Singularities

Landmarks on the Pathways of Life

Singularities

Erwin Schrödinger's What is Life? published 60 years ago, influenced much of the development of molecular biology. In this new book Christian De Duve, Nobel Laureate and pioneer of modern cell biology, presents a contemporary response to this classic, providing a sophisticated consideration of the key steps or bottlenecks that constrain the origins and evolution of life. De Duve surveys the entire history of life, including insights into the conditions that may have led to its emergence. He uses as landmarks the many remarkable singularities along the way, such as the single ancestry of all living beings, the universal genetic code, and the monophyletic origin of eukaryotes. The book offers a brief guided tour of biochemistry and phylogeny, from the basic molecular building blocks to the origin of humans. Each successive singularity is introduced in a sequence paralleling the hypothetical development of features and conditions on the primitive earth, explaining how and why each transition to greater complexity occurred.


 Reviews:

"This book is unquestionably for serious students of biology, biochemistry, and evolution, but anyone willing to work through the details will find a logical tour de force and a powerful illustration of the beauty of evolution."
Choice

"This volume is well written and readable, and I enjoyed de Duve's unique perspective on this difficult topic, which is invariably multidisciplinary...Singularities is an excellent book, and recommended reading for anyone interested in the fundamental questions of life and its origins."
The Quarterly Review of Biology, S.Blair Hedges, Pennsylvania State University

"... lucid and superbly organized..."
BioScience


 Prizes:

2006 Book of Distinction, Templeton Foundation Press
A. Akhmanova, F. Voncken, T. van Halen, A. van Hoek, B. Boxma, G. Vogels, M. Veenhuis, and H. H. P. Hackstein (1998). A hydrogenosome with a genome. Nature, 396, 527–528
A. Bar-Nun, E. Kochavi, and S. Bar-Nun (1994). Assemblies of free amino acids as possible prebiotic catalysts. J. Mol. Evol., 39, 116–122
A. Bekker, H. D. Holland, P.-L. Wang, D. Rumble III, H. J. Stein, J. L. Hannah, L. L. Coetzee, and N. J. Beukes (2004). Dating the rise of atmospheric oxygen. Nature, 427, 117–120
A. Brack (2003). La chimie de l'origine de la vie. In Les Traces du Vivant (M. Gargaud, D. Despois, J.-P. Parisot, and J. Reisse, eds.), 61–81. Pessac: Presses Universitaires de Bordeaux
A. Chakrabarti, R. R. Breaker, G. F. Joyce, and D. W. Deamer (1994). Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol., 39, 555–559
A. D. Anbar and A. H. Knoll (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297, 1137–1142
A. D. Baughn and M. H. Malamy (2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature, 427, 441–444
A. D. Keefe and S. L. Miller (1995). Are polyphosphates or phosphate esters prebiotic reagents? J. Mol. Evol., 41, 693–702
A. D. Keefe, G. L. Newton, and S. L. Miller (1995). A possible prebiotic synthesis of pantetheine, a precursor of coenzyme A. Nature, 373, 683–685
A. Eschenmoser (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124
A. H. Knoll (2003). Life on a Young Planet. Princeton, NJ: Princeton University Press
A. Jorissen and C. Cerf (2002). Asymmetric photoreactions as the origin of biomolecular homochirality: A critical review. Orig. Life Evol. Biosph., 32, 129–142
A. Kornberg, N. N. Rao, and D. Ault-Riché (1999). Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem., 68, 89–125
A. L. Weber (2001). The sugar model: Catalysis by amines and amino acid products. Orig. Life Evol. Biosph., 31, 71–86
A. Lazcano (2003). Just how pregnant is the universe? Science, 299, 347–348
A. Poole, D. Jeffares, and D. Penny (1999). Early evolution: prokaryotes, the new kids on the block. Bioessays, 21, 880–889
