Data Analysis Using SAS Enterprise Guide


Data Analysis Using SAS Enterprise Guide

This book presents the basic procedures for utilizing SAS Enterprise Guide to analyze statistical data. SAS Enterprise Guide is a graphical user interface (point and click) to the main SAS application. Each chapter contains a brief conceptual overview and then guides the reader through concrete step-by-step examples to complete the analyses. The eleven sections of the book cover a wide range of statistical procedures including descriptive statistics, correlation and simple regression, t tests, one-way chi square, data transformations, multiple regression, analysis of variance, analysis of covariance, multivariate analysis of variance, factor analysis, and canonical correlation analysis. Designed to be used either as a stand-alone resource or as an accompaniment to a statistics course, the book offers a smooth path to statistical analysis with SAS Enterprise Guide for advanced undergraduate and beginning graduate students, as well as professionals in psychology, education, business, health, social work, sociology, and many other fields.

Agresti, A. , & Finlay, B. (2009). Statistical methods for the social sciences (4th ed.). Upper Saddle River, NJ: Pearson/Prentice-Hall.
Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah, NJ: Erlbaum.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.
Cody, R. P. , & Smith, J. K. (2006). Applied statistics and the SAS programming language (5th ed.). Upper Saddle River, NJ: Pearson/Prentice-Hall.
Cohen, J. (1969). Statistical power analysis for the behavioral sciences. New York: Academic Press.
Cohen, J. (1977). Statistical power analysis for the behavioral sciences (Rev. ed.). New York: Academic Press.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J. , Cohen, P. , West, S. G. , & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
Constable, N. (2007). SAS programming for Enterprise Guide users. Cary, NC: SAS Institute.
Costa, P. T. , & McCrae, R. R. (1991). NEO Five-Factor Inventory, Form S. Odessa, FL: Psychological Assessment Resources.
Costa, P. T. , & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources.
Curran, P. J. , West, S. G. , & Finch, J. F. (1997). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.
D'Agostino, R. B. (1986). Tests for the normal distribution. In R. B. D'Agostino & R. B. Stephens (Eds.), Goodness-of-fit techniques (pp. 367–419). New York: Marcel Dekker.
D'Agostino, R. B. , & Stephens, R.B. (Eds.). (1986). Goodness-of-fit techniques. New York: Marcel Dekker.
D'Agostino, R. B. , Belanger, A. , & D'Agostino, R. B., Jr. (1990). A suggestion for using powerful and informative tests of normality. American Statistician, 44, 316–321.
Davis, J. B. (2007). Statistics using SAS Enterprise Guide. Cary, NC: SAS Institute.
DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292–307.
Der, G. , & Everitt, B. S. (2007). Basic statistics using Enterprise Guide: A primer. Cary, NC: SAS Institute.
Estes, W. K. (1997). On the communication of information by displays of standard errors and confidence intervals. Psychonomic Bulletin & Review, 4, 330–341.
Fan, X. (1997). Canonical correlation analysis and structural equation modeling: What do they have in common? Structural Equation Modeling, 4, 65–79.
Ferguson, G. A. , & Takane, Y. (1989). Statistical analysis in psychology and education (6th ed.). New York: McGraw-Hill.
Finney, D. J. (1998). Remember a pioneer: Frank Yates (1902–1994). Teaching Statistics, 20, 2–5.
Fisher, R. A. (1921a). Some remarks on the methods formulated in a recent article on the qualitative analysis of plant growth. Annals of Applied Biology, 7, 367–372.
Fisher, R. A. (1921b). Studies in crop variation. I. An examination of the yield of dressed grain from Broadbalk. Journal of Agricultural Science, 11, 107–135.
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh, England: Oliver & Boyd.
Fisher, R. A. (1935a). The design of experiments. Edinburgh, England: Oliver & Boyd.
Fisher, R. A. (1935b). The logic of inductive inference. Journal of the Royal Statistical Society, 98, 39–54.
Fisher, R. A. (1950). Statistical methods for research workers (11th ed.). New York: Hafner.
