Fiber Optical Parametric Amplifiers, Oscillators and Related Devices


Fiber Optical Parametric Amplifiers, Oscillators and Related Devices

This book, published in 2007, provides comprehensive coverage of the theory and practice of OPAs and related devices, including fiber optical parametric oscillators (OPOs). After introducing the field, the theory and techniques behind all types of fiber OPAs are covered starting from first principles - topics include the scalar and vector OPA theory; the nonlinear Schrodinger equation; OPO theory; and quantum noise figure of fiber OPAs. Challenges of making fiber OPAs practical for a number of applications are discussed, and a survey of the state-of-the-art in feasibility demonstrations and performance evaluations is provided. The capabilities and limitations of OPAs; the potential applications for OPAs and OPOs, and prospects for future developments in the field are discussed. Theoretical tools developed in this text can also be applied to other areas of nonlinear optics. This is a valuable resource for researchers, advanced practitioners, and graduate students in optoelectronics.

Reference Title: References

Reference Type: reference-list

“Phase-matched stimulated four-photon mixing in silica-fiber waveguides,” Stolen, R. H. IEEE J. Quantum Electron.; 1975; vol. QE-11, pp. 100–3.
“Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing,” Lin, C., Reed, W. A., Pearson, A. D., Shang, H. T. Opt. Lett.; 1981; vol. 6, pp. 493–5.
“Efficient large-frequency-shifted three-wave mixing in low dispersion wavelength region in single-mode optical fibre,” Washio, K., Inoue, K., Kishida, S., Electron. Lett.; 1980; vol. 16, pp. 658–60.
“Induced four-photon parametric processes in glass fibre waveguides,” Dianov, E. M., Zakhidov, E. A., Karasik, A. Ya., Mamyshev, P. V., Prokhorov, A. M. Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki; 1981; vol. 34, pp. 40–4.
“Phase-matched light amplification by three-wave mixing process in a birefringent fiber due to externally applied stress,” Ohashi, M., Kitayama, K., Ishida, Y., Uchida, N. Applied Phys. Lett.; 1982; vol. 41, pp. 1111–3.
“Phase matching in birefringent fibers,” Stolen, R. H., Bosch, M. A., Lin, C. Opt. Lett.; 1981; vol. 6, pp. 213–5.
“Raman and four photon mixing amplification in single mode fibers,” Pocholle, J. P., Raffy, J., Papuchon, M., Desurvire, E. Optical Engineering; 1985; vol. 24, pp. 600–8.
“Optical amplification in a nonlinear fiber interferometer,” Marhic, M. E., Hsia, C. H., Jeong, J. M. Electron. Lett.; 1991; vol. 27, pp. 210–1.
“Squeezing in fibers with optical pulses,” Bergman, K., Haus, H. A. Opt. Lett.; 1991; vol. 16, pp. 663–5.
“Broadband fiber optical parametric amplifiers,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 573–5.
“Highly nonlinear optical fiber for all optical processing applications,” Holmes, M. J., Williams, D. L., Manning, R. J. IEEE Photon. Technol. Lett.; 1995; vol. 7, pp. 1045–7.
“200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” Ho, M. C., Uesaka, K., Marhic, M., Akasaka, Y., Kazovsky, L. G. J. Lightwave Technol.; 2001; vol. 19, pp. 977–81.
“Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Selected Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Broadband single-pumped fiber optic parametric amplifiers,” Torounidis, T., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2007; vol. 19, in press.
“Fiber-optical parametric amplifier with 70-dB gain,” Torounidis, T., Andrekson, P. A., Olsson, B. A., IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 1194–6.
“Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Voss, P. L., Tang, R. Y., Kumar, P. Opt. Lett.; 2003; vol. 28, pp. 549–51.
“Polarization-independent one-pump fiber-optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 1506–8.
“Polarization-independent two-pump fiber optical parametric amplifier with polarization diversity technique,” Kalogerakis, G, Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conference, March 2006, Anaheim CA; paper OWT4.
“Transmission of optical communication signals by distributed parametric amplification,” Kalogerakis, G., Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 2945–53.
“Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication,” Tang, R., Devgan, P., Grigoryan, V. S., Kumar, P. Electron. Lett.; 2005; vol. 41, pp. 1072–4.

Reference Title: References

Reference Type: reference-list

“Efficient conversion of light over a wide spectral range by four-photon mixing in a multimode graded-index fiber,” Hill, K. O., Johnson, D. C., Kawasaki, B. S. Appl. Opt.; 1981; vol. 20, pp. 1075–9.
“200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” Ho, M.-C., Uesaka, K., Marhic, M. E., Akasaka, Y., Kazovsky, L. G. J. Lightwave Technol.; 2001; vol. 19, pp. 977–81.
“Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber,” Eiselt, M., Jopson, R. M., Stolen, R. H. J. Lightwave Technol.; 1997; vol. 15, pp. 135–43.
“Recent advances in the design and experimental implementation of fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K., Kalogerakis, G., Kazovsky, L. G. In Proc. Conf. on Passive Components and Fiber-based Devices, APOC 2004, Beijing, China; Proc. SPIE; vol. 5623, pp. 691–704.
“Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” Mussot, A., Lantz, E., Durecu-Legrand, A., Simonneau, C., Bayart, D., Sylvestre, T., Maillotte, H. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 22–4.
“Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance,” Hirano, M., Nakanishi, T., Okuno, T., Onishi, M. In Proc. 31st European Conf. on Optical Communication, September 2005, Glasgow, UK; vol. 6, pp. 43–4.
“Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Selected Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted single-mode fibres,” Byron, K. C., Bedgood, M. A., Finney, A., McGauran, C., Savory, S., Watson, I. Electron. Lett.; 1992; vol. 28, pp. 1712–4.
“Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” Hansryd, J., Dross, F., Westlund, M., Andrekson, P. A., Knudsen, S. N. J. Lightwave Technol.; 2001; vol. 19, pp. 1691–7.
“Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. Optics Express; 2005; vol. 13, pp. 4666–73.
“Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” Provino, L., Mussot, A., Lantz, E., Sylvestre, T., Maillotte, H. J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 1532–7.
“UV processing of highly nonlinear fibers for enhanced supercontinuum generation,” Westbrook, P. S., Nicholson, J. W., Feder, K., Yablon, A. D. In Proc. Optical Fiber Communication Conf., February 2004, Los Angeles CA; postdeadline paper PDP27.
“Phase matching in birefringent fibers,” Stolen, R. H., Bosch, M. A., Lin, C. Opt. Lett.; 1981; vol. 6, pp. 213–5.
Principles of Optics, Born, M., Wolf, E. Pergamon, Oxford, 1970.
“Polarization optics of twisted single-mode fibers,” Ulrich, R., Simon, A. Appl. Opt.; 1979; vol. 18, pp. 2241–51.
“80 Gb/s to 10 Gb/s polarization-insensitive demultiplexing with circularly polarized spun fiber in a two-wavelength nonlinear optical loop mirror,” Lou, J. W., Jepsen, K. S., Nolan, D. A., Tarcza, S. H., Bouton, W. J., Evans, A. F., Islam, M. N. IEEE Photon. Technol. Lett.; 2000; vol. 12, pp. 1701–3.
“Simplified phenomenological model for randomly birefringent strongly spun fibers,” Galtarossa, A., Palmieri, L., Schenato, L. Opt. Lett.; 2006; vol. 31, pp. 2275–7.
“Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber,” Tanemura, T., Katoh, K., Kikuchi, K. Optics Express; 2005; vol. 13, pp. 7497–505.
“Enhanced self-phase modulation in tapered fibers,” Dumais, P., Gonthier, F., Lacroix, S., Bures, J., Villeneuve, A., Wigley, P. G. J., Stegeman, G. I. Opt. Lett.; 1993; vol. 18, pp. 1996–8.
“Two-photon absorption as a limitation to all-optical switching,” Mizrahi, V., DeLong, K. W., Stegeman, G. I., Staifi, M. A., Andrejco, M. J. Opt. Lett.; 1989; vol. 14, pp. 1140–2.
“Large nonlinear phase shifts in low-loss AlxGa1−xAs waveguides near half-gap,” Ho, S. T., Soccolich, C. E., Islam, M. N., Hobson, W. S., Levi, A. F. J., Slusher, R. E. Applied Phys. Lett.; 1991; vol. 59, pp. 2558–60.
“Highly nonlinear optical fiber for all optical processing applications,” Holmes, M. J., Williams, D. L., Manning, R. J. IEEE Photon. Technol. Lett.; 1995; vol. 7, pp. 1045–7.
“Four-wave mixing with large Stokes shifts in heavily Ge-doped silica fibers,” Yatsenko, Y. P., Pryamikov, A. D., Mashinsky, V. M., Likhachev, M. E., Mavritsky, A. O., Dianov, E. M., Guryanov, A. N., Khopin, V. F., Salgansky, M. Y. Opt. Lett.; 2005; vol. 30, pp. 1932–4.
“The fabrication and modelling of non-silica microstructured optical fibres,” Hewak, D. W., West, Y. D., Broderick, N. G. R., Monro, T. M., Richardson, D. J. In Proc. Optical Fiber Communication Conf., Technical Digest, March 2001, Anaheim CA; vol. 2, pp. TuC4-1–3.
“Launching into single mode optical fibre waveguide,” Stern, J. R., Dyott, R. B. In Proc. Conf. on Trunk Telecommunications by Guided Waves, September 1970, London UK; pp. 191–96.
“Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Liu, X., Xu, C., Knox, W. H., Chandalia, J. K., Eggleton, B. J., Kosinski, S. G., Windeler, R. S. Opt. Lett.; 2001; vol. 26, pp. 358–60.
“Subwavelength-diameter silica wires for low-loss optical wave guiding,” Tong, L., Gattass, R. R., Ashcom, J. B., He, S., Lou, J., Shen, M., Maxwell, I., Mazur, E. Nature; 2003; vol. 426, pp. 816–9.
www.crystal-fibre.com.
“Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Ranka, J. K., Windeler, R. S., Stentz, A. J. Opt. Lett.; 2000; vol. 25, pp. 25–7.
“Anomalous dispersion in photonic crystal fiber,” Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., Russell, P. S. J IEEE Photon. Technol. Lett., 2000; vol. 12, pp. 807–9.
“Designing the properties of dispersion-flattened photonic crystal fibers,” Ferrando, A., Silvestre, E., Andres, P. Optics Express; 2001; vol. 9, pp. 687–97.
“Designing a photonic crystal fibre with flattened chromatic dispersion,” Ferrando, A., Silvestre, E., Miret, J. J., Monsoriu, J. A., Andres, M. V., Russell, P. S. Electron. Lett.; 1999; vol. 35, pp. 325–7.
“Nearly zero ultraflattened dispersion in photonic crystal fibers,” Ferrando, A., Silvestre, E., Miret, J. J., Andres, P. Opt. Lett.; 2000; vol. 25, pp. 790–2.
“A novel ultraflattened dispersion photonic crystal fiber,” Wu, T. L., Chao, C. H. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 67–9.
“An efficient approach for calculating the dispersions of photonic-crystal fibers: design of the nearly zero ultra-flattened dispersion,” Wu, T. L., Chao, C. H. J. Lightwave Technol.; 2005; pp. 2055–61.
“Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E. Optics Express; 2003; vol. 11, pp. 843–52.
“Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Reeves, W., Knight, J., Russell, P., Roberts, P. Optics Express; 2002; vol. 10, pp. 609–13.
“Dispersion-flattened photonic crystal fibers at 1550 nm,” Reeves, W., Knight, J., Russell, P., Roberts, P., Mangan, B. In Proc. Optical Fiber Communication Conf. Technical Digest, March 2003, Atlanta GA; vol. 2, pp. 696–7.
“Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” Hansen, K. P., Folkenberg, J. R., Peucheret, C., Bjarklev, A. In Proc. Optical Fiber Communication Conf., Postdeadline Papers, March 2003, Atlanta GA; vol. 3, pp. PD2-1–3.
“Impact of the wavelength dependence of the mode field on the nonlinearity coefficient of PCFs,” Hainberger, R., Watanabe, S. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 70–2.