A. Ricardo, M. A. Carrigan, A. N. Olcott, and S. A. Benner (2004). Borate minerals stabilize ribose. Science, 303, 196
A. Shimoyama and R. Ogasawara (2002). Peptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Orig. Life Evol. Biosph., 32, 165–179
A. W. Schwartz (1998). Origins of the RNA world. In The Molecular Origins of Life (A. Brack, ed.), 237–254. Cambridge: Cambridge University Press
B. Gedulin and G. Arrhenius (1994). Sources and geochemical evolution of RNA precursor molecules – the role of phosphate. In Early Life on Earth, Nobel Symposium 84 (S. Bengtson, ed.), 91–110. New York: Columbia University Press
B. P. Prieur (2001). Étude de l'activité prébiotique potentielle de l'acide borique. C. R. Acad. Sci. Paris, Chimie/Chemistry, 4, 1–4
C. Cunchillos and G. Lecointre (2002). Early steps of metabolism evolution inferred by cladistic analysis of amino acid catabolic pathways. C. R. Biol., 325, 119–129
C. Cunchillos and G. Lecointre (2005). Integrating the universal metabolism into a phylogenetic analysis. Mol. Biol. Evol., 22, 1–11
C. D. von Dohlen, S. Kohler, S. T. Alsop, and W. R. McManus (2001). Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature, 412, 433–436
C. de Duve (1963). The lysosome concept. In Ciba Foundation Symposium on Lysosomes (A. V. S. de Reuck and M. P. Cameron, eds.), 1–31. London: Churchill
C. de Duve (1969). Evolution of the peroxisome. Ann. N.Y. Acad. Sci., 168, 369–381
C. de Duve (1984). A Guided Tour of the Living Cell. New York: Scientific American Books
C. de Duve (1988). The second genetic code. Nature, 333, 117–118
C. de Duve (1991). Blueprint for a Cell. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company
C. de Duve (1993). The RNA world: Before and after? Gene, 135, 29–31
C. de Duve (1995). Vital Dust. New York: BasicBooks
C. de Duve (1996). The birth of complex cells. Sci. Am., 274 (No. 4), 38–45
C. de Duve (1998). Clues from present-day biology: The thioester world. In The Molecular Origins of Life (A. Brack, ed.), 219–236. Cambridge: Cambridge University Press
C. de Duve (2001). The origin of life: Energy. In Frontiers of Life. (D. Baltimore, R. Dulbecco, F. Jacob, and R. Levi-Montalcini, eds.), Vol. I, 153–168. San Diego, CA: Academic Press
C. de Duve (2002). Life Evolving. New York: Oxford University Press
C. de Duve (2003). A research proposal on the origin of life. Orig. Life Evol. Biosph., 33, 1–16
C. de Duve (2005). The onset of selection. Nature, 433, 581–582
C. de Duve and R. Wattiaux (1966). Functions of lysosomes. Annu. Rev. Physiol., 28, 435–492
C. Huber and G. Wächtershäuser (1998). Peptides by activation of amino acids by CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science, 281, 670–672
C. R. Woese (1987). Bacterial evolution. Microbiol. Rev., 51, 221–271
C. R. Woese (1998). The universal ancestor. Proc. Nat. Acad. Sci. U.S.A., 95, 6854–6859
C. R. Woese (2000). Interpreting the universal phylogenetic tree. Proc. Nat. Acad. Sci. U.S.A., 97, 8392–8396
C. R. Woese (2002). On the evolution of cells. Proc. Nat. Acad. Sci. U.S.A., 99, 8742–8747
C. R. Woese (2004). A new biology for a new century. Microbiol. Mol. Biol. Rev., 68, 173–186
C. R. Woese and G. E. Fox (1977). Phylogenetic structure of the prokaryotic domain. Proc. Nat. Acad. Sci. U.S.A., 74, 5088–5090
C. T. Walsh (2004). Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science, 303, 1805–1810
D. A. Mac Donaill (2003). Why nature chose A, C, G, and U/T: An error-coding perspective of nucleotide alphabet composition. Orig. Life Evol. Biosph., 33, 433–455
D. Caramelli, C. Lalueza-Fox, C. Vernes, M. Lari, A. Casoli, F. Mallegni, B. Chiarelli, I. Dupanloup, J. Bertranpetit, G. Barbujani, and G. Bertorelle (2003). Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc. Nat. Acad. Sci. U.S.A., 100, 6593–6597
D. E. Cane (1997). Polyketide and nonribosomal polypeptide biosynthesis. Chem. Rev., 97, 2463–2706. (includes 13 papers on the topic.)
