Treatment of Multiple Myeloma and Related Disorders


Treatment of Multiple Myeloma and Related Disorders

Due to major advances in understanding the biology and pathogenesis of the disease, the management of multiple myeloma is changing rapidly. New diagnostic and prognostic criteria have been introduced, and treatment options are multiplying with high-dose chemotherapy regimens, stem cell transplants, and the development of novel agents and immune-based strategies that target tumor cells directly. This book is aimed at the practitioner who is looking to put these advances into clinical context. It will serve as an up-to-date resource for treatment of myeloma and related disorders. Chapters are written by international authorities and contain color photos, diagrams, and algorithms outlining preferred treatment strategies. Relevant scientific information is integrated throughout, but the focus here is on providing practical therapeutic guidance for oncologists and hematologists caring for myeloma patients. The book covers all myeloma subtypes and related disorders, including amyloidosis, Waldenstrom macroglobulinemia, plasmacytoma, MGUS, and POEMS syndrome.


 Reviews:

"The book covers all aspects of the management of myeloma such as induction therapy, salvage therapy, hematopoietic stem cell transplantation, and treatment of various complications. The information is delivered succinctly, in an easy-to-read manner....Overall, this is a readable, useful book, and unlike most books in this field, a small and light one."
--Doody's Review Service

Reference Title: References

Reference Type: reference-list

Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64(4):1546–58.
Smadja NV, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 1998;12(6):960–9.
Debes-Marun C, Dewald G, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003;17(2):427–36.
Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003;102(7):2562–7.
Smadja NV, Leroux D, Soulier J, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 2003;38(3):234–9.
Noel P, Kyle RA. Plasma cell leukemia: an evaluation of response to therapy. Am J Med 1987;83(6):1062–8.
Chng WJ, Ketterling RP, Fonseca R. Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer 2006;45(12):1111–20.
Chng WJ, Santana-Davila R, Van Wier SA, et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006;20(5):807–13.
Chng WJ, Kumar S, Vanwier S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007;67(7):2982–9.
Greipp PR, Trendle MC, Leong T, et al. Is flow cytometric DNA content hypodiploidy prognostic in multiple myeloma? Leuk Lymphoma 1999;35(1–2):83–9.
Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 2005;106(6):2156–61.
Chng WJ, Winkler JM, Greipp PR, et al. Ploidy status rarely changes in myeloma patients at disease progression. Leuk Res 2006;30(3):266–71.
Kwong YL, Lie AK, Chan LC. Translocation (11;14)(q13;q32) and partial trisomy 1q in a case of multiple myeloma [letter]. Am J Hematol 1993;44(3):212–13.
Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995;82(1):41–9.
Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985;66(2):380–90.
Fonseca R, Witzig TE, Gertz MA, et al. Multiple myeloma and the translocation t(11;14)(q13;q32) – a report on 13 cases. Br J Haematol 1998;101(2):296–301.
Nishida K, Taniwaki M, Misawa S, Abe T. Nonrandom rearrangement of chromosome 14 at band q32.33 in human lymphoid malignancies with mature B-cell phenotype. Cancer Res 1989;49(5):1275–81.
Bergsagel PL, Chesi M, Brents LA, Kuehl WM. Translocations into IgH switch regions – the genetic hallmark of multiple myeloma. Blood 1995;86(10):223–223.
Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996;93(24):13931–6.
Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nature Genet 1997;16(3):260–4.
Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998;91(12):4457–63.
Chesi M, Nardini E, Lim R, Smith K, Kuehl W, Bergsagel P. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92:3025–34.
Nishida K, Tamura A, Nakazawa N, et al. The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 1997;90(2):526–34.
Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109(8):3489–95.
Fonseca R, Harrington D, Oken M, et al. Myeloma and the t(11;14)(q13;q32) represents a uniquely defined biological subset of patients. Blood 2002;99(10):3735–41.
Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996;88(2):674–81.
Janssen JW, Vaandrager JW, Heuser T, et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood 2000;95(8):2691–8.
Avet-Loiseau H, Facon T, Daviet A, et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 1999;59(18):4546–50.
Fonseca R, Bailey RJ, Ahmann GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance.[see comment]. Blood 2002;100(4):1417–24.
Sawyer JR, Lukacs JL, Thomas EL, et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 2001;112(1):167–74.
Garand R, Avet-Loiseau H, Accard F, Moreau P, Harousseau J, Bataille R. t(11;14) and t(4;14) translocations correlated with mature lymphoplasmocytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003;this issue.
Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood 2006;108(6):2020–8.
Shaughnessy J Jr., Gabrea A, Qi Y, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001;98(1):217–23.
Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005;106(1):296–303.
Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101(4):1520–9.
Perfetti V, Coluccia A, Intini D, et al. Translocation t(4;14)(p16.3;q32) Is a Recurrent Genetic Lesion in Primary Amyloidosis. Leukemia 2001;158:1599–603.
Stewart JP, Thompson A, Santra M, Barlogie B, Lappin TR, Shaughnessy J Jr. Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 2004;126(1):72–6.
Stewart AK, Chang H, Trudel S, et al. Diagnostic evaluation of t(4;14) in multiple myeloma and evidence for clonal evolution. Leukemia 2007;21(11):2358–9.
Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101(11):4569–75.
Chang H, Sloan S, Li D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004;125(1):64–8.
Chang H, Qi XY, Samiee S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 2005;36(9):793–6.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and −17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106(8):2837–40.
Mateos MV, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase I/II study. Blood 2006;108(7):2165–72.
Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007;21(1):151–7.
Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 2007;31(6):779–82.
Trudel S, Ely S, Farooqi Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004;103(9):3521–8.
Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005;105(7):2941–8.
Avet-Loiseau H, Facon T, Grosbois B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002;99(6):2185–91.
Fonseca R, Oken MM, Greipp PR. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001;98(4):1271–2.
Shaughnessy JD Jr., Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007;109(6):2276–84.
Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003;194:96–104.
Shaughnessy JD Jr. Global gene expression profiling in the study of multiple myeloma. [Review] [94 refs]. Int J Hematol 2003;77(3):213–25.
Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006;9(4):313–25.
Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995;86(11):4250–6.
Tricot G, Sawyer JR, Jagannath S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol 1997;15(7):2659–66.
Avet-Loiseau H, Daviet A, Saunier S, Bataille R. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol 2000;111(4):1116–7.
Fonseca R, Oken M, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q-arm or monosomy. Leukemia 2001;15:981–6.
Königsberg R, Zojer N, Ackermann J, et al. Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol 2000;18(4):804–12.
Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000;95(6):1925–30.
Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood 1999;94(8):2583–9.
Fonseca R, Bailey RJ, Ahmann GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100(4):1417–24.
Konigsberg R, Ackermann J, Kaufmann H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia 2000;14(11):1975–9.
Walker BA, Leone PE, Jenner MW, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 2006;108(5):1733–43.
Elnenaei MO, Hamoudi RA, Swansbury J, et al. Delineation of the minimal region of loss at 13q14 in multiple myeloma. Genes Chromosomes Cancer 2003;36(1):99–106.
Liu P, Leong T, Quam L, et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood 1996;88(7):2699–706.
Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N- and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001;18(3):212–24.
Neri A, Murphy JP, Cro L, et al. Ras oncogene mutation in multiple myeloma. J Exp Med 1989;170(5):1715–25.
Paquette RL, Berenson J, Lichtenstein A, Mccormick F, Koeffler HP. Oncogenes in multiple myeloma: point mutation of N-ras. Oncogene 1990;5(11):1659–63.
Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition some plasma cell tumors. Blood 2005;105(1):317–23.
Drach J, Ackermann J, Kromer E, et al. Short survival of patients with multiple myeloma and p53 gene deletion: A study by Interphase FISH. Blood 1997;90:244a.
Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92(3):802–9.
Chang H, Sloan S, Li D, Keith Stewart A. Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004;127(3):280–4.
Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105(1):358–60.
Chng WJ, Price-Troska T, Gonzalez-Paz N, et al. Clinical significance of TP53 mutation in myeloma. Leukemia 2007;21(3):582–4.
Tiedemann RE, Gonzalez-Paz N, Kyle RA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008;22(5):1044–52.
Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 2007;12(2):131–44.
Richardson PG. A review of the proteasome inhibitor bortezomib in multiple myeloma. Expert Opin Pharmacother 2004;5(6):1321–31.
Mulligan G, Mitsiades C, Bryant B, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007;109(8):3177–88.
Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001;98(10):3082–6.
Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2(3):175–87.
Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000;97(1):228–33.
Avet-Loiseau H, Daviet A, Brigaudeau C, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001;97(3):822–5.
Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109:3489–95.
Chesi M, Robbiani DF, Sebag M, et al. AID-dependent MYC activation induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 2008;(in press).
Chang H, Qi X, Trieu Y, et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol 2006;135(4):486–91.
Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 2006;20(11):2034–40.
Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem cell transplantation. Blood 2006;108(5):1724–32.
Zhan F, Colla S, Wu X, et al. CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and independent mechanisms. Blood 2007;109(11):4995–5001.
Wu KL, Beverloo B, Lokhorst HM, et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol 2007;136(4):615–23.
Chang H, Ning Y, Qi X, Yeung J, Xu W. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 2007;139(1):51–4.
Mateos MV, Garcia-Sanz R, Lopez-Perez R, et al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol 2002;118(4):1034–40.
Ribas C, Colleoni GW, Felix RS, et al. p16 gene methylation lacks correlation with angiogenesis and prognosis in multiple myeloma. Cancer Lett 2005;222(2):247–54.
Gonzalez-Paz N, Chng WJ, Mcclure RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 2007;109:1228–32.
Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 1997;89(7):2500–6.
Dib A, Barlogie B, Shaughnessy JD Jr., Kuehl WM. Methylation and expression of the p16INK4A tumor suppressor gene in multiple myeloma. Blood 2007;109(3):1337–8.
Gonzalez-Paz N, Chng WJ, Mcclure RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 2007;109(3):1228–32.
Dilworth D, Liu L, Stewart AK, Berenson JR, Lassam N, Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000;95(5):1869–71.
Tasaka T, Berenson J, Vescio R, et al. Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma. Br J Haematol 1997;96(1):98–102.
Dib A, Peterson TR, Raducha-Grace L, et al. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: biallelic deletion vs increased expression. Cell Div 2006;1:23.
Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998;12(6):845–59.
Kulkarni MS, Daggett JL, Bender TP, Kuehl WM, Bergsagel PL, Williams ME. Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis. Leukemia 2002;16(1):127–34.
Chng WJ, Kuehl WM, Bergsagel PL, Fonseca R. Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature. Leukemia 2008;22(2):459–61.
Chng WJ, Ahmann GJ, Henderson K, et al. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 2006;107(9):3669–75.
Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia 2007;21(3):529–34.
Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007;82(3):323–41.
Avet-Loiseau H, Daviet A, Brigaudeau C, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001;97(3):822–5.
Hayman SR, Bailey RJ, Jalal SM, et al. Translocations involving heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 2001;98:2266–8.
Harrison CJ, Mazzullo H, Ross FM, et al. Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis. Br J Haematol 2002;117(2):427–35.
Gertz MA, Lacy MQ, Dispenzieri A. Amyloidosis: Recognition, confirmation, prognosis, and therapy [Review]. Mayo Clin Proc 1999;74(5):490–4.
Avet-Loiseau H, Garand R, Lode L, Harousseau JL, Bataille R. Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood 2003;101(4):1570–1.
Schop RF, Kuehl WM, Van Wier SA, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002;100(8):2996–3001.
Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98(7):2229–38.
Rajkumar SV, Fonseca R, Dewald GW, et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet 1999;113(1):73–7.

Reference Title: References

Reference Type: reference-list

Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol 2005;23:3412–20.
Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia 2007;21:529–34.
Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64:1546–58.
Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004;351:1860–73.
Salmon SE, Beckord J, Pugh RP, Barlogie B, Crowley J. α-Interferon for remission maintenance: preliminary report on the Southwest Oncology Group Study. Semin Oncol 1991;18:33–6.
San Miguel JF, Garcia-Sanz R. Prognostic features of multiple myeloma. Best Pract Res Clin Haematol 2005;18:569–83.
Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005;23:6333–8.
Rajkumar SV, Fonseca R, Lacy MQ, et al. Beta-2-microglobulin and bone marrow plasma cell involvement predict complete responders among patients undergoing blood cell transplantation for myeloma. Bone Marrow Transplant 1999;23:1261–6.
Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109:3489–95.
Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005;106: 296–303.
Chng WJ, Santana-Davila R, Van Wier SA, et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006;20:807–13.
Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 2005;106:2156–61.
Fonseca R, Bailey RJ, Ahmann GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100:1417–24.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106:2837–40.
Fonseca R, Ahmann GJ, Jalal SM, et al. Chromosomal abnormalities in systemic amyloidosis. Br J Haematol 1998;103:704–10.
Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001;20:5611–22.
Stewart AK, Chang H, Trudel S, et al. Diagnostic evaluation of t(4;14) in multiple myeloma and evidence for clonal evolution. Leukemia 2007;21:2358–9.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106:2837–40.
Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol 2005;23:7069–73.
Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007;82:323–41.
Barlogie B, Anaissie E, Van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007;138:176–85.
Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998;91:4457–63.
Fonseca R, Oken MM, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001;15:981–6.
Fonseca R, Oken MM, Greipp PR. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001;98:1271–2.
Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007;21:151–7.
Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131–44.
Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 2005;10(suppl 1):117–26.
Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105:358–60.
Chang H, Sloan S, Li D, Keith Stewart A. Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004;127:280–4.
Barlogie B, Shaughnessy JD Jr. Early results of total therapy II in multiple myeloma: implications of cytogenetics and FISH. Int J Hematol 2002;76(suppl 1):337–9.
Zhan F, Barlogie B, Mulligan G, Shaughnessy Jd JR, Bryant B. High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood 2008;111:968–9.
Chang H, Qi XY, Samiee S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 2005;36:793–6.
Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta- 2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 2001;97:1566–71.
Mateos MV, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase I/II study. Blood 2006;108:2165–72.
Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 2006; 31:779–82.

