A Kinetic View of Statistical Physics


A Kinetic View of Statistical Physics

Aimed at graduate students, this book explores some of the core phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills. The book begins with microscopic transport processes: diffusion, collision-driven phenomena, and exclusion. It then presents the kinetics of aggregation, fragmentation and adsorption, where the basic phenomenology and solution techniques are emphasized. The following chapters cover kinetic spin systems, both from a discrete and a continuum perspective, the role of disorder in non-equilibrium processes, hysteresis from the non-equilibrium perspective, the kinetics of chemical reactions, and the properties of complex networks. The book contains 200 exercises to test students' understanding of the subject. A link to a website hosted by the authors, containing supplementary material including solutions to some of the exercises, can be found at www.cambridge.org/9780521851039.


 Reviews:

"Non-equilibrium statistical mechanics has so many applications and is strewn with so many different tricks and treats that the only way to teach the subject is through examples. Krapivsky, Redner, and Ben-Naim have written a beautiful book that elegantly covers several of these examples, some classic, others at the boundaries of research. Their target readership is physicists and applied mathematicians, but includes computer scientists, biologists and engineers. Methinks that good students in economics would be well advised to read some chapters of this book, for I am convinced that several breakthroughs in their field will hinge upon concepts and methods from non-equilibrium statistical mechanics."
JP Bouchaud, Chairman of Capital Fund Management (Paris) and Statistical mechanics Professor at Ecole Polytechnique

"Our understanding of nonequilibrium statistical physics and complex systems has advanced at a rapid pace over the past decade, but so far there has been a lack of comprehensive textbooks suited to introduce graduate students into the field. This wonderful book fills this need in an admirable way. Written in the uniquely elegant and accessible style that also characterizes the authors' original scientific work, the book takes the reader gently from the most elementary concepts to the forefront of current research. The topics and their level of presentation are carefully chosen, and they are complemented by a large number of instructive exercises. A particularly nice feature is the highlighted boxes which introduce specific mathematical techniques where they are needed. I am certain that this book will be used as a standard text in graduate courses for a long time to come."
Joachim Krug, University of Cologne

"This is an excellent pedagogical introduction to a broad variety of modern topics in nonequilibrium statistical physics. It includes discussions on fundamental processes in nature such as diffusion, collision, aggregation and fragmentation but also covers applied topics such as population dynamics and evolution of networks. The text is lucid with plenty of examples and excercises---a must read for a graduate student wanting to work in this area."
Satya Majumdar, CNRS, Université de Paris-Sud

"The solutions and the scaling estimates presented are beautiful. They show the reader how much, contrary to everyday wisdom, can be done without computers but just with a pen, a sheet of paper and a bit of human brain power."
Alexander Orlov, Mathematical Reviews

No references available.