Reference Title: References

Reference Type: reference-list

“Interactions between light waves in a non-linear dielectric,” Armstrong, J. A., Bloembergen, N., Ducuing, J., Pershan, P. S. Phys. Rev.; 1962; vol. 127, pp. 1918–39.
“Theory of dielectric waveguides,” Kogelnik, H. In Integrated Optics, Tamir, T., ed. Springer, Berlin, Topics in Applied Physics; 1979; p. 37.
The Elements of Nonlinear Optics, Butcher, P. N., Cotter, D. Cambridge University Press, Cambridge; 1993; p. 21.
Nonlinear Fiber Optics, Agrawal, G. P. Academic, Boston; 1989.
“Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” Cappellini, G., Trillo, S. J. Opt. Soc. Amer. B; 1991; vol. 8, pp. 824–37.
“Four-photon parametric mixing in optical fibers: effect of pump depletion,” Chen, Y., Snyder, A. W. Opt. Lett.; 1989; vol. 14, pp. 87–9.
Handbook of Mathematical Functions, Abramowitz, M., Stegun, I., eds. National Bureau of Standards, Washington DC, Applied Mathematics Series; 1964; vol. 55.
“Tunable fiber parametric wavelength converter with 900 mW of CW output power at 1665 nm,” Marhic, M. E., Williams, G. M., Goldberg, L., Delavaux, J. M. P. In Proc. Conf. Photonics West, San Jose CA, January 2006; Proc. SPIE; 2006; vol. 6103, pp. 165–6.
“Parametric amplification and frequency conversion in optical fibers,” Stolen, R. H., Bjorkholm, J. E. IEEE J. Quantum Electron.; 1982; vol. QE-18, pp. 1062–72.
“Confluent hypergeometric solutions for parametric interactions in optical fibers,” Marhic, M. E., Yang, F. S., Kazovsky, L. G. In Proc. Nonlinear Optical Materials, Fundamentals and Applications Topical Meeting, Princeville, Kauai HI, August 1998; paper PD005.
http://www.wolfram.com.
http://www.mathworks.com.
“Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers,” Marhic, M. E., Park, Y., Yang, F. S., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 1906–8.
“Unified analysis of modulational instability induced by cross-phase modulation in optical fibers,” Tanemura, T., Kikuchi, K. J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 2502–14.
“Quantum noise properties of parametric amplifiers driven by two pump waves,” McKinstrie, C. J., Radic, S., Raymer, M.G.; Optics Express; 2004; vol. 12, pp. 5037–66.
“Parametric amplifiers driven by two pump waves with dissimilar frequencies,” McKinstrie, C. J., Radic, S. Opt. Lett.; 2002; vol. 27, pp. 1138–40.
“40-Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” Lin, Q., Jiang, R., Marki, C. F., McKinstrie, C. J., Jopson, R., Ford, J.; Agrawal, G. P., Radic S. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 2376–8.
“Bessel function solution for the gain of a one-pump fiber optical parametric amplifier,” Marhic, M. E., Curri, V., Kazovsky, L. G. In Proc Nonlinear Optical Materials, Fundamentals and Applications Topical Meeting, Princeville, Kauai HI, August 1998; paper TuC21.
“Raman response function for silica fibers,” Lin, Q., Agrawal, G. P. Opt. Lett; 2006; vol. 31, pp. 3086–8.
“Combined processes of stimulated Raman scattering and four-wave mixing in optical fibers,” Chen, Y. J. Opt. Soc. Amer. B; 1990; vol. 7, pp. 43–52.
“Unified analysis of four-photon mixing, modulational instability, and simulated Raman scattering under various polarization conditions in fibers,” Golovchenko, E. A., Pilipetskii, A. N. J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 92–101.
“Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Sylvestre, T., Maillotte, H., Lantz, E., Tchofo Dinda, P. Opt. Lett.; 1999; vol. 24, pp. 1561–3.
“Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers,” Voss, P. L., Kumar, P. Opt. Lett. 2004; vol. 29, pp. 445–7.
“200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” Ho, M. C., Uesaka, K., Marhic, M. E., Akasaka, Y., Kazovsky, L. G. J. Lightwave Technol.; 2001; vol. 19, pp. 977–81.
“Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain,” Vanholsbeeck, F., Emplit, P., Coen, S. Opt. Lett.; 2003; vol. 28, pp. 1960–2.
“Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection,” McKenzie, K., Shaddock, D. A., McClelland, D. E., Buchler, B. C., Lam, P. K. Phys. Rev. Letters; 2002; vol. 88, pp. 231102/1–4.
“Optical amplification in a nonlinear fiber interferometer,” Marhic, M. E., Hsia, C. H., Jeong, J. M. Electron. Lett.; 1991; vol. 27, pp. 210–1.

Reference Title: References

Reference Type: reference-list

“Fiber optical parametric amplifiers with linearly- or circularly-polarized waves,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Opt. Soc. Amer. B.; 2003; vol. 20, pp. 2425–33.
“Study of optical effects due to an induced polarization third order in the electric field strength,” Maker, P. D., Terhune, R. W. Phys. Rev.; 1965; vol. 137, pp. A801–8.
“200-nm bandwidth fiber optical amplifier combining parametric and Raman gain,” Ho, M. C., Marhic, M. E., Akasaka, Y., Kazovsky, L. G. J. Lightwave Technol.; 2001; vol. 19, pp. 977–81.
“Parametric and Raman amplification in birefringent fibers,” Trillo, S., Wabnitz, S. J. Opt. Soc. Amer. B; 1992; vol. 9, pp. 1061–82.
“Unified analysis of four-photon mixing, modulational instability, and simulated Raman scattering under various polarization conditions in fibers,” Golovchenko, E. A., Pilipetskii, A. N. J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 92–101.
“Broadband fiber-optical parametric amplifiers,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 573–5.
“Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Marhic, M. E., Park, Y., Yang, F. S., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 1354–6.
“Unified analysis of modulational instability induced by cross-phase modulation in optical fibers,” Tanemura, T., Kikuchi, K. J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 2502–14.
“Quantum noise properties of parametric amplifiers driven by two pump waves,” McKinstrie, C. J., Radic, S., Raymer, M. G. Optics Express; 2004; vol. 12, pp. 5037–66.
“Fiber optical parametric amplifier with circularly-polarized pumps,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. Electron. Lett.; 2003; vol. 39, pp. 350–1.
“Polarization optics of twisted single mode fibers,” Ulrich, R., Simon, A. Appl. Opt.; 1975; vol. 18, pp. 2241–51.
“Strong reduction of optimum pump power for efficient wave conversion in optical fibers with dual-frequency circularly polarized pump waves,” Tchofo Dinda, P., Millot, G. Opt. Lett.; 2002; vol. 27, pp. 225–7.
“Observation of elliptical polarization rotation in a long twisted fiber,” Tanemura, T., Kikuchi, K. Opt. Lett.; 2006; vol. 31, pp. 882–4.
“Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber,” Tanemura, T., Katoh, K., Kikuchi, K. Optics Express; 2005; vol. 13, pp. 7497–505.
“Parametric amplification in fibers with random birefringence,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., Los Angeles CA, February 2004; paper TuC2.
“Stability of solitons in randomly varying birefringent fibers,” Wai, P. K. A., Menyuk, C. R., Chen, H. H. Opt. Lett.; 1991; vol. 16, pp. 1231–3.
“Measurement of normalization factor of n2 for random polarization in optical fibers,” Chernikov, S. V., Taylor, J. R. Opt. Lett.; 1996; vol. 21, 1559–61.
“Phase matching in birefringent fibers,” Stolen, R. H, Bosch, M. A., Lin, C. Opt. Lett.; 1981; vol. 6, pp. 213–5.
“Polarization dependent parametric gain in amplifiers with orthogonally multiplexed optical pumps,” Radic, S., Mckinstrie, C., Jopson, R. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; Technical Digest, vol. 2, pp. 508–10.
“Polarization multiplexing with solitons,” Evangelides, S. G., Mollenauer, L. F., Gordon, J. P., Bergano, N. S. J. Lightwave Technol.; 1992; vol. 10, pp. 28–35.
“Path average measurements of optical fiber nonlinearity using solitons,” Andersen, J. K., Lou, J. W., Nowak, G. A., Xia, T., Islam, M. N., Fortenberry, R. M., Newton, S. A. Lightwave Technol.; 1998; vol. 16, pp. 2328–34.
“On the joint effects of fiber parametric gain and birefringence and their influence on ASE noise,” Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Benedetto, S. J. Lightwave Technol.; 1998; vol. 16, pp. 1149–57.
Principles of Optics, Born, M., Wolf, E. Pergamon, New York; 1970; p. 31.