Reference Title: References

Reference Type: reference-list

Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004;351:1860–73.
Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 2005;80:1371–82.
Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008;111:2962–72.
Rajkumar SV, Kyle RA. Plasma Cell Disorders. In: Goldman L, Ausiello D, eds. Cecil Textbook of Medicine, 23rd ed. Philadelphia, PA: Saunders, 2007;1426–37.
Myeloma Trialists’ Collaborative Group. Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J Clin Oncol 1998;16:3832–42.
Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996;335:91–7.
Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma [see comments]. N Engl J Med 1999;341:1565–71.
Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609–17.
Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma [see comment]. N Engl J Med 2005;352:2487–98.
Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 2005;106:4050–3.
Richardson PG, Blood E, Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006;108:3458–64.
Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2007;111:2516–20.
Hjorth M, Hellquist L, Holmberg E, Magnusson B, Rodjer S, Westin J. Initial versus deferred melphalan-prednisone therapy for asymptomatic multiple myeloma stage I – a randomized study. Myeloma Group of Western Sweden. Eur J Haematol 1993;50:95–102.
Grignani G, Gobbi PG, Formisano R, et al. A prognostic index for multiple myeloma. Br J Cancer 1996;73:1101–7.
Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo stratification of myeloma and risk-adapted therapy (mSMART): Consensus Statement. Mayo Clin Proc 2007;82:323–41.
Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:1875–83.
Fermand JP, Ravaud P, Chevret S, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998;92:3131–6.
Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24:929–36.
Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma [see comment]. N Engl J Med 2003;349:2495–502.
Blade J, Rosinol L, Sureda A, et al. High-dose therapy intensification compared with continued standard chemotherapy in multiple myeloma patients responding to the initial chemotherapy: long-term results from a prospective randomized trial from the Spanish cooperative group PETHEMA. Blood 2005;106:3755–9.
Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007;356:1110–20.
Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet 2006;367:825–31.
Facon T, Mary JY, Hulin C, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet 2007;370:1209–18.
Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357:2123–32.
Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007;357:2133–42.
Rajkumar SV. The death of VAD as initial therapy for multiple myeloma. Blood 2005;106:2–3.
Cavo M, Zamagni E, Tosi P, et al. Superiority of thalidomide and dexamethasone over vincristine-doxorubicin-dexamethasone (VAD) as primary therapy in preparation for autologous transplantation for multiple myeloma. Blood 2005;106:35–9.
Fermand J-P, Jaccard A, Macro M, et al. A randomized comparison of dexamethasone + thalidomide (Dex/Thal) vs Dex + Placebo (Dex/P) in patients (pts) with relapsing multiple myeloma (MM). Blood 2006;108:3563.
Alexanian R, Dimopoulos MA, Delasalle K, Barlogie B. Primary dexamethasone treatment of multiple myeloma. Blood 1992;80:887–90.
Rajkumar SV, Blood E, Vesole DH, Fonseca R, Greipp PR. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24:431–6.
Rajkumar SV, RosiñOl L, Hussein M, et al. A multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone versus dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol 2008;26: 2171–7.
Facon T, Mary J-Y, Pegourie B, et al. Dexamethasone-based regimens versus melphalan-prednisone for elderly multiple myeloma patients ineligible for high-dose therapy. Blood 2006;107:1292–8.
Rajkumar SV, Hayman S, Gertz MA, et al. Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J Clin Oncol 2002;20:4319–23.
Weber DM, Gavino M, Delasalle K, Rankin K, Giralt S, Alexanian R. Thalidomide alone or with dexamethasone for multiple myeloma. Blood 1999;94(suppl 1):604a (A2686).
Cavo M, Zamagni E, Tosi P, et al. First-line therapy with thalidomide and dexamethasone in preparation for autologous stem cell transplantation for multiple myeloma. Haematologica 2004;89:826–31.
Lacy MQ, Gertz MA, Dispenzieri AA, et al. Long-term results of response to therapy, time to progression, and survival with lenalidomide plus dexamethasone in newly diagnosed myeloma. Mayo Clin Proc 2007;82:1179–84.
Rajkumar SV, Jacobus S, Callander N, Fonseca R, Vesole D, Greipp P. A randomized phase III trial of lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group. Blood 2006;108:799.
Rajkumar SV, Jacobus S, Callander N, et al. A randomized trial of lenalidomide plus high-dose dexamethasone (RD) versus lenalidomide plus low-dose dexamethasone (Rd) in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group. ASH Annual Meeting Abstracts 2007;110:74.
Kumar S, Dispenzieri A, Lacy MQ, et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post- peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 2007;21:2035–42.
Niesvizky R, Jayabalan DS, Christos PJ, et al. BiRD (Biaxin(R)[clarithromycin]/Revlimid(R)[lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma. Blood 2007;111:1101–9.
Jagannath S, Durie BG, Wolf J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005;129:776–83.
Harousseau J, Attal M, Leleu X, et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica 2006;91:1498–505.
Harousseau JL, Mathiot C, Attal M, et al. VELCADE/dexamethasone (Vel/D) versus VAD as induction treatment prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma (MM): updated results of the IFM 2005/01 trial. ASH Annual Meeting Abstracts 2007;110:450.
Cavo M, Patriarca F, Tacchetti P, et al. Bortezomib (Velcade(R))-Thalidomide-Dexamethasone (VTD) vs Thalidomide-Dexamethasone (TD) in preparation for autologous stem-cell (SC) transplantation (ASCT) in newly diagnosed multiple myeloma (MM). ASH Annual Meeting Abstracts 2007;110:73.
Facon T, Mary JY, Hulin C, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet 2007;370:1209–18.
Hulin C, Virion J, Leleu X, et al. Comparison of melphalan- prednisone-thalidomide (MP-T) to melphalan-prednisone (MP) in patients 75 years of age or older with untreated multiple myeloma (MM). Preliminary results of the randomized, double-blind, placebo controlled IFM 01–01 trial. J Clin Oncol (Meeting Abstracts) 2007;25:8001.
Hulin C, Facon T, Rodon P, et al. Melphalan-prednisone-thalidomide (MP-T) demonstrates a significant survival advantage in elderly patients ≥75 years with multiple myeloma compared with melphalan-prednisone (MP) in a randomized, double-blind, placebo-controlled trial, IFM 01/01. ASH Annual Meeting Abstracts 2007;110:75.
Waage A, Gimsing P, Juliusson G, Turesson I, Fayers P. Melphalan-prednisone-thalidomide to newly diagnosed patients with multiple myeloma: a placebo controlled randomised phase 3 trial. ASH Annual Meeting Abstracts 2007;110:78.
Mateos M-V, Hernandez J-M, Hernandez M-T, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006;108:2165–72.
San Miguel JF, Schlag R, Khuageva N, et al. MMY-3002: a phase 3 study comparing bortezomib-melphalan-prednisone (VMP) with melphalan-prednisone (MP) in newly diagnosed multiple myeloma. ASH Annual Meeting Abstracts 2007;110:76.
Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA Italian Multiple Myeloma Network. J Clin Oncol 2007;25:4459–65.
Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2006;21:151–7.
Sagaster V, Ludwig H, Kaufmann H, et al. Bortezomib in relapsed multiple myeloma: response rates and duration of response are independent of a chromosome 13q-deletion. Leukemia 2006;21:164–8.
Garban F, Attal M, Michallet M, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99–03 trial) with tandem autologous stem cell transplantation (IFM99–04 trial) in high-risk de novo multiple myeloma. Blood 2006;107:3474–80.
Rajkumar SV. Thalidomide therapy and deep venous thrombosis in multiple myeloma [comment]. Mayo Clin Proc 2005;80:1549–51.
Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2007;22:414–23.
Knight R, Delap RJ, Zeldis JB. Lenalidomide and venous thrombosis in multiple myeloma. N Engl J Med 2006;354:2079–80.

Reference Title: References

Reference Type: reference-list

Alexanian R, Balcerzak S, Gehan E, Haut A, Hewlett J. Remission maintenance therapy for multiple myeloma. Arch Intern Med 1975;135(1):147–52.
Alexanian R, Salmon S, Bonnet J, Gehan E, Haut A, Weick J. Combination therapy for multiple myeloma. Cancer 1977;40(6):2765–71.
Salmon SE, Haut A, Bonnet JD, et al. Alternating combination chemotherapy and levamisole improves survival in multiple myeloma: a Southwest Oncology Group Study. J Clin Oncol 1983;1(8):453–61.
Alexanian R, Dreicer R. Chemotherapy for multiple myeloma. Cancer 1984;53(3):583–8.
Maclennan IC, Cusick J. Objective evaluation of the role of vincristine in induction and maintenance therapy for myelomatosis. Medical Research Council Working Party on Leukaemia in Adults. Br J Cancer 1985;52(2):153–8.
Cohen HJ, Bartolucci AA, Forman WB, Silberman HR. Consolidation and maintenance therapy in multiple myeloma: randomized comparison of a new approach to therapy after initial response to treatment. J Clin Oncol 1986;4(6):888–99.
Belch A, Shelley W, Bergsagel D, et al. A randomized trial of maintenance versus no maintenance melphalan and prednisone in responding multiple myeloma patients. Br J Cancer 1988;57(1):94–9.
Myeloma Trialists’ Collaborative Group. Interferon as therapy for multiple myeloma: an individual patient data overview of 24 randomized trials and 4012 patients. Br J Haematol 2001;113(4):1020–34.
Fritz E, Ludwig H. Interferon-alpha treatment in multiple myeloma: meta-analysis of 30 randomised trials among 3948 patients. Ann Oncol 2000;11(11):1427–36.
Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24(6):929–36.
Berenson JR, Crowley JJ, Grogan TM, et al. Maintenance therapy with alternate-day prednisone improves survival in multiple myeloma patients. Blood 2002;99(9):3163–8.
Shustik C, Belch A, Robinson S, et al. A randomised comparison of melphalan with prednisone or dexamethasone as induction therapy and dexamethasone or observation as maintenance therapy in multiple myeloma: NCIC CTG MY.7. Br J Haematol 2007;136(2):203–11.
Alexanian R, Weber D, Giralt S, Delasalle K. Consolidation therapy of multiple myeloma with thalidomide-dexamethasone after intensive chemotherapy. Ann Oncol 2002;13(7):1116–19.
Stewart AK, Chen CI, Howson-Jan K, et al. Results of a multicenter randomized phase II trial of thalidomide and prednisone maintenance therapy for multiple myeloma after autologous stem cell transplant. Clin Cancer Res 2004;10(24):8170–6.
Feyler S, Graham J, Rawstron A, El-Sherbiny Y, Snowden J, Johnson R. Thalidomide maintenance following high dose therapy in multiple myeloma: A UK Myeloma Forum Phase 2 Study. Blood 2003;102(11):Abstract 2558.
Feyler S, Rawstron A, Jackson G, Snowden JA, Cocks K, Johnson RJ. Thalidomide maintenance following high-dose therapy in multiple myeloma: a UK myeloma forum phase 2 study. Br J Haematol 2007;139(3):429–33.
Brinker BT, Waller EK, Leong T, et al. Maintenance therapy with thalidomide improves overall survival after autologous hematopoietic progenitor cell transplantation for multiple myeloma. Cancer 2006;106(10):2171–80.
Attal M, Harousseau JL, Leyvraz S, et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 2006;108(10):3289–94.
Abdelkefi A, Ladeb S, Torjman L, et al. Single autologous stem cell transplantation followed by maintenance therapy with thalidomide is superior to double autologous transplantation in multiple myeloma: results of a multicenter randomized clinical trial. Blood 2007;111:1805–10.
Barlogie B, Tricot G, Anaissie E, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med 2006;354(10):1021–30.
Spencer A, Prince M, Roberts AW, Bradstock KF, Prosser IW. First analysis of the Australasian Leukaemia and Lymphoma Group (ALLG) trial of thalidomide and alternate day prednisolone following autologous stem cell transplantation (ASCT) for patients with multiple myeloma (ALLG MM6). ASH Annual Meeting Abstracts 2006;108(11):58.
Spencer A, Prince HM, Robert A, Bradstock K, Prosser I. Thalidomide improves survival when used following ASCT. Haematologica 2007;92(suppl 2):41–2.
Peles S, Fisher NM, Devine SM, Tomasson MH, Dipersio JF, Vij R. Bortezomib (velcade) when given pretransplant and once weekly as consolidation therapy following high dose chemotherapy (HDCT) leads to high rates of reactivation of varicella zoster virus (VZV). ASH Annual Meeting Abstracts 2005;106(11):3237.
Schiller GJ, Sohn JP, Malone R, et al. Phase I/II trial of bortezomib maintenance following autologous peripheral blood progenitor cell transplantation as treatment for intermediate- and advanced-stage multiple myeloma. ASH Annual Meeting Abstracts 2006;108(11):5433.
Knop S, Hebart H, Kunzmann V, Angermund R, Einsele H. Bortezomib once weekly is well tolerated as maintenance therapy after less than a complete response to high-dose melphalan in patients with multiple myeloma. ASH Annual Meeting Abstracts 2006;108(11):5099.
Chanan-Khan AA, Sonneveld P, Schuster MW, et al. Analysis of varicella zoster virus reactivation among bortezomib-treated patients in the APEX study. ASH Annual Meeting Abstracts 2006;108(11):3535.

