Nonlinear Resonance Analysis

Theory, Computation, Applications

Nonlinear resonance analysis is a unique mathematical tool that can be used to study resonances in relation to, but independently of, any single area of application. This is the first book to present the theory of nonlinear resonances as a new scientific field, with its own theory, computational methods, applications and open questions. The book includes several worked examples, mostly taken from fluid dynamics, to explain the concepts discussed. Each chapter demonstrates how nonlinear resonance analysis can be applied to real systems, including large-scale phenomena in the Earth's atmosphere and novel wave turbulent regimes, and explains a range of laboratory experiments. The book also contains a detailed description of the latest computer software in the field. It is suitable for graduate students and researchers in nonlinear science and wave turbulence, along with fluid mechanics and number theory. Colour versions of a selection of the figures are available at


'… brings significant rewards … equipping the receptive reader to address a number of open questions.' Contemporary Physics

Reference Title: References

Reference Type: bibliography

L. V. Abdurakhimov , Y. M. Brazhnikov , G. V. Kolmakov , and A. A. Levchenko . Study of high-frequency edge of turbulent cascade on the surface of He-II. J. Phys.: Conf. Ser. 150 (3) (2009), 032001.
R. Abramov , G. Kovac , and A. J. Majda . Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers–Hopf equation. Comm. Pure App. Math. 56 (1) (2003), 1–46.
M. Abramovitz and I. A. Stegun . Handbook of Mathematical Functions (Dover Publications, 1972).
A. D. Alexandrov . Uniqueness theorems for surfaces in general. Vestnik Leningrad Univ. Math. 11 (1956), 5–17.
F. Almonte , V. K. Jirsa , E. W. Large , and B. Tuller . Integration and segregation in auditory streaming. Physica D 212 (1–2) (2005), 137–59.
P. W. Anderson and H. Suhl . Instability in the motion of ferromagnets at high microwave power levels. Phys. Rev. 100 (1955), 1788–9.
V. I. Arnold . Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surveys 18 (1963), 9–36.
V. I. Arnold , V. V. Kozlov , and A. I. Neishstadt . Mathematical Aspects of Classical and Celestial Mechanics (Springer, 1997).
A. Baker . Transcendental Number Theory (Cambridge University Press, 1975).
R. Baraka and W. Schreiner . Semantic querying of mathematical web service descriptions. LNCS 4184 (2006), 73–87.
J. Barrow-Green . Poincare and the Three Body Problem (American Mathematical Society, London Mathematical Society, 1997).
F. Bashforth and J. C. Adams . An Attempt to Test the Theories of Capillary Action (Cambridge University Press, 1883).
J. M. Basilla . On the solution of x2 + dy2 = m. Proc. Japan. Acad. Series A 80 (10) (2004), 40–1.
T. B. Benjamin . The threshhold classification of unstable disturbances in flexible surfaces bounding inviscid flows. Fluid Mech. 16 (1963), 436–50.
T. B. Benjamin and J. E. Feir . The disintegration of wavetrains in deep water, Part 1. Fluid Mech. 27 (1967), 417–31.
G. P. Berman and F. M. Israilev . The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos 15 (1) (2005), 015104-1-18.
P. Bergé , Y. Pomeau , and Ch. Vidal . Order within Chaos: Towards a Deterministic Approach to Turbulence (Wiley-Interscience, 1987).
R. E. Berg and T. S. Marshall . Wilberforce pendulum oscillations and normal modes. Am. J. Phys. 59 (1) (1991), 32–7.
A. S. Besicovitch . On the linear independence of fractional powers of integers. J. Lond. Math. Soc. 15 (1) (1940), 3–6.
F. W. Bessel . Untersuchungen über die Länge des einfachen Secundenpendels. Abh. Berlin Akad. (Berlin, 1828; reprinted by H. Bruns, Leipzig, 1889).
L. Biferale and I. Procaccia . Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414 (2006), 43–164.
L. Biven , S. Nazarenko , and A. Newell . Breakdown of wave turbulence and the onset of intermittency. Phys. Lett. A 280 (2001), 28–32.
L. Bourouiba . Discreteness and resolution effects in rapidly rotating turbulence. Phys. Rev. E 78 (5) (2008), 056309-1-12.
G. W. Brandstator . A striking example of the atmosphere's leading traveling pattern. J. Atm. Sci. 44 (1987), 2310–23.
M. Brazhnikov , G. Kolmakov , A. Levchenko , and L. Mezhov-Deglin . Observation of capillary turbulence on the water surface in a wide range of frequencies. Europhys. Lett. 58 (2002), 510–15.