Reference Title: References

Reference Type: reference-list

“Unified analysis of four-photon mixing, modulational instability, and simulated Raman scattering under various polarization conditions in fibers,” Golovchenko, E. A., Pilipetskii, A. N. J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 92–101.
“Broadband fiber optical parametric amplifiers,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 573–5.
“Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Floridia, C., Sundheimer, M. L., Menezes, L. ed. S., Gomes, A. S. L. Optics Comm.; 2003; vol. 223, pp. 381–8.
“Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance,” Hirano, M., Nakanishi, T., Okuno, T., Onishi, M. In Proc. 31st European Conf. on Optical Communication, September 2005, Glasgow, UK; vol. 6, pp. 43–4.
“Broadband single-pumped fiber-optic parametric amplifiers,” Torounidis, T., Andrekson, P. IEEE Photon. Technol. Lett.; 2007; vol. 19, in press.
G. Kalogerakis, private communication.
“Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Select. Topics Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Widely tunable optical parametric generation in a photonic crystal fiber,” Chen, A. Y. H., Wong, G. K. L., Murdoch, S. G.; Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., Russel, P. St. J. Opt. Lett.; 2005; vol. 30, pp. 762–4.
“Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Tauser, F., Adler, F., Leitenstorfer, A. Opt. Lett.; 2004; vol. 29, pp. 516–8.
“Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Marhic, M. E., Park, Y., Yang, F. S., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 1354–6.
“Demonstration of two-pump fiber optical parametric amplification,” Yang, F. S., Ho, M. C., Marhic, M. E., Kazovsky, L. G. Electron. Lett.; 1997; vol. 33, pp. 1812–3.
“Fiber optical parametric amplifiers with linearly- or circularly-polarized waves,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Opt. Soc. Amer. B.; 2003; vol. 20, pp. 2425–33.
“Tunable fiber parametric wavelength converter with 900 mW of CW output power at 1665 nm,” Marhic, M. E., Williams, G. M., Goldberg, L., Delavaux, J. M. P. In Proc. Conf. Photonics West, San Jose CA, January, 2006; Proc. SPIE, vol. 6103, pp. 165–76.
“92% pump depletion in a CW one-pump fiber OPA,” Marhic, M. E., Wong, K. Y., Ho, M. C., Kazovsky, L. G. Opt. Lett.; 2001; vol. 26, pp. 620–2.
“1.53 kW from a single Yb-doped photonic crystal fiber laser,” Bonati, G., Voelckel, H., Gabler, T., Krause, U., Tünnermann, A., Limpert, J., Liem, A., Schreiber, T., Nolte, S., Zellmer, H. In Proc. Conf. Photonics West, San Jose CA, January, 2005; Proc. of the SPIE, vol. 5709-2a.
“High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,” Marhic, M. E., Yang, F. S., Ho, M. C., Kazovsky, L. G. J. Lightwave Technol.; 1999; vol. 17, pp. 210–5.
“Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” Kim, J., Boyraz, O., Lim, J. H., Islam, M. N. J. Lightwave Technol.; 2001; vol. 19, pp. 247–51.
“Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” Provino, L., Mussot, A., Lantz, E., Sylvestre, T., Maillotte, H. J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 1532–7.
“Parametric amplification in presence of fluctuations,” Farahmand, M., de Sterke, M. Optics Express; 2004; vol. 12, pp. 136–42.
“Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. Optics Express; 2005; vol. 13, pp. 4666–73.
“Experiment of zero dispersion tuning by stretching down-sized HNLF,” Takahashi, M., Tadakuma, M., Hiroishi, J., Sugizaki, R., Yagi, T. In Proc. European Conf. on Optical Communication, Cannes, France, September 2006; vol. 4, paper Th1.5.1, pp. 41–2.
“Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm,” Gao, M., Jiang, C., Hu, W., Wang, J. Optics Express; 2004; vol. 12, pp. 5603–13.
“Two-pump fiber optical parametric amplifiers with three-section fibers allocation,” Gao, M., Jiang, C., Hu, W., Wang, J. Optics and Laser Technol.; 2006; vol. 38, pp. 186–91.
“Modulational instability in optical fibers with variable dispersion,” Abdullaev, F. K., Darmanyan, S. A., Kobyakov, A., Lederer, F. Phys. Lett. A; 1996; vol. 220, pp. 213–8.
“Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” Yaman, F., Lin, Q., Radic, S., Agrawal, G. P. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1292–4.
“Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” Mussot, A., Lantz, E., Durecu-Legrand, A., Simonneau, C., Bayart, D., Sylvestre, T., Maillotte, H. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 22–4.
“Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Inoue, K. Opt. Lett.; 1994; vol. 19, pp. 1189–91.
“Phase matching in birefringent fibers,” Stolen, R. H., Bosch, M. A., Lin, C. Opt. Lett.; 1981; vol. 6, pp. 213–5.
“Quasi-phase matching in an optical fiber with periodic birefringence,” Murdoch, S. G., Leonhardt, R., Harvey, J. D., Kennedy, T. A. B. J. Opt. Soc. Amer. B; July 1997; vol. 14, pp. 1816–22.
“Nonlinear generation of very high-order UV modes in microstructured fibers,” Efimov, A., Taylor, A., Omenetto, F., Knight, J., Wadsworth, W., Russell, P. Opt. Express; 2003; vol. 11, pp. 910–8.
“Phase-matched third harmonic generation in microstructured fibers,” Efimov, A., Taylor, A., Omenetto, F., Knight, J., Wadsworth, W., Russell, P. Opt. Express; 2003; vol. 11, pp. 2567–76.

Reference Title: References

Reference Type: reference-list

“Nonlinear pulse propagation in birefringent optical fibers,” Menyuk, C. IEEE J. Quantum Electron.; 1987; vol. QE-23, pp. 174–6.
Modulational instability for normal dispersion,” Rothenberg, J. E. Phys. Rev. A; 1990; vol. 42, pp. 682–5.
“Cross-phase modulational instability in high-birefringence fibers,” Drummond, P. D., Kennedy, T. A. B., Dudley, J. M., Leonhardt, R. Harvey, J. D. Opt. Commun.; 1990; vol. 78, pp. 137–42.
“Nonlinear effects in coherent multichannel transmission through optical fibers,” Waarts, R. G., Friesem, A. A., Lichtman, E.; Yaffe, H. H., Braun, R. P. Proc. IEEE; 1990; vol. 78, pp. 1344–68.
“Parametric amplification and frequency conversion in optical fibers,” Stolen, R. H., Bjorkholm, J. E. IEEE J. Quantum Electron.; 1982; vol.QE-18, pp. 1062–72.
“Parametric instability of optical amplifier noise in long-distance optical transmission systems,” Lorattanasane, C., Kikuchi, K. IEEE J. Quantum Electron.; 1997; vol. 33, pp. 1068–74.
“Parametric noise amplification inherent in the coherence of fundamental optical soliton sequence propagating in fiber,” Inoue, T., Namiki, S. IEEE J. Selected Topics in Quantum Electron.; 2004; vol. 10, pp. 900–5.
Nonlinear Fiber Optics, Agrawal, G. P. 1989; Academic, San Diego.
“Intensity-dependent changes in the refractive index of liquids,” Maker, P. D., Terhune, R. W., Savage, C. M. Phys. Rev. Letters.; 1964; vol. 12, pp. 507–9.
“Parametric amplification in presence of fluctuations,” Farahmand, M., de Sterke, M. Optics Express; 2004; vol. 12, pp. 136–42.
“Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” Yaman, F., Lin, Q., Radic, S., Agrawal, G. P. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1292–4.
“Autocorrelation function of the polarization-mode dispersion vector,” Karlsson, M., Brentel, J. Opt. Lett.; 1999; vol. 24, pp. 939–41.
“Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion,” Lin, Q., Agrawal, G. P. Opt. Lett.; 2004; vol. 29, pp. 1114–6.
“Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” Yaman, F., Lin, Q., Agrawal, G. P. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 431–3.
“Accurate modeling of fiber OPAs with nonlinear ellipse rotation terms in the split-step Fourier method,” Marhic, M. E., Kazovsky, L. G., Rieznik, A. A., Fragnito, H. L. In Proc. Conf. on Optical Amplifiers and Their Applications, Whistler BC, Canada, June 2006; paper JWB35.
“Nearly 100 nm bandwidth of flat gain with a double-pumped fiber optic parametric amplifier,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2007; paper OWB1.
“Broadband single-pumped fiber-optic parametric amplifiers,” Torounidis, T., Andrekson, P. IEEE Photon. Technol. Lett.; 2007; vol. 19, in press.

Reference Title: References

Reference Type: reference-list

“Large-signal enhanced frequency conversion in birefringent optical fibers: theory and experiments,” Seve, E., Millot, G., Trillo, S., Wabnitz, S. J. Opt. Soc. Amer. B; 1998; vol. 15, pp. 2537–51.
“Time-bandwidth product of chirped sech2 pulses: application to phase–amplitude-coupling factor measurement,” Lazaridis, P., Debarge, G., Gallion, P. Opt. Lett.; 1995; vol. 20, pp. 1160–2.
“Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Morioka, T., Kawanishi, S., Mori, K., Saruwatari, M. Electron. Lett.; 1994; vol. 30, pp. 1166–8.
“Multiple wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber optical parametric amplifier,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G., J. Lightwave Technol.; 2005; vol. 23, pp. 2954–60.
“Active optical pulse compression with a gain of 29.0 dB by using four-wave mixing in an optical fiber,” Yamamoto, T., Nakazawa, M., IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 1595–7.
“Self-phase-modulation in silica optical fibers,” Stolen, R. H., Lin, C. Phys. Rev.; 1978; vol. A 17, pp. 1448–53.
“1.53 kW from a single Yb-doped photonic crystal fiber laser,” Bonati, G., Voelckel, H., Gabler, T., Krause, U., Tünnermann, A., Limpert, J., Liem, A., Schreiber, T., Nolte, S., Zellmer, H. In Proc. Conf. Photonics West, San Jose, January 2005; Proc. SPIE, vol. 5709–2a.
“Failure of phase-matching concept in large-signal parametric frequency conversion,” Trillo, S., Millot, G., Seve, E., Wabnitz, S. Appl. Phys. Lett.; 1998; vol. 72, pp. 150–2.
“Strong four-photon conversion regime of cross-phase-modulation-induced modulational instability,” Seve, E., Millot, G., Trillo, S., Phys. Rev. E; 2000; vol. 61, pp. 3139–50.
“Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber,” Konorov, S. O., Serebryannikov, E. E., Zheltikov, A. M., Zhou, P., Tarasevitch, A. P., von der Linde, D. Opt. Lett.; 2004; vol. 29, pp. 1545–7.
Nonlinear Fiber Optics, Agrawal, G. P. 1985; Academic, San Diego.

Reference Title: References

Reference Type: reference-list

“Continuous-wave fiber optical parametric oscillator,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G., Tsai, T. E. Opt. Lett.; 2002; vol. 27, pp. 1439–41.
“Broadband single-pumped fiber-optic parametric amplifiers,” Torounidis, T., Andrekson, P. IEEE Photon. Technol. Lett.; 2007; vol. 19, in press.
“Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” de Matos, C. J. S., Taylor, J. R., Hansen, K. P. Opt. Lett.; 2004; vol. 29, pp. 983–5.
“Tunable fiber-optic parametric oscillator,” Serkland, D. K., Kumar, P. Opt. Lett.; 1999; vol. 24, pp. 92–4.
“Prospects for continuous-wave fiber optical parametric amplifiers and oscillators,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. In Proc. Conf. on Lasers and Electro-Optics, Baltimore MD, May 2003; paper CTuA1, pp. 417–8.
“Optical parametric oscillators,” Ebrahimzadeh, M.; Dunn, M. H. In Optics IV, Bass, M., Enoch, J. M., Van Stryland, E. W., Wolfe, W. L., eds. McGraw-Hill, New York; 2000; pp. 2201–72.