Reference Title: References

Reference Type: reference-list

Anderson KC, Kyle RA, Rajkumar SV, Stewart AK, Weber D, Richardson P. Clinically relevant end points and new drug approvals for myeloma. Leukemia 2008;22(2):231–9.
Alexanian R, Barlogie B, Dixon D. High-dose glucocorticoid treatment of resistant myeloma. Ann Intern Med 1986;105(1):8–11.
Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 1984;310(21):1353–6.
Anderson H, Scarffe JH, Ranson M, et al. VAD chemotherapy as remission induction for multiple myeloma. Br J Cancer 1995;71(2):326–30.
Gertz MA, Kalish LA, Kyle RA, Hahn RG, Tormey DC, Oken MM. Phase III study comparing vincristine, doxorubicin (Adriamycin), and dexamethasone (VAD) chemotherapy with VAD plus recombinant interferon alfa-2 in refractory or relapsed multiple myeloma. An Eastern Cooperative Oncology Group study. Am J Clin Oncol 1995;18(6):475–80.
Lokhorst HM, Meuwissen OJ, Bast EJ, Dekker AW. VAD chemotherapy for refractory multiple myeloma. Br J Haematol 1989;71(1):25–30.
Durie BG, Dixon DO, Carter S, et al. Improved survival duration with combination chemotherapy induction for multiple myeloma: a Southwest Oncology Group Study. J Clin Oncol 1986;4(8):1227–37.
Giles FJ, Wickham NR, Rapoport BL, et al. Cyclophosphamide, etoposide, vincristine, adriamycin, and dexamethasone (CEVAD) regimen in refractory multiple myeloma: an International Oncology Study Group (IOSG) phase II protocol. Am J Hematol 2000;63(3):125–30.
Lee CK, Barlogie B, Munshi N, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol 2003;21(14):2732–9.
Maclennan IC, Chapman C, Dunn J, Kelly K. Combined chemotherapy with ABCM versus melphalan for treatment of myelomatosis. The Medical Research Council Working Party for Leukaemia in Adults. Lancet 1992;339(8787):200–5.
Berenson JR, Yang HH, Sadler K, et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006;24(6):937–44.
Orlowski RZ, Voorhees PM, Garcia RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005;105(8):3058–65.
Orlowski RZ, Nagler A, Sonneveld P, et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 2007;25(25):3892–901.
Barlogie B, Alexanian R, Dicke KA, et al. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987;70(3):869–72.
Barlogie B, Hall R, Zander A, Dicke K, Alexanian R. High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood 1986;67(5):1298–301.
Mcelwain TJ, Powles RL. High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983;2(8354):822–4.
Alexanian R, Dimopoulos MA, Hester J, Delasalle K, Champlin R. Early myeloablative therapy for multiple myeloma. Blood 1994;84(12):4278–82.
Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant 2004;34(2):161–7.
Vesole DH, Tricot G, Jagannath S, et al. Autotransplants in multiple myeloma: what have we learned? Blood 1996;88(3):838–47.
Vesole DH, Crowley JJ, Catchatourian R, et al. High-dose melphalan with autotransplantation for refractory multiple myeloma: results of a Southwest Oncology Group phase II trial. J Clin Oncol 1999;17(7):2173–9.
Lee CK, Barlogie B, Zangari M, et al. Transplantation as salvage therapy for high-risk patients with myeloma in relapse. Bone Marrow Transplant 2002;30(12):873–8.
Fermand JP, Ravaud P, Chevret S, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998;92(9):3131–6.
Corradini P, Cavo M, Lokhorst H, et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood 2003;102(5):1927–9.
Gahrton G, Svensson H, Cavo M, et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br J Haematol 2001;113(1):209–16.
Maloney DG, Molina AJ, Sahebi F, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003;102(9):3447–54.
Kroger N, Perez-Simon JA, Myint H, et al. Relapse to prior autograft and chronic graft-versus-host disease are the strongest prognostic factors for outcome of melphalan/fludarabine-based dose-reduced allogeneic stem cell transplantation in patients with multiple myeloma. Biol Blood Marrow Transplant 2004; 10(10):698–708.
Georges GE, Maris MB, Maloney DG, et al. Nonmyeloablative unrelated donor hematopoietic cell transplantation to treat patients with poor-risk, relapsed, or refractory multiple myeloma. Biol Blood Marrow Transplant 2007; 13(4):423–2.
Gerull S, Goerner M, Benner A, et al. Long-term outcome of nonmyeloablative allogeneic transplantation in patients with high-risk multiple myeloma. Bone Marrow Transplant 2005;36(11):963–9.
D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91(9):4082–5.
Vacca A, Ribatti D, Roncali L, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87(3):503–8.
Anderson KC. Lenalidomide and thalidomide: mechanisms of action – similarities and differences. Semin Hematol 2005;42 (4 suppl 4):S3-S8.
Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000;96(9):2943–50.
Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99(12):4525–30.
Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341(21):1565–71.
Barlogie B, Desikan R, Eddlemon P, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001;98(2):492–4.
Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K. New drugs for myeloma. Oncologist 2007;12(6):664–89.
Glasmacher A, Hahn C, Hoffmann F, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol 2006;132(5):584–93.
Neben K, Moehler T, Benner A, et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002;8(11):3377–82.
Schey SA, Cavenagh J, Johnson R, Child JA, Oakervee H, Jones RW. An UK myeloma forum phase II study of thalidomide; long term follow-up and recommendations for treatment. Leuk Res 2003;27(10):909–14.
Richardson P, Schlossman R, Jagannath S, et al. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc 2004;79(7):875–82.
Naina Hvk, Lacy MQ, Dispenzieri A, et al. Incidence and clinical course of peripheral neuropathy in patients receiving thalidomide for the treatment of multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2005;106(11):3475.
Mileshkin L, Stark R, Day B, Seymour JF, Zeldis JB, Prince HM. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol 2006;24(27):4507–14.
Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24(3):431–6.
Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003;21(1):16–19.
Glasmacher A, Hahn C, Hoffmann F, et al. Thalidomide in relapsed or refractory patients with multiple myeloma: monotherapy or combination therapy? A report from systematic reviews. Blood (ASH Annual Meeting Abstracts) 2005;106(11):5125.
Alexanian R, Weber D, Anagnostopoulos A, Delasalle K, Wang M, Rankin K. Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol 2003;40(4 suppl 4):3–7.
Dimopoulos MA, Zervas K, Kouvatseas G, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol 2001;12(7):991–5.
Palumbo A, Falco P, Ambrosini MT, et al. Thalidomide plus dexamethasone is an effective salvage regimen for myeloma patients relapsing after autologous transplant. Eur J Haematol 2005;75(5):391–5.
Palumbo A, Bertola A, Falco P, et al. Efficacy of low-dose thalidomide and dexamethasone as first salvage regimen in multiple myeloma. Hematol J 2004;5(4):318–24.
Hussein MA. Thromboembolism risk reduction in multiple myeloma patients treated with immunomodulatory drug combinations. Thromb Haemost 2006;95(6):924–30.
Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008;22:414–23.
Moehler TM, Neben K, Benner A, et al. Salvage therapy for multiple myeloma with thalidomide and CED chemotherapy. Blood 2001;98(13):3846–8.
Offidani M, Corvatta L, Marconi M, et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: a prospective, multicenter, phase II study. Haematologica 2006;91(1):133–6.
Dimopoulos MA, Hamilos G, Zomas A, et al. Pulsed cyclophosphamide, thalidomide and dexamethasone: an oral regimen for previously treated patients with multiple myeloma. Hematol J 2004;5(2):112–17.
Kyriakou C, Thomson K, D'Sa S, et al. Low-dose thalidomide in combination with oral weekly cyclophosphamide and pulsed dexamethasone is a well tolerated and effective regimen in patients with relapsed and refractory multiple myeloma. Br J Haematol 2005;129(6):763–70.
Glasmacher A, Moehler T, Goldschmidt H, et al. Multicenter phase II trial of patients with refractory or recurrent multiple myeloma with oral treatment of thalidomide combined with oral cyclophosphamide, idarubicin and dexamethasone. ASH Annual Meeting Abstracts 2007;110(11):4825.
Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004;4(4):314–22.
Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002;100(9):3063–7.
Zangari M, Tricot G, Zeldis J, Eddlemon P, Saghafifar F, Barlogie B. Results of Phase I study of CC-5013 for the treatment of multiple myeloma (MM) patients who relapse after high dose chemotherapy (HDCT). Blood (ASH Annual Meeting Abstracts) 2001;98(11),775a.
Zangari M, Barlogie B, Jacobson J. Revlimid 25mg (REV 25) × 20 versus 50mg (REV 50) × 10 q28 days with bridging of 5mg × 10 versus 10mg × 5 as post-transplant salvage therapy for multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2003;102(11).
Richardson PG, Blood E, Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006;108(10):3458–64.
Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007;357(21):2133–42.
Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357(21):2123–32.
Weber D, Knight R, Chen C, et al. Prolonged overall survival with lenalidomide plus dexamethasone compared with dexamethasone alone in patients with relapsed or refractory multiple myeloma. ASH Annual Meeting Abstracts 2007;110(11):412.
Baz R, Walker E, Karam MA, et al. Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: safety and efficacy. Ann Oncol 2006;17(12):1766–71.
Knop S, Gerecke C, Liebisch P, et al. The efficacy and toxicity of the RAD regimen (Revlimid®, Adriamycin®, dexamethasone) in relapsed and refractory multiple myeloma – a phase I/II trial of “Deutsche Studiengruppe multiples myelom”. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2716.
Morgan GJ, Schey SA, Wu P, et al. Lenalidomide (Revlimid), in combination with cyclophosphamide and dexamethasone (RCD), is an effective and tolerated regimen for myeloma patients. Br J Haematol 2007;137(3):268–9.
Hideshima T, Anderson KC. Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am 2007;21(6):1071–91.
Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348(26):2609–17.
Jagannath S, Barlogie B, Berenson J, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004;127(2):165–72.
Jagannath S, Barlogie B, Berenson JR, et al. Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2717.
Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352(24):2487–98.
Richardson PG, Sonneveld P, Schuster M. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007;110(10):3557–60.
Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006;24(19):3113–20.
Miguel Jfs, Richardson P, Sonneveld P, et al. Frequency, characteristics, and reversibility of peripheral neuropathy (PN) in the APEX trial. Blood (ASH Annual Meeting Abstracts) 2005;106(11):366.
Lonial S, Waller EK, Richardson PG, et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005;106(12):3777–84.
Lonial S, Richardson P, Sonneveld P, et al. Hematologic profiles in the phase 3 APEX trial. ASH Annual Meeting Abstracts 2005;106(11):3474.
Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003;101(6):2377–80.
Blad EJ, Miguel JS, Nagler A, et al. The prolonged time to progression with pegylated liposomal doxorubicin + bortezomib versus bortezomib alone in relapsed or refractory multiple myeloma is unaffected by extent of prior therapy or previous anthracycline exposure. ASH Annual Meeting Abstracts 2007;110(11):410.
Popat R, Oakervee HE, Foot N, et al. A phase I/II study of bortezomib and low dose intravenous melphalan (BM) for relapsed multiple myeloma. ASH Annual Meeting Abstracts 2005;106(11):2555.
Davies FE, Wu P, Jenner M, Srikanth M, Saso R, Morgan GJ. The combination of cyclophosphamide, velcade and dexamethasone induces high response rates with comparable toxicity to velcade alone and velcade plus dexamethasone. Haematologica 2007;92(8):1149–50.
Kropff M, Bisping G, Schuck E, et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol 2007;138(3):330–7.
Zangari M, Barlogie B, Burns MJ, et al. Velcade (V)-thalidomide (T)-dexamethasone (D) for advanced and refractory multiple myeloma (MM): long-term follow-up of phase I-II trial UARK 2001–37: superior outcome in patients with normal cytogenetics and no prior T. ASH Annual Meeting Abstracts 2005;106(11):2552.
Padmanabhan S, Miller K, Musiel L, et al. Bortezomib (Velcade) in combination with liposomal doxorubicin (Doxil) and thalidomide is an active salvage regimen in patients with relapse or refractory multiple myeloma: final results of a phase II study. Haematologica 2006;91(suppl 1):277.
Hollmig K, Stover J, Talamo G, et al. Bortezomib (VelcadeTM) + AdriamycinTM + Thalidomide + Dexamethasone (VATD) as an effective regimen in patients with refractory or relapsed multiple myeloma (MM). ASH Annual Meeting Abstracts 2004;104(11):2399.
Ciolli S, Leoni F, Casini C, Breschi C, Bosi A. Liposomal doxorubicin (Myocet®) enhance the efficacy of bortezomib, dexamethasone plus thalidomide in refractory myeloma. ASH Annual Meeting Abstracts 2006;108(11):5087.
Palumbo A, Ambrosini MT, Benevolo G, et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 2007;109(7):2767–72.
Terpos E, Anagnostopoulos A, Heath D, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effective regimen for relapsed/ refractory myeloma and reduces serum levels of Dickkopf-1, RANKL, MIP-1{alpha} and angiogenic cytokines. ASH Annual Meeting Abstracts 2006;108(11):3541.
Richardson PG, Jagannath S, Avigan DE, et al. Lenalidomide plus bortezomib (Rev-Vel) in relapsed and/or refractory multiple myeloma (MM): final results of a multicenter phase 1 trial. ASH Annual Meeting Abstracts 2006;108(11):405.
Richardson P, Jagannath S, Raje N, et al. Lenalidomide, bortezomib, and dexamethasone (Rev/Vel/Dex) in patients with relapsed or relapsed/refractory multiple myeloma (MM): preliminary results of a phase II study. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2714.
Mitsiades CS, Mitsiades NS, Mcmullan CJ, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107(3):1092–100.
Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002;99(22):14374–9.
Richardson PG, Chanan-Khan AA, Alsina M, et al. Safety and activity of KOS-953 in patients with relapsed refractory multiple myeloma (MM): interim results of a phase 1 trial. ASH Annual Meeting Abstracts 2005;106(11):361.
Richardson P, Chanan-Khan AA, Lonial S, et al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + bortezomib (BZ): encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). Blood (ASH Annual Meeting Abstracts) 2006;108(11):406.
Richardson P, Chanan-Khan AA, Lonial S, et al. Tanespimycin (T) + bortezomib (BZ) in multiple myeloma (MM): Pharmacology, safety and activity in relapsed/refractory (rel/ref) patients (Pts). J Clin Oncol 2007;25:3532.
Hideshima T, Catley L, Yasui H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107(10):4053–62.
Richardson P, Jakubowiak A, Wolf J, et al. Phase I/II report from a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma previously treated with bortezomib. ASH Annual Meeting Abstracts 2007;110(11):1170.
Garcia-Mata R, Gao YS, Sztul E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 2002;3(6):388–96.
Kawaguchi Y, Kovacs JJ, Mclaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115(6):727–38.
Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005;102(24):8567–72.
Mitsiades CS, Mitsiades NS, Mcmullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004;101(2):540–5.
Weber DM, Jagannath S, Mazumder A, et al. Phase I trial of oral vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) in combination with bortezomib in patients with advanced multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2007;110(11):1172.
Badros A, Philip S, Niesvizky R, et al. Phase I trial of suberoylanilide hydroxamic acid (SAHA) + bortezomib (Bort) in relapsed multiple myeloma (MM) patients (pts). ASH Annual Meeting Abstracts 2007;110(11):1168.
Prince M, Quach H, Neeson P, et al. Safety and efficacy of the combination of bortezomib with the deacetylase inhibitor romidepsin in patients with relapsed or refractory multiple myeloma: preliminary results of a phase I trial. ASH Annual Meeting Abstracts 2007;110(11):1167.
Hideshima T, Akiyama M, Hayashi T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003;101(2):703–5.
Chauhan D, Velankar M, Brahmandam M, et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007;26(16):2374–80.
Chauhan D, Neri P, Velankar M, et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007;109(3):1220–7.
Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2007 Oct 9. [Epub ahead of print].
Moreau P, Hulin C, Facon T, et al. Phase I study of AVE1642 anti IGF-1R monoclonal antibody in patients with advanced multiple myeloma. ASH Annual Meeting Abstracts 2007; 110(11):1166.
Podar K, Raab MS, Zhang J, et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood 2007;109(4):1669–77.
Chauhan D, Singh A, Brahmandam M, et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008;111(3):1654–64.
Sonneveld P, Hajek R, Nagler A, et al. Impact of prior thalidomide (T) therapy on the efficacy of pegylated liposomal doxorubicin (PLD) and bortezomib (B) in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol (Meeting Abstracts) 2007;25(18 suppl):8023.
Chanan-Khan AA, Weber D, Dimopoulos M, et al. Lenalidomide (L) in combination with dexamethasone (D) improves survival and time to progression in elderly patients (pts) with relapsed or refractory (rel/ref) multiple myeloma (MM). ASH Annual Meeting Abstracts 2006;108(11):3551.
Richardson PG, Sonneveld P, Schuster MW, et al. Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 2007;137(5): 429–35.
Celegene Corporation. THALOMID (thalidomide) product information. Summit, NJ, USA 2006; Available at: www.celgene.com/PDF/ThalomidPI.pdf.
Chanan-Khan AA, Kaufman JL, Mehta J, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007;109(6):2604–6.
Tosi P, Zamagni E, Cellini C, et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur J Haematol 2004;73(2):98–103.
Ludwig H, Adam Z, Hajek R, et al. Recovery of renal impairment by bortezomib-doxorubicin-dexamethasone (BDD) in multiple myeloma (MM) patients with acute renal failure. Results from an ongoing phase II study. ASH Annual Meeting Abstracts 2007;110(11):3603.
Reece DE, Masih-Khan E, Chen C, et al. Use of lenalidomide (Revlimid(R) ± corticosteroids in relapsed/refractory multiple myeloma patients with elevated baseline serum creatinine levels. ASH Annual Meeting Abstracts 2006;108(11):3548.
Chen N, Lau H, Kong L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 2007;47(12):1466–75.
Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007;21(1):151–7.
Bahlis NJ, Mansoor A, Lategan JC, et al. Lenalidomide overcomes poor prognosis conferred by deletion of chromosome 13 and t(4;14) in multiple myeloma: MM016 Trial. ASH Annual Meeting Abstracts 2006;108(11):3557.
von Metzler, Krebbel H, Hecht M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007;21(9):2025–34.
Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide and bortezomib: targeting osteoclastogenesis, osteoclast survival factors, and bone remodeling markers in multiple myeloma. ASH Annual Meeting Abstracts 2007;110(11):1184.