D. E. Canfield (1998). A new model for Proterozoic ocean chemistry. Nature, 396, 450–453
D. Moreira and P. Lopez-Garcia (1998). Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol., 47, 517–530
D. Prangishvili (2003). Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res. Microbiol., 154, 289–294
D. S. Horner, P. G. Foster, and T. M. Embley (2000). Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol., 17 (No. 11), 1695–1709
D. W. Deamer (1998). Membrane compartments in prebiotic evolution. In The Molecular Origins of Life (A. Brack, ed.), 189–205. Cambridge: Cambridge University Press
E. Imai, H. Honda, K. Hatori, A. Brack, and K. Matsuno (1999). Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283, 831–833
E. Nevo (1999). Mosaic Evolution of Subterranean Mammals. Oxford: Oxford University Press
E. Nogales, K. H. Downing, L. A. Amos, and J. Löwe (1998). Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol., 5, 451–458
E. Szathmary (2002). The gospel of inevitability. Nature, 419, 779–780
E. V. Koonin (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol., 1, 127–136
F. H. Westheimer (1987). Why nature chose phosphates. Science, 235, 1173–1178
F. M. Devienne, C. Barnabé, and G. Ourisson (2002). Synthesis of further biological compounds in interstellar-like conditions. C. R. Acad. Sci. Paris, Chimie/Chemistry, 5, 651–653
F. M. Devienne, C. Barnabé, M. Couderc, and G. Ourisson (1998). Synthesis of biological compounds in quasi-interstellar conditions. C. R. Acad. Sci. Paris, Sér. IIc, 1, 435–439
F. van den Ent, L. A. Amos, and J. Löwe (2001). Prokaryotic origin of the actin cytoskeleton. Nature, 413, 39–44
F. Voncken, B. Boxma, J. Tjaden, A. Akhmanova, M. Huynen, F. Verbeek, A. G. M. Tielens, I. Haferkamp, H. E. Neuhaus, G. Vogels, M. Veenhuis, and J. H. P. Hackstein (2002). Multiple origins of hydrogenosomes: Functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol., 44 (No. 6), 1441–1454
G. Arrhenius, B. Gedulin, and S. Mojzsis (1993). Phosphate in models for chemical evolution. In Chemical Evolution and Origin of Life (C. Ponnamperuma and J. Chela-Flores, eds.), 25–50. Hampton VA: A. Deepak Publishers
G. F. Joyce (2002). The antiquity of RNA-based evolution. Nature, 418, 214–221
G. F. Joyce and L. E. Orgel (1993). Prospects for the understanding of the origin of the RNA world. In The RNA World (R. F. Gesteland and J. F. Atkins, eds.), 1–25. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
G. L. Arnold, A. D. Anbar, J. Barling, and T. W. Lyons (2004). Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science, 304, 87–90
G. M. Munoz Caro, U. J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack, and J. M. Greenberg (2002). Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403–406
G. Ourisson and T. Nakatani (1994). The terpenoid theory of the origin of cellular life: The evolution of terpenoids to cholesterol. Chemistry and Biology, 1, 11–23
G. Wächtershäuser (1998). Origin of life in an iron–sulfur world. In The Molecular Origins of Life (A. Brack, ed.), 206–218. Cambridge: Cambridge University Press
G. Wächtershäuser (2003). From pre-cells to Eukarya – a tale of two lipids. Mol. Microbiol., 47 (No. 1), 13–22
H. Furnes, N. R. Banerjee, K. Muehlenbachs, H. Staudigel, and M. de Wit (2004). Early life recorded in archean pillow lavas. Science, 304, 578–581
H. Hartman (1984). The origin of the eukaryotic cell. Speculations Sci. Technol., 7 (No. 2), 77–81
H. Hartman and A. Fedorov (2002). The origin of the eukaryotic cell: A genomic investigation. Proc. Nat. Acad. Sci. U.S.A., 99, 1420–1425
H. J. Morowitz (1999). A theory of biochemical organization, metabolic pathways, and evolution. Complexity, 4 (No. 6), 39–53