Reference Title: References

Reference Type: reference-list

Quantum Electronics, Yariv, A. Wiley, New York; 1989; p. 384.
“Quantum limits on noise in linear amplifiers,” Caves, C. M. Phys. Rev. D; 1982; vol. 26, pp. 1817–39.
“Noise in amplifiers,” Yamamoto, Y., Inoue, K. J. Lightwave Technol.; 2003; vol. 21, pp. 2895–915.
“Fundamentals of optical amplifiers,” Yamamoto, Y., Mukai, T. Optical and Quantum Electron., 1989; vol. 21, pp. S1–14.
“Noise characteristics of fiber-based optical phase conjugators,” Hedekvist, P. O., Andrekson, P. A. J. Lightwave Technol.; 1999; vol. 17, pp. 74–79.
“Quantum physics of simple optical instruments,” Leonhardt, U. Rep. Prog. Phys.; 2003; vol. 66, pp. 1207–49.
“Nonclassical fields in a linear directional coupler,” Lai, W. K., Buek, V., Knight, P. L. Phys. Rev. A; 1991; vol. 43, pp. 6323–36.
“Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Voss, P. L., Tang, R., Kumar, P. Opt. Lett.; 2003; vol. 28, pp. 549–51. “Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier: erratum,” Opt. Lett.; 2004; vol. 29, pp. 2815.
“Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers,” Voss, P. L., Kumar, P., Opt. Lett.; 2004; vol. 29, pp. 445–7.
“Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation,” Tang, R., Voss, P. L., Lasri, J., Devgan, P., Kumar, P. Opt. Lett.; 2004; vol. 29, pp. 2372–4.
“Measurement of the Raman gain spectrum of optical fibers,” Dougherty, D. J., Kartner, F. X., Haus, H. A., Ippen, E. P. Opt. Lett.; 1995; vol. 20, pp. 31–3.
“Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing,” Voss, P. L., Köprülü, K. G., Kumar, P. J. Opt. Soc. Amer. B; 2006; vol. 23, pp. 598–610.
“Noise figure definition valid from RF to optical frequencies,” Haus, HA. IEEE J. Select. Topics Quantum Electron.; 2000; vol. 6, pp. 240–7. “The proper definition of noise figure of optical amplifiers” Haus, H. A. In Proc. Conf. on Optical Amplifiers and Their Applications, Stresa, Italy, 2001.
“Intuitive classical approach of intensity noise in linear phase-insensitive optical amplifiers,” Dallot, V; Gallion, P. In Conf. on Lasers and Electro-Optics, Baltimore MD, May 2001; Technical Digest, pp. 297–8.
“Optical noise figure: theory and measurement,” Tucker, R.S., Baney, D. M.; In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; vol. 3, pp. WI1-1–3.
“Quantum and nonlinearity limitations of the optical communication channel,” Desurvire, E. C. R. Physique; 2003; vol. 4, pp. 11–28.
“Quantum noise properties of parametric amplifiers driven by two pump waves,” McKinstrie, C. J., Radic, S., Raymer, M. G. Optics Express; 2004; vol. 12, pp. 5037–66.
“Semiclassical model for noise propagation in depleted-pump optical amplifiers,” Annovazzi-Lodi, V., Merlo, S. IEEE J. Quantum Electron.; 1998; vol. 34, pp. 1823–9.
“On the physical origin of the 3-dB noise figure limit in laser and parametric optical amplifiers,” Desurvire, E. Optical Fiber Technology: Materials, Devices and Systems; 1999; vol. 5, pp. 40–6
“Quantum optics of traveling-wave attenuators and amplifiers,” Jeffers, J. R., Imoto, N., Loudon, R. Phys. Rev. A; 1993; vol. 47, pp. 3346–59.

Reference Title: References

Reference Type: reference-list

“Design of highly-nonlinear tellurite fibers with zero dispersion near 1550 nm,” Hu, E. S., Hsueh, Y. L., Marhic, M. E., Kazovsky, L. G. In Proc. European Conf. on Optical Communication, Copenhagen, September 2002; vol. 2, paper 3.2.3.
“Broadband fiber optical parametric amplifiers,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G. 1996; Opt. Lett., vol. 21, pp. 573–5.
“Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Pump to signal transfer of intensity modulation in fiber optical parametric amplifiers,” Marhic, M. E., Kalogerakis, G., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 1049–55.
“Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” Durecu-Legrand, A., Simonneau, C., Bayart, D., Mussot, A., Sylvestre, T., Lantz, E., Maillotte, H. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1178–80.
“Noise characteristics of fiber optical parametric amplifiers,” Kylemark, P., Hedekvist, P. O., Sunnerud, H., Karlsson, M., Andrekson, P. A. J. Lightwave Technol.; 2004; vol. 22, pp. 409–16.
“Correction to ‘Noise characteristics of fiber optical parametric amplifiers ‘ ” Kylemark, P., Hedekvist, P. O., Sunnerud, H., Karlsson, M., Andrekson, P. A. J. Lightwave Technol.; 2005; vol. 23, p. 2192.
“Noise characteristics of dual-pump fiber-optic parametric amplifiers,” Bogris, A., Syvridis, D., Kylemark, P., Andrekson, P. A. J. Lightwave Technol.; 2005; vol. 23, pp. 2788–95.
“Gain and wavelength dependence of the noise-figure in fiber optical parametric amplification,” Kylemark, P., Karlsson, M., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 1255–7.
“Pump-noise transfer in dual-pump fiber-optic parametric amplifiers: walk-off effects,” Yaman, F., Lin, Q., Agrawal, G. P., Radic, S. Opt. Lett.; 2005; vol. 30, pp. 1048–50.
“High-repetition-rate pulsed-pump fiber OPA for amplification of communication signals,” Kalogerakis, G., Shimizu, K., Marhic, M. E., Wong, K. K. Y., Uesaka, K., Kazovsky, L. G. J. Lightwave Technol.; 2006; vol. 24: pp. 3021–7.
“Noise statistics of fiber optical parametric amplifiers,” Kylemark, P., Karlsson, M., Torounidis, T., Andrekson, P. A. In Proc. Optical Fiber Communications Conf., Anaheim CA, March 2006; paper OWT5. “Noise statistics in fiber optical parametric amplifiers,” Kylemark, P., Karlsson, M., Andrekson, P. A. J. Lightwave Technol., in press.
“Signal-to-noise considerations in fiber links with periodic or distributed optical amplification,” Yariv, A. Opt. Lett.; 1990; vol. 15, pp. 1064–6.
“High power ASE-free tunable laser using a Sagnac ring interferometer within the external cavity,” Fulop, L., Souhaite, G., Moulinet, X., Graindorge, P., Lefevre, H. C.In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001: vol. 2, pp. TuJ6-1–3.
“Parametric interaction of a modulated wave in a single-mode fiber,” Bar-Joseph, I., Friesem, A. A., Waarts, R. G., Yaffe, H. H. Opt. Lett.; 1986; vol. 11, pp. 534–6.
“Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” Yaman, F., Lin, Q., Radic, S., Agrawal, G. P. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 2053–5.
“Pump FM to signal IM conversion in fiber OPAs,” Marhic, M. E., Kalogerakis, G., Kazovsky, L. G. In Proc. OECC/COIN 2004, Yokohama, Japan, July 2004; paper 13P–87.
“Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” Mussot, A., Durecu-Legrand, A., Lantz, E., Simonneau, C., Bayart, D., Maillotte, H., Sylvestre, T. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1289–91.
“Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers,” Durecu-Legrand, A., Mussot, A., Simonneau, C., Bayart, D., Sylvestre, T., Lantz, E., Maillotte, H. Electron. Lett.; 2005; vol. 41, pp. 350–2.
“Performance of fiber parametric-processing devices using binary-phase-shift-keyed pump modulation,” Radic, S., McKinstrie, C. J., Jopson, R. M., Gnauck, A. H., Centanni, J. C., Chraplyvy, A. R. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 548–50.