Reference Title: References

Reference Type: reference-list

Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 2004;32:290–2.
Melton LJ III, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV. Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 2005;20:487–93.
Taube T, Beneton MN, Mccloskey EV, Rogers S, Greaves M, Kanis JA. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 1992;49:192–8.
Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007;110:1860–7.
Schulman KL, Kohles J. Economic burden of metastatic bone disease in the U.S. Cancer 2007;109:2334–42.
Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton LJ III. Incidence of multiple myeloma in Olmsted County, Minnesota: trend over 6 decades. Cancer 2004; 101:2667–74.
Oyajobi BO. Multiple myeloma/hypercalcemia [review]. Arthritis Res Ther 2007;9 (suppl 1):S4.
Sourbier C, Massfelder T. Parathyroid hormone-related protein in human renal cell carcinoma. Cancer Lett 2006;240:170–82.
Horiuchi T, Miyachi T, Arai T, Nakamura T, Mori M, Ito H. Raised plasma concentrations of parathyroid hormone related peptide in hypercalcemic multiple myeloma. Horm Metab Res 1997;29:469–71.
Wang K, Allen L, Fung E, Chan CC, Chan JC, Griffith JF. Bone scintigraphy in common tumors with osteolytic components [review]. Clin Nucl Med 2005;30:655–71.
Collins CD. Multiple Myeloma. In: Imaging In Oncology. Ed. By J. E. Husband & R. H. Resnick. Publisher: London; Boca Raton: Taylor & Francis. 2nd Edition, Vol. 2; Chapter 33, pp. 875–89, 2004.
Snapper I, Khan A. Myelomatosis: fundamentals and clinical features. University Park Press, Baltimore; 1971.
Mele A, Offidani M, Visani G, et al. Technetium-99m sestamibi scintigraphy is sensitive and specific for the staging and the follow-up of patients with multiple myeloma: a multicentre study on 397 scans. Br J Haematol 2007;136:729–35.
Moulopoulos LA, Dimopoulos MA, Smith TL, et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 1995;13:251–6.
Lecouvet FE, Vande Berg BC, Malghem J, Maldague BE. Magnetic resonance and computed tomography imaging in multiple myeloma. Semin Musculoskelet Radiol 2001;5:43–55.
D'Sa S, Abildgaard N, Tighe J, Shaw P, Hall-Craggs M. Guidelines for the use of imaging in the management of myeloma. Br J Haematol 2007;137:49–63.
Lecouvet FE, Vande Berg BC, Michaux L, et al. Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow MR imaging. Radiology 1998;209:653–60.
Walker R, Barlogie B, Haessler J. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 2007;25:1121–8.
Dimopoulos MA, Moulopoulos LA, Datseris I, et al. Imaging of myeloma bone disease – implications for staging, prognosis and follow-up. Acta Oncol 2000;39:823–7.
Moulopoulos LA, Dimopoulos MA, Weber D, Fuller L, Libshitz HI, Alexanian R. Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol 1993;11:1311–15.
Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. Am J Roentgenol 2005;184:1199–204.
Nanni C, Zamagni E, Farsad M, et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 2006;33:525–31.
Fogelman I, Cook G, Israel O, Van Der Wall H. Positron emission tomography and bone metastases [review]. Semin Nucl Med 2005;35:135–42.
Kimmel DB. Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates [review]. J Dent Res 2007;86:1022–33.
Berenson JR, Lichtenstein A, Porter L, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998;16:593–602.
Rosen LS, Gordon D, Antonio BS, Kaminski M. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001;7:377–87.
Body JJ, Diel IJ, Lichinitser MR, et al. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol 2003;14:1399–405.
Mccloskey EV, Dunn JA, Kanis JA, et al. Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol 2001;113:1035–43.
Kyle RA, Yee GC, Somerfield MR, et al. American Society of Clinical Oncology. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 2007;25:2464–72.
Lacy MQ, Dispenzieri A, Gertz MA, et al. Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma [review]. Mayo Clin Proc 2006;81:1047–53.
Corso A, Ferretti E, Lazzarino M. Zoledronic acid exerts its antitumor effect in multiple myeloma interfering with the bone marrow microenvironment [review]. Hematology 2005;10:215–24.
Avcu F, Ural AU, Yilmaz MI. The bisphosphonate zoledronic acid inhibits the development of plasmacytoma induced in BALB/c mice by intraperitoneal injection of pristane. Eur J Haematol 2005;74:496–500.
Croucher P, Jagdev S, Coleman R. The anti-tumor potential of zoledronic acid [review]. Breast 2003;12 (suppl 2):S30–6.
Musto P, Petrucci MT, Bringhen S, et al. Final analysis of a multicenter, randomized study comparing zoledronate vs. observation in patients with asymptomatic myeloma. Blood 2007;110:164a.
Musto P, Falcone A, Sanpaolo G, et al. Pamidronate reduces skeletal events but does not improve progression-free survival in early-stage untreated myeloma: results of a randomized trial. Leuk Lymphoma 2003;44:1545–8.
Wang J, Goodger NM, Pogrel MA. Osteonecrosis of the jaws associated with cancer chemotherapy. J Oral Maxillofac Surg 2003;61:1104–7.
Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 2003;61:1115–17.
Van Den Wyngaert T, Huizing MT, Vermorken JB. Osteonecrosis of the jaw related to the use of bisphosphonates. Curr Opin Oncol 2007;19:315–22.
Khosla S, Burr D, Cauley J, et al. American Society for Bone and Mineral Research. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007;22:1479–91.
Badros A, Evangelos T, Goloubeva T, et al. Long-term follow-up of multiple myeloma (MM) patients (pts) with osteonecrosis of the jaw (ONJ). Blood 2007;110:1030a.
Badros A, Weikel D, Salama A, et al. Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol 2006;24:945–52.
Clarke BM, Boyette J, Vural E, Suen JY, Anaissie EJ, Stack BC Jr. Bisphosphonates and jaw osteonecrosis: the UAMS experience. Otolaryngol Head Neck Surg 2007;136:396–400.
Khamaisi M, Regev E, Yarom N, et al. Possible association between diabetes and bisphosphonate-related jaw osteonecrosis. J Clin Endocrinol Metab 2007;92:1172–5.
Corso A, Varettoni M, Zappasodi P, et al. A different schedule of zoledronic acid can reduce the risk of the osteonecrosis of the jaw in patients with multiple myeloma. Leukemia 2007;21:1545–8.
Lentzsch S, Ehrlich LA, Roodman GD. Pathophysiology of multiple myeloma bone disease. Hematol Oncol Clin North Am 2007;21:1035–49.
Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000;97:1566–71.
Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–76.
Pearse RN, Sordillo EM, Yaccoby S, et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 2001;98:11581–6.
Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003;102:1064–9.
Sezer O, Heider U, Zavrski I, KüHne CA, Hofbauer LC. RANK ligand and osteoprotegerin in myeloma bone disease. Blood 2003;101(6):2094–8.
Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barillé S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001;98:3527–33.
Croucher PI, Shipman CM, Lippitt J, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001;98:3534–40.
Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003;63:287–9.
Sordillo EM, Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-L in myeloma [review]. Cancer 2003;97:802–12.
Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006;12:1221–8.
Body JJ, Greipp P, Coleman RE, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003;97(suppl 3):887–92.
Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;96:671–5.
Choi SJ, Oba Y, Gazitt Y, et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 2001;108:1833–41.
Masih-Khan E, Trudel S, Heise C, et al. MIP-1alpha (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. Blood 2006;108:3465–71.
Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition. Blood 2006;108:3992–6.
Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003;349:2483–94.
Oshima T, Abe M, Asano J, et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005;106:3160–5.
Edwards CM, Edwards JR, Lwin ST, et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 2008;111:2833–42.
Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007;109:2106–11.
Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 2006;107:3098–105.
Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 2005;19:1969–76.
Tosi P, Zamagni E, Cellini C, et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol 2006;76:399–404.
Zangari M, Esseltine D, Cavallo F, et al. Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated multiple myeloma patients. Am J Hematol 2007;82:831–3.
Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 2007;110:334–8.
Zangari M, Cavallo F, Suza L, et al. Prospective evaluation of the bone anabolic effect of bortezomib in relapsed multiple myeloma (MM) patients. Blood 2007;798a.
Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalizes indices of bone remodeling in patients with relapsed multiple myeloma. Br J Haematol 2006;135:688–92.
Zavrski I, Krebbel H, Wildemann B, et al. Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem Biophys Res Commun 2005;333:200–5.
Deramond H, Depriester C, Galibert P, Le Gars D. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 1998;36:533–46.
Bosch A, Frias Z. Radiotherapy in the treatment of Multiple Myeloma. Int J Radiat Oncol Biol Phys 1988;15:1363–9.