Fisher, R. A. , & Eden, T. (1927). Studies in crop variation. IV. The experimental determination of the value of top dressings with cereals. Journal of Agricultural Science, 17, 548–562.
Fisher, R. A. , & Mackenzie, W. A. (1923). Studies in crop variation. II. The manorial responses of different potato varieties. Journal of Agricultural Science, 13, 311–320.
Freeman, G. H. , & Halton, J. H. (1951). Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika, 38, 141–149.
Galton, F. (1886). Heredity stature. Journal of the Anthropological Institute, 15, 489–499.
Galton, F. (1888, December 13). Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society, 45, 135–145.
Gamst, G. , Dana, R. H. , Der-Karabetian, A. , Aragon, M. , Arellano, L. , Morrow, G. , & Martenson, L. (2004). Cultural competency revised: The California Brief Multicultural Competence Scale. Measurement and Evaluation in Counseling and Development, 37, 163–183.
Gamst, G. , Meyers, L. S. , & Guarino, A. J. (2008). Analysis of variance designs: A conceptual and computational approach with SPSS and SAS. New York: Cambridge University Press.
Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.
Guarino, A. J. (2004). A comparison of first and second generation multivariate analysis: Canonical correlation analysis and structural equation modeling. Florida Journal of Educational Research, 42, 22–40.
Guilford, J. P. , & Fruchter, B. (1978). Fundamental statistics in psychology and education (6th ed.). New York: McGraw-Hill.
Harman, H. H. (1962). Modern factor analysis. Chicago: University of Chicago Press.
Hatcher, L. (2003). Step-by-step basic statistics using SAS: Student guide and exercises. Cary, NC: SAS Institute.
Hatcher, L. , & Stepanski, E. J. (1994). Step-by-step approach to using the SAS system for univariate and multivariate statistics. Cary, NC: SAS Institute.
Hays, W. L. (1981). Statistics (3rd ed.). New York: Holt, Rinehart & Winston.
Hosmer, D. W., Jr. , & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, 498–520.
Hotelling, H. (1936a). Relations between two sets of variates. Biometrika, 28, 321–377.
Hotelling, H. (1936b). Simplified calculation of principal components. Psychometrika, 1, 27–35.
Howell, D. C. (1997). Statistical methods for psychology (4th ed.). Belmont, CA: Duxbury.
Jaccard, J. , & Becker, M. A. (1990). Statistics for the behavioral sciences (2nd ed.). Belmont, CA: Wadsworth.
Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.
Keppel, G. , & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.). Upper Saddle River, NJ: Pearson/Prentice-Hall.
Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (3rd ed.). Pacific Grove, CA: Brooks/Cole.
Kline, R. B. (2005). Principle and practice of structural equation modeling (2nd ed.). New York: Guilford Press.
Kramer, C. Y. (1956). Extensions of multiple range tests to group means with unequal numbers of replications. Biometrics, 12, 307–310.
Kramer, C. Y. (1957). Extensions of multiple range tests to group correlated adjusted means. Biometrics, 13, 13–18.
Kruskal, W. H. , & Wallis, W. A. (1952). Use of ranks in one criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.
Lattin, J. M. , Carroll, J. D. , & Green, P. E. (1993). Analyzing multivariate data. Pacific Grove, CA: Brooks/Cole.
Loehlin, J. C. (2004). Latent variable models (4th ed.). Mahwah, NJ: Erlbaum.
Mann, H. B. , & Whitney , D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50–60.
Marascuilo, L. A. , & McSweeney, M. (1977). Nonparametric and distribution-free methods for the social sciences. Monterey, CA: Brooks/Cole.
Marasinghe, M. G. , & Kennedy, W. J. (2008). SAS for data analysis: Intermediate statistical methods. New York: Springer.
Maruyama, G. M. (1998). Basics of structural equation modeling. Thousand Oaks, CA: Sage.
Maxwell, S. E. , & Delaney, H. D. (2000). Designing experiments and analyzing data: A model comparison perspective. Mahwah, NJ: Erlbaum.