Reference Title: References

Reference Type: reference-list

“Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Harvey, J. D., Leonhardt, R., Coen, S., Wong, G. K. L., Knight, J. C., Wadsworth, W. J., Russell, P. St J. Opt. Lett.; 2003; vol. 28, pp. 2225–7.
“Widely tunable optical parametric generation in a photonic crystal fiber,” Chen, A. Y. H., Wong, G. K. L., Murdoch, S. G., Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., Russell, P. St J. Opt. Lett.; 2005; vol. 30, pp. 762–4.
“Continuous-wave tunable optical parametric generation in a photonic-crystal fiber,” Wong, G. K. L., Chen, A. Y. H., Murdoch, S. G., Leonhardt, R., Harvey, J. D., Joly, N. Y., Knight, J. C., Wadsworth, W. J., Russell, P. St J. J. Opt. Soc. Amer; 2005; vol. 22, pp. 2505– 11.
“Experimental observation of new modulation instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Pitois, S., Millot, G. Opt. Comm.; 2003; vol. 226, pp. 415–22.
“Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Tauser, F., Adler, F., Leitenstorfer, A. Opt. Lett.; 2004; vol. 29, pp. 516–8.
“Nearly 100 nm bandwidth of flat gain with a double-pumped fiber optic parametric amplifier,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. In Proc. Optical Fiber Communication Conf., Anaheim, CA, March 2007; paper OWB1.
“Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” Yaman, E., Lin, Q., Radic, S., Agrawal, G. P. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1292–4.
“Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Voss, P. L., Tang, R., Kumar, P. Opt. Lett.; 2003; vol. 28, pp. 549–51. “Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier: erratum,” Voss, P. L., Tang, R., Kumar, P. Opt. Lett.; 2004; vol. 29, pp. 2815.
“Raman-noise-induced noise-figure limit for χ3 parametric amplifiers,” Voss, P. L., Kumar, P. Opt. Lett.; 2004; vol. 29, pp. 445–7.
“Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation,” Tang, R., Voss, P. L., Lasri, J., Devgan, P., Kumar, P. Opt. Lett.; 2004; vol. 29, pp. 2372–4.
“Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Imajuku, W., Takada, A., Yamabayashi, Y. Electron. Lett.; 1999; vol. 35, pp. 1954–5.
“Noise figure of phase-sensitive parametric amplifier using a Mach–Zehnder interferometer with lossy Kerr media and noisy pump,” Imajuku, W., Takada, A. IEEE J. Quantum Electron.; 2003; vol. 39; pp. 799–812.
“Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Levenson, M. D., Shelby, R. M., Perlmutter, S. H. Phys. Rev. A; 1985; vol. 32, pp. 1550–62.
“Failure of phase-matching concept in large-signal parametric frequency conversion,” Trillo, S., Millot, G., Seve, E., Wabnitz, S. Appl. Phys. Lett.; 1998; vol. 72, pp. 150–2.
“Strong four-photon conversion regime of cross-phase-modulation-induced modulational instability,” Seve, E., Millot, G., Trillo, S. Phys. Rev. E; 2000; vol. 61, pp. 3139–50.
“Four-photon fiber laser,” Margulis, W., Osterberg, U. Opt. Lett.; 1987; vol. 12; pp. 519–21.
“Parametric soliton laser,” Suzuki, K., Nakazawa, M., Haus, H. A. Opt. Lett.; 1989; vol. 14; pp. 320–2.
“Tunable fiber-optic parametric oscillator,” Serkland, D. K., Kumar, P. Opt. Lett.; 1999; vol. 24, pp. 92–4.
“Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation,” Saito, S., Kishi, M., Tsuchiya, M. Electron. Lett.; 2003; vol. 39, pp. 86–8.
“A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” Lasri, J., Devgan, P., Tang, R., Sharping, J. E., Kumar, P. IEEE Photon. Technol. Lett.; 2001; vol. 15, pp. 1058–60.
“Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Sharping, J. E., Fiorentino, M., Kumar, P., Windeler, R. S. Opt. Lett.; 2002; vol. 27, pp. 1675–7.
“Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Deng, Y., Lin, Q., Lu, F., Agrawal, G. P., Knox, W. H. Opt. Lett.; 2005; vol. 30, pp. 1234–6.
“Pulsed degenerate optical parametric oscillator based on a nonlinear-fiber Sagnac interferometer,” Serkland, D. K., Bartolini, G. D., Agarwal, A., Kumar, P., Kath, W. L. Opt. Lett.; 1998; vol. 23, pp. 795–7.
“Fiber-optical parametric amplifier with 70-dB gain,” Torounidis, T., Andrekson, P. A., Olsson, B. A. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 1194–6.
“Continuous-wave fiber OPA with 60 dB gain using a novel two-segment design,” Wong, K. K. Y., Shimizu, K., Uesaka, K., Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 1707–9.
“Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump,” Blows, J. L., French, S. E. Opt. Lett.; 2002; vol. 27, pp. 491–3.
“Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” Durecu-Legrand, A., Simonneau, C., Bayart, D., Mussot, A., Sylvestre, T., Lantz, E., Maillotte, H. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1178–80.
“Gain and wavelength dependence of the noise-figure in fiber optical parametric amplification,” Kylemark, P., Karlsson, M., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 1255–7.
“Broadband single-pumped fiber-optic parametric amplifiers,” Torounidis, T., Andrekson, P. IEEE Photon. Technol. Lett.; 2007; vol. 19, in press.
“Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance,” Hirano, M., Nakanishi, T., Okuno, T., Onishi, M. In Proc. 31st European Conf. on Optical Communication, September 2005, Glasgow, vol. 6, pp. 43–4.
“A 105-nm ultrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” Yu, Y. B., Chu, P. L., Alphones, A., Shum, P. IEEE Photon. Technol. Lett; 2004; vol. 16, pp. 1640–2.
“Continuous-wave fiber optical parametric wavelength converter with +40-dB conversion efficiency and 3.8-dB noise figure,” Wong, K. K. Y., Shimizu, K., Marhic, M. E., Uesaka, K., Kalogerakis, G. and Kazovsky, L. G. 2003; Opt. Lett., 2003; vol. 28, pp. 692–4.
“Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Yamashita, S., Torii, K. IEEE Electron. Lett.; 2000; vol. 36, pp. 1997–8.
“Suppression of idler broadening in highly-efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” Tanemura, Lim, H. C., Kikuchi, K. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 1328–30.
“System impact of pump phase modulation for fiber optical parametric amplifiers,” Legrand, A., Lanne, S., Simonneau, C., Bayart, D., Mussot, A., Sylvestre, T., Lantz, R., Maillotte, H. In Proc. Optical Fiber Communication Conf., Los Angeles CA, February 2004; paper TuK2.
“Demonstration of two-pump fiber optical parametric amplification,” Yang, F. S., Ho, M. C., Marhic, M. E., Kazovsky, L. G. Electron. Lett.; 1997; vol. 33, pp. 1812–3.
“Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” Ho, M. C., Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2002; vol. 20, pp. 469–76.
“Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2003; vol., pp. 33–5.
“92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier,” Marhic, M. E., Wong, K. K. Y., Ho, M. C., Kazovsky, L. G. Opt. Lett.; 2001; vol. 26, pp. 620–2.
“Broad-band 88% efficient two-pump fiber optical parametric amplifier,” Chavez Boggio, J. M., Dainese, P., Karlsson, F., Fragnito, H. L. IEEE Photon. Technol. Lett.; 2003; vol. 15; pp. 1528–30.
“Continuous-wave fiber optical parametric oscillator,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G., Tsai, T. E. Opt. Lett., 2002; vol. 27, pp. 1439–41.
“Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” de Matos, C. J. S., Taylor, J. R., Hansen, K. P. Opt. Lett.; 2004; vol. 29, pp. 983–5.
“Wavelength exchange in a highly-nonlinear dispersion-shifted fiber: theory and experiments,” Uesaka, K., Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. IEEE J. Selected Topics in Quantum Electron.; 2002; vol. 8, pp. 560–8.
“Low noise figure efficient wavelength exchange in an optical fiber,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Th1.3.1, pp. 13–4.
“Experimental demonstration of a 180 nm wavelength conversion based on a potentially noise-free Bragg scattering process,” Méchin, D., Harvey, J. D., McKinstrie, C. J. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 6, paper Tu1.1.4, pp. 7–8.
“Phase-sensitive amplifier based on two-pump four-wave mixing in an optical fiber,” Takano, K., Tanemura, T., Kikuchi, K. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Tu1.3.6, pp. 23–4.