B. M. Bredichin . Free number semigroups of power densities. Mat. Sborn. 46 (88) (1958), 143–58 [in Russian].
A. D. Bruno . Local Methods in Nonlinear Differential Equations (Springer, Berlin, 1989).
A. Bruno and V. Edneral . Normal forms and integrability of ODE systems. Prog. Comp. Soft. 32 (3) (2006), 139–44.
A. Bruno and V. Edneral . On integrability of the Euler–Poisson equations. J. Math. Sci. 152 (4) (2008), 479–89.
M. D. Bustamante and E. Kartashova . Dynamics of nonlinear resonances in Hamiltonian systems. EPL 85 (2009), 14004-1-5.
M. D. Bustamante and E. Kartashova . Effect of the dynamical phases on the nonlinear amplitudes' evolution. EPL 85 (2009), 34002-1-6.
F. Calogero . Classical Many-Body Problems Amendable to Exact Treatments (LNP: Monographs 66, Springer, 2001).
F. Calogero . Isochronous Systems (Oxford University Press, 2008).
F. D. Campello , J. M. B. Saraiva , and N. Krusche . Periodicity of atmospheric phenomena occurring in the extreme south of Brazil. Atm. Sci. Lett. 5 (2004), 65–76.
M. Cheney . Tesla Man out of Time (Dorset Press, 1989).
B. V. Chirikov . A universal instability of many-dimensional oscillator systems. Phys. Rep. 52 (5) (1979), 263–379.
Y. Choi , Y. Lvov , and S. Nazarenko . Wave turbulence. Recent Res. Devel. Fluid Dynamics 5 (2004), 1–33.
A. Chorin . Vorticity and Turbulence (Springer, 1994).
C. C. Chow , D. Henderson , and H. Segur . A generalized stability criterion for resonant triad interactions. Fluid Mech. 319 (1996), 67–76.
C. Connaughton , S. V. Nazarenko , and A. C. Newell , Dimensional analysis and weak turbulence. Physica D 184 (2003), 86.
A. Constantin . The trajectories of particles in Stokes waves. Invent. Math. 166 (2006), 523–35.
A. Constantin , M. Ehrnström , and E. Wahlén . Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J. 140 (3) (2007), 591–603.
A. Constantin and E. Kartashova . Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves. EPL 86 (2009), 29001-1-6.
A. Constantin , E. Kartashova , and E. Wahlén . Discrete wave turbulence of rotational capillary water waves. E-print: arXiv. 1001.1497 (2010).
A. Constantin , D. Sattinger , and W. Strauss . Variational formulations for steady water waves with vorticity. Fluid Mech. 548 (2006), 151–63.
A. Constantin and W. Strauss . Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57 (2004), 481–527.
A. Constantin and W. Strauss . Stability properties of steady water waves with vorticity. Comm. Pure Appl. Math. 60 (2007), 911–50.
D. Coutand and S. Shkoller . Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007), 829–930
W. Craig , D. M. Henderson , M. Oscamou , and H. Segur . Stable three-dimensional waves of nearly permanent form on deep water. Math. Comp. Simul. (2006), doi:10.1016/j.matcom.
A. D. Craik . Wave Interactions and Fluid Flows (Cambridge University Press, 1985).
D. Cumin and C. Unsworth . Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226 (2007), 181–96.
Ch. A. C. Cunningham and I. F. De Albuquerque Cavalcanti . Intraseasonal modes of variability affecting the South Atlantic convergence zone. Int. J. Climatology 26 (2006), 1165–80.
A. F. T. Da Silva and D. H. Peregrine . Steep, steady surface waves on water of finite depth with constant vorticity. Fluid Mech. 195 (1988), 281–302.
H. Davenport . Multiplicative Number Theory (Markham Publishing Company, Chicago, 1967).
A. Delshamsa , R. de la Llaveb , and T. M. Seara . Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows. Advan. Math. 202 (1) (2006), 64–188.
P. Denissenko , S. Lukaschuk , and S. Nazarenko , Gravity surface wave turbulence in a laboratory flume. Phys. Rev. Lett. 99 (2007), 014501-1-4.
F. Diacu and P. Holmes . Celestial Encounters: The Origins of Chaos and Stability (Princeton University Press, 1996).
Ch. Doench , E. Kartashova , and L. Tec . Construction of optimal set of Manley–Rowe constants for resonance clustering in wave turbulent regimes. In preparation (2010).
A. E. Dolinko . From Newton's second law to Huygens's principle: visualizing waves in a large array of masses joined by springs. Eur. J. Phys. 30 (2009), 1217–28.
A. I. Dyachenko , A. O. Korotkevich , and V. E. Zakharov . Weak turbulence of gravity waves. JETP Lett. 77 (10) (2003), 546–50.
A. I. Dyachenko , Y. V. Lvov , and V. E. Zakharov , Five-wave interaction on the surface of deep fluid. Physica D 87 (1995), 233–61.