Reference Title: References

Reference Type: reference-list

Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:21–33.
Lacy MQ, Donovan KA, Heimback JK, Ahmann GJ, Lust JA. Comparison of interleukin-1 beta expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 1999;93:300–5.
Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol Oncol Clin North Am 1999;13:1117–25.
Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in multiple myeloma. Blood 1995;85:863–72.
Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000;97:1566–71.
Bladé J, Rosiñol L. Complications of multiple myeloma. Hematol Oncol Clin North Am 2007;21:1231–46.
Bladé J, San Miguel JF, Fontanillas M, et al. Initial treatment of multiple myeloma: long-term results in 914 patients. Hematol J 2001;2:272–8.
Major P, Lortholary A, Hon J, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558–67.
Lathinen R, Laakso M, Palva I, et al. Randomized, placebo-controlled multicentric trial of clodronate in multiple myeloma. Lancet 1992;340:1049–52.
Mccloskey EV, Maclennan IC, Drayson MT, Chapman C, Dunn J, Kanis JA. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. Br J Haematol 1998;100:317–25.
Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 1996;334:488–93.
Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double blinded, comparative trial. Cancer J 2001;7:377–87.
Berenson JR, Hillner BE, Kyle RA, et al. American Society of Clinical Oncology practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 2002;20:3719–36.
Kyle RA, Yee GC, Somerfield MR, et al. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 2007;25:2464–72.
Gimsing P, Carlson K, Fayers P, Turesson I, Wisloff F. Randomized study on prophylactic pamidronate 30 mg vs. 90 mg in multiple myeloma (Nordic Study Group). Blood 2007;110:164a (Abstract 533).
Durie BGM, Katz M, Crowley J. Osteonecrosis of the jaw and bisphosphonates (letter). N Engl J Med 2005;353:99–100.
Badros A, Weikel D, Salama A, et al. Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol 2006;24:945–52.
Bamias A, Kastritis E, Bamia C, et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 2005;23:8580–7.
Lacy MQ, Dispenzieri A, Gertz MA, et al. Mayo Clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc 2006;81:1047–53.
Durie BGM, Attal M, Beksac M, et al. Use of bisphosphonates in multiple myeloma: IMWG response to Mayo Clinic consensus statement. Mayo Clin Proc 2007; 82:516–22.
Mcclung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006;354:821–31.
Alexanian R, Barlogie B, Dixon D. Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch Intern Med 1990;150:1693–5.
Bladé J, FernáNdez-Lama P, Bosch F, et al. Renal failure in multiple myeloma. Presenting features and predictors of outcome in a series of 94 patients. Arch Intern Med 1998;158:1889–93.
Bladé J, RosiñOl L. Renal, hematologic and infectious complications in multiple myeloma. Best Pract Res Clin Haematol 2005;18:635–52.
Papaiakovou VE, Bamias A, Gika D, et al. Renal failure in multiple myeloma: incidence, correlations and prognostic significance. Leuk Lymphoma 2007;48:337–41.
Sanders PW. Pathogenesis and treatment of myeloma kidney. J Lab Clin Med 1994;124:484–8.
Torra R, Bladé J, Cases A, et al. Patients with multiple myeloma and renal failure requiring long-term dialysis: presenting features, response to therapy and outcome in a series of 20 cases. Br J Haematol 1995;91:854–9.
Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal failure? J Am Soc Nephrol 2006;17:2974–84.
Mezzano SA, Barria M, Droguett MA, et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int 2001;60:1366–77.
Sitia R, Palladini G, Merlini G. Bortezomib in the treatment of AL amyloidosis: targeted therapy? Haematologica 2007;92:1302–7.
Rangan GK, Wang Y, Tay YC, Harris DC. Inhibition of nuclear factor-κB activation reduces cortical tubulointerstitial injury in proteinuric rats. Kidney Int 1999;56:118–34.
Takase O, Hirahashi J, Takayanagi A, et al. Gene transfer of truncated IkappaBalpha prevents tubulointerstitial injury. Kidney Int 2003;63:501–13.
Bladé J, Lust JA, Kyle RA. Immunoglobulin D myeloma: presenting features, response to therapy, and survival in a series of 53 patients. J Clin Oncol 1994;12:2398–404.
Randall RE, Williamson WC, Mullinax F, Tung MY, Still WJS. Manifestations of systemic light-chain deposition. Am J Med 1976;60:293–9.
Dhodapkar MV, Merlini G, Solomon A. Biology and therapy of immunoglobulin deposition diseases. Hematol Oncol Clin North Am 1997;11:89–110.
Bernstein SP, Humes DH. Reversible renal insufficiency in multiple myeloma. Arch Intern Med 1982;142:2083–6.
Cavo M, Baccarani M, Galieni P, et al. Renal failure in multiple myeloma: a study of the presenting findings, response to treatment, and prognosis in 26 patients. Nouv Rev Fr Hematol 1986;28:147–52.
Cohen DJ, Sherman W, Osserman EF. Acute renal failure in patients with multiple myeloma. Am J Med 1984;76:247–56.
Mellquist UH, Lenhoff S, Johnsen HE, et al. Cyclophosphamide plus dexamethasone is an efficient initial treatment before high-dose melphalan and autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of a randomized comparison with vincristine, doxorubicin and dexamethasone. Cancer 2008;112:129–35.
Kastritis E, Anagnostopoulos A, Roussou M, et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high-dose dexamethasone containing regimens and impact of novel agents. Haematologica 2007;92:546–9.
Badros A, Barlogie B, Siegel E, et al. Results of autologous stem cell transplantation in multiple myeloma with renal failure. Br J Haematol 2001;114:822–9.
San Miguel JF, Lahuerta JJ, GarcíA-Sanz R, et al. Are myeloma patients with renal failure candidates for autologous stem cell transplantation? Hematol J 2000;1:28–36.
Lee CK, Zangari M, Barlogie B. Dialysis-dependent renal failure in patients with myeloma can be reversed by high-dose myeloablative therapy and autotransplant. Bone Marrow Transplant 2004;33:823–28.
Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:2487–98.
RosiñOl L, Oriol A, Mateos MV, et al. Phase II PETHEMA trial of alternating bortezomib and dexamethasone as induction regimen before autologous stem-cell transplantation in younger patients with multiple myeloma: efficacy and clinical implications of tumor response kinetics. J Clin Oncol 2007;25:4452–8.
Oakervee H, Popat R, Cavenagh J. Use of bortezomib as induction therapy prior to stem cell transplantation in frontline treatment of multiple myeloma: impact on stem cell harvesting and engraftment. Leuk Lymphoma 2007;48:1910–21.
Jagannath S, Barlogie B, Berenson JR. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer 2005;103:1195–2000.
Chanan-Khan AA, Kaufman JL, Metha J, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007;109:2604–6.
Ludwig H, Drach J, Graf H, Meran JG. Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica 2007;92:1411–14.
Johnson WJ, Kyle RA, Pineda AA, O'Brien PC, Holley KE. Treatment of renal failure associated to multiple myeloma. Arch Intern Med 1990;150:863–9.
Clark WF, Stewart AK, Rock GA, et al. Plasma exchange when myeloma presents as acute renal failure. A randomized, controlled trial. Ann Intern Med 2005;143:777–84.
Iggo N, Palmer AB, Severn A, et al. Chronic dialysis in patients with multiple myeloma and renal failure: a worthwhile treatment. Q J Med 1989;270:903–10.
Korzets A, Tam F, Russell G, Freehally J, Walls J. The role of continuous peritoneal dialysis in end-stage renal failure due to multiple myeloma. Am J Kidney Dis 1990;6:216–23.
Cohen G, Rudnicki M, Schmaldienst S, Horl WH. Effect of dialysis on serum plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol Dial Transplant 2002;17:879–83.
Hutchinson CA, Cockwell P, Reid S, et al. Efficient removal of immunoglobulin free-light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J Am Soc Nephrol 2007; 3:886–95.
Bergsagel DE, Bailey AJ, Langley GR, et al. The chemotherapy of plasma cell myeloma and the incidence of acute leukemia. N Engl J Med 1979;301:743–8.
Finnish Leukemia Group. Acute leukemia and other secondary neoplasms in patients treated with conventional chemotherapy for multiple myeloma: a Finnish Leukemia group study. Eur J Haematol 2000;65:123–7.
Ludwig H, Rai K, Bladé J, et al. Management of disease-related anemia in patients with multiple myeloma or chronic lymphocytic leukaemia: epoietin treatment recommendations. Hematol J 2002;3:121–30.
Rizzo JD, Lichtin AE, Woolf SH, et al. Use of epoietin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. Blood 2002;100:2303–20.
Rizzo JD, Lichtin AE, Woolf SH, et al. Use of epoietin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clin Oncol 2002;2:40–63.
Kelleher P, Chapel H. Infections: principle of prevention and therapy. In: Metha J, Singhal S, eds. Myeloma. London: Martin Dunitz Ldt; 2002:223–39.
Hargreaves RM, Lea JR, Griffiths H, et al. Immunological factors and risk of infection in plateau phase myeloma. J Clin Pathol 1995;48:260–6.
Snowden L, Gibson J, Joshua DE. Frequency of infection in plateau-phase multiple myeloma (letter). Lancet 1994;344:262.
Savage DG, Lindenbaum J, Garret TJ. Biphasic pattern of bacterial infection in multiple myeloma. Ann Intern Med 1982;96:47–50.
Meyers BR, Hirschman SZ, Axelrod JA. Current pattern of infection in multiple myeloma. Am J Med 1972;52:87–92.
Shaikh BS, Lombard RM, Appelbaum PC, Bentz MS. Changing pattern of infection in patients with multiple myeloma. Oncology 1982;39:78–82.
Perri RT, Hebbel RP, Oken MM. Influence of treatment and response status on infection in multiple myeloma. Am J Med 1981;71:935–40.
Oken MM, Pomeroy C, Weisdorf D. Prophylactic antibiotics for the prevention of early infection in multiple myeloma. Am J Med 1996;100:624–8.
Salmon SE, Samal BA, Hayes DM, et al. Role of gammaglobulin for immunoprophylaxis in multiple myeloma. N Engl J Med 1967;277:1336–40.
Gawler J. Neurological manifestations of myeloma and their management. In: Malpas JS, Bergsagel DE, Kyle RA, Anderson KC, eds. Myeloma: Biology and Management, 3rd edn. Philadelphia: Saunders, Elsevier Inc; 2004:269–93.
Posner JB. Back pain and epidural spinal cord compression. Med Clin North Am 1987;71:185–205.
Nobile-Orazio E, Meucci N, Baldini L, Din Troia A, Scarlato G. Long term prognosis of neuropathy associated with antiMAG IgM M-proteins and its relationship to immune therapies. Brain 2000;123:710–17.
Kilidreas C, Anagnostopoulos A, Karandreas N, et al. Rituximab therapy in monoclonal IgM-related neuropathies. Leuk Lymphoma 2006;47:859–64.
Levine TD, Pestronk A. IgM antibody related polyneuropathies: B-cell depletion chemotherapy using rituximab. Neurology 1999;52:1701–4.
Woodruff RK, Ireton HJC. Multiple nerve palsies as the presenting feature of meningeal myelomatosis. Cancer 1982;49:1710–12.
Spaar FW. Paraproteinemias and multiple myeloma. In: Bryn V, ed. Handbook of Clinical Neurology. Amsterdam: Elsevier North Holland Biomedical Press; 1980:131–79.
Fassas A, Ward S, Muwalla F, et al. Myeloma of the central nervous system: strong association with unfavourable chromosomal abnormalities and other high-risk disease features. Leuk Lymphoma 2004;45:291–300.
Bladé J, Kyle RA, Greipp PR. Presenting features and prognosis in 72 patients with multiple myeloma who were younger than 40 years. Br J Haematol 1996;93:345–51.
RosiñOl L, Cibeira MT, Bladé J, et al. Escape Of Extramedullary Disease to theThalidomide Effect in multiple Myeloma. Haematologica 2004;89:832–6.
Bladé J, Kyle RA, Greipp PR. Multiple myeloma in patients younger than 30 years. Report of 10 cases and review of the literature. Arch Intern Med 1996;156:1463–8.
Dimopoulos MA, Pouli A, Anagnostopoulos A, et al. Macrofocal multiple myeloma in younger patients: a distinct entity with favourable prognosis. Leuk Lymphoma 2006;47: 1553–6.
RosiñOl L, Cibeira MT, Uriburu C, et al. Bortezomib: an effective agent in extramedullary disease in multiple myeloma. Eur J Haematol 2006;76:405–8.