Reference Title: References

Reference Type: reference-list

“Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” Watanabe, S., Takeda, S., Chikama, T. In Proc. European Conf. on Optical Communication, 1998; vol. 3, pp. 83–7.
“Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” Hasegawa, T, Inoue, K., Oda, K. IEEE Photon. Technol. Lett.; 1993; vol. 5, pp. 947–9.
“Polarization-independent fiber optical parametric amplifier,” Wong, K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. In Proc. OECC/IOOC 2001, Sydney, July 2001.
“Polarization-independent one-pump fiber-optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. IEEE Photon. Technol. Lett., 2002; vol. 14, pp. 1506–8.
“Fiber parametric amplifiers for wavelength band conversion,” Islam, M. N., Boyraz, O. IEEE J. Selected Topics in Quantum Electron.; 2002; vol. 8, pp. 527–37.
“Polarization-independent two-pump fiber optical parametric amplifier with polarization diversity technique,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., March 2006, Anaheim CA; paper OWT4.
“Polarisation-independent phase conjugation of light-wave signals,” Jopson, R. M., Tench, R. E. Electron. Lett.; 1993; vol. 29, pp. 2216–7.
“Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” Inoue, K. J. Lightwave Technol.; 1994; vol. 12, pp. 1916–20.
“Polarization-independent two-pump fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 911–3.
“Polarization-independent, highly-efficient optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” Yamashita, S., Torii, K. IEICE Transactions on Electron.; 2003; vol. E86–C, pp. 1370–3.
“Two-pump fiber parametric amplifiers,” Radic, S., McKinstrie, C. J. Optical Fiber Technology: Materials, Devices and Systems; 2003; vol. 9, pp. 7–23.
“Polarization independent, all-fiber phase conjugation incorporating inline fiber DFB lasers,” Yamashita, S., Set, S. Y., Laming, R. I. IEEE Photon. Technol. Lett.; 1998; vol. 10, pp. 1407–9.
“Polarization dependent parametric gain in amplifiers with orthogonally multiplexed optical pumps,” Radic, S., Mckinstrie, C. J., Jopson, R. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; Technical Digest: vol. 2, paper ThK3, pp. 508–9.
“Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss,” Yaman, F., Lin, Q., Radic, S., Agrawal, G. P. J. Lightwave Technol.; 2006; vol. 24, pp. 3088–96.
“Raman-induced polarization-dependent gain in parametric amplifiers pumped with orthogonally polarized lasers,” Lin, Q., Yaman, F., Agrawal, G. P IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 397–9.
“Combating dispersion with parametric amplifiers,” Li, R. D., Kumar, P., Kath, W. L., Kutz, J. N. IEEE Photon. Technol. Lett.; 1993; vol. 5, pp. 669–72.
“Long-distance pulse propagation in nonlinear optical fibers by using periodically spaced parametric amplifiers,” Kutz, J. N., Kath, W. L., Li, R. D., Kumar, P. Opt. Lett.; 1993; vol. 18, pp. 802–4.
“Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers,” Kutz, J. N., Hile, C. V., Kath, W. L., Li, R. D., Kumar, P. J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 2112–23.
“Reduction of quantum noise in soliton propagation by phase-sensitive amplification,” Deutsch, I. H., Abram, I. J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 2303–13.
“All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G. Opt. Lett.; 2004; vol. 29, pp. 2357–9.
“Compensation of the soliton self-frequency shift with phase-sensitive amplifiers,” Goedde, C. G., Kath, W. L., Kumar, P. Opt. Lett.; 1994; vol. 19, pp. 2077–9.
“Parametric interaction of a modulated wave in a single-mode fiber,” Bar Joseph, I., Friesem, A. A., Waarts, R. G., Yaffee, H. H. Opt. Lett.; 1986; vol. 11, pp. 534–6.
“Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Levandovsky, D., Vasilyev, M., Kumar, P. Pramana; 2001; vol. 56, pp. 281–5.
“Phase-sensitive amplifier based on two-pump four-wave mixing in an optical fiber,” Takano, K., Tanemura, T., Kikuchi, K. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Tu1.3.6., pp. 23–4.
“Phase-sensitive amplification in a fiber,” McKinstrie, C. J., Radic, S. Optics Express; 2004; vol. 12, pp. 4973–9.
“In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier,” Tang, R., Devgan, P., Voss, P. L., Grigoryan, V. S., Kumar, P. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1845–7.
“High-repetition-rate pulsed-pump fiber OPA for amplification of communication signals,” Kalogerakis, G., Shimizu, K., Marhic, M. E., Wong, K. K. Y., Uesaka, K., Kazovsky, L. G. J. Lightwave Technol.; 2006; vol. 24, pp. 3021–7.
“Influence of the pump spectrum on three-wave mixing parametric amplification,” Helmfrid, S., Arvidsson, G. J. Opt. Soc. Amer. B; 1991; vol. 8, pp. 2477–80.
“Continuous-wave fiber optical parametric wavelength converter with +40-dB conversion efficiency and 3.8-dB noise figure,” Wong, K. K. Y., Shimizu, K., Marhic, M. E., Uesaka, K., Kalogerakis, G., Kazovsky, L. G. Opt. Lett.; 2003; vol. 28, pp. 692–4.
“Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching,” Yamamoto, T., Nakazawa, M. IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 327–9.
“Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” McKerracher, R. W., Blows, J. L., de Sterke, C. M., Optics Express; 2003; vol. 11, pp. 1002–7.
“Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Westlund, M., Hansryd, J., Andrekson, P. A., Knudsen, S. N. Electronics Lett.; 2002; vol. 17; vol. 38, no. 2, pp. 85–6.
“Narrow linewidth wavelength converter with 70 nm of signal tuning band using strain distribution to suppress SBS,” Marconi, J. D, Chavez Boggio, J. M., Fragnito, H. L. In Proc. 31st European Conf. on Optical Communications, September 2005, Glasgow; paper Mo4.5.6.
“Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10; pp. 1133–41.
“Multiple wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber optical parametric amplifier,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 2954–60.
“Multiple-band bit-level switching in two-pump parametric devices,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centani, J. C., Chraplyvy, A. R. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 852–4.
“Selective suppression of idler spectral broadening in two-pump parametric architectures,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centanni, J. C., Chraplyvy, A. R., Jorgensen, C. G., Brar, K., Headley, C. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 673–5.
“Compensation for channel dispersion by nonlinear optical phase conjugation,” Yariv, A., Fekete, D., Pepper, D. M. Opt. Lett.; 1979; vol. 4, pp. 52–4.
“Cancellation of third-order nonlinear effects in amplified fiber links by dispersion compensation, phase conjugation, and alternating dispersion,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G. Opt. Lett.; 1995; vol. 20, pp. 863–5.
“Dispersion compensation with SBS-suppressed fibre phase conjugator using synchronized phase modulation,” Tani, M., Yamashita, S. Electron. Lett.; 2003; vol. 39, pp. 1375–7.
“Wavelength division multiplexed transmission over standard single mode fiber using polarization insensitive signal conjugation in highly nonlinear optical fiber,” Radic, S., Jopson, R. M., McKinstrie, C. J., Gnauck, A. H., Chandrasekar, S., Centanni, J. C. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; paper PD12.
“Parametric amplifier for mid-span phase conjugation with simultaneous compensation of fiber loss and chromatic dispersion at 10 Gb/s,” Boggio, J., Chavez M., Guimaraes, A., Callegari, F. A., Marconi, J. D., Rocha, M. L., DeBarros, M. R. X., Fragnito, H. L. Microwave and Optical Technology Lett.; 2004; vol. 42, pp. 503–5.
“Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” Yamashita, S., Tani, M. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 2096–8.
“Reduced timing jitter in dispersion-managed light-wave systems through parametric amplification,” Santhanam, J., Agrawal, G. P. J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 284–91.
“Performance analysis of variable optical delay circuit using highly nonlinear fiber parametric wavelength converters,” Sakamoto, T., Okada, A., Moriwaki, O., Matsuoka, M., Kikuchi, K. J. Lightwave Technol.; 2004; vol. 22, pp. 874–81.
“Optical delay line using four-wave mixing for repeated wavelength shifting,” Marhic, M. E. proposal to US Army Research Office, 1999.
“Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Dahan, D., Eisenstein, G. Optics Express; 2005; vol. 13, pp. 6234–49.
“All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Sharping, J., Okawachi, Y. van Howe, J., Xu, C., Willner, A., Wang, Y., Gaeta, A. Optics Express; 2005; vol. 13, pp. 7872–7.
“12.47 ns continuously-tunable two-pump parametric delay,” Ren, J., Alic, N., Myslivets, E., Saperstein, R. E., McKinstrie, C. J., Jopson, R. M., Gnauck, A. H., Andrekson, P. A., Radic, S. In Proc. ECOC'06, Cannes, September 2006; postdeadline paper Th.4.4.3, pp. 45–6.
“All-optical storage of a picosecond-pulse packet using parametric amplification,” Bartolini, G. D., Serkland, D. K., Kumar, P., Kath, W. L. IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 1020–2.
“All-optical picosecond-pulse packet buffer based on four-wave mixing loading and intracavity soliton control,” Wang, L., Agarwal, A., Su, Y., Kumar, P. IEEE J. Quantum Electron.; 2002; vol. 38, pp. 614–19.
“All-optical loadable and erasable storage buffer based on parametric nonlinearity in fiber,” Agarwal, A., Wang, L. J., Su, Y. K., Kumar, P. J. Lightwave Technol.; 2005; vol. 23, pp. 2229–38.
“Active optical pulse compression with a gain of 29.0 dB by using four-wave mixing in an optical fiber,” Yamamoto, T., Nakazawa, M. IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 1595–7.
“10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber,” Clausen, A. T., Oxenlowe, L., Peucheret, C., Poulsen, H. N., Jeppesen, P., Knudsen, S. N., Gruner-Nielsen, L. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 70–2.
“Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” Hansryd, J., Andrekson, P. A. Electron. Lett.; 2001; vol. 37, pp. 584–5.
“40-Gb/s transmission using RZ-pulse source based on fiber optical parametric amplification,” Torounidis, T., Sunnerud, H., Hedekvist, P. O., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 1159–61.
“Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” Torounidis, T., Westlund, M., Sunnerud, H., Olsson, B. E., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 312–14.
“Fibre optical parametric amplifier pulse source: theory and experiments,” Torounidis, T., Karlsson, M., Andrekson, P. A. J. Lightwave Technol.; 2005; vol. 23, pp. 4067–73.
“Regeneratively modelocked dual-wavelength soliton-pulse fibre-optical parametric oscillator in C- and L-bands,” Lasri, J., Devgan, P., Tang, R., Grigoryan, V., Kath, W. L., Kumar, P. Electron. Lett.; 2004; vol. 40, pp. 622–3.
“Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Wang, L. Y., Agarwal, A., Kumar, P. Optics Comm.; 2000; vol. 184, pp. 151–6.
“Clock multiplication in a singly resonant fiber parametric oscillator,” Franco, P., Fontana, F., Cristiani, I., Zenobi, M., Midrio, M., Romagnoli, M. Opt. Lett.; 1996; vol. 21, pp. 788–90.
“Fiber four-wave mixing demultiplexing with inherent parametric amplification,” Hedekvist, P. O., Karlsson, M., Andrekson, P. A. J. Lightwave Technol.; 1997; vol. 15, pp. 2051–8.
“O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” Hansryd, J., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 732–4.
“Simultaneous 3R regeneration and wavelength conversion using a fiber-parametric limiting amplifier,” Su, Y. Wang, L. Agrawal, A. Kumar, P. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; paper MG4.
“All-optical 2R regeneration using data-pumped fibre parametric amplification,” Li, Y., Croussore, K., Kim, C., Li, G. Electron. Lett.; 2003; vol. 39, pp. 1263–4.
“Tunable wavelength converter using cross-gain modulation in a fiber optical parametric amplifier,” Sakamoto, T., Wong, K. K. Y., Uesaka, K., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2002; paper TuS4.
“Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” Matsumoto, M. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1055–7.
“300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” Li, J., Hansryd, J., Hedekvist, P. O., Andrekson, P. A., Knudsen, S. N. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 987–9.
www.picosolve.com.
“Novel fiber Kerr-switch with parametric gain demonstration of optical demultiplexing and sampling up to 640 Gb/s,” Watanabe, S., Okabe, R., Hainberger, R., Schmidt-Langhorst, C., Schubert, C., Weber, H. G. In Proc. European Conf. on Optical Communication, 2004; paper Th4.1.6.
“Optical level equalization based on gain saturation in fibre optical parametric amplifier,” Inoue, K. Electron. Lett.; 2000; vol. 36, pp. 1016–7.
“All-optical limiter using gain flattened fibre parametric amplifier,” Su, Y., Wang, L., Agarwal, A., Kumar, P. Electron. Lett.; 2000; vol. 36, pp. 1103–5.
“Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier,” Inoue, K., Mukai, T. J. Lightwave Technol.; 2002; vol. 20, pp. 969–74.
“Timing-jitter and amplitude-noise reduction by a chirped pulsed-pump fiber OPA”, Shimizu, K., Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; paper TuH5, pp. 197–8.
“All-optical signal reshaping via four-wave mixing in optical fibers,” Ciaramella, E., Trillo, S. IEEE Photon. Technol. Lett.; 2000; vol. 12, pp. 849–51.
“Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,” Inoue, K. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 338–40.
“All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centanni, J. C., Chraplyvy, A. R. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 957–9.
“All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G. Opt. Lett.; 2004; vol. 29, pp. 2357–9.
“Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Croussore, K., Kim, I., Han, Y., Kim, C., Li, G. Optics Express; 2005; vol. 13, pp. 3945–50.
“All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G. in Proc. SPIE Defense and Security Symposium, 2005, vol. 5814, pp. 166–75.
“Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Croussore, K., Kim, I., Kim, C., Han, Y., Li, G. Optics Express; 2006; vol. 14, pp. 2085–94.
“A novel dispersion monitoring technique based on four-wave mixing in optical fiber;” Li, S., Kuksenkov, D. V. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 942–4.
“Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Ng, T. T., Blows, J. L., Mok, J. T., Hu, P., Bolger, J. A., Hambley, P., Eggleton, B. J. Optics Express; 2003; vol. 11, pp. 3122–7.
“Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” Ng, T. T., Blows, J. L., Mok, J. T., McKerracher, R. W., Eggleton, B. J. J. Lightwave Technol.; 2005; vol. 23, pp. 818–26.
“In-band OSNR monitoring using fibre optical parametric amplifier,” Ng, T. T., Blows, J. L., Mok, J. T., McKerracher, R. W., Eggleton, B. J. Electron. Lett.; 2005; vol. 41; pp. 352–3.
“Simultaneous in-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Ng, T. T., Blows, J. L., Rochette, M., Bolger, J. A., Littler, I., Eggleton, B. J. Optics Express; 2005; vol. 13; pp. 5542–52.
“Quantum information processing: cryptography, computation, and teleportation,” Spiller, T. P. Proc. IEEE; 1996; vol. 48, pp. 1719–46.
“Observation of twin-beam-type quantum correlation in optical fiber,” Sharping, J. E., Fiorentino, M., Kumar, P. Opt. Lett.; 2001; vol. 26, pp. 367–9.
“Quantum-correlated twin photons from microstructure fiber,” Sharping, J. E., Chen, J., Li, X., Kumar, P., Windeler, R. S. Optics Express; 2004; vol. 12, pp. 3086–94.
“All-fiber photon-pair source for quantum communications,” Fiorentino, M., Voss, P. L., Sharping, J. E., Kumar, P. IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 983–5.
“Squeezing in fibers with optical pulses,” Bergman, K., Haus, H. A. Opt. Lett.; 1991; vol. 16, pp. 663–5.
“Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier,” Levandovsky, D., Vasilyev, M., Kumar, P. Opt. Lett.; 1999; vol. 24, pp. 984–6.
“Tunable fiber parametric wavelength converter with 900 mW of CW output power at 1665 nm,” Marhic, M. E., Williams, G. M., Goldberg, L., Delavaux, J. M. P. In Conf. Photonics West, San Jose C A, January 2006; Proc. SPIE, vol. 6103, pp. 165–76.

Reference Title: References

Reference Type: reference-list

“Fiber parametric amplifiers for wavelength band conversion,” Islam, M. N., Boyraz, O. IEEE J. Selected Topics in Quantum Electron.; 2002; vol. 8, pp. 527–37.
“Amplification of WDM signals in fiber-based optical parametric amplifiers,” Torounidis, T., Sunnerud, H., Hedekvist, P. O., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2003; vol. 15, no. 8, pp. 1061–3.
“Spurious four-wave mixing in two-pump fiber-optic parametric amplifiers,” Callegari, F. A., Boggio, J. M. C., Fragnito, H. L. IEEE Photon. Technol. Lett.; 2004; vol. 16, no. 2, pp. 434–6.
“Cross-talk-induced limitations of two-pump optical fiber parametric amplifiers,” Blows, J. L., Hu, P. F. J. Opt. Soc. Amer. B; 2004; vol. 21, no. 5, pp. 989–95.
“Design strategy for controlling four-wave mixing-induced crosstalk between channels in a fibre optical parametric amplifier,” Blows, J. L. Optics Comm.; 2004; vol. 236, nos. 1–3, pp. 115–22.
“Influence of zero dispersion wavelength variations on cross-talk in single-pumped fiber optic parametric amplifiers,” Boggio, J. M. C., Callegari, F. A., Marconi, J. D., Guimaraes, A., Fragnito, H. L. Optics Comm.; 2004; vol. 242, nos. 4–6, pp. 471–8.
“Four-wave mixing crosstalk in optical fibre parametric amplifiers with orthogonal pumps,” Hu, P., Lows, J. L. Optics Comm.; 2005; vol. 250, nos. 4–6, pp. 421–7.
“Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber,” Boggio, J. M. C., Marconi, J. D., Fragnito, H. L. IEEE Photon. Technol. Lett; 2005; vol. 17, pp. 1842–4.
“Reduction of WDM signal crosstalk in two-pump fiber optical parametric amplifiers,” Wong, K. K. Y., Marhic, M. E. In Proc. Conf. on Lasers and Electro-Optics, Tokyo, July 2005; paper CLI2–2, pp. 1562–3.
“Experimental studies of the WDM signal crosstalk in two-pump fiber optical parametric amplifiers,” Wong, K. K. Y., Lu, G. W., Chen, L. K. Optics Comm.; 2007; vol. 270, pp. 429–32.
“Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps,” Wong, K. K. Y., Lui, G. W., Chen, L. K. In Proc. Conf. on Lasers and Electro-Optics, Long Beach CA, May 2006; paper CMW2.
“Crosstalk in double-pumped fiber optic parametric amplifiers for wavelength division multiplexing systems,” Chavez Boggio, J. M., Marconi, J. D., Fragnito, H. L. Optics Comm.; 2006; vol. 259, pp. 94–103.
“Large cross phase modulation and four wave mixing in tellurite EDFA's,” Marhic, M. E., Morita, I., Ho, M.-C., Akasaka, Y., Kazovsky, L. G. IEEE Electron. Lett.; 1999; vol. 35, pp. 2045–7.
“Low third-order glass-host nonlinearities in erbium-doped waveguide amplifiers,” Marhic, M. E., Nikonov, D. E. Proc. SPIE; 2002; vol. 4645, pp. 193–202.
“Crosstalk in WDM systems caused by cross-phase modulation in erbium-doped fiber amplifiers,” Shtaif, M., Eiselt, M., Tkach, R. W., Stolen, R. H., Gnauck, A. H. IEEE Photon. Technol. Lett.; 1998; vol. 10, pp. 1796–8.
“Cross phase modulation in discrete Raman amplifiers and its reduction,” Akasaka, Y., Morita, I., Marhic, M. E., Ho, M. C., Kazovsky, L. G. In Proc. Optical Communication Conf., Baltimore MD, May 2000; vol. 3, pp. 197–9.
“Signal–signal cross-phase modulation in fiber optical parametric amplifiers,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. OECC/COIN2004, Yokohama, Japan, July 2004; paper 15D1–3.

Reference Title: References

Reference Type: reference-list

“Fiber-based optical parametric amplifiers and their applications,” Hansryd, J., Andrekson, P. A., Westlund, M., Li, J., Hedekvist, P. O. IEEE J. Select. Topics Quantum Electron.; 2002; vol. 8, pp. 506–20.
“Toward practical fiber optical parametric amplifiers and oscillators,” Marhic, M. E., Wong, K. K. Y., Kalogerakis, G., Kazovsky, L. G. Optics and Photonics News; 2004; vol. 15, pp. 20–5.
“A new design arrangement of transmission fiber dispersion for suppressing nonlinear degradation in long-distance optical transmission systems with optical repeater amplifiers,” Henmi, N., Aoki, Y., Ogata, T., Saito, T., Nakaya, S. J. Lightwave Technol.; 1993; vol. 11, pp. 1615–21.
“Parametric instability of optical amplifier noise in long-distance optical transmission systems,” Lorattanasane, C., Kikuchi, K. IEEE J. Quantum Electron.; 1997; vol. 33, pp. 1068–74.
“New analytical results on fiber parametric gain and its effects on ASE noise,” Nuyts, R. J., Tzeng, L. D., Mizuhara, O., Gallion, P. IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 535–7.
“On the joint effects of fiber parametric gain and birefringence and their influence on ASE noise,” Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Benedetto, S. J. Lightwave Technol.; 1998; vol. 16, pp. 1149–57.
“Parametric gain in multiwavelength systems: a new approach to noise enhancement analysis,” Bosco, G., Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Benedetto, S. IEEE Photon. Technol. Lett.; 1999; vol. 11, pp. 1135–7.
“Novel analytical method for the BER evaluation in optical systems affected by parametric gain,” Bosco, G., Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Benedetto, S. IEEE Photon. Technol. Lett.; 2000; vol. 12, pp. 152–4.
“Impact of parametric mixing of ASE and signal on high-power festoon systems with random dispersion variation,” Mauro, J. C., Chowdhury, D. Q. IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 212–4.
“A novel analytical approach to the evaluation of the impact of fiber parametric gain on the bit error rate,” Bosco, G., Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Benedetto, S. IEEE Trans. on Comms.; 2001; vol. 49, pp. 2154–63.
“Power threshold due to parametric gain in dispersion-mapped communication systems,” Serena, P., Bononi, A. IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 1521–3.
“Parametric gain in fiber systems with periodic dispersion management,” Consolandi, F., De Angelis, C., Capobianco, A. D., Nalesso, G., Tonello, A. Optics Comm.; 2002; vol. 208, pp. 309–20.
“A parametric gain approach to DPSK performance evaluation in presence of nonlinear phase noise,” Serena, P., Orlandini, A., Bononi, A. In Proc. European Conf. on Optical Communication, Stockholm, Sweden, September 2004; paper We4, p. 124.
“Observation of parametric noise amplification owing to modulation instability in anomalous dispersion regime,” Saunders, R. A., Garthe, D., Patel, B. L., Lee, W. S., Epworth, R. E. Electron. Lett.; 1995; vol. 31, pp. 1088–90.
“Parametric gain in the strongly nonlinear regime and its impact on 10-Gb/s NRZ systems with forward-error correction,” Serena, P., Bononi, A., Antona, J. C., Bigo, S. J. Lightwave Technol.; 2005; vol. 23, pp. 2352–63.
“Effective simulation method for parametric signal–noise interaction in transmission fibers,” Vanin, E., Jacobsen, G., Berntson, A. Opt. Lett.; 2006; vol. 31, pp. 2272–4.
“Optical fiber parametric-gain-induced noise coloring and amplification by modulated signals,” Xu, B., Brandt-Pearce, M. J. Opt. Soc. Amer. B; 2004; vol. 21, pp. 499–513.
“Analysis of noise amplification by a CW pump signal due to fiber nonlinearity,” Xu, B., Brandt-Pearce, M. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1062–4.
“Parametric noise amplification inherent in the coherence of fundamental optical soliton sequence propagating in fiber,” Inoue, T., Namiki, S. IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10, pp. 900–5.
“Amplification of broadband noise pumped by two lasers in optical fibers,” Chavez Boggio, J. M., Tenenbaum, S., Fragnito, H. L. J. Opt. Soc. Am. B; 2001; vol. 18, pp. 1428–35.
“Transmission of optical communication signals by distributed parametric amplification,” Kalogerakis, G., Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 2945–53.
“Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Marhic, M. E., Park, Y., Yang, F. S., Kazovsky, L. G. Opt. Lett.; 1996; vol. 21, pp. 1354–6.
“Polarization-independent two-pump fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 911–3.
“Amplification of WDM signals in fiber-based optical parametric amplifiers,” Torounidis, T., Sunnerud, H., Hedekvist, P. O., Andrekson, P. A. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 1061–3.
“Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber,” Eiselt, M., Jopson, R. M., Stolen, R. H. J. Lightwave Technol.; 1997; vol. 15, pp. 135–43.
“Measurement of the dispersion map of installed G.653 fiber links using four-wave mixing,” Artiglia, M., Caponi, R., Grazioli, E., Pagano, A., Panella, A., Potenza, M., Riccardi, E., Sordo, B. In Proc. Optical Fiber Communication Conf. San Jose CA, 1998; paper WM2.
“Pump-to-signal transfer of low-frequency intensity modulation in fiber optical parametric amplifiers,” Marhic, M. E., Kalogerakis, G., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 1049–55.
“Pump FM to signal IM conversion in fiber OPAs,” Marhic, M. E., Kalogerakis, G., Kazovsky, L. G. In Proc. of OECC/COIN2004, Yokohama, Japan, July 2004; paper 13P–87.
“Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” Mussot, A., Durecu-Legrand, A., Lantz, E., Simonneau, C., Bayart, D., Maillotte, H., Sylvestre, T. IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 1289–91.
“Pump to signal RIN transfer in Raman fiber amplifiers,” Fludger, C. R. S., Handerek, V., Mears, R. J. J. Lightwave Technol.; 2001; vol. 19, pp. 1140–8.
“Polarization-independent one-pump fiber-optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2004; vol. 14, pp. 1506–8.
“Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Tang, R., Lasri, J. S. Devgan, P. S., Grigoryan, V., Kumar, P., Vasilyev, M. Optics Express; 2005; vol. 13, pp. 10483–93.
“In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier,” Tang, R., Devgan, P., Voss, P. L., Grigoryan, V. S., Kumar, P. IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1845–7.
“Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication,” Tang, R., Devgan, P., Grigoryan, V. S., Kumar, P. Electron. Lett.; 2005; vol. 41, pp. 1072–4.
“Distributed phase-sensitive amplification,” Vasilyev, M. Optics Express; 2005; vol. 13, pp. 7563–71.