V. A. Dubinina , A. A. Kurkin , E. N. Pelinovsky , and O. E. Poluhina . Resonance three-wave interactions of Stokes edge waves. Izvestiya Atm. Ocean. Phys. 42(2) (2006), 254–61.
Elastic pendulum. 100/Lab Manuals/Nonlinear Pendulum/nonlinear.pdf
M. Ehrnström . Uniquenes of steady symetric deep-water waves with vorticity. Nonlin. Math. Phys. 12(1) (2005), 27–30.
M. Ehrnström . Deep-water waves with vorticity: symmetry and rotational behaviour. DCDS Series A 19(3) (2007), 483–91.
J. K. Engelbrecht , V. E. Fridman , and E. N. Pelinovsky . Nonlinear Evolution Equations (Pitman Res. Not. Math. Ser. 180, Longman, London, 1988)
L. Euler . Theoria motuum planetarum et cometarum. Opera 25 (2) (1744), 105–251.
C. Falcon , E. Falcon , U. Bortolozzo , and S. Fauve . Capillary wave turbulence on a spherical fluid surface in low gravity. EPL 86 (2009), 14002-1-6.
E. Falcon , C. Laroche , and S. Fauve . Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98 (2007), 094503-1-4.
M. Francius and C. Kharif . Three-dimensional instabilities of periodic gravity waves in shallow water. Geoph. Res. Abst. 7 (2005), 08757.
U. Frisch . Turbulence (Cambridge University Press, 1995).
G. Galileo . Discorsi e Dimostrazioni Matematiche, Intorno a' due Nuove Scienze (Elsevier, Leiden, 1638).
A. N. Ganshin , V. B. Efimov , G. V. Kolmakov , L. P. Mezhov-Deglin , and P. V. E. McClintock . Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101 (2008): 065303-1-4.
M. Ghil . Intra-seasonal oscillations in the extra-tropical atmosphere: observations, theory, and GCM experiments. In Proc. of Eighth Conference on Atmospheric and Oceanic Waves and Stabilities (American Meteorological Society, Boston, MA, 1992).
M. Ghil , D. Kondrashov , F. Lott , and A. W. Robertson . Intraseasonal oscillations in the mid-latitudes: observations, theory, and GCM results. In Proceedings ECMWF/CLIVAR Workshop on Simulations and Prediction of Intra-Seasonal Variability (Reading, UK, 2004).
M. Ghil and K. S. Mo . Intraseasonal oscillations in the global atmosphere. Part I: Northern hemisphere and tropics. Atmos. Sci. 48 (1991), 752–79.
N. Gold , A. Mohan , C. Knight , and M. Munro . Understanding service-oriented software. IEEE Software 21(2) (2004), 71–7.
H. L. Grant , R. W. Stuart , and A. Moilliet . Turbulence spectra from tidal channel. Fluid. Mech. 12 (1961), 241–63.
I. S. Grigoriev and E. Z. Meilikhov (eds.) Fisicheskie Velichiny (Physical Quantities) (Energoatomizdat, Moscow, 1991) [in Russian].
R. Grimshaw and Y. Skyrnnikov . Long-wave instability in a three-layer stratified shear flow. Stud. Appl. Math. 108 (2002), 77–88.
M. Guzzo and G. Benettin . A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. DCDS Series B 1 (2001), 1–28.
M. Guzzo , Z. Knezević , and A. Milani . Probing the Nekhoroshev stability of asteroids. Cel. Mech. Dyn. Astr. 83 (2002), 121–40.
J. L. Hammack and D. M. Henderson . Resonant interactions among surface water waves. Ann. Rev. Fluid Mech. 25 (1993), 55–96.
J. L. Hammack and D. M. Henderson . Experiments on deep water waves with two-dimensional surface patterns. J. Offshore Mech. & Artic Eng., 125 (2003), 48–53.
J. L. Hammack , D. M. Henderson , and H. Segur . Progressive waves with persistent, two-dimensional surface patterns in deep water. Fluid Mech. 532 (2005), 1–51.
K. Hasselmann . On nonlinear energy transfer in gravity-wave spectrum. Part 1: General theory. Fluid Mech. 12 (1962), 481–500.
K. Hasselmann . A criterion for nonlinear wave stability. Fluid Mech. 30 (1967), 737–39.
D. Hilbert . Mathematical problems. Bull. Amer. Math. Soc. 8 (1902), 437–79.
D. M. Henderson , M. S. Patterson , and H. Segur . On the laboratory generation of two-dimensional, progressive, surface waves of nearly permanent form on deep water. Fluid Mech. 559 (2006), 413–37.
K. Horvat , M. Miskovic , and O. Kuljaca . Avoidance of nonlinear resonance jump in turbine governor positioning system using fuzzy controller. Industr. Techn. 2 (2003), 881–5.