H. Ochman, J. G. Lawrence, and E. A. Groisman (2000). Lateral gene transfer and the nature of bacterial evolution. Nature, 405, 299–304
H. Ogasawara, A. Yoshida, E. Imai, H. Honda, K. Hatori, and K. Matsuno (2000). Synthesizing oligomers from monomeric nucleotides in simulated hydrothermal environments. Orig. Life Evol. Biosph., 30, 519–526
I. S. Kulaev (1979). The Biochemistry of Inorganic Polyphosphates. New York: Wiley
J. A. Lake, R. Jain, and M. C. Rivera (1999). Mix and match in the tree of life. Science, 283, 2027–2028
J. Castresana and M. Saraste (1995). Evolution of energetic metabolism: The respiration early hypothesis. Trends Biol. Sci., 20, 443–448
J. D. Palmer (2003). The symbiotic birth and spread of plastids: How many times and whodunit? J. Phycol., 39, 4–11
J. G. Schmidt, P. E. Nielsen, and L. E. Orgel (1997). Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc., 119, 1494–1495
J. H. P. Hackstein, A. Akhmanova, F. Voncken, A. van Hoek, T. van Alen, B. Boxma, S. Y. Moon-van der Staay, G. van der Staay, J. Leunissen, M. Huynen, J. Rosenberg, and M. Veenhuis (2001). Hydrogenosomes: Convergent adaptations of mitochondria to anaerobic environments. Zoology, 104, 290–302
J. J. Brocks, G. A. Logan, R. Buick, and R. E. Summons (1999). Archaean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036
J. M. Garcia-Ruiz, S. T. Hyde, A. M. Carnerup, A. G. Christy, M. J. Van Kranendonk, and N. J. Welham (2003). Self-assembled silica–carbonate structures and detection of ancient microfossils. Science, 302, 1194–1197
J. O. Andersson, A. M. Sjögren, L. A. M. Davis, T. M. Embley, and A. J. Roger (2003). Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol., 13, 94–104
J. R. Cronin and S. Pizzarello (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951–955
J. T.-F. Wong (1975). A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. U.S.A., 72, 1909–1912
J. T.-F. Wong (1991). Origin of genetically encoded protein synthesis: A model based on selection for RNA peptidation. Orig. Life Evol. Biosph., 21, 165–176
J. T.-F. Wong and H. Xue (2002). Self-perfecting evolution of heteropolymer building blocks and sequences as the basis of life. In Fundamentals of Life (G. Palyi, C. Zucchi, and L. Caglioti, eds.), 473–494. Paris: Elsevier
J. Tovar, G. Leon-Avila, L. B. Sanchez, R. Sutak, J. Tachezy, M. van der Giezen, M. Hernandez, M. Müller, and J. M. Lucocq (2003). Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature, 426, 172–176
J. W. Schopf (1999). Cradle of Life. Princeton, NJ: Princeton University Press
J. W. Szostak, D. P. Bartel, and P. L. Luisi (2001). Synthesizing life. Nature, 409, 387–390
J. Washington (2000). The possible role of volcanic aquifers in prebiologic genesis of organic compounds and RNA. Orig. Life Evol. Biosph., 30, 53–79
J. Whitfield (2004). Born in a watery commune. Nature, 427, 674–676
K. E. Nelson, R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R. Utterback, J. A. Malek, K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White, S. L. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser (1999). Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323–329
K. Kashefi and D. R. Lovley (2003). Extending the upper temperature limit for life. Science, 301, 934
K. Miller (1999). Finding Darwin's God. New York: HarperCollins
K. Ozawa, A. Nemoto, E. Imai, H. Honda, K. Hatori, and K. Matsuno (2004). Phosphorylation of nucleotide molecules in hydrothermal environments. Orig. Life Evol. Biosph., 34, 465–471
K. Tamura and P. Schimmel (2004). Chiral-selective aminoacylation of an RNA minihelix. Science, 305, 1253
L. Aravind, R. L. Tatusov, Y. I. Wolf, D. R. Walker, and E. V. Koonin (1998). Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet., 14, 442–444