Reference Title: References

Reference Type: reference-list

Gratwohl A, Baldomero H, Frauendorfer K, et al. The EBMT activity survey 2006 on hematopoietic stem cell transplantation: focus on the use of cord blood products. Bone Marrow Transplant 2007;online.
Harousseau JL, Shaughessy J, Richardson P. Multiple myeloma. Hematology Am Soc Hematol Educ Program 2004;237–56.
Mc Elwain TJ, Powles RL. High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983;16:822–4.
Selby PJ, Mc Elwain TJ, Nandi AC, et al. Multiple myeloma treated with high-dose intravenous melphalan Br J Haematol 1987;66:55–62.
Barlogie B, Hall R, Zander A, Dicke K, Alexanian R. High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood 1986;67:1298–301.
Barlogie B, Alexanian R, Dicke KA, et al. High dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987;70:869–72.
Myeloma Trialists’ Collaborative group. Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6633 patients from 27 randomized trials. J Clin Oncol 1998;16:3832–42.
Harousseau JL, Attal M. The role of autologous hematopoietic stem cell transplantationin multiple myeloma. Semin hematol 1997;34 (suppl 1):61–6.
Barlogie B, Jagannath S, Vesole DH, et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 1997;89:789–93.
Palumbo A, Triolo S, Argentino C, et al. Dose-intensive melphalan with stem cell support is superior to standard treatment in elderly myeloma patients. Blood 1999;94:1248–53.
Lenhoff S, Hjorth M, Holmberg E, et al. Impact of high-dose therapy with autologous stem cell support in patients younger than 60 years with newly diagnosed multiple myeloma: a population-based study. Blood 2000;95:7–11.
Blade J, San Miguel JF, Fontanillas M, et al. Survival of multiple myeloma patients who are potential candidates for early high-dose therapy intensification/autotransplantation and who were conventionally treated. Blood 1996;14:2167–73.
Attal M, Harousseau JL, Stoppa AM, et al. A prospective randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996;335:91–7.
Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:1875–83.
Fermand JP, Ravaud P, Chevret S, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: upfront or rescue treatment? Results of a multicenter sequential randomized trial. Blood 1998;92:3131–6.
Palumbo A, Bringhen S, Petrucci MT, et al. Intermediate-dose melphalan improves survival of myeloma patients aged 50–70: results of a randomized controlled trial. Blood 2004;104:3052–7.
Blade J, Rosinol L, Sureda A, et al. High-dose therapy intensification compared with continued standard chemotherapy in multiple myeloma patients responding to the initial chemotherapy: long-term results from a prospective randomized trial from the Spanish Cooperative Group PETHEMA. Blood 2005;106:3755–9.
Fermand JP, Katsahian S, Divine M, et al. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:9227–33.
Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of Phase III US Intergroup trial S9321. J Clin Oncol 2006;24:929–36.
Alexanian R, Dimopoulos MA, Hester J, Delasalle K, Champlin R. Early myeloablative therapy for multiple myeloma. Blood 1994;84:4278–82.
Rajkumar SV, Fonseca R, Lacy MQ, et al. Autologous stem cell transplantation for relapsed and primary refractory myeloma. Bone Marrow Transplant 1999;23:1267–72.
Koreth J, Cutler CS, Djulbegovic B, et al. High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials. Biol Blood Marrow Transplant 2007;13:183–96.
Gertz M, Lacy MQ, Inwards DJ, et al. Delayed stem cell transplantation for the management of relapsed or refractory multiple myeloma. Bone Marrow Transplant 2000;26:45–50.
Attal M, Harousseau JL, Facon T, et al. Intergroupe Francophone du Myelome: single versus double autologous stem cell transplantation for multiple myeloma. N Engl J Med 2003;349:2495–502.
Harousseau JL, Attal M, Moreau P, et al. The prognostic impact of complete remission plus very good partial remission in a double-transplantation program for newly diagnosed multiple myeloma. Blood 2006;108:877a (abstract).
Vesole DH, Tricot G, Jagannath S, et al. Autotransplants in multiple myeloma: what have we learned? Blood 1996;88: 838–47.
Fassas A, Shaughnessy J, Barlogie B. Cure of myeloma: hype or reality? Bone Marrow Transplant 2005;35:215–24.
Lahuerta JJ, Martinez-Lopez J, de la Serna J, et al. Remission status defined by immunofixation vs electrophoresis after autologous transplantation has a major impact on the outcome of multiple myeloma patients. Br J Haematol 2000;109:438–46.
Wang M, Delasalle K, Thomas S, Giralt S, Alexanian R. Complete remission represents the major surrogate marker of long survival in multiple myeloma. Blood 2006;108:123a (abstract).
Lenhoff S, Hjorth M, Turesson I, et al. Intensive therapy for multiple myeloma in patients younger than 60 years. Long-term results focusing on the effect of the degree of response on survival and relapse pattern after transplantation. Haematologica 2006;01:1228–33.
Sonneveld P, Van Der Holt B, Segeren CM, et al. Intermediate-dose melphalan compared with myeloablative treatment in multiple myeloma: long-term results of the Dutch Cooperative group HOvon 24 trial. Haematologica 2007;92:928–35.
Pineda-Roman M, Bolejack V, Arzoumian V, et al. Complete response in myeloma extends survival, but not with history of prior monoclonal gammopathy of undetermined significance or smouldering disease. Br J Haematol 2007;136:393–9.
van Rhee F, Bolejack V, Hollmig K, et al. High serum-free light chain levels and their rapid reduction in response define an aggressive multiple myeloma subtype with poor prognosis. Blood 2007;110:827–32.
Rajkumar SV, Fonseca R, Dispenzieri A, et al. Effect of complete response on outcome following autologous stem cell transplantation for myeloma. Bone Marrow Transplant 2000;26:979–83.
Durie BG, Jacobson J, Barlogie B, Crowley J. Magnitude of response with myeloma frontline therapy does not predict outcome: importance of time to progression in SWOG chemotherapy trials. J Clin Oncol 2004;22(10):1857–63.
van de Velde HJK, Liu X, Chen G, Cakana A, Draedt W, Bayssas M. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 2007;92:1399–406.
Kyle RA, Leong T, Li S, et al. Complete response in multiple myeloma. Clinical trial E9486, an Eastern Cooperative Oncology Group study not involving stem cell transplantation. Cancer 2006;106:1958–66.
Richardson PG, Sonneveld P, Schuster M, et al. Extended follow-up of a Phase III trial in relapsed multiple myeloma: final time-to-event results of the Apex trial. Blood 2007;110:3557–60.
Harousseau JL, Weber D, Dimopoulos M, et al. Relapsed/Refractory multiple myeloma patients treated with lenalidomide/dexamethasone who achieve a complete or near complete response have longer overall survival than patients achieving a partial response. Blood 2007;110:1052a (abstract).
Harousseau JL. Role of stem cell transplantation. Hematol Oncol Clin North Am 2007;21:1157–74.
Blade J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients treated with high-dose therapy and haematopoietic stem cell transplantation. Br J Haematol 1998;102:1115–23.
Durie BG, Harousseau JL, San Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia 2006;20:1467–73.
Harousseau JL. Optimizing peripheral blood progenitor cell autologous transplantation in multiple myeloma. Haematologica 1999;84:548–53.
Tricot G, Jagannath S, Vesole D, et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favourable variables for rapid engraftment in 225 patients. Blood 1996;85:588–96.
Gertz MA, Witzig TE, Pineda AA, et al. Monoclonal plasma cells in the blood stem-cell harvest from patients with multiple myeloma are associated with shortened relapse-free survival after transplantation. Bone marrow Transplant 1999;19:337–42.
Cunningham D, PAZ-Ares L, Milan S, et al. High-dose melphalan and autologous bone marrow transplantation as consolidation in previously untreated myeloma. J Clin Oncol 1994;12:759–63.
Lopez-Perez R, Garcia-Sanz R, Gonzalez D, et al. The detection of contaminating clonal cells in apheresis products is related to response and outcome in multiple myeloma undergoing autologous peripheral blood stem cell transplantation. Leukemia 2000;14:1493–9.
Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140mg/m2 melphalan as conditioning regimen for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 trial. Blood 2002;99:731–5.
Philips GL, Meisenberg BR, Reecede, et al. Activity of single-agent melphalan 220 to 300 mg/m2 with amifostine cytoprotection and autologous hematopoietic stem cell support in non-Hodgkin and Hodgkin lymphoma. Bone marrow Transplant 2004;33:781–7.
Moreau P, Milpied N, Mahe B, et al. Melphalan 220 mg/m2 followed by peripheral stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant 1999;23:1003–6.
Moreau P, Hulin C, Garban F, et al. Tandem autologous stem cell transplantation in high risk-de novo multiple myeloma: final results of the prospective and randomized IFM 99–04 protocol. Blood 2006;107:397–403.
Giralt S, Bensinger W, Goodman M, et al. 166Ho-DOTMP plus melphalan followed by peripheral blod stem cell transplantation in patients with multiple myeloma. Blood 2003;102:2684–91.
Carreras E, Rosinol L, Terol MF, et al. Veno-occlusive disease of the liver after high-dose cytoreductive therapy with busulfan and melphalan for autologous blood stem cell transplantation in multiple myeloma patients. Biol Blood Marrow Transplant 2007;13:1448–54.
Harousseau JL, Milpied N, Laporte JP, et al. Double intensive therapy in high-risk multpile myeloma. Blood 1992;79:2827–33.
Barlogie B, Jagannath S, Desikan KR, et al. Total therapy with tandem autotransplants for newly diagnosed multiple myeloma. Blood 1999;93:55–65.
Cavo M, Tosi P, Zamagni E, et al. Prospective randomized study of single compared with double autologous stem cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol 2007;25:2434–41.
Siegel DS, Desikan KR, Mehta J, et al. Age is not a prognostic variable with autotransplants for multiple myeloma. Blood 1999;93:51–4.
Jantunen E, Juittinen T, Penttila K, et al. High-dose melphalan (200 mg/m2) supported by autologous stem cell transplantation is safe and effective in elderly (>65 years) myeloma patients: comparison with younger patients treated with the same protocol. Bone marrow Transplant 2006;37:917–22.
Badros A, Barlogie B, Siegel D, et al. Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. Br J Haematol 2001;114:1248–53.
Facont, Mary JY, Hulin C, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomized trial. Lancet 2007;370:1209–18.
Badros A, Barlogie B, Siegel D, et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br J Haematol 2001;114:822–9.
Tosi P, Zamagni E, Ronconi S, et al. Safety of autologous hematopoietic stem cell transplantation in patients with multiple myeloma and renal failure. Leukemia 2000;14:1310–3.
San Miguel J, Lahuerta JJ, Garcia-Sanz R, et al. Are myeloma patients with renal failure candidate for autologous transplantation. The Hematology Journal 2000;1:28–36.
Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remission and superior survival in the absence of chromosome 13 abnormalities. Blood 2000;95:4008–10.
Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by Fish analysis and serum β2 microglobulin produce powerful myeloma staging system for patients receiving high-dose therapy. Blood 2001;97:1566–71.
Tricot G, Spencer T, Sawyer J, et al. Predicting long-term (>5years) event-free survival in multiple myeloma patients following planned tandem autotransplants. Br J Haematol 2002;116;211–7.
Shaughnessy J, Jacobson J, Sawyer J, et al. Continuous absence of metaphase-defined cytogenetic abnormalities especially of chromosome 13 and hypodiploidy ensures long-term survival in multiple myeloma treated with Total Therapy 1: interpretation in the context of global gene expression. Blood 2003;101:3849–56.
Fassas AT, Spencer T, Sawyer J, et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol 2002;118:1041–7.
Chang H, Sloan S, Li D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004;125:64–8.
Gertz M, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32) and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;125:2837–40.
Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol 2005;105:7069–73.
Chang H, Qi C, Yi QL, et al. P53 gene deletion detected by fluorescence in situ hybridisation is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105:358–60.
Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma:the experience of the Intergroupe Francophone du Myeloma. Blood 2007;109:3489–95.
Kumar S, Lacy MQ, Dispenzieri A, et al. Single agent dexamethasone for prestem cell transplant induction therapy for multiple myeloma. Bone Marrow Transplant 2004;34:485–90.
Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of Thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24:431–6.
Cavo M, Zamagni E, Tosi P, et al. Superiority of thalidomide and dexamethsone over vincristine-doxorubicine-dexamethasone (VAD) as primary therapy in preparation for autologous transplantation for multiple myeloma. Blood 2005;106:35–9.
Macro M, Divine M, Uzunban Y, et al. Dexamethasone + thalidomide compared to VAD as pretransplant treatment in newly diagnosed multiple myeloma: a randomized trial. Blood 2006;108:22a (abstract).
Lokhorst HM, Schidt-Wolf I, Sonneveld P, et al. Thalidomide in induction treatment increases the very good partial remission rate before and after high-dose therapy in previously untreated multiple myeloma. Haematologica 2008;93:124–7.
Breitkreutz I, Lokhorst HM, Raab MS, et al. Thalidomide in newly diagnosed multiple myeloma: influence of thalidomide treatment on peripheral blood stem cell collection yield Leukemia 2007;21:1294–9.
Morgan GJ, Davies FE, Owen RG, et al. Thalidomide combinations improve response rates: results from the MRC IX study. Blood 2007;110:1051a (abstract).
Jagannath S, Durie B, Wolf J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005;129:776–83.
Harousseau JL, Attal M, Leleu X, et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma. Haematologica 2006;91:1498–505.
Rosinol L, Oriol A, Mateos MV, et al. Phase II Pethema trial of alternating bortezomib and dexamethasone as induction regimen before autologous stem-cell transplantation in younger patients with multiple myeloma: efficacy and clinical implications of tumor response kinetics. J Clin Oncol 2007;25:4452–8.
Harousseau JL, Mathiot C, Attal M, et al. Velcade/dexamethasone versus VAD as induction treatment prior to autologous stem cell transplantation in newly diagnosed multiple myeloma: updated results of the IFM 2005/01 trial. Blood 2007;110:139a (abstract).
Attal M, Harousseau JL, Leyvraz S, et al. Maintenance therapy with thalidomide improves survival in multiple myeloma patients. Blood 2006;15:3289–94.
Oakervee R, Pollat R, Curry N, et al. PAD combination (PS341, doxorubicin and dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005;129:776–83.
Popat R, Oakervee HE, Curry N, et al. Reduced dose PAD for previously untreated patients with multiple myeloma. Blood 2005;106:717a (abstract).
Wang M, Giralt S, Delasale K, Handy B, Alexanian R. Bortezomib in combination with thalidomide-dexamethasone for previously untreated multiple myeloma. Hematology 2007;12:235–9.
Cavo M, Patriarca F, Tacchetti P, et al. Bortezomib-thalidomide-dexamethasone vs thalidomide-dexamethasone in preparation for autologous stem-cell transplantation in newly diagnosed multiple myeloma. Blood 2007;110:30a.
Lacy MQ, Gertz MA, Dispenzieri A, et al. Long-term results of response to therapy, time to progression, and survival with lenalidomide plus dexamethasone in newly diagnosed myeloma. Mayo Clin Proc 2007;82:1179–84.
Rajkumar SV, Jacobus S, Callander N, et al. A randomized trial of lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone in newly diagnosed multiple myeloma (E403): a trial coordinated by the Eastern Cooperative Oncology Group. Blood 2007;110:31a (abstract).
Kumar S, Dispenzieri A, Lacy MQ, et al. Impact of lenalidomide on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma. Leukemia 2007;21:2035–42.
Mazumder A, Kaufman J, Niesvizky R, Lonial S, Vesole D, Jagannath S. Effect of lenalidomide on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 2008;22:1280–1.
Richardson P, Jagannath S, Raje N, et al. Lenalidomide, bortezomib, and dexamethasone as frontline therapy for patients with multiple myeloma: preliminary results of a Phase ½ study. Blood 2007;110:63a (abstract).
Hollmig K, Stover J, Talamo G, et al. Addition of bortezomib to high dose melphalan as en effective conditioning regimen with autologous stem cell support in multiple myeloma. Blood 2004;103:266a (abstract).
Attal M, Harousseau JL. Role of autologous stem-cell transplantation in multiple myeloma. Best Practice & Research. Clin Haematol 2007;20:747–59.
Cunningham D, Powles R, Malpas JS, et al. A randomized trial of maintenance therapy with intron A following high dose melphalan and ABMT in myeloma. Br J Haematol 1998;102:195–202.
Stewart AK, Chen CI, Howson-Jan K, et al. Results of a multicenter randomized trial of thalidomide and prednisone maintenance therapy for multiple myeloma after autologous stem cell transplant. Clin Cancer Res 2004;10:8170–6.
Brinker BT, Walker EK, Leong T, et al. Maintenance therapy with thalidomide improves overall survival after autologous hematopoietic progenitor cell transplantation for multiple myeloma. Cancer 2006;106:2171–80.
Barlogie B, Tricot G, Anaissie E, et al. Thalidomide and hematopoietic stem cell transplantation for multiple myeloma. N Engl J Med 2006;354:1021–30.
Abdelkefi A, Ladeb S, Torjman L, et al. Single autologous stem cell transplantation followed by maintenance therapy with thalidomide is superior to double autologous transplantation in multiple myeloma: results of a multicenter randomized clinical trial. Blood 2008;111:1805–1810.
Spencer A, Prince HM, Roberts A, et al. Thalidomide improves survival when used following ASCT. Haematologica 2007; 92:41–2 (abstract).
Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341:1565–71.
Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2.3 trials. Leukemia 2007;21:151–7.
Sagaster V, Ludwig H, Kaufmann H, et al. Bortezomib is relapsed multiple myeloma: response rates and duration are independent of a chromosome 13q- deletion. Leukemia 2007;21:164–8.
Bahlis NJ, Mansoor B, Lategan JC, et al. Lenalidomide overcomes poor prognosis conferred by deletion of chromosome 13 and t(4;14) : MM016 trial. Blood 2006;108:1016a (abstract).
Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomized controlled trial. Lancet 2006;367:825–31.
Mateos MV, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase ½ study. Blood 2006;108:2165–72.
San Miguel JF, Schlag R, Khuageva N, et al. MMY-3002: a Phase III study comparing bortezomib-melphalan-prednisone with melphalan-prednisone in newly diagnosed multiple myeloma. Blood 2207;110:31a (abstract).
Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA-Italian Multiple Myeloma Network. J Clin Oncol 2007;25:4459–65.
Barlogie B, Anaissie E, Van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007;138:176–85.
Ladetto M, Pagliano G, Avonto I, et al. Consolidation with bortezomib, thalidomide and dexamethasone induces molecular remissions in autografted multiple myeloma patients. Blood 2007;110:163a (abstract).
Barlogie B, Tricot GJ, van Rhee F, et al. Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. Br J Haematol 2006;135:158–64.
Bergsagel PL. Individualizing therapy using molecular markers in multiple myeloma. Clin Lymphoma Myeloma 2007;(suppl 4): S170–4.

