Structural Equation Modeling and Natural Systems


Structural Equation Modeling and Natural Systems

This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, accessible via www.cambridge.org/9780521837422. • Details why multivariate analyses should be used to study ecological systems • Exposes unappreciated weakness in many current popular analyses • Emphasises the future methodological developments needed to advance our understanding of ecological systems


 Reviews:

'… excellent …' Fish and Fisheries

'… well suited to its intended readership.' Biometrics

Aarssen, L. W. & Schamp, B. S. (2002). Predicting distributions of species richness and species size in regional floras: Applying the species pool hypothesis to the habitat templet model. Perspectives in Plant Ecology, Evolution and Systematics, 5, 3–12
Abelson, R. P. (1995). Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum Publishers
Abrams, P. A. (1995). Monotonic or unimodal diversity – productivity gradients: what does competition theory predict? Ecology, 76, 2019–2027
Agrawal, R., Imielienski, T., & Swami, A. (1993). In: Mining association rules between sets of items in large databases. Proceedings of Conference on Management of Data. New York: ACM Press
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control AC, 19, 716–723
Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P., & Band, S. R. (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759–791
Andersen, J. A. (1995). An Introduction to Neural Networks. Cambridge, MA: MIT Press
Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 912–923
Bacon, F. (1620). Novum Organum. London: Bonham Norton and John Bill
Baldwin, H. Q. (2005). Effects of fire on home range size, site fidelity, and habitat associations of grassland birds overwintering in southeast Texas. M. S. thesis, Louisiana State University, Baton Rouge
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418
Bezdek, J. C. & Pal, N. (1992). Fuzzy Models for Pattern Recognition. New York: IEEE Press
Blalock, H. M. (1964). Causal Inferences in Nonexperimental Research. Chapel Hill, NC: University of North Carolina Press
Bollen, K. A. & Lennox, R. (1991). Conventional wisdom on measurement: a structural equation perspective. Psychological Bulletin, 110, 305–314
Bollen, K. A. & Long, J. S. (eds.) (1993). Testing Structural Equation Models. Newbury Park, CA: Sage Publications
Bollen, K. A. & Stine, R. (1992). Bootstrapping goodness of fit measures in structural equation models. Sociological Methods and Research, 21, 205–229
Bollen, K. A. & Ting, K. (2000). A tetrad test for causal indicators. Psychological Methods, 5, 3–22
Bollen, K. A. (1984). Multiple indicators: internal consistency or no necessary relationship. Quality and Quantity, 18, 377–385
Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley & Sons
Bollen, K. A. (1996). An alternative 2SLS estimator for latent variable models. Psychometrika, 61, 109–121
Bollen, K. A. (1998). Path analysis. pp. 3280–3284. In: Encyclopedia of Biostatistics. P. Armitage and T. Colton (eds.). New York: John Wiley & Sons
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605–634
Borgelt, C. & Kruse, R. (2002). Graphical Models. New York: John Wiley & Sons
Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC). Psychometrika, 52, 345–370
Brewer, J. S. & Grace, J. B. (1990). Vegetation structure of an oligohaline tidal marsh. Vegetatio, 90, 93–107
Browne, M. W. & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445–455
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference. Second Edition. New York: Springer Verlag
Byrne, B. M. (1994). Structural Equation Modeling EQS and EQS/Windows. Thousand Oaks, CA: Sage Publications
Byrne, B. M. (1998). Structural Equation Modeling with LISREL, PRELIS, and SIMPLIS. Mahway, NJ: Lawrence Erlbaum Associates
Byrne, B. M. (2001). Structural Equation Modeling with AMOS. Mahway, NJ: Lawrence Erlbaum Associates
Campbell, D. R., Waser, N. M., Price, M. V., Lynch, E. A., & Mitchell, R. J. (1991). A mechanistic analysis of phenotypic selection: pollen export and corolla width in Ipomopsis aggregata. Evolution, 43, 1444–1455
Casella, B. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174
Congdon, P. (2001). Bayesian Statistical Modeling. Chichester: Wiley Publishers
Congdon, P. (2003). Applied Bayesian Modeling. Chichester: Wiley Publishers
Cottingham, K. L., Lennon, J. T., & Brown, B. L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology, 3, 145–152
Cudeck, R., Du Toit, S. H. C., & Sörbom, D. (eds.) (2001). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
Dasarathy, B. V. (1990). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. Los Alamitos, CA: IEEE Computer Science Press
Diamantopoulous, A. & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38, 269–277
Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. Mahwah, NJ: Lawrence Erlbaum Associates
Edwards, J. R. (2001). Multidimensional constructs in organizational behavior research: an integrative analytical framework. Organizational Research Methods, 4, 144–192
Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56–83
Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Edinburgh, UK: Oliver and Boyd
Fornell, C., ed. (1982). A Second Generation of Multivariate Analyses: Volumes 1 and II. New York: Praeger Publishers.
Gadgil, M. & Solbrig, O. T. (1972). The concept of r- and K-selection: evidence from wild flowers and some theoretical considerations. American Naturalist, 106, 14–31
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian Data Analysis. Boca Raton: Chapman & Hall
Glymour, B., Scheines, R., Spirtes, R., & Kelly, K. (1987). Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling. Orlando, FL: Academic Press
Goldberger, A. S. & Duncan, O. D. (1973). Structural Equation Models in the Social Sciences. New York: Seminar Press
Good, I. J. (1983). Good Thinking. Minneapolis: University of Minnesota Press
Gough, L. & Grace, J. B. (1999). Predicting effects of environmental change on plant species density: experimental evaluations in a coastal wetland. Ecology, 80, 882–890
Gough, L., Grace, J. B., & Taylor, K. L. (1994). The relationship between species richness and community biomass: the importance of environmental variables. Oikos, 70, 271–279
Grace, J. B. & Bollen, K. A. (2005). Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86, 283–295
Grace, J. B. & Guntenspergen, G. R. (1999). The effects of landscape position on plant species density: evidence of past environmental effects in a coastal wetland. Ecoscience, 6, 381–391
Grace, J. B. & Jutila, H. (1999). The relationship between species density and community biomass in grazed and ungrazed coastal meadows. Oikos, 85, 398–408
Grace, J. B. & Keeley, J. E. (2006). A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications, 16, 503–514
Grace, J. B. & Pugesek, B. (1997). A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist, 149, 436–460
Grace, J. B. & Pugesek, B. H. (1998). On the use of path analysis and related procedures for the investigation of ecological problems. American Naturalist 152, 151–159
Grace, J. B. (1991). A clarification of the debate between Grime and Tilman. Functional Ecology, 5, 503–507
Grace, J. B. (1999). The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics, 2, 1–28
Grace, J. B. (2001). The roles of community biomass and species pools in the regulation of plant diversity. Oikos, 92, 191–207
Grace, J. B. (2003a). Comparing groups using structural equations. chapter 11, pp. 281– 296. In: B. H. Pugesek, A. Tomer, & A. von Eye (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
Grace, J. B. (2003b). Examining the relationship between environmental variables and ordination axes using latent variables and structural equation modeling. chapter 7, pp. 171–193. In: B. H. Pugesek, A. Tomer, & A. von Eye (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
Grace, J. B., Allain, L., & Allen, C. (2000). Factors associated with plant species richness in a coastal tall-grass prairie. Journal of Vegetation Science, 11, 443–452
Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. London: John Wiley & Sons
Grime, J. P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. London: John Wiley & Sons
Grime, J. P. (2002). Declining plant diversity: empty niches or functional shifts? Journal of Vegetation Science, 13, 457–460
Grimm, V. (1994). Mathematical models and understanding in ecology. Ecological Modelling, 74, 641–651
Gross, K. L., Willig, M. R., & Gough, L. (2000). Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos, 89, 417–427
Grubb, P. J. (1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3–31
Hägglund, G. (2001). Milestones in the history of factor analysis. pp. 11–38. In: R. Cudeck, S. H. C. Du Toit, & D. Sörbom (eds.). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate Data Analysis. Fourth Edition. Englewood Cliffs, NJ: Prentice Hall
Hannon, B. & Ruth, M. (1997). Modeling Dynamic Biological Systems. New York: Springer
Hargens, L. L. (1976). A note on standardized coefficients as structural parameters. Sociological Methods & Research, 5, 247–256
Harrison, S., Safford, H. D., Grace, J. B., Viers, J. H., & Davies, K. F. (2006). Regional and local species richness in an insular environment: serpentine plants in California. Ecological Monographs, 76, 41–56
Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–106
Hayduk, L. A. (1987). Structural Equation Modeling with LISREL. Baltimore, MD: Johns Hopkins University Press
Hayduk, L. A. (1996). LISREL Issues, Debates, and Strategies. Baltimore, MD: Johns Hopkins University Press
Heise, D. R. (1972). Employing nominal variables, induced variables, and block variables in path analyses. Sociological Methods & Research, 1, 147–173
Hodson, J. G., Thompson, K., Wilson, P. J., & Bogaard, A. (1998). Does biodiversity determine ecosystem function? The ecotron experiment reconsidered. Functional Ecology, 12, 843–848
Hox, J. (2002). Multilevel Analysis. Mahway, NJ: Lawrence Erlbaum Associates
Hoyle, R. H. (ed.) (1999). Statistical Strategies for Small Sample Research. Thousand Oaks, CA: Sage Publications
Huston, M. A. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81–101
Huston, M. A. (1980). Soil nutrients and tree species richness in Costa Rican forests. Journal of Biogeography, 7, 147–157
Huston, M. A. (1994). Biological Diversity. Cambridge: Cambridge University Press
Huston, M. A. (1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460
Huston, M. A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86, 393–401
Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User's Reference Guide. Chicago: Scientific Software International
Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. pp. 85–112. In: A. S. Goldberger & O. D. Duncan (eds.). Structural Equation Models in the Social Sciences. New York: Seminar Press
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30, 199–218
Jedidi, K. & Ansari, A. (2001). Bayesian structural equation models for multilevel data. pp. 129–158. In: Marcoulides, B. A. & Schumacker, R. E. (eds.), New Developments and Techniques in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York: Springer Verlag
Johnson, J. B. (2002). Divergent life histories among populations of the fish Brachyrhaphis rhabdophora: detecting putative agents of selection by candidate model analysis. Oikos, 96, 82–91
Johnson, M. L., Huggins, D. G., & de Noyelles, F., Jr. (1991). Ecosystem modeling with LISREL: a new approach for measuring direct and indirect effects. Ecological Applications, 1, 383–398
Jutila, H. & Grace, J. B. (2002). Effects of disturbance and competitive release on germination and seedling establishment in a coastal prairie grassland. Journal of Ecology, 90, 291–302
Kaplan, D. (2000). Structural Equation Modeling: Foundations and Extensions. Thousand Oaks, CA: Sage Publishers.
Kaplan, D., Harik, P., & Hotchkiss, L. (2001). Cross-sectional estimation of dynamic structural equation models in disequilibrium. pp. 315–339. In: R. Cudeck, S. H. C. Du Toit, & D. Sörbom (eds.). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
Keddy, P. A. (1990). Competitive hierarchies and centrifugal organization in plant communities. pp. 265–289. In: J. B. Grace & D. Tilman (eds.). Perspectives on Plant Competition, New York: Academic Press
Keesling, J. W. (1972). Maximum Likelihood Approaches to Causal Flow Analysis. Ph.D. Dissertation, Department of Education, University of Chicago
Kelloway, E. K. (1998). Using LISREL for Structural Equation Modeling. Thousand Oaks, CA: Sage Publications
Kline, R. B. (2005). Principles and Practice of Structural Equation Modeling. 2nd Edition. New York: The Guilford Press
Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In: Proceedings of the 10th National Conference on Artificial Intelligence. pp. 223–228. Cambridge, MA: MIT Press
Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les événements. Mémoires de l'Academie de Science de Paris, 6, 621–656
Larson, D. L. & Grace J. B. (2004). Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents. Biological Control, 29, 207–214
Lawton, J. H., Naeem, S., Thompson, L. J., Hector, A., & Crawley, J. J. (1998). Biodiversity and ecosystem function: getting the ecotron experiment in its correct context. Functional Ecology, 12, 848–852
Lee, S. Y., & Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models. South African Statistical Journal, 14, 121–136
Legendre, P. (1993). Spatial autocorrelation: Trouble or a new paradigm. Ecology, 74, 659–673
Levins, R. (1968). Evolution in Changing Environments. Princeton, NJ: Princeton University Press
Li, C. C. (1975). Path Analysis – A primer. Pacific Grove, CA: Boxwood Press
Little, T. D., Schnabel, K. U., & Baumert, J. (eds.) (2000). Modeling Longitudinal and Multilevel Data. Mahway, NJ: Lawrence Erlbaum Associates
Loehle, C. (1987). Hypothesis testing in ecology: psychological aspects and the importance of theory maturation. The Quarterly Review of Biology, 62, 397–409
Loehle, C. (1988). Problems with the triangular model for representing plant strategies. Ecology, 69, 284–286
Loehlin, J. C. (1998). Latent Variable Models. Third Edition. Mahway, NJ: Lawrence Erlbaum Associates
Loreau, M., Naeem, S., & Inchausti, P. (2002). Biodiversity and Ecosystem Functioning. Oxford: Oxford University Press
MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press
MacCallum, R. C. & Browne, M. W. (1993). The use of causal indicators in covariance structure models: some practical issues. Psychological Bulletin, 114, 533–541
Mancera, J. E., Meche, G. C., Cardona-Olarte, P. P. et al. (2005). Fine-scale environmental control of spatial variation in species richness in a wetland community. Plant Ecology, 178, 39–50
Marcoulides, G. A. & Schumacker, R. E. (eds.) (1996). Advanced Structural Equation Modeling: Issues and Techniques. Mahway, NJ: Lawrence Erlbaum Associates
Marcoulides, G. A. & Schumacker, R. E. (eds.) (2001). New Developments and Techniques in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Marrs, R., Grace, J. B., & Gough, L. (1996). On the relationship between plant species diversity and biomass: a comment on a paper by Gough, Grace, and Taylor. Oikos, 75, 323–326
Marsh, H. W., Balla, J. R., & Hau, K.-T. (1996). An evaluation of incremental fit indices: a clarification of mathematical and empirical properties. pp. 315–353. In: B. A. Marcoulides & R. E. Schumacker (eds.). Advanced Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's findings. Structural Equation Modeling, 11, 320–341
Maruyama, G. M. (1998). Basics of Structural Equation Modeling. Thousand Oaks, CA: Sage Publications
McCune, B. & Grace, J. B. (2002). Analysis of Ecological Communities. Gleneden Beach, Oregon: MJM
Meziane, D. & Shipley, B. (2001). Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Annals of Botany, 88, 915–927
Mikola, J., Salonen, V., & Setälä, H (2002). Studying the effects of plant species richness on ecosystem functioning: does the choice of experimental design matter? Oecologia, 133, 594–598
Mitchell, R. J. (1992). Testing evolutionary and ecological hypotheses using path analysis and structural equation modelling. Functional Ecology, 6, 123–129
Mitchell, R. J. (1994). Effects of floral traits, pollinator visitation, and plant size on Ipomopsis aggregata fruit production. The American Naturalist, 143, 870–889
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M. et al. (2001). Ecology, 82, 2381–2396
Moore, D. R. J. & Keddy, P. A. (1989). The relationship between species richness and standing crop in wetlands: the importance of scale. Vegetatio, 79, 99–106
Muggleton, S. (ed.) (1992). Inductive Logic Programming. San Diego, CA: Academic Press
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132
Muthén, L. K. & Muthén, B. O. (2004). Mplus User's Guide. Third Edition. Los Angeles, CA: Muthén and Muthén
Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83, 1537–1552
Neapolitan, R. E. (2004). Learning Bayesian Networks. Upper Saddle River, NJ: Prentice Hall Publishers
Oakes, M. (1990). Statistical Inference. Chestnut Hill, MA: Epidemiology Resources Inc
Palmer, M. W. (1994). Variation in species richness: towards a unification of hypotheses. Folia Geobot. Phytotax. Praha, 29, 511–530
Pankratz, A. (1991). Forecasting with Dynamic Regression Models. New York: John Wiley & Sons
Pearl, J. (1992). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann
Pearl, J. (2000). Causality. Cambridge: Cambridge University Press
Pedhazur, E. J. (1997). Multiple Regression in Behavioral Research, 3rd edition. Toronto: Wadsworth Press
Peters, R. H. (1991). A Critique for Ecology. Cambridge: Cambridge University Press
Pianka, E. R. (1970). On r- and K-selection. American Naturalist, 104, 592–597
Popper, K. R. (1959). The Logic of Scientific Discovery. London: Hutchinson
Pugesek, B. H. & Tomer, A. (1996). The Bumpus house sparrow data: a reanalysis using structural equation models. Evolutionary Ecology, 10, 387–404
Pugesek, B. H. (2003). Modeling means in latent variable models of natural selection. pp. 297–311. In: B. H. Pugesek, A. Tomer, & A. von Eye (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
Pugesek, B. H., Tomer, A., & von Eye, A. (2003). Structural Equation Modeling. Cambridge: Cambridge University Press
Raftery, A. E. (1993). Bayesian model selection in structural equation models. pp. 163–180. In: K. A. Bollen & J. S. Long (eds.). Testing Structural Equation Models. Newbury Park, CA: Sage Publishers
Raykov, T. & Marcoulides, G. A. (2000). A First Course in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Raykov, T. & Penev, S. (1999). On structural equation model equivalence. Multivariate Behavioral Research, 34, 199–244
Reich, P. B., Ellsworth, D. S., Walters, M. B. et al. (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955–1969
Reyment, R. A. & Jöreskog, K. G. (1996). Applied Factor Analysis in the Natural Sciences. Cambridge: Cambridge University Press
Rosenzweig, M. L. & Abramsky, Z. (1993). How are diversity and productivity related? pp. 52–64. In: R. E. Ricklefs & D. Schluter (eds.). Species Diversity in Ecological Communities. Chicago: University of Chicago Press
Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11, 424–451
Salsburg, D. (2001). The Lady Tasting Tea. New York: Henry Holt & Company
Satorra, A. & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. pp. 308–313. In: Proceedings of the American Statistical Association
Satorra, A. & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. pp. 399–419. In: A. von Eye & C. C. Clogg (eds.). Latent Variables Analysis: Applications for Developmental Research. Thousand Oaks, CA: Sage Publishers
Scheiner, S. M., Mitchell, R. J., & Callahan, H. S. (2000). Using path analysis to measure natural selection. Journal of Evolutionary Biology, 13, 423–433
Scheines, R., Hoijtink, R., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. Methods of Psychological Research – Online, 8, 23–74
Schumacker, R. E. & Lomax, R. G. (eds.) (1996). A Beginner's Guide to Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Schumacker, R. E. & Marcoulides, G. A. (eds.) (1998). Interaction and Nonlinear Effects in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
Shipley, B. & Lechowicz, M. J. (2000). The functional coordination of leaf morphology and gas exchange in 40 wetland plant species. Ecoscience, 7, 183–194
Shipley, B. (2000). Cause and Correlation in Biology. Cambridge: Cambridge University Press
Shipley, B., Keddy, P. A., Gaudet, C., & Moore, D. R. J. (1991). A model of species density in shoreline vegetation. Ecology, 72, 1658–1667
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. Cambridge: MIT Press
Stamp, N. (2003). Theory of plant defense level: example of process and pitfalls in development of ecological theory. Oikos, 102, 672–678
Stearns, S. C. (1977). The evolution of life history traits: a critique of the theory and a review of the data. Annual Review of Ecology and Systematics, 8, 145–171
Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 25, 173–180
Symstad, J. J, Chapin, F. W., Wall, D. H. et al. (2003). Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience, 53, 89–98
Taper, M. L. & Lele, S. R. (2004). The Nature of Scientific Evidence. Chicago, Illinois: University of Chicago Press
Taylor, D. R., Aarssen, L. W., & Loehle, C. (1990). On the relationship between r/K selection and environmental carry capacity: a new habitat templet for plant life history strategies. Oikos, 58, 239–250
Tilman, D. (1982). Resource competition and community structure. Princeton, NJ: Princeton University Press
Tilman, D. (1986). Resources, competition and the dynamics of plant communities. pp. 51–75. In: M. J. Crawley (ed.). Plant Ecology. London: Blackwell Scientific Publications
Tilman, D. (1987). On the meaning of competition and the mechanisms of competitive superiority. Functional Ecology, 1, 304–315
Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, New Jersey: Princeton University Press
Tilman, D. (1997). Mechanisms of plant competition. chapter. In: M. J. Crawley (ed.). Plant Ecology, 2nd edn. Malden, MA: Blackwell Scientific Publications
Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720
Tomer, A. (2003). A short history of structural equation models. pp. 85–124. In: B. H. Pugesek, A. Tomer, & A. von Eye (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
Tukey, J. W. (1954). Causation, regression, and path analysis. pp. 35–66. In: O. Kempthorne, T. A. Bancroft, J. W. Gowen, & J. D. Lush (eds.). Statistics and Mathematics in Biology. Ames, IA: Iowa State College Press
Turner, M. E. & Stevens, C. D. (1959). The regression analysis of causal paths. Biometrics, 15, 236–258
Verheyen, K., Guntenspergen, G. R., Biesbrouck, B., & Hermy, M. (2003). An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale. Journal of Ecology, 91, 731–742
von Mises, R. (1919). Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, Vol. 5. (referenced in Neapolitan (2004))
Waide, R. B., Willig, M. R., Steiner, C. F. et al. (1999). The relationship between productivity and species richness. Annual Reviews in Ecology and Systematics, 30, 257–300
Wardle, D. A. (1999). Is “sampling effect” a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos, 87, 403–407
Weiher, E., Forbes, S., Schauwecker, T., & Grace, J. B. (2004). Multivariate control of plant species richness in a blackland prairie. Oikos, 106, 151–157
Wheeler, B. D. & Giller, K. E. (1982). Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material. Journal of Ecology, 70, 179–200
Wheeler, B. D. & Shaw, S. C. (1991). Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. Journal of Ecology, 79, 285–302
Wiley, D. E. (1973). The identification problem for structural equation models with unmeasured variables. In: A. S. Goldberger & O. D. Duncan (eds.). Structural Equation Models in the Social Sciences. New York: Seminar Press A. S.
Williams, L. J., Edwards, J. R., & Vandenberg, R. J. (2003). Recent advances in causal modeling methods for organizational and management research. Journal of Management, 29, 903–936
Wilson, J. B. & Lee, W. G. (2000). C-S-R triangle theory: community-level predictions, tests, evaluation of criticisms, and relation to other theories. Oikos, 91, 77–96
Wisheu, I. C. & Keddy, P. A. (1989). Species richness-standing crop relationships along four lakeshore gradients: constraints on the general model. Canadian Journal of Botany, 67, 1609–1617
Wootton, J. T. (1994). Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 75, 151–165
Wootton, J. T. (2002). Indirect effects in complex ecosystems: recent progress and future challenges. Journal of Sea Research, 48, 157–172
Wright, S. (1918). On the nature of size factors. Genetics, 3, 367–374
Wright, S. (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea pigs. Proceedings of the National Academy of Sciences, 6, 320–332
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 10, 557–585
Wright, S. (1932). General, group, and special size factors. Genetics, 17, 603–619
Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161–215
Wright, S. (1960). Path coefficients and path regressions: alternative or complementary concepts? Biometrics, 16, 189–202
Wright, S. (1968). Evolution and the Genetics of Populations, Vol. 1: Genetic and Biometric Foundations. Chicago: University of Chicago Press
Wright, S. (1984). Diverse uses of path analysis. pp. 1–34. In: A. Chakravarti (ed.). Human Population Genetics. New York: Van Nostrand Reinhold