L. E. Orgel (2003). Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph., 33, 211–218
L. H. Caporale (2003). Foresight in genome evolution. Am. Sci., 91, 234–241
L. Leman, L. Orgel, and M. Reza Ghadiri (2004). Carbonyl sulfide-mediated prebiotic formation of peptides. Science, 306, 283–286
L. Margulis (1981). Symbiosis in Cell Evolution. San Francisco: W. H. Freeman & Co
L. Margulis (1996). Archaeal–eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proc. Nat. Acad. Sci. U.S.A., 93, 1071–1076
L. Margulis and D. Sagan (1986). Micro-cosmos. New York: Summit Books
L. Sagan (1967). On the origin of mitosing cells. J. Theor. Biol., 14, 225–274
M. A. van Zullen, A. Lepland, and G. Arrhenius (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630
M. Balter (2000). Evolution on life's fringes. Science, 289, 1866–1867
M. Baltscheffsky and H. Baltscheffsky (1992). Inorganic pyrophosphate and inorganic pyrophosphatases. In Molecular Mechanisms in Bioenergetics (L. Ernster, ed.), 331–348. Amsterdam: Elsevier
M. C. Rivera and J. A. Lake (2004). The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature, 431, 152–155
M. D. Brasier, O. R. Green, A. P. Jephcoat, A. K. Kleppe, M. J. Van Kranendonk, J. F. Lindsay, A. Steele, and N. V. Grassineau (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81
M. Di Giulio (2003). The early phases of genetic code origin: Conjectures on the evolution of coded catalysis. Orig. Life Evol. Biosph., 33, 479–489
M. Eigen and P. Schuster (1977). The hypercycle: A principle of self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften, 64, 541–565
M. Eigen and R. Winkler-Oswatitsch (1981). Transfer-RNA, an early gene. Naturwissenschaften, 68, 282–292
M. Gogarten-Boekels, E. Hilario, and J. P. Gogarten (1995). The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains of life. Orig. Life Evol. Biosph., 25, 251–264
M. J. Morwood, R. P. Soejono, R. G. Roberts, T. Sutikna, C. S. M. Turney, K. E. Westaway, W. J. Rink, J.-x. Zhao, G. D. van den Bergh, R. Awe Due, D. R. Hobbs, M. W. Moore, M. I. Bird, and L. K. Fifield (2004). Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature, 431, 1087–1091
M. Kates (1992). Archaebacterial lipids: Structure, biosynthesis and function. In The Archaebacteria: Biochemistry and Biotechnology (M. J. Danson, D. W. Hough, and G. G. Lunt, eds.), 51–72. Biochem. Soc. Symp. 58. London: Portland Press
M. L. Sogin, J. D. Silberman, G. Hinkle, and H. G. Morrison (1996). Problems with molecular diversity in the Eukarya. In Evolution of Microbial Life (D. McL. Roberts, P. Sharp, G. Alderson, and M. A. Collins, eds.), 167–184. Cambridge: Cambridge University Press
M. Müller (1993). The hydrogenosome. J. Gen. Microbiol., 139, 2879–2889
M. Müller and W. Martin (1999). The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. BioEssays, 21, 377–381
M. M. Hanczyc, S. M. Fujikawa, and J. W. Szostak (2003). Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science, 302, 618–622
M. Mirazon Lahr and R. Foley (2004). Human evolution writ small. Nature, 431, 1043–1044
M. P. Bernstein, J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola (2002). Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, 416, 401–403
M. R. Lindsay, R. I. Webb, M. Strous, M. S. Jetten, M. K. Butler, R. J. Forde, and J. A. Fuerst (2001). Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell. Arch. Microbiol., 175 (No. 6), 413–429
M. Rohmer (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae, and higher plants. Nat. Prod. Rep., 16, 565–574
M. Rohmer, C. Grosdemange-Billiard, M. Seemann, and D. Tritsch (2004). Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs. Curr. Opin. Investig. Drugs, 5 (No. 2), 154–162
M. Shimizu (1982). Molecular basis for the genetic code. J. Mol. Evol., 18, 297–303
M. Yarus (2000). RNA–ligand chemistry: A testable source for the genetic code. RNA, 6, 475–484
N. Fujii (2002). d-Amino acids in living higher organisms. Orig. Life Evol. Biosph., 32, 103–127
N. Galtier, N. Tourasse, and M. Gouy (1999). A nonhyperthermophilic common ancestor to extant life forms. Science, 283, 220–221
N. Glansdorff (2000). About the last common ancestor, the universal life-tree, and lateral gene transfer: A reappraisal. Mol. Microbiol., 38 (No. 2), 177–185
N. H. Sleep, K. J. Zahnle, J. F. Kasting, and H. J. Morowitz (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142
N. Lane (2002). Oxygen. Oxford: Oxford University Press
O. Botta and J. L. Bada (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys., 23, 411–467
O. Botta, D. P. Glavin, G. Kminek, and J. L. Bada (2002). Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Orig. Life Evol. Biosph., 32, 143–164
O. Kandler (1994a). Cell wall biochemistry in Archaea and its phylogenetic implications. J. Biol. Phys., 20, 165–169
O. Kandler (1994b). The early diversification of life. In Early Life on Earth, Nobel Symposium 84 (S. Bengtson, ed.), 152–160. New York: Columbia University Press
P. A. Monnard, C. L. Apel, A. Kanavarioti, and D. W. Deamer (2004). Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: Implications for a prebiotic aqueous medium. Astrobiology, 2 (No. 2), 139–152
P. Brown, T. Sutikna, M. J. Morwood, R. P. Soejono, E. Wayhu Saptomo, and R. Awe Due (2004). A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature, 431, 1055–1061
P. Ehrenfreund, W. Irvine, L. Becker, J. Blank, J. R. Brucato, L. Colangeli, S. Derenne, D. Despois, A. Dutrey, H. Fraaije, A. Lazcano, T. Owen, and F. Robert, an International Space Science Institute ISSI Team (2002). Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys., 65, 1427–1487
P. Forterre (1995). Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci. III, 318, 415–422
P. Forterre (1999). Where is the root of the universal tree of life? BioEssays, 21, 871–879
P. Forterre, C. Bouthier de la Tour, H. Philippe, and M. Duguet (2000). Reverse gyrase from hyperthermophiles: Probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet., 16, 152–154
P. L. Luisi (2002). Some open questions about the origin of life. In Fundamentals of Life (G. Palyi, C. Zucchi, and L. Caglioti, eds.), 289–301. Paris: Elsevier
R. Cammack (1983). Evolution and diversity in the iron–sulfur proteins. Chem. Scr., 21, 87–95
R. E. Dickerson and I. Geis (1969). The Structure and Action of Proteins. Menlo Park, CA: Benjamin/Cummings Publishing Company
R. Lewin (1996). Patterns in Evolution. New York: Scientific American Books
R. S. Gupta, K. Aitken, M. Falah, and B. Singh (1994). Cloning of Giardia lamblia heat shock protein HSP70 homologs: Implications regarding origin of eukaryotic cells and endoplasmic reticulum. Proc. Nat. Acad. Sci. U.S.A., 91, 2895–2899
R. Sutak, P. Dolezal, H. L. Fiumera, I. Hrdy, A. Dancys, M. Delgadillo-Correa, P. J. Johnson, M. Müller, and J. Tachezy (2004). Mitochondrial-type assembly of Fe–S centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Nat. Acad. Sci. U.S.A., 101, 10368–10373
R. Y. Stanier (1970). Some aspects of the biology of cells and their possible evolutionary significance. Symp. Soc. Gen. Microbiol., 20, 1–38
S. B. Carroll (2003). Genetics and the making of Homo sapiens. Nature, 422, 849–857
S. Conway Morris (1998). The Crucible of Creation. Oxford: Oxford University Press
S. Conway Morris (2003). Life's Solution. Cambridge: Cambridge University Press
S. D. Dyall, M. T. Brown, and P. J. Johnson (2004a). Ancient invasions: From endosymbionts to organelles. Science, 304, 253–257