Reference Title: References

Reference Type: reference-list

Kumar S, Anderson KC. Drug insight: thalidomide as a treatment for multiple myeloma (Review). Nat Clin Prac Oncol 2005;2:262–70.
Anderson KC, Shaughnessy JD, Jr., Barlogie B, Harousseau J-L, Roodman GD. Multiple myeloma. In: Broudy VC, Abkowitz JL, Vose JM, eds. Hematology: American Society of Hematology Education Program Book. Washington, DC: American Society of Hemtology; 2002;214–40.
Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: Proof of principle. Blood 1996;87:1196–8.
Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ. Graft-versus-myeloma effect in two cases. Lancet 1996;347:800–1.
Aschan J, Lonnqvist B, Ringden O, Kumlien G, Gahrton G. Graft-versus-myeloma effect (Letter). Lancet 1996;348:346.
Le Blanc R, Montminy-MéTivier S, Bélanger R, et al. Allogeneic transplantation for multiple myeloma: further evidence for a GVHD-associated graft-versus-myeloma effect. Bone Marrow Transplant 2001;28:841–8.
Libura J, Hoffmann T, Passweg J, et al. Graft-versus-myeloma after withdrawal of immunosuppression following allogeneic peripheral stem cell transplantation. Bone Marrow Transplant 1999;24:925–7.
Bertz H, Burger Ja, Kunzmann R, Mertelsmann R, Finke J. Adoptive immunotherapy for relapsed multiple myeloma after allogeniec bone marrow transplantation (BMT): evidence for a graft-versus-myeloma effect. Leukemia 1997;11:281–3.
Salama M, Nevill T, Marcellus D, et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000;26:1179–84.
Collins RH,Jr., Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15:433–44.
Alyea E, Ritz J. Induction of graft versus myeloma by donor lymphocyte infusions following allogeneic bone marrow transplant. In: Anderson KC, ed. VI International Workshop on Multiple Myeloma 1997; Harvard Medical School and the Dana Farber Cancer Center, Boxton, MA.
Mehta J, Singhal S. Graft-versus-myeloma (Review). Bone Marrow Transplant 1998;22:835–43.
Ayuk F, Perez-Simon JA, Shimoni A, et al. Anti-thymocyte globulin induces higher response rates and less graft-versus-host disease in multiple myeloma patients undergoing allogeneic stem cell transplantation [abstract]. Blood 2007;110 (Part 1):875a, 2980.
Kroger N, Perez-Simon JA, Myint H, et al. Relapse to prior autograft and chronic graft-versus-host disease are the strongest prognostic factors for outcome of melphalan/fludarabine-based dose-reduced allogeneic stem cell transplantation in patients with multiple myeloma. Biol Blood Marrow Transplant 2004;10:698–708.
Einsele H, SchäFer HJ, Bader P, et al. Allografts after reduced intensity conditioning can induce long-term remission in patients with chemosensitive relapsed multiple myeloma (MM). Blood 2002;100 (Part 1):635a, 2499.
Cwynarski K, Dazzi F, Cross NCP, et al. Response to donor lymphocyte infusions (DLI) of patients with CML in relapse after allografting: a long-term follow-up study using RT-PCR [abstract]. Blood 1999;94 (suppl 1):669a, 2968.
Dazzi F, Szydlo RM, Cross NC, et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2000;96:2712–6.
Helg C, Starobinski M, Jeannet M, Chapuis B. Donor lymphocyte infusion for the treatment of relapse after allogeneic hematopoetic stem cell transplantation (Review). Leuk Lymphoma 1998;29:301–13.
Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24:929–36.
Gahrton G, Svensson H, Cavo M, et al. Progress in allogeneic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–98 at European Group for Blood and Marrow Transplantation centres. Br J Haematol 2001;113:209–16.
Majolino I, Corradini P, Scimè R, et al. Allogeneic transplantation of unmanipulated peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant 1998;22:449–55.
Kuruvilla J, Shepherd JD, Sutherland HJ, et al. Long-term outcome of myeloablative allogeneic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2007;13:925–31.
Schmidt-Hieber M, Blau IW, Trenschel R, et al. Reduced-toxicity conditioning with fludarabine and treosulfan prior to allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2007;39:389–96.
Storb R, Yu C, Sandmaier B, et al. Mixed hematopoietic chimerism after hematopoietic stem cell allografts. Transplant Proc 1999;31:677–8.
Mcsweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001;97:3390–400.
Maloney DG, Molina AJ, Sahebi F, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003;102:3447–54.
Rotta M, Storer B, Sahebi F, et al. Long-term outcome of autologous followed by nonmyeloablative allografting from HLA-identical sibling for multiple myeloma (MM) [abstract]. Blood 2007;110 (Part 1): 889a, 3029.
Lee C-K, Badros A, Barlogie B, et al. Prognostic factors in allogeneic transplantation for patients with high-risk multiple myeloma after reduced intensity conditioning. Exp Hematol 2003;31:73–80.
Hoepfner S, Probst SM, Breitkreutz I, et al. Non-myeloablative allogeneic transplantation as part of salvage therapy for relapse of multiple myeloma after autologous transplantation. Blood 2002;100 (Part 1):859a, 3387.
Giralt S, Aleman A, Anagnostopoulos A, et al. Fludarabine/melphalan conditioning for allogeneic transplantation in patients with multiple myeloma. Bone Marrow Transplant 2002;30:367–73.
Einsele H, Schafer HJ, Hebart H, et al. Follow-up of patients with progressive multiple myeloma undergoing allografts after reduced-intensity conditioning. Br J Haematol 2003;121:411–8.
Qazilbash MH, Saliba R, de Lima M, et al. Second autologous or allogeneic transplantation after the failure of first autograft in patients with multiple myeloma. Cancer 2006;106:1084–9.
Elice F, Raimondi R, Tosetto A, et al. Prolonged overall survival with second on-demand autologous transplant in multiple myeloma. Am J Hematol 2006;81:426–31.
Kroger N, Schwerdtfeger R, Kiehl M, et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002;100:755–60.
Kroger N, Sayer HG, Schwerdtfeger R, et al. Unrelated stem cell transplantation in multiple myeloma after a reduced-intensity conditioning with pretransplantation antithymocyte globulin is highly effective with low transplantation-related mortality. Blood 2002;100:3919–24.
Galimberti S, Benedetti E, Morabito F, et al. Prognostic role of minimal residual disease in multiple myeloma patients after non-myeloablative allogeneic transplantation. Leuk Res 2005;29:961–6.
Kahl C, Storer BE, Sandmaier BM, et al. Relapse risk among patients with malignant diseases given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 2007;110:2744–8.
Qazilbash MH, Saliba RM, Parikh GC, et al. A non-myeloablative regimen of fludarabine and melphalan is safe and well tolerated for allogeneic transplantation in multiple myeloma [abstract]. Blood 2007;110 (Part 1):890a, 3032.
Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood 2000;95:4008–10.
Peggs KS, Mackinnon S, Williams CD, et al. Reduced-intensity transplantation with in vivo T-cell depletion and adjuvant dose-escalating donor lymphocyte infusions for chemotherapy-sensitive myeloma: Limited efficacy of graft-versus-tumor activity. Biol Blood Marrow Transplant 2003;9:257–65.
Mohty M, Boiron JM, Damaj G, et al. Graft-versus-myeloma effect following antithymocyte globulin-based reduced intensity conditioning allogeneic stem cell transplantation. Bone Marrow Transplant 2004;34:77–84.
Crawley C, Lalancette M, Szydlo R, et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukemia Working Party of the EBMT. Blood 2005;105:4532–9.
Crawley C, Iacobelli S, Björkstrand B, Apperley JF, Niederwieser D, Gahrton G. Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning. Blood 2007;109:3588–94.
Garban F, Attal M, Michallet M, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99–03 trial) with tandem autologous stem cell transplantation (IFM99–04 trial) in high-risk de novo multiple myeloma. Blood 2006;107:3474–80.
Kroger N, Schilling G, Einsele H, et al. Deletion of chromosome band 13q14 as detected by fluorescence in situ hybridization is a prognostic factor in patients with multiple myeloma who are receiving allogeneic dose-reduced stem cell transplantation. Blood 2004;103:4056–61.
Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007;356:1110–20.
Bruno B, Sorasio R, Patriarca F, et al. An update on a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma [abstract]. Blood 2007;110 (Part 1): 149a, 482.
Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001;344:175–81.
Champlin R, Giralt S, Gajewski J, Hester J, Körbling M, Deisseroth A. CD8 depleted donor lymphocytes for CML relapsing post BMT. ISEH 1995;23:939.
Giralt S, Bensinger W, Goodman M, et al. 166 HO-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: Results of two phase 1/2 trials. Blood 2003;102:2684–91.
Dispenzieri A, Wiseman GA, Lacy MQ, et al. A phase I study of 153Sm-EDTMP with fixed high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Leukemia 2005;19:118–25.
Kennedy GA, Durrant S, Butler J, et al. Outcome of myeloablative allogeneic stem cell transplantation in multiple myeloma with a 153Sm-EDTMP-based preparative regimen. Leukemia 2005;19:879–80.
Macfarlane DJ, Durrant S, Bartlett ML, Allison R, Morton AJ. 153Sm EDTMP for bone marrow ablation prior to stem cell transplantation for haematological malignancies. Nucl Med Commun 2002;23:1099–106.
Giralt S, Bensinger W, Goodman M, et al. Long-term follow-up of 83 patients with multiple myeloma (MM) treated on a phase I-II study of skeletal targeted radiotherapy (STR) using 166Ho-DOTMP plus melphalan with or without total body irradiation (TBI) and autologous hematopoietic stem cell transplant (AHSCT) [abstract]. Blood 2002;100 (Part 1):179a, 670.
Deeg HJ, Storer B, Slattery JT, et al. Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood 2002;100:1201–7.
Kroger N, Shaw B, Iacobelli S, et al. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol 2005;129:631–43.
Bensinger W, Jagannath S, Becker PS, et al. A phase 1 dose escalation study of a fully human antagonist anti-CD40 antibody, HCD122 (formerly CHIR-12.12) in patients with relapsed and refractory multiple myeloma [abstract]. Blood 2006;108 (Part 1):1021a, 3575.
Hsi ED, Steinle R, Balasa B, et al. CS1: a potential new therapeutic target for the treatment of multiple myeloma [abstract]. Blood 2006;108 (Part 1):986a, 3457.
Hussein MA, Berenson JR, Niesvizky R, et al. A phase I humanized anti-CD40 monoclonal antibody (SGN-40) in patients with multiple myeloma [abstract]. Blood 2005;106 (Part 1):723a, 2572.
Gerull S, Goerner M, Benner A, et al. Long-term outcome of nonmyeloablative allogeneic transplantation in patients with high-risk multiple myeloma. Bone Marrow Transplant 2005;36:963–9.
Ma SY, Lie AK, Au WY, Chim CS, Kwong YL, Liang R. Non-myeloablative allogeneic peripheral stem cell transplantation for multiple myeloma. Hong Kong Med J 2004;10:77–83.
Couriel D, Carpenter PA, Cutler C, et al. Ancillary therapy and supportive care of chronic graft-versus-host disease: National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: V. Ancillary Therapy and Supportive Care Working Group report. Biol Blood Marrow Transplant 2006;12:375–96.
Sorasio R, Giaccone L, Patriarca F, et al. Unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with high risk multiple myeloma [abstract]. Blood 2006;108 (Part 1):901a, 3158.
Majolino I, Davoli M, Carnevalli E, et al. Reduced intensity conditioning with thiotepa, fludarabine, and melphalan is effective in advanced multiple myeloma. Leuk Lymphoma 2007;48:759–66.
Blade J, Rosinol L, Lahuerta JJ, et al. Tandem autologous transplant versus reduced intensity conditioned allogeneic transplant (allo-RIC) as second intensification in chemosensitive patients with multiple myeloma (MM) not achieving complete remission (CR) or near-CR with a first autologous transplant. Results from a Spanish PETHEMA/GEM study [abstract]. Blood 2007;110 (Part 1):224a, 729.