T. R. N. Jansson , M. P. Haspang , K. H. Jensen , P. Hersen , and T. Bohr . Polygons on a rotating fluid surface. Phys. Rev. Lett. 96 (2006), 174502-1-4.
C. Jacobi . Fundamenta Nova Theoriae Functionum Ellipticarum (Koenigsberg, 1829) [in Latin].
A. Jarmén , L. Stenflo , H. Wilhelmsson , and F. Engelmann . Effect of dissipation on nonlinear interaction. Phys. Lett. 28A (11) (1969), 748–9.
F.-F. Jin and M. Ghil . Intraseasonal oscillations in the extratropics: Hofp bifurcation and topographic instabilities. Atm. Sci. 47 (1990), 3007–22.
R. S. Johnson . A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, 1997).
I. G. Jonsson . Wave–current interactions. In The Sea (Wiley, New York, 1990), 65–120.
B. B. Kadomtsev . Plasma Turbulence (Acad. Press, London, 1965).
P. B. Kahn and Y. Zarmi . Nonlinear Dynamics: Exploration Through Normal Forms (Wiley, New York, 1998).
V. M. Kamenkovich and A. S. Monin . Small fluctuations in the ocean. In Physics of the Ocean. Vol. 2: Hydrodynamics of the Ocean (Nauka, Moscow, 1978) [in Russian].
V. M. Kamenkovich and G. M. Reznik . Rossby waves. In Physics of the Ocean. Vol. 2: Hydrodynamics of the Ocean (Nauka, Moscow, 1978) [in Russian].
E. Kartashova . Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes. Physica D 46 (1990), 43–56.
E. Kartashova . On properties of weakly nonlinear wave interactions in resonators. Physica D 54 (1991), 125–34.
E. Kartashova . Resonant interactions of the water waves with discrete spectra. In Proc. of Nonlinear Water Waves Workshop, ed. D. H. Peregrine (University of Bristol, UK, 1992), 43–53.
E. Kartashova . Clipping – a new investigation method for PDEs in compact domains. Theor. Math. Phys. 99 (1994), 675–80.
E. Kartashova . Weakly nonlinear theory of finite-size effects in resonators. Phys. Rev. Lett. 72 (1994), 2013–16.
E. Kartashova . Towards H-mode discharge explanation? In Current Topics in Astrophysical and Fusion Plasma, eds. M. F. Heyn , W. Kernbichler , and K. Biernat (Verlag der Technische Universität Graz, 1994), 179–84.
E. Kartashova . Applicability of weakly nonlinear theory for planetary-scale flows. Scientic report WR 95-03, KNMI, 1995, 1–29.
E. Kartashova . On large-scale dynamics of weakly nonlinear wave systems. In Advanced Series in Nonlinear Dynamics 7, eds. A. Mielke and K. Kirchgaessner (World Scientific, 1995), 282–90.
E. Kartashova . Wave resonances in systems with discrete spectra. In Nonlinear Waves and Weak Turbulence, ed. V. E. Zakharov (AMS Trans. 2, 1998), 95–129.
E. Kartashova . Fast computation algorithm for discrete resonances among gravity waves. Low Temp. Phys. 145 (2006), 286–95.
E. Kartashova . A model of laminated turbulence. JETP Lett. 83 (2006), 341–45.
E. Kartashova . Exact and quasi-resonances in discrete water-wave turbulence. Phys. Rev. Lett. 98 (2007), 214502-1-4.
E. Kartashova . Nonlinear resonances of water waves. DCDS Series B 12(3) (2009), 607–21.
E. Kartashova . Discrete wave turbulence. EPL 87 (2009), 44001-1–5.
E. Kartashova and M. D. Bustamante . Resonance clustering in wave turbulent regimes: integrable dynamics. E-print: arXiv:1002.4994 (2010).
E. Kartashova and A. Kartashov . Laminated wave turbulence: generic algorithms I. Int. J. Mod. Phys. C 17 (2006), 1579–96.
E. Kartashova and A. Kartashov . Laminated wave turbulence: generic algorithms II. Comm. Comp. Phys. 2 (2007), 783–94.
E. Kartashova and A. Kartashov . Laminated wave turbulence: generic algorithms III. Physica A: Stat. Mech. Appl. 380 (2007), 66–74.
E. Kartashova and A. Kartashov . Resonance clustering of rotational capillary waves. Comm. Comp. Phys. submitted (2010).
E. Kartashova and A. Kartashov . Exact and quasi-resonances among gravity-capillary waves. (In preparation, 2010).
E. Kartashova and V. S. L'vov . A model of intraseasonal oscillations in Earth's atmosphere. Phys. Rev. Lett. 98 (2007), 198501-1-4.
E. Kartashova and V. S. L'vov . Cluster dynamics of planetary waves. Europhys. Lett. 83 (2008), 50012-1-6.
E. Kartashova and G. Mayrhofer . Cluster formation in mesoscopic systems. Physica A: Stat. Mech. Appl. 385 (2007), 527–42.
E. Kartashova , S. Nazarenko , and O. Rudenko , Resonant interactions of nonlinear water waves in a finite basin. Phys. Rev. E 98 (2008), 0163041-1-9.
E. A. Kartashova , L. I. Piterbarg , and G. M. Reznik . Weakly nonlinear interactions between Rossby waves on a sphere. Oceanology 29 (1990), 405–11.
E. Kartashova , C. Raab , Ch. Feurer , G. Mayrhofer , and W. Schreiner , Symbolic computations for nonlinear wave resonances. In Extreme Ocean Waves, eds. E. Pelinovsky and Ch. Kharif (Springer, 2008), 97–128.
E. A. Kartashova and G. M. Reznik . Interactions between Rossby waves in bounded regions. Oceanology 31 (1992), 385–89.
A. L. Karuzskii , A. N. Lykov , A. V. Perestoronin , and A. I. Golovashkin . Microwave nonlinear resonance incorporating the helium heating effect in superconducting microstrip resonators. Phys. C: Supercond. 408–410 (2004), 739–40.
R. E. Kelly . The stability of an unsteady Kelvin–Helmholz flow. Fluid. Mech. 22 (1965), 547–60.
W. Kluzniak . Quasi-periodic oscillations and the possibility of an observational distinction between neutron and quark stars. Acta Phys. Polon. B 37 (4) (2006), 1361–65.
Z. Knezević and R. Pavlović . Application of the Nekhoroshev theorem to the real dynamical system. Novi Sad J. Math. 38 (3) (2008), 181–8.
G. Kolmakov , A. Levchenko , M. Braznikov , L. Mezhov-Deglin , A. Slichenko , and P. McClintock , Formation of a direct Kolmogorov-like cascade of second-sound waves in He II. Phys. Rev. Lett. 93 (2004), 074501-1-4.
A. N. Kolmogorov . The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (1941), 301–5; reprinted: Proc. R. Soc. Lond. A 434 (1991), 9–13.
A. N. Kolmogorov . On the conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR 98 (1954), 527–30.
D. A. Kovriguine and G. A. Maugin . Multiwave nonlinear couplings in elastic structures. Math. Prob. Engin. (2006), doi:10.1155/MPE/2006/76041.
E. V. Kozik and B. V. Svistunov . Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92 (2004), 035301-1-4.
U. Köpf . Wilberforce's pendulum revisited J. Am. Phys. 58 (9) (1990), 833–7.
V. P. Krasitskii . On reduced equations in the Hamiltonian theory of weakly non-linear surface waves. Fluid Mech. 272 (1994), 1–20.
S. Kuksin . Analysis of Hamiltonian PDEs (Oxford University Press, 2000).
S. Kuksin . Fifteen years of KAM for PDE, AMS Transl. 2 (212) (2004), 237–58.
S. Kuksin . Hamiltonian PDEs. In Handbook on Dynamical Systems 1B, eds. B. Hasselblatt and A. Katok (Elsevier, 2005), 1087–133.
M. Kundu and D. Bauer . Nonlinear resonance absorption in the laser-cluster interaction. Phys. Rev. Lett. 96 (2005), 123401-1-4.
Y. Kuramoto . Chemical Oscillations, Waves and Turbulence (Springer, New York, 1984).
S. V. Kuznetsov . The motion of the elastic pendulum. Reg. Chaot. Dyn. 4 (3) (1999), 3–12.
J. Lagrange . Oeuvres 6 (Gauthier-Villars, Paris, 1873).
B. M. Lake and H. C. Yuen . A note on some water-wave experiments and the comparision of data with the theory. Fluid Mech. 83 (1977), 75–81.
E. Landau . Handbuch für Lehre von der Verteilung der Primazahlen. II (Teubner, Leipzig, 1909).
W. Lee , G. Kovacic and D. Cai . Renormalized resonance quartets in dispersive wave turbulence. Phys. Rev. Lett. 103 (2009), 024502-1-4.
J. Lighthill . Waves in Fluids (Cambridge University Press, 1978).
F. Lindemann . Über die Zahl π. Math. Annal. 20 (1882), 213–25.
M. S. Longuet-Higgins and A. E. Gill . Resonant interactions between planetary waves. Proc. Roy. Soc. Lond. A299 (1967), 120–40.
P. Lochak and C. Meunier . Multiphase Averaging for Classical Systems (Appl. Math. Sci. Series 72, Springer, 1988)
Y. V. Lvov , S. Nazarenko and B. Pokorni . Discreteness and its effect on water-wave turbulence. Physica D 218 (2006), 24–35.
P. Lynch . Resonant motions of the three-dimensional elastic pendulum. Int. J. Nonl. Mech. 37 (2002), 258–64.
P. Lynch . The swinging spring: a simple model of amospheric balance. in Large-Scale Atmosphere-Ocean Dynamics. Vol II: Geometric Methods and Models, eds. J. Norbury and I. Roulstone (Cambridge University Press, 2002), 64–108.
P. Lynch . On resonant Rossby–Haurwitz triads. Tellus 61A (2009), 438–45.
P. Lynch and C. Houghton . Pulsation and precession of the resonant swinging spring. Physica D 190 (2004), 38–62.
R. A. Madden and P. R. Julian . Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Atm. Sci. 28 (1971), 702–8.
R. A. Madden and P. R. Julian . Description of global-scale circulation cells in the tropics with a 40–50 day period. Atm. Sci. 29 (1972), 1109–23.
A. J. Majda and A. L. Bertozzi . Vorticity and Incompressible Flow (Cambridge University Press, 2002).
Yu. I. Manin and A. Panchishkin . Introduction to Modern Number Theory: Fundamental Problems, Ideas and Theories (Springer, 2005).
J. M. Manley and H. E. Rowe . Some general properties of non-linear elements – Part 1: General energy relations. Proc. Inst. Rad. Engrs. 44 (1956), 904–13.
MathBroker II: Brokering Distributed Mathematical Services. Reseach Institute for Symbolic Computation (RISC), 2007.
Yu. V. Matijasevich . Hilbert's Tenth Problem (MIT Press, Cambridge, MA, 1993).
M. R. Matthews , C. F. Gauld , and A. Stinner (eds.). The Pendulum Scientific, Historical, Philosophical and Educational Perspectives (Springer, 2005).
L. F. McGoldrick . Resonant interactions among capillary-gravity waves. Fluid Mech. 21 (1967), 305–31.
N. W. McLachlan . Theory and Application of Mathieu Functions (Clarendon Press, Oxford, 1947).
W. H. Meeks . The topology and geometry of embedded surfaces of constant mean curvature. J. Differential Geometry 27 (3) (1988), 539–52.
C. R. Menyuk , H. H. Chen , and Y. C. Lee . Restricted multiple three-wave interactions: Panlevé analysis. Phys. Rev. A 27 (1983), 1597–611.
C. R. Menyuk , H. H. Chen , and Y. C. Lee . Restricted multiple three-wave interactions: integrable cases of this system and other related systems. J. Math. Phys. 24 (1983), 1073–9.
L. Merkine and L. Shtilman . Explosive instability of baroclinic waves. Proc. R. Soc. Lond. A 395 (1984), 313–39.
MONET – Mathematics on the Web. The MONET Consortium, 2004.
J. Moser . On invariant curves of area preserving mappings of an annulus. Nachr. Akad. Wiss. Goett., Math. Phys. Kl. (1962), 1–20.
T. Murakami . Intraseasonal atmospheric teleconnection patterns during the Nothern Hemisphere winter. Climate 1 (1988), 117–31.
J. Murdock . Normal Forms and Unfoldings for Local Dynamical Systems (Springer-Verlag, New York, 2003).
S. L. Musher , A. M. Rubenchik and V. E. Zakharov . Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129 (1985), 285–366.
A. H. Nayfeh . Introduction to Perturbation Techniques (Wiley-Interscience, NY, 1981).
A. H. Nayfeh . Method of Normal Forms (Wiley-Interscience, NY, 1993).
S. Nazarenko . Sandpile behaviour in discrete water-wave turbulence. J. Stat. Mech.: Theor. Exp. (2006), L02002, doi:10.1088/1742-5468/2006/02/L02002.
S. Nazarenko . Wave Turbulence (In preparation, 2010).
N. N. Nekhoroshev . An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surv. (Usp. Mat. Nauk) 32 (6) (1977), 1–65.
R. A. Nelson and M. G. Olsson . The pendulum – rich physics from a simple system. Am. J. Phys. 54 (2) (1986), 112–21.
A. Newell , S. Nazarenko and L. Biven . Wave turbulence and intermittency. Phys. D, 152–153 (2001), 520–50.
I. Newton . Philosophiae Naturalis Principia Mathematica I–III. Royal Soc. Lond. (1687).
H. Ocamoto and M. Shoji . The Mathematical Theory of Permanent Progressive Water Waves (World Scientific, 2001).
P. J. Olver . Applications of Lie Groups to Differential Equations (Graduated texts in Mathematics 107, Springer, 1993).
U. Omar , 2001.
V. N. Oraevsky and R. Z. Sagdeev . On stability of steady longitudinal oscillations in plasma. Zh. Tekh. Fiz. 32 (1962), 1291–96 [in Russian].
L. A. Ostrovskii , S. A. Rybak , and S. L. Tsimring . Negative energy waves in hydrodynamics. Sov. Phys. Uspekhi 29 (11) (1986), 1040–52.
R. Pavlović and M. Guzzo . Fulfillment of the conditions for the application of the Nekhoroshev theorem to the Koronis and Veritas asteroid families. Mon. Not. R. Astron. Soc. 384 (2008), 1575–82.
J. Pedlosky . Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987).
M. Perlin and W. M. Schultz , 2000. Capillary effects on surface waves. Annu. Rev. Fluid. Mech. 32, 241–74.
O. M. Phillips . On the dynamics of unsteady gravity waves of infinite amplitude. Fluid Mech. 9 (1960), 193–217.
O. M. Phillips . Theoretical and experimental studies of gravity wave interactions. Proc. Roy. Soc. Lond. A299 (1967), 104–19.
O. M. Phillips . Wave interactions – evolution of an idea. Fluid Mech. 106 (1981), 215–27.
A. Pikovsky and M. Rosenblum . Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators. Physica D 238 (2009), 27–37.
A. Pikovsky , M. Rosenblum , and J. Kurths . Sinchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
A. Pikovsky and Yu. Maistrenko . Synchronization: Theory and Application NATO Science Series II: Mathematics, Physics and Chemistry 109 (Kluwer Academic Publishers, Dodrecht, Boston, London, 2003).
L. I. Piterbarg . Hamiltonian formalism for Rossby waves. In Nonlinear Waves and Weak Turbulence, ed. V. E. Zakharov (American Mathematical Society Trans. 2, 1998), 131–66.
Jü. Pöschel . Nonlinear partial differential equations, Birkhoff normal forms and KAM theory Progr. Math. 169 (1998), 167–86.
H. Poincaré . Oeuvres (Paris, 1951).
A. N. Pushkarev . On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves. Eur. J. Mech. – B/Fluids 18(3) (1999), 345–51.
A. N. Pushkarev and V. E. Zakharov . Turbulence of capillary waves – theory and numerical simulation. Physica D 135(1–2) (2000), 98–116.
H. Punzmann , M. G. Shats , and H. Xia . Phase randomization of three-wave interactions in capillary waves. Phys. Rev. Lett. 103 (2009), 064502-1-4.
K. Rajendran and A. Kitoh . Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. J. Climate 19 (2006), 366–91.
M. Rosenblum and A. Pikovsky . Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. Phys. Rev. Lett. 98 (2007), 064101-1-4.
O. Rudenko . Nonlinear wave resonances. Wolfram Demonstrations Project, 2008;
B. R. Safdi and H. Segur . Explosive instability due to four-wave mixing. Phys. Rev. Lett. 99 (2007), 245004-1-4.
R. Z. Sagdeev and A. A. Galeev . Nonlinear Plasma Theory (Benjamin, New York, 1969).
J. A. Sanders , F. Verhulst , and J. Murdock . Averaging Methods in Nonlinear Dynamical Systems. Appl. Math. Sci. 59 (Springer, 2007).
H. Segur and D. M. Henderson . The modulation instability revisited. Euro. Phys. J. – Spec. Topics 1147 (2007), 25–43.
H. Segur , D. Henderson , J. Hammack , C. -M. Li , D. Pheiff , and K. Socha . Stabilizing the Benjamin–Feir instability. Fluid Mech. 539 (2005), 229–71.
D. C. Schmidt . Model-driven engineering. IEEE Comp. 39(2) (2006), 25–31.
W. M. Schmidt . Diophantine Approximations (Math. Lec. Not. 785, Springer, Berlin, 1980).
W. Schreiner . Web Service for computing of nonlinear resonances
M. Shats , H. Punzmann , and H. Xia . Capillary rogue waves. Phys. Rev. Lett. 104 (2010), 104503-1-4.
V. Shrira , V. Voronovich , and N. Kozhelupova . Explosive instability of vorticity waves. Phys. Oceanogr. 27 (1997), 542–54.
I. Silberman . Planetary waves in atmosphere. Meteorology 11 (1954), 27–34.
L. Stenflo . Resonant three-wave interactions in plasmas. Phys. Scr. T50 (1994), 15–9.
L. Stenflo , J. Weiland , and H. Wilhelmsson . A solution of equations describing explosive instabilities. Phys. Scr. 1 (1970), 46.
L. Stenflo and H. Wilhelmsson . Stabilization of nonlinear instabilities by means of dissipation. Phys. Lett 29A (5) (1969), 217–18.
M. Stiassnie , and L. Shemer . On the interactions of four water waves. Wave motion 41 (2005), 307–28.
S. Strogatz . Nonlinear Dynamics and Chaos (Reading, MA: Addison Wesley, 1994).
S. Strogatz . From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143 (2000), 1–20.
C. Sulem and P. -L. Sulem . Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse (App. Math. Sci. 139, New York, Springer, 1999).
Tacoma video:
K. Takaya and H. Nakamura . Geographical dependence of upper–level blocking formation associated with intraseasonal amplification of the Siberian high. Atmos. Sci. 62 (2005), 4441–9.
M. Tanaka and N. Yokoyama . Effects of discretization of the spectrum in water-wave turbulence. Fluid Dyn. Res. 34 (2004), 199–216.
M. Tanaka . On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J. Phys. Oceanogr. 37 (2007), 1022–36.
R. Treumann and W. Baumjohann . Advanced Space Plasma Physics (Imperial College Press, London, 2001).
V. N. Tsytovich . Nonlinear Effects in Plasma (Plenum, New York, 1970).
J. M. Tuwankotta and F. Verhulst . Symmetry and resonance in Hamiltonian system. Preprint, Utrecht University, 2000, 1–21.
C. Vedruccio , E. Mascia , and V. Martines . Ultra high frequency and microwave non-linear interaction device for cancer detection and tissue characterization, a military research approach to prevent health diseases. Int. Rev. Armed Forces Med. Serv. 78 (2) (2005), 120–30.
F. Verheest . Proof of integrability for five-wave interactions in a case with unequal coupling constants. Phys. A: Math. Gen. 21 (1988), L545–49.
F. Verheest . Integrability of restricted multiple three-wave interactions. II: Coupling constants with ratios 1 and 2. J. Math. Phys. 29 (1988), 2197–201.
F. Verhulst . Hamiltonian normal forms. Scholarpedia 2 (8) (2007), 2101.
I. M. Vinogradov . The Foundations of Number Theory (Pergamon, London, 1955).
B. L. van der Waerden . Modern Algebra I (Springer, 2003).
W. Wang and J. -J. E. Slotine . On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92 (2005), 38–53.
E. Wahlén . A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79 (2007), 303–15.
E. Wahlén . On rotational water waves with surface tension. Philos. Trans. Roy. Soc. Lond. Ser. A 365 (2007), 2215–25.
K. Watson and J. Bride . Excitation of capillary waves by longer waves. Fluid. Mech. 250 (1993), 103–19.
K. M. Watson , B. J. West , and B. I. Cohen . Coupling of surface and internal gravity waves: a mode coupling model. Fluid Mech. 77 (1976), 185–208.
K. M. Weickmann , G. R. Lussky , and J. E. Kutzbach . Intraseasonal (30–60 day) fluctuations of ongoing longwave radiation and 250 mb stream function during northern winter. Mon. Wea. Rev. 113 (1985), 941–61.
T. P. Weissert . The Genesis of Simulations in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem (Springer, 1997).
G. B. Whitham . Lectures on Wave Propagation (Springer for TATA Institute of fundamental research, Bombay, 1979).
G. B. Whitham . Linear and Nonlinear Waves (Wiley Series in Pure and Applied Mathematics, 1999).
E. T. Whittaker . A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambrige University Press, 1937).
L. R. Wilberforce . On the vibrations of a loaded spiral spring. Phil. Magaz. 38 (1896), 386–92.
H. Wilhelmsson , L. Stenflo , and F. Engelmann . Explosive instabilities in the well-defined phase description. J. Math. Phys. 11 (1970), 1738–42.
H. Wilhelmsson and V.P. Pavlenko . Five-wave interaction – a possibility for enhancement of optical or microwave radiation by nonlinear coupling of explosively unstable plasma waves. Phys. Scripta 7 (1972), 213–16.
W. B. Wright , R. Budakian , and S. J. Putterman . Diffusing light photography of fully developed isotropic ripple turbulence. Phys. Rev. Lett. 76 (1996), 4528–31.
H. W. Wyld . Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14 (1961), 134–65.
V. E. Zakharov . Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9 (1968), 86–94.
V. E. Zakharov . Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. B: Fluids 18 (1999), 327–44.
V. E. Zakharov , ed. Nonlinear Waves and Weak Wave Turbulence (American Mathematical Society Trans. 2, 182, 1998).
V. Zakharov , F. Dias , and A. Pushkarev . One-dimensional wave turbulence. Phys. Rep. 398 (2004), 1–65.
V. E. Zakharov and N. N. Filonenko . Weak turbulence of capillary waves. Appl. Mech. Tech. Phys. 4 (1967), 500–15.
V. E. Zakharov , V. S. L'vov , and G. Falkovich . Kolmogorov Spectra of Turbulence (Series in Nonlinear Dynamics, Springer-Verlag, New York, 1992).
V. E. Zakharov , A. O. Korotkevich , A. N. Pushkarev , and A. I. Dyachenko . Mesoscopic wave turbulence. JETP Lett. 82 (2005), 487–91.
Sh. E. Zimring . Special Functions and Definite Integrals, Algorithms, Mini-computer Programs (Radio i svjaz, Moscow, 1988).