Reference Title: References

Reference Type: reference-list

“Design of highly-nonlinear tellurite fibers with zero dispersion near 1550 nm,” Hu, E. S., Hsueh, Y. L., Marhic, M. E., Kazovsky, L. G. In Proc. European Conf. on Optical Communication, Copenhagen, September 2002; vol. 2, paper 3.2.3.
“Ultra-wideband tellurite-based Raman fiber amplifier,” Mori, A., Masuda, H., Shikano, K., Oikawa, K., Kato, K., Shimizu, M. Electron. Lett.; 2001; vol. 37, pp. 1442–3.
“1.5 μm band zero-dispersion shifted tellurite photonic crystal fiber with a nonlinear coefficient γ of 675 W−1km−1,” Mori, A., Shikano, K., Enbutsu, K., Oikawa, K., Naganuma, K., Kato, M., Aozasa, S. In Proc. 30th European Conf. on Optical Communication, Stockholm, September 2004; paper Th3.3.6.
“Extruded single-mode, high-nonlinearity, tellurite glass holey fiber,” Feng, X., Monro, T. M., Finazzi, V., Moore, R. C., Frampton, K., Petropoulos, P., Richardson, D. J. Electron. Lett.; 2005; vol. 41, pp. 835–6.
“The fabrication and modelling of non-silica microstructured optical fibers,” Hewak, D. W., West, Y. D., Broderick, N. G. R., Monro, T. M., Richardson, D. J. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; vol. 2, pp. TuC4-1–3.
“Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Petropoulos, P., Ebendorff-Heidepriem, H., Finazzi, V., Moore, R. C., Frampton, K., Richardson, D. J., Monro, T. M. Optics Express; 2003; vol. 11; pp. 3568–73.
“Efficient four-wave-mixing at 1.55 μm in a short-length dispersion shifted lead silicate holey fiber,” Asimakis, S., Petropoulos, P., Poletti, F., Leong, J. Y. Y., Ebendorff-Heidepriem, H., Moore, R. C., Frampton, K. E., Feng, X., Loh, W. H., Monro, T. M., Richardson, D. J. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Th1.3.3, pp. 17–8.
“Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance,” Hirano, M., Nakanishi, T., Okuno, T., Onishi, M. In Proc. 31st European Conf. on Optical Communication, September 2005, Glasgow.
“Dispersion-flattened photonic crystal fibers at 1550 nm,” Reeves, W., Knight, J., Russel, P. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; vol. 2, paper FI3, pp. 696–7.
“Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” Hansen, K. P., Folkenberg, J. R., Peucheret, C., Bjarklev, A. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; postdeadline paper, vol. 3, pp. PD2-1–3.
“Optical parametric amplification in all-silica triangular-core photonic crystal fibers,” Poli, F., Adami, F., Foroni, M., Rosa, L., Cucinotta, A., Selleri, S. Applied Phys. B (Lasers and Optics); 2005; vol. B81, pp. 251–5.
“375 THz parametric translation of modulated signal from 1550 nm to visible band,” Jiang R., Saperstein, R., Alic, N., Nezhad, N., McKinstrie, C., Ford, J., Fainman, Y., Radic, S. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2006; postdeadline paper, pp. PD16-1–3.
“Interband wavelength conversion of 320 Gb/s (32 × 10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” Watanabe, S., Takeda, S., Chikama, T. In Proc. 24th European Conf. on Optical Communication, Madrid, September 1998; vol. 3, pp. 83–7.
M. Onishi, private communication.
“Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. Optics Express; 2005; vol. 13, pp. 4666–73.
“Experiment of zero dispersion tuning by stretching down-sized HNLF,” Takahashi, M., Tadakuma, M., Hiroishi, J., Sugizaki, R., Yagi, T. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Th1.5.1, pp. 41–2.
“Supercontinuum generation in ultraviolet-irradiated fibers,” Nicholson, J. W., Westbrook, P. S., Feder, K. S., Yablon, A. D. Opt. Lett.; 2004; vol. 29, pp. 2363–5.
“Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” Mussot, A., Lantz, E., Durécu-Legrand, A., Simonneau, C., Bayart, D., Sylvestre, T., Maillotte, H. IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 22–4.
“OTDR technique for characterization of fiber optic parametric amplifiers,” Olsson, B.-E., Torounidis, T., Karlsson, M., Sunnerud, H., Andrekson, P. In Proc. Optical Communication Conf. and the National Fiber Optic Engineers Conf., Anaheim CA, March 2006; paper OWT3.
“Brillouin optical time domain analysis of fiber optic parametric amplifiers,” Vedadi, A., Lantz, E., Maillotte, H., Sylvestre, T. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper Th1.3.7.
“2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm,” O'Brien, S., Lang, R., Parke, R., Major, J., Welch, D. F., Mehuys, D. IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 440–2.
http://www.m2k-laser.de.
http://www.sacher.de.
http://www.npphotonics.com.
“High power ASE-free tunable laser using a Sagnac ring interferometer within the external cavity,” Fulop, L., Souhaite, G., Moulinet, X., Graindorge, P., Lefevre, H. C. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; vol. 2, pp. TuJ6-1–3.
“Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G. IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 33–5.
“Nearly 100 nm bandwidth of flat gain with a double-pumped fiber optic parametric amplifier,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. Submitted to OFC 2007, Anaheim CA, March 2007, paper OWB1.
“Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Laude, V., Khelif, A., Benchabane, S., Wilm, M., Sylvestre, T., Kibler, B., Mussot, A., Dudley, J. M., Maillotte, H. Phys. Rev. B; 2005; vol. 71, pp. 045107-1–6.
“Nonlinear optical fibers with increased SBS thresholds,” Bickham, S., Kobyakov, A., Li, S. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2006, paper OTuA3.
“Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” Yoshizawa, N., Imai, T. J. Lightwave Technol.; 1993; vol. 11, pp. 1518–22.
“Narrow linewidth wavelength converter with 70 nm signal tuning band by using a strained HNLF,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. In Proc. Conf. on Optical Amplifiers and Their Applications, Whistler, Canada, July 2006.
“Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers,” Lee, J. H., Tanemura, T., Kikuchi, K., Nagashima, T., Hasegawa, T., Ohara, S., Sugimoto, N. Opt. Lett.; 2005; vol. 30, pp. 1698–700.
“Design of highly nonlinear bismuth-oxide holey fibers with zero dispersion and enhanced Brillouin suppression,” Poletti, F., Petropoulos, P., Broderick, N. G., Richardson, D. J. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper Tu4.3.2.
“Dispersion shifted Bi2O3-based photonic crystal fiber,” Nagashima, T., Hasegawa, T., Ohara, S., Sugimoto, N. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper We1.3.2.
“Al2O3–SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB,” Nakanishi, T., Tanaka, M., Hasegawa, T., Hirano, M., Okuno, T., Onoshi, M. In Proc. European Conf. on Optical Communication, Cannes, September 2006; postdeadline paper Th4.2.2.
“Observation of stimulated Raman amplification in silicon waveguides,” Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y., Jalali, B. Optics Express; 2003; vol. 11, pp. 1731–9.
“Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Jones, R., Liu, A., Rong, H., Paniccia, M., Cohen, O., Hak, D. Optics Express; 2005; vol. 13, pp. 1716–23.
“Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Turner, A. C., Manolatou, C., Schmidt, B. S., Lipson, M., Foster, M. A., Sharping, J. E., Gaeta, A. L. Optics Express; 2006; vol. 14, pp. 4357–62.
“Dispersion tailoring and soliton propagation in silicon waveguides,” Yin, L., Lin, Q., Agrawal, G. P. Opt. Lett.; 2006; vol. 31, pp. 1295–7.
“Broad-band optical parametric gain on a silicon photonic chip,” Foster, M. A., Turner, A. C., Sharping, J. E., Schmidt, B. S., Lipson, M., Gaeta, A. L. Nature; 2006; vol. 441, pp. 960–3.
“Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I. Phys. Rev. Lett.; 2001; vol. 87, pp. 253 902/1–4.
“Real-space observation of ultraslow light in photonic crystal waveguides,” Gersen, H., Karle, T. J., Engelen, R. J. P., Bogaerts, W., Korterik, J. P., van Hulst, N. F., Krauss, T. F., Kuipers, L. Phys. Rev. Lett.; 2005; vol. 94, pp. 073 903/1–4.
“Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” McMillan, J. F., Yang, X., Panoiu, N. C., Osgood, R. M., Wong, C. W. Opt. Lett.; 2006; vol. 31, pp. 1235–7.
“Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.
“Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Coen, S., Haelterman, M. Opt. Lett.; 2001; vol. 26, pp. 39–41.
“Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Kippenberg, T. J., Spillane, S. M., Vahala, K. J. Phys. Rev. Lett.; 2004; vol. 93, pp. 083904/1–4.
“Transmission of optical communication signals by distributed parametric amplification,” Kalogerakis, G., Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G. J. Lightwave Technol.; 2005; vol. 23, pp. 2945–53.

Reference Title: References

Reference Type: reference-list

Handbook of Differential Equations, Zwillinger, D. Academic, Boston; 1992; p. 126.
“From quantum optics to quantum communications,” Abram, I., Grangier, P. C. R. Physique, Optical Telecommunications; 2003; vol. 4, pp. 187–199.
“Quantum physics of simple optical instruments,” Leonhardt, U. Rep. Prog. Phys.; 2003; vol. 66, pp. 1207–49.
“Nonclassical fields in a linear directional coupler,” Lai, W. K.; Buek, V., Knight, P. L. Phys. Rev. A; 1991; vol. 43, pp. 6323–36.

Reference Title: References

Reference Type: reference-list

Handbook of Differential Equations, Zwillinger, D, second edition. Academic, Boston; 1992; chapter 3.
An Introduction to Phase-Integral Methods, Heading, J. Methuen, London; 1962.
An Introduction to Optical Waveguides, Adams, M. J. Wiley, Chichester; 1981.
“Modulational instability in lossy optical fibers,” Karlsson, M. J. Opt. Soc. Amer. B; 1995; vol. 12, pp. 2073–7.

Reference Title: References

Reference Type: reference-list

Handbook of Mathematical Functions, Abramowitz, M., Stegun, I., eds. National Bureau of Standards, Washington DC, Applied Mathematics Series; 1964; vol. 55.
Handbook of Elliptic Integrals for Engineers and Scientists, Byrd, P. F., Friedman, M. D., second edition. Springer-Verlag, Berlin; 1971.
http://www.wolfram.com.