McDaniel, S. , & Hemedinger, C. (2007). SAS for dummies. Hoboken, NJ: Wiley.
Meyers, L. S. , Gamst, G. , & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. Thousand Oaks, CA: Sage.
Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.
Nunnally, J. C. , & Bernstein, I. H. (1994). Psychometric theory (3rd ed). New York: McGraw-Hill.
Osborne, J. W. (2002). Notes on the use of data transformations. Practical Assessment, Research & Evaluation, 8, 1–7.
Pearson, K. (1896). Mathematical contributions to the mathematical theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London, 187, 253–318.
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50, 157–175.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6, 559–572.
Peng, C. Y. J. (2009). Data analysis using SAS. Thousand Oaks, CA: Sage.
Rosenthal, R. , & Rosnow, R. L. (2008). Essentials of behavioral research (3rd ed.). Boston: McGraw-Hill.
Royston, P. (1992). Approximating the Shapiro-Wilk W-Test for non-normality. Statistics and Computing, 2, 117–119.
Runyon, R. P. , Coleman, K. A. , & Pittenger, D. J. (2000). Fundamentals of behavioral statistics (9th ed.). Boston: McGraw-Hill.
Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth century. New York: Freeman.
SAS Institute . (1990). SAS/STAT user's guide (Vols. 1–2). Cary, NC: Author.
SAS Institute . (2002). Getting started with SAS Enterprise Guide (2nd ed.). Cary, NC: Author.
Schlotzhauer, S. , & Littell, R. (1997). SAS system for elementary statistical analysis (2nd ed.). Cary, NC: SAS Institute.
Shapiro, S. S. , & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.
Shiffler, R. (1988). Maximum z scores and outliers. American Statistician, 42, 79–80.
Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.
Slaughter, S. J. , & Delwiche, L. D. (2006). The little SAS book for Enterprise Guide 4.1. Cary, NC: SAS Institute.
Snedecor, G. W. (1934). Analysis of variance and covariance. Ames, IA: Collegiate Press.
Snedecor, G. W. (1946). Statistical methods applied to experiments in agriculture and biology (4th ed.). Ames, IA: The Iowa State College Press.
Spearman, C. (1904a). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201–293.
Spearman, C. (1904b). The proof and measurement of association between two things. The American Journal of Psychology, 15, 72–101.
Stanton, J. M. (2001). Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. Journal of Statistics Education, 9(3). Retrieved September 2008 from http://www.amstat.org/publications/jse/v9n3/stanton.html.
Stevens, J. P. (1999). Intermediate statistics: A modern approach (2nd ed.). Mahwah, NJ: Erlbaum.
Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Erlbaum.
Thompson, B. (1984). Canonical correlation analysis: Uses and interpretation. Thousand Oaks, CA: Sage.
Thompson, B. (2000). Canonical correlation analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding more multivariate statistics (pp. 285–316). Washington, DC: American Psychological Association.
Thompson, B. (2004). Exploratory and confirmatory factor analysis. Washington, DC: American Psychological Association.
Thurstone, L. L. (1931). Multiple factor analysis. Psychological Review, 38, 406–427.
Thurstone, L. L. (1938). A new rotational method in factor analysis. Psychometrika, 3, 199–218.
Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.
Thurstone, L. L. (1954). An analytical method for simple structure. Psychometrika, 19, 173–182.
Toothaker, L. E. (1993). Multiple comparison procedures. Newbury Park, CA: Sage.
Tukey, J. W. (1953). The problem of multiple comparisons. Unpublished manuscript, Princeton University (as cited by numerous public domain sources).
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
Warner, R. M. (2008). Applied statistics: From bivariate through multivariate techniques. Thousand Oaks, CA: Sage.
Wheater, C. P. , & Cook, P. A. (2000). Using statistics to understand the environment. New York: Routledge.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1, 80–83.
Yates, F. (1934). Contingency tables involving small numbers and the χ2 test. Journal of the Royal Statistical Society, 1 (Suppl.), 217–235.