S. D. Dyall, W. Yan, M. G. Delgadillo-Correa, A. Lunceford, J. A. Loo, C. F. Clarke, and P. J. Johnson (2004b). Non-mitochondrial complex I proteins in a Trichomonas hydrogenosomal oxidoreductase complex. Nature, 431, 1103–1107
S. Gribaldo and H. Philippe (2002). Ancient phylogenetic relationships. Theor. Pop. Biol., 61, 391–408
S. J. Freeland, T. Wu, and N. Keulmann (2003). The case for an error minimizing standard genetic code. Orig. Life Evol. Biosph., 33, 457–477
S. L. Miller (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528–529
S. Osawa (1995). Evolution of the Genetic Code. Oxford University Press
S. Pitsch, A. Eschenmoser, B. Gedulin, S. Hui, and G. Arrhenius (1995). Mineral induced formation of sugar phosphates. Orig. Life Evol. Biosph., 25, 294–334
S. Pizzarello and A. L. Weber (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151
S. Spiegelman (1967). An in vitro analysis of a replicating molecule. Am. Sci., 55, 221–264
S. W. Fox (1988). The Emergence of Life. New York: BasicBooks
S. Yokoyama, A. Koyama, A. Nemoto, H. Honda, E. Imai, K. Hatori, and K. Matsuno (2003). Amplification of diverse catalytic properties of evolving molecules in a simulated hydrothermal environment. Orig. Life Evol. Biosph., 33, 589–595
T. Cavalier-Smith (1975). The origin of nuclei and eukaryotic cells. Nature, 256, 463–468
T. Cavalier-Smith (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol., 52, 297–354
T. D. White, B. Asfaw, D. DeGusta, H. Gilbert, G. D. Richards, G. Suwa, and F. C. Howell (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopea. Nature, 423, 742–747
T. Horiike, K. Hamada, S. Kanaya, and T. Shinozawa (2001). Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol., 3, 210–214
T. R. Cech (1986). RNA as an enzyme. Sci. Am., 255 (No. 5), 64–75
T. Vellai and G. Vida (1999). The origin of eukaryotes: The difference between prokaryotic and eukaryotic cells. Proc. R. Soc. London B, 266, 1571–1577
V. Kolb, S. Zhang, Y. Xu, and G. Arrhenius (1997). Mineral-induced phosphorylation of glycolate ion – a metaphor in chemical evolution. Orig. Life Evol. Biosph., 27, 485–503
W. F. Doolittle (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2128
W. F. Doolittle (2000). The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol., 10, 355–358
W. Gilbert (1986). The RNA world. Nature, 319, 618
W. Gilbert, M. Marchionni, and G. Mcknight (1986). On the antiquity of introns. Cell, 46, 151–154
W. K. Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner, and D. P. Bartel (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292, 1319–1325
W. Martin (1999). Mosaic bacterial chromosomes: A challenge en route to a tree of genomes. BioEssays, 21, 99–104
W. Martin and M. J. Russell (2003). On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. London B, 358, 59–85
W. Martin and M. Müller (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392, 37–41
W. Martin, C. Rotte, M. Hoffmeister, U. Theissen, G. Gelius-Dietrich, S. Ahr, and K. Henze (2003). Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. Life, 55 (No. 4–5), 193–204
W. Zillig (1991). Comparative biochemistry of Archaea and Bacteria. Curr. Opin. Genet. Dev., 1, 544–551
Y. Boucher, M. Kamekura, and W. F. Doolittle (2004). Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol., 52 (No. 2), 515–527
Y. Ogata, E. Imai, H. Honda, K. Hatori, and K. Matsuno (2000). Hydrothermal circulation of sea water through hot vents and contribution of interface chemistry to prebiotic synthesis. Orig. Life Evol. Biosph., 30, 527–537
Y. Xu and N. Glansdorff (2002). Was our ancestor a hyperthermophilic procaryote? Comp. Biochem. Physiol. Part A, 133, 677–688
Y. Yamagata, H. Watanabe, M. Saitoh, and T. Namba (1991). Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature, 352, 516–519