Reference Title: References

Reference Type: reference-list

Bely M, Makovitzky J. Sensitivity and specificity of Congo red staining according to Romhanyi. Comparison with Puchtler's or Bennhold's methods. Acta Histochem 2006;108:175–80.
Puchtler H, Sweat F. Congo red as a stain for fluorescence microscopy of amyloid. J Histochem Cytochem 1965;13:693–4.
Ishii W, Matsuda M, Nakamura N, et al. Phenol Congo red staining enhances the diagnostic value of abdominal fat aspiration biopsy in reactive AA amyloidosis secondary to rheumatoid arthritis. Intern Med 2003;42:400–5.
Pras M, Schubert M, Zucker-Franklin D, Rimon A, Franklin EC. The characterization of soluble amyloid prepared in water. J Clin Invest 1968;47:924–33.
Benson MD. Ostertag revisited: the inherited systemic amyloidoses without neuropathy. Amyloid 2005;12:75–87.
Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol 2000;130:88–98.
Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid 2005;12:96–102.
Rocken C, Shakespeare A. Pathology, diagnosis and pathogenesis of AA amyloidosis. Virchows Arch 2002;440:111–22.
Van Der Hilst JC, Simon A, Drenth JP. Hereditary periodic fever and reactive amyloidosis. Clin Exp Med 2005;5:87–98.
Pepys MB. Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos Trans R Soc Lond B Biol Sci 2001;356:203–10; discussion 210–11.
Pokkuluri PR, Solomon A, Weiss DT, Stevens FJ, Schiffer M. Tertiary structure of human lambda 6 light chains. Amyloid 1999;6:165–71.
Solomon A, Weiss DT, Pepys MB. Induction in mice of human light-chain-associated amyloidosis. Am J Pathol 1992;140:629–37.
Rajkumar SV, Dispenzieri A, Kyle RA. Monoclonal gammopathy of undetermined significance, Waldenstrom macroglobulinemia, AL amyloidosis, and related plasma cell disorders: diagnosis and treatment. Mayo Clin Proc 2006;81:693–703.
Rajkumar SV, Gertz MA, Kyle RA. Primary systemic amyloidosis with delayed progression to multiple myeloma. Cancer 1998;82:1501–5.
Kyle RA, Linos A, Beard CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992;79:1817–22.
Palladini G, Perfetti V, Merlini G. Therapy and management of systemic AL (primary) amyloidosis. Swiss Med Wkly 2006;136:715–20.
Park MA, Mueller PS, Kyle RA, Larson DR, Plevak MF, Gertz MA. Primary (AL) hepatic amyloidosis: clinical features and natural history in 98 patients. Medicine (Baltimore) 2003; 82:291–8.
Shah KB, Inoue Y, Mehra MR. Amyloidosis and the heart: a comprehensive review. Arch Intern Med 2006;166:1805–13.
Rodriguez RJ, Iglesias CG, Rubin J. Primary amyloidosis and syncope. Int J Cardiol 1997;58:185–7.
Pan WH, Li NP. Clinical pathological feature of early tongue amyloidosis. Chin Med Sci J 2006;21:104–6.
Gertz MA, Kyle RA, Griffing WL, Hunder GG. Jaw claudication in primary systemic amyloidosis. Medicine (Baltimore) 1986;65:173–9.
Ing EB, Woolf IZ, Younge BR, Bjornsson J, Leavitt JA. Systemic amyloidosis with temporal artery involvement mimicking temporal arteritis. Ophthalmic Surg Lasers 1997;28:328–31.
Guerreiro De Moura CG, Pinto De Souza S. Images in clinical medicine. “Shoulder pad” sign. N Engl J Med 2004;351:e23.
Jardinet D, Westhovens R, Peeters J. Sicca syndrome as an initial symptom of amyloidosis. Clin Rheumatol 1998;17:546–8.
Hasserjian RP, Goodman HJ, Lachmann HJ, Muzikansky A, Hawkins PN. Bone marrow findings correlate with clinical outcome in systemic AL amyloidosis patients. Histopathology 2007;50:567–73.
Picken MM, Herrera GA. The burden of “sticky” amyloid: typing challenges. Arch Pathol Lab Med 2007;131:850–1.
Comenzo RL, Zhou P, Fleisher M, Clark B, Teruya-Feldstein J. Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins. Blood 2006;107:3489–91.
Neben-Wittich MA, Foote RL, Kalra S. External beam radiation therapy for tracheobronchial amyloidosis. Chest 2007;132:262–7.
Gaurav K, Panda M. An uncommon cause of bilateral pulmonary nodules in a long-term smoker. J Gen Intern Med 2007;22:1617–20.
Lesslauer W. On the structure of agglutinated sheep red blood cell membranes. Biochim Biophys Acta 1976;436:25–37.
Lachmann HJ, Goodman HJ, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med 2007;356:2361–71.
Moon WK, Kim SH, Im JG, Yeon KM, Han MC. Castleman disease with renal amyloidosis: imaging findings and clinical significance. Abdom Imaging 1995;20:376–8.
Hou X, Aguilar MI, Small DH. Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J 2007;274:1637–50.
Granel B, Valleix S, Serratrice J, et al.. Lysozyme amyloidosis: report of 4 cases and a review of the literature Medicine (Baltimore) 2006;85:66–73.
Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med 2002;346:1786–91.
Ng B, Connors LH, Davidoff R, Skinner M, Falk RH. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med 2005;165:1425–29.
Kyle RA, Spittell PC, Gertz MA, et al. The premortem recognition of systemic senile amyloidosis with cardiac involvement. Am J Med 1996;101:395–400.
Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol 1995;32:45–59.
Morris KL, Tate JR, Gill D, et al. Diagnostic and prognostic utility of the serum free light chain assay in patients with AL amyloidosis. Intern Med J 2007;37:456–63.
Abraham RS, Katzmann JA, Clark RJ, Bradwell AR, Kyle RA, Gertz MA. Quantitative analysis of serum free light chains. A new marker for the diagnostic evaluation of primary systemic amyloidosis. Am J Clin Pathol 2003;119:274–8.
Leung N, Dispenzieri A, Lacy MQ, et al. Severity of baseline proteinuria predicts renal response in immunoglobulin light chain-associated amyloidosis after autologous stem cell transplantation. Clin J Am Soc Nephrol 2007;2:440–4.
Mayo MM, Johns GS. Serum free light chains in the diagnosis and monitoring of patients with plasma cell dyscrasias. Contrib Nephrol 2007;153:44–65.
Dispenzieri A, Lacy MQ, Katzmann JA, et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2006;107:3378–83.
Akar H, Seldin DC, Magnani B, et al. Quantitative serum free light chain assay in the diagnostic evaluation of AL amyloidosis. Amyloid 2005;12:210–15.
Hazenberg BP, Van Rijswijk MH, Lub-De Hooge MN, et al. Diagnostic performance and prognostic value of extravascular retention of 123I-labeled serum amyloid P component in systemic amyloidosis. J Nucl Med 2007;48:865–72.
Lechapt-Zalcman E, Authier FJ, Creange A, Voisin MC, Gherardi RK. Labial salivary gland biopsy for diagnosis of amyloid polyneuropathy. Muscle Nerve 1999;22:105–7.
Yoshimatsu S, Ando Y, Terazaki H, et al. Endoscopic and pathological manifestations of the gastrointestinal tract in familial amyloidotic polyneuropathy type I (Met30). J Intern Med 1998;243:65–72.
Guy CD, Jones CK. Abdominal fat pad aspiration biopsy for tissue confirmation of systemic amyloidosis: specificity, positive predictive value, and diagnostic pitfalls. Diagn Cytopathol 2001;24:181–5.
Olsen KE, Sletten K, Westermark P. The use of subcutaneous fat tissue for amyloid typing by enzyme-linked immunosorbent assay. Am J Clin Pathol 1999;111:355–62.
Palladini G, Malamani G, Co F, et al. Holter monitoring in AL amyloidosis: prognostic implications. Pacing Clin Electrophysiol 2001;24:1228–33.
Lindqvist P, Olofsson BO, Backman C, Suhr O, Waldenstrom A. Pulsed tissue Doppler and strain imaging discloses early signs of infiltrative cardiac disease: a study on patients with familial amyloidotic polyneuropathy. Eur J Echocardiogr 2006;7:22–30.
Bellavia D, Abraham TP, Pellikka PA, et al. Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J Am Soc Echocardiogr 2007;20:1194–202.
Dispenzieri A, Gertz MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004;22:3751–7.
Dispenzieri A, Gertz MA, Kyle RA, et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2004;104:1881–7.
Zerbini CA, Anderson JJ, Kane KA, et al. Beta 2 microglobulin serum levels and prediction of survival in AL amyloidosis. Amyloid 2002;9:242–6.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Effect of hematologic response on outcome of patients undergoing transplantation for primary amyloidosis: importance of achieving a complete response. Haematologica 2007;92:1415–18.b.
Caccialanza R, Palladini G, Klersy C, et al. Nutritional status of outpatients with systemic immunoglobulin light-chain amyloidosis 1. Am J Clin Nutr 2006;83:350–4.
Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol 2005;79:319–28.
Sanchorawala V. Light-chain (AL) amyloidosis: diagnosis and treatment. Clin J Am Soc Nephrol 2006;1:1331–41.
Mukai S, Lipsitz LA. Orthostatic hypotension. Clin Geriatr Med 2002;18:253–68.
Gillmore JD, Goodman HJ, Lachmann HJ, et al. Sequential heart and autologous stem cell transplantation for systemic AL amyloidosis. Blood 2006;107:1227–9.
Gertz MA, Kyle RA, O'Fallon WM. Dialysis support of patients with primary systemic amyloidosis. A study of 211 patients. Arch Intern Med 1992;152:2245–50.
Leung N, Griffin MD, Dispenzieri A, et al. Living donor kidney and autologous stem cell transplantation for primary systemic amyloidosis (AL) with predominant renal involvement. Am J Transplant 2005;5:1660–70.
Gillmore JD, Madhoo S, Pepys MB, Hawkins PN. Renal transplantation for amyloid end-stage renal failure – insights from serial serum amyloid P component scintigraphy. Nucl Med Commun 2000;21:735–40.
Lacy MQ, Dispenzieri A, Hayman SR, et al. Sequential heart and autologous stem cell transplantation for AL amyloidosis (Abstract 3092). Blood (ASH Annual Meeting Abstracts) 2006;108:3092.
Kyle RA, Gertz MA, Greipp PR, et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. N Engl J Med 1997;336:1202–7.
Dhodapkar MV, Jagannath S, Vesole D, et al. Treatment of AL-amyloidosis with dexamethasone plus alpha interferon. Leuk Lymphoma 1997;27:351–6.
Gertz MA, Lacy MQ, Lust JA, Greipp PR, Witzig TE, Kyle RA. Phase II trial of high-dose dexamethasone for previously treated immunoglobulin light-chain amyloidosis. Am J Hematol 1999;61:115–19.
Gertz MA, Lacy MQ, Lust JA, Greipp PR, Witzig TE, Kyle RA. Phase II trial of high-dose dexamethasone for untreated patients with primary systemic amyloidosis. Med Oncol 1999;16:104–9.
Palladini G, Anesi E, Perfