. B. Saunders, 1986).
D. E. Schraufnagel (ed.) Electron Microscopy of the Lung (New York: Marcel Dekker, 1990), p. 298.
E. R. Weibel and D. M. Gomez . Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science, 137 (1962), 577–585.
M. Ochs , J. R. Nyengaard , A. Jung , L. Knudsen , M. Voigt et al. The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine, 169 (2004), 120–124.
D. L. Vawter and J. D. Humphrey. Elasticity of the lung. In Handbook of Bioengineering, ed. R. Skalak and S. Chien . (New York: McGraw-Hill, 1987), pp.24.1–24.20.
J. A. Clements . Surface phenomena in relation to pulmonary function. Physiologist, 5 (1962), 11–28.
H. Bachofen , J. Hildebrandt and M. Bachofen . Pressure–volume curves of air-and liquid-filled excised lungs: surface tension in situ. Journal of Applied Physiology, 29 (1970), 422–431.
B. Sapoval , M. Filoche and E. R. Weibel . Smaller is better – but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proceedings of the National Academy of Sciences USA, 99 (2002), 10411–10416.
S. S. Sobin , Y. C. Fung , H. M. Tremer and T. H. Rosenquist . Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circulation Research, 30 (1972), 440–450.
C. Christoforides , L. H. Laasberg and J. Hedley-Whyte . Effect of temperature on solubility of O 2 in human plasma. Journal of Applied Physiology, 26 (1969), 56–60.
W. H. Austin , E. Lacombe , P. W. Rand and M. Chatterjee . Solubility of carbon dioxide in serum from 15 to 38 ℃C. Journal of Applied Physiology, 18 (1963), 301–304.
D. O. Cooney. Biomedical Engineering Principles (New York: Marcel Dekker, 1976).
B. M. Wiebe and H. Laursen . Human lung volume, alveolar surface area, and capillary length. Microscopy Research and Technique, 32 (1995), 255–262.
R. L. Capen , L. P. Latham and W. W. Wagner, Jr. Comparison of direct and indirect measurements of pulmonary capillary transit times. Journal of Applied Physiology, 62 (1987), 1150–1154.
N. C. Staub and E. L. Schultz . Pulmonary capillary length in dogs, cat and rabbit. Respiration Physiology, 5 (1968), 371–378.
C. G. Caro , T. J. Pedley , R. C. Schroter and W. A. Seed . The Mechanics of the Circulation (Oxford: Oxford University Press, 1978).
E. R. Weibel , W. J. Federspiel , F. Fryder-Doffey , C. C. Hsia , M. Konig et al. Morphometric model for pulmonary diffusing capacity. I. Membrane diffusing capacity. Respiration Physiology, 93 (1993), 125–149.
W. Huang , R. T. Yen , M. McLaurine and G. Bledsoe . Morphometry of the human pulmonary vasculature. Journal of Applied Physiology, 81 (1996), 2123–2133.
A. S. Popel . A finite-element model of oxygen diffusion in the pulmonary capillaries. Journal of Applied Physiology, 82 (1997), 1717–1718.
A. C. Guyton . Textbook of Medical Physiology, 4th edn (Philadelphia, PA: W. B. Saunders, 1971).
H. T. Milhorn, Jr. and P. E. Pulley, Jr. A theoretical study of pulmonary capillary gas exchange and venous admixture. Biophysical Journal, 8 (1968), 337–357.
A. O. Frank , C. J. Chuong and R. L. Johnson . A finite-element model of oxygen diffusion in the pulmonary capillaries. Journal of Applied Physiology, 82 (1997), 2036–2044.
A. A. Merrikh and J. L. Lage . Effect of blood flow on gas transport in a pulmonary capillary. Journal of Biomechanical Engineering, 127 (2005), 432–439.
E. L. Cussler . Diffusion: Mass Transfer in Fluid Systems, 2nd edn (New York: Cambridge University Press, 1997).
M. Felici , M. Filoche and B. Sapoval . Diffusional screening in the human pulmonary acinus. Journal of Applied Physiology, 94 (2003), 2010–2016.
E. R. Weibel , B. Sapoval and M. Filoche . Design of peripheral airways for efficient gas exchange. Respiratory Physiology and Neurobiology, 148 (2005), 3–21.
D. R. Owens , B. Zinman and G. Bolli . Alternative routes of insulin delivery. Diabetic Medicine, 20 (2003), 886–898.
J. B. Grotberg . Respiratory fluid mechanics and transport processes. Annual Review of Biomedical Engineering, 3 (2001), 421–457.
F. M. White . Viscous Fluid Flow, 2nd edn (New York: McGraw-Hill, 1991).
L. A. Spielman . Particle capture from low-speed laminar flows. Annual Review of Fluid Mechanics, 9 (1977), 297–319.
E. P. Radford, Jr. Recent studies of mechanical properties of mammalian lungs. In Tissue Elasticity, ed. J. W. Remington . (Washington, DC: American Physiological Society, 1957), pp. 177–190.
E. L. Green (ed.) for the Jackson Laboratory. Biology of the Laboratory Mouse, 2nd edn (New York: Dover, 1966).
M. R. Dohm , J. P. Hayes and T. Garland, Jr. The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics, 159 (2001), 267–277.

Reference Title: References

Reference Type: reference-list

A. L. Lehninger . Biochemistry , 2nd edn (New York: Worth, 1975).
A. J. Vander , J. H. Sherman and D. S. Luciano . Human Physiology: The Mechanisms of Body Function , 4th edn (New York: McGraw-Hill, 1985).
D. W. Fawcett . Bloom and Fawcett: A Textbook of Histology (Philadelphia, PA: W. B. Saunders, 1986).
A. Despopolous and S. Silbernagl . Color Atlas of Physiology (New York: Georg Thieme Verlag, 1986).
J. Desaki and Y. Uehara . The overall morphology of neuromuscular junctions as revealed by scanning electron microscopy. Journal of Neurocytology, 10 (1981), 101–110.
B. R. Jewell and D. R. Wilkie . The mechanical properties of relaxing muscle. Journal of Physiology, 152 (1960), 30–47.
A. J. McComas . Skeletal Muscle Form and Function (Champaign, IL: Human Kinetics, 1996).
A. M. Gordon , A. F. Huxley and F. J. Julian . The variation in isometric tension with sarcomere length in vertebrate muscle fibers. Journal of Physiology, 184 (1966), 170–192.
A. V. Hill . The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126 (1938), 136–195.
T. A. McMahon . Muscles, Reflexes and Locomotion (Princeton, NJ: Princeton University Press, 1984).
G. F. Inbar and D. Adam . Estimation of muscle active state. Biological Cybernetics, 23 (1976), 61–72.
Y. C. Fung . Biomechanics: Mechanical Properties of Living Tissues (New York: Springer Verlag, 1981).
J. Z. Young . The Life of Mammals (London: Oxford University Press, 1975).
E. S. Hsu , A. G. Patwardhan , K. P. Meade , T. R. Light and W. R. Martin . Cross- sectional geometrical properties and bone mineral contents of the human radius and ulna. Journal of Biomechanics, 26 (1993), 1307–1318.
W. M. Murray , T. S. Buchanan and S. L. Delp . Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. Journal of Biomechanics, 35 (2002), 19–26.
M. Gerbeaux , E. Turpin and G. Lensel-Corbeil . Musculo-articular modeling of the triceps brachii. Journal of Biomechanics, 29 (1996), 171–180.
C. I. Morse , J. M. Thom , N. D. Reeves , K. M. Birch and M. V. Narici . In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. Journal of Applied Physiology, 99 (2005), 1050–1055.
W. M. Murray , T. S. Buchanan and S. L. Delp . The isometric functional capacity of muscles that cross the elbow. Journal of Biomechanics, 33 (2000), 943–952.
C. S. Klein , C. L. Rice and G. D. Marsh . Normalized force, activation, and coactivation in the arm muscles of young and old men. Journal of Applied Physiology, 91 (2001), 1341–1349.
M. J. Hubal , H. Gordish-Dressman , P. D. Thompson , T. B. Price , E. P. Hoffman et al. Variability in muscle size and strength gain after unilateral resistance training. Medicine and Science in Sports and Exercise, 37 (2005), 964–972.
J. A. Kent-Braun and A. V. Ng . Specific strength and voluntary muscle activation in young and elderly women and men. Journal of Applied Physiology, 87 (1999), 22–29.
P. T. Prendergast, F. C. T. van der Helm and G. N. Duda. Analysis of muscle and joint loads. In Basic Orthopaedic Biomechanics and Mechanobiology , ed. V. C. Mow and R. Huiskes . (Philadelphia, PA: Lippincott, Williams & Wilkins, 2005), pp. 29–90.
L. Wang and T. S. Buchanan . Prediction of joint moments using a neural network model of muscle activations from EMG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 30–37.
D. B. Burr and R. B. Martin . The effects of composition, structure and age on the torsional properties of the human radius. Journal of Biomechanics, 16 (1983), 603–608.
C. T. Rubin and L. E. Lanyon . Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. Journal of Theoretical Biology, 107 (1984), 321–327.
R. A. Kaufmann , S. H. Kozin , A. Barnes and P. Kalluri . Changes in strain distribution along the radius and ulna with loading and interosseous membrane section. Journal of Hand Surgery, 27 (2002), 93–97.
J. C. McGinley and S. H. Kozin . Interossus membrane anatomy and functional mechanics. Clinical Orthopaedics and Related Research, (2001), 108–122.
L. A. Poitevin . Anatomy and biomechanics of the interosseous membrane: its importance in the longitudinal stability of the forearm. Hand Clinics, 17 (2001), 97–110, vii.
F. W. Werner and K. N. An . Biomechanics of the elbow and forearm. Hand Clinics, 10 (1994), 357–373.
G. Finerman (ed.) Symposium on Sports Medicine: The Knee (St. Louis, MO: Mosby, 1985).
H. Gray . Anatomy of the Human Body, 20th edn: thoroughly reviewed and re-edited by W. H. Lewis (Philadelphia, PA: Lea and Febiger, 1918).
G. J. Romanes . Cunningham's Manual of Practical Anatomy , 15th edn, Vol. I (Oxford: Oxford University Press, 1986).
P. G. J. Maquet . Biomechanics of the Knee , 2nd edn (New York: Springer Verlag, 1984).
H. H. Huberti and W. C. Hayes . Patellofemoral contact pressures. The influence of Q-angle and tendofemoral contact. Journal of Bone and Joint Surgery (American Volume), 66 (1984), 715–724.
H. H. Huberti and W. C. Hayes. Determination of patellofemoral contact pressures. In Symposium on Sports Medicine: The Knee , ed. G. Finerman . (St. Louis, MO: Mosby, 1985), pp. 45–53.

Reference Title: References

Reference Type: reference-list

J. Z. Young . The Life of Mammals (London: Oxford University Press, 1975).
A. Vesalius . Bones and Cartilages. On the Fabric of the Human Body (San Francisco, CA: Norman, 1998).
A. M. Parfitt. The physiologic and clinical significance of bone histomorphometric data. In Bone Histomorphometry, ed. R. R. Recker (Boca Raton, FL: CRC Press, 1983), pp. 143–224.
W. C. Hayes and M. Bouxsein. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In Basic Orthopaedic Biomechanics, 2nd edn, ed. V. C. Mow and W. C. Hayes . (Philadelphia, PA: Lippincott-Raven, 1997), pp. 69–111.
R. Huiskes and B. van Rietbergen. Biomechanics of bone. In Basic Orthopaedic Biomechanics and Mechano-biology, 3rd edn, ed. V. C. Mow and R. Huiskes . (Philadelphia, PA: Lippincott, Williams & Wilkins, 2005), pp. 123–139.
A. Ham and D. Cormack . Histophysiology of Cartilage, Bone, and Joints (Toronto: Lippincott, 1979).
J. Wolff . Ueber die Innere Architectur der Knochen und Ihre Bedeutung für die Frage Vom Knochenwachsthum. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, 50 (1870), 389–450.
R. Muller , H. van Campenhout , B. van Damme , G. van der Perre , J. Dequeker , et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone, 23 (1998), 59–66.
X. E. Guo and S. A. Goldstein . Is trabecular bone tissue different from cortical bone tissue? Forma, 12 (1997), 185–196.
D. R. Carter and W. C. Hayes . The compressive behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery (American Volume), 59 (1977), 954–962.
T. M. Keaveny . Strength of trabecular bone. In Bone Mechanics Handbook, 2nd edn, ed. S. C. Cowin . (New York: CRC Press, 2001), pp. 16.1–16.42.
L. J. Gibson and M. F. Ashby . Cellular Solids: Structure and Properties, 2nd edn (Cambridge: Cambridge University Press, 1997).
W. C. Hayes and D. R. Carter . Postyield behavior of subchondral trabecular bone. Journal of Biomedical Materials Research, 10 (1976), 537–544.
J. C. Rice , S. C. Cowin and J. A. Bowman . On the dependence of the elasticity and strength of cancellous bone on apparent density. Journal of Biomechanics, 21 (1988), 155–168.
B. van Rietbergen and R. Huiskes. Elastic constants of cancellous bone. In Bone Mechanics Handbook, 2nd edn, ed. S. C. Cowin . (Boca Raton, FL: CRC Press, 2001), pp. 15.1–15.24.
S. W. Donahue , N. A. Sharkey , K. A. Modanlou , L. N. Sequeira and R. B. Martin . Bone strain and microcracks at stress fracture sites in human metatarsals. Bone, 27 (2000), 827–833.
D. B. Burr , R. B. Martin , M. B. Schaffler and E. L. Radin . Bone remodeling in response to in vivo fatigue microdamage. Journal of Biomechanics, 18 (1985), 189–200.
M. F. Ashby and D. H. R. Jones . Engineering Materials: An Introduction to Their Properties and Applications (Oxford: Pergamon Press, 1980).
K. Piekarski. Fractography of bone. In Natural and Living Biomaterials, ed. G. W. Hastings and P. Ducheyne . (Boca Raton, FL: CRC Press, 1984), pp. 99–117.
R. B. Martin , D. B. Burr and N. A. Sharkey . Skeletal Tissue Mechanics (New York: Springer Verlag, 1998).
D. Taylor and P. J. Prendergast . A model for fatigue crack propagation and remodeling in compact bone. Proceedings of the Institute of Mechanical Engineers, Series H, 211 (1997), 369–375.
H. Roesler . The history of some fundamental concepts in bone biomechanics. Journal of Biomechanics, 20 (1987), 1025–1034.
A. Keith . Hunterian Lecture on Wolff's law of bone-transformation. Lancet, 16 (1918), 250–252.
H. H. Jones , J. D. Priest , W. C. Hayes , C. C. Tichenor and D. A. Nagel . Humeral hypertrophy in response to exercise. Journal of Bone and Joint Surgery (American Volume), 59 (1977), 204–208.
C. T. Rubin and L. E. Lanyon . Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. Journal of Theoretical Biology, 107 (1984), 321–327.
J. D. Currey . How well are bones designed to resist fracture? Journal of Bone and Mineral Research, 18 (2003), 591–598.
M. Nordin and V. H. Frankel . Basic Biomechanics of the Musculoskeletal System (Malvern, PA: Lea & Febiger, 1989).
B. M. Nigg and W. Herzog . Biomechanics of the Musculo-Skeletal System (Chichester, UK: John Wiley, 1999).
A. L. Nachemson and J. H. Evans . Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). Journal of Biomechanics, 1 (1968), 211–220.
J. Kastelic , A. Galeski and E. Baer . The multicomposite structure of tendon. Connective Tissue Research, 6 (1978), 11–23.
W. A. Hodge , R. S. Fijan , K. L. Carlson , R. G. Burgess , W. H. Harris et al. Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences USA, 83 (1986), 2879–2883.
G. A. Ateshian and V. C. Mow. Friction, lubrication, and wear of articular cartilage and diarthrodial joints. In Basic Orthopaedic Biomechanics and Mechano-biology, 3rd edn, ed. V. C. Mow and R. Huiskes . (Philadelphia, PA: Lippincott Williams & Wilkins, 2005), pp. 447–494.
F. Eckstein , M. Reiser , K. H. Englmeier and R. Putz . In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging: from image to data, from data to theory. Anatomy and Embryology, 203 (2001), 147–173.
L. A. Setton , D. M. Elliott and V. C. Mow . Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis and Cartilage, 7 (1999), 2–14.
M. A. Soltz and G. A. Ateshian . Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics, 31 (1998), 927–934.
M. Frisen , M. Magi , L. Sonnerup and A. Viidik . Rheological analysis of soft collagenous tissue. part I: theoretical considerations. Journal of Biomechanics, 2 (1969), 13–20.
S. L. Y. Woo , T. Q. Lee , S. D. Abramowitch and T. W. Gilbert. Structure and function of ligaments and tendons. In Basic Orthopaedic Biomechanics and Mechano-biology, 3rd edn, ed. V. C. Mow and R. Huiskes . (Philadelphia, PA: Lippincott, Williams & Wilkins, 2005), pp. 301–342.
D. L. Butler , M. D. Kay and D. C. Stouffer . Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of Biomechanics, 19 (1986), 425–432.
N. Sasaki and S. Odajima . Elongation mechanism of collagen fibrils and force–strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics, 29 (1996), 1131–1136.
T. A. L. Wren , S. A. Yerby , G. S. Beaupre and D. R. Carter . Mechanical properties of the human Achilles tendon. Clinical Biomechanics, 16 (2001), 245–251.
S. Akizuki , V. C. Mow , F. Muller , J. C. Pita , D. S. Howell et al. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. Journal of Orthopaedic Research, 4 (1986), 379–392.
V. C. Mow and X. E. Guo . Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annual Review of Biomedical Engineering, 4 (2002), 175–209.
V. C. Mow , W. Y. Gu and F. H. Chen. Structure and function of articular cartilage and meniscus. In Basic Orthopaedic Biomechanics and Mechano-biology, 3rd edn, ed. V. C. Mow and R. Huiskes . (Philadelphia, PA: Lippincott, Williams & Wilkins, 2005), pp. 181–258.
R. L. Sah , A. S. Yang , A. C. Chen , J. J. Hant , R. B. Halili et al. Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. Journal of Orthopaedic Research, 15 (1997), 197–203.
A. S. Wineman and K. R. Rajagopal . Mechancial Response of Polymers: An Introduction (Cambridge: Cambridge University Press, 2000).
P. Netti , A. D'Amore , D. Ronca , L. Ambrosio and L. Nicolais . Structure–mechanical properties relationship of natural tendons and ligaments. Journal of Materials Science: Materials in Medicine, 7 (1996), 525–530.
Y. C. Fung . Biomechanics: Mechanical Properties of Living Tissues (New York: Springer Verlag, 1981).
Y. M. Haddad . Viscoelasticity of Engineering Materials (London: Chapman & Hall, 1995).
Y. C. Fung . A First Course in Continuum Mechanics (London: Prentice-Hall International, 1994).
S. L. Woo , G. A. Johnson and B. A. Smith . Mathematical modeling of ligaments and tendons. Journal of Biomechanical Engineering, 115 (1993), 468–473.
V. C. Mow , S. C. Kuei , W. M. Lai and C. G. Armstrong . Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. Journal of Biomechanical Engineering, 102 (1980), 73–84.

Reference Title: References

Reference Type: reference-list

D. I. Miller and R. C. Nelson . Biomechanics of Sport (Philadelphia, PA: Lea and Febiger, 1973).
H. E. Edgerton . Stopping Time: The Photographs of Harold Edgerton (New York: Harry N. Abrams, Inc., 1987).
V. T. Inman , H. J. Ralston and F. Todd . Human Walking (Baltimore, MD: Williams & Wilkins, 1981).
J. B. d. C. M. Saunders , V. T. Inman and H. D. Eberhart . The major determinants in normal and pathological gait. Journal of Bone and Joint Surgery, 35A (1953), 543–558.
T. A. McMahon . Muscles, Reflexes and Locomotion (Princeton, NJ: Princeton University Press, 1984).
G. A. Cavagna , H. Thys and A. Zamboni . The sources of external work in level walking and running. Journal of Physiology, 262 (1976), 639–657.
D. A. Winter . Biomechanics of Human Movement (Toronto: John Wiley, 1979).
NASA,. Man–Systems Integration Standards. Available at http://msis.jsc.nasa.gov/default.htm (NASA Johnson Space Center, 1995).
D. A. Winter . Biomechanics and Motor Control of Human Movement, 2nd edn (New York: John Wiley, 1990).
W. Karwowski (ed.) International Encyclopedia of Ergonomics and Human Factors (London: Taylor & Francis, 2001).
J. Weimer . Handbook of Ergonomic and Human Factors Tables (Englewood Cliffs, NJ: Prentice Hall, 1993).
H. E. Edgerton and J. R. Killian Jr. Moments of Vision (Cambridge, MA: MIT Press, 1979).

Reference Title: References

Reference Type: reference-list

D. J. Aidley . The Physiology of Excitable Cells, 2nd edn (Cambridge:Cambridge University Press, 1978).
D. Noble. Cardiac action potentials and pacemaker activity. In Recent Advances in Physiology, 9th edn, ed. R. J. Linden . (Edinburgh: Churchill Livingstone, 1974), pp. 1–50.
A. C. Guyton and J. E. Hall . Textbook of Medical Physiology, 9th edn (Philadelphia, PA: W. B. Saunders, 1996).
K. Greenspan. Cardiac excitation, conduction and the electrocardiogram. In Physiology, 4th edn, ed. E. E. Selkurt . (Boston, MA: Little, Brown, 1976), pp. 311–336.
G. E. Dower, H. E. Horn and W. G. Ziegler. Clinical application of the polarcardiograph. In Vectorcardiography – 1965, ed. I. Hoffmann. (Amsterdam: North-Holland, 1966), pp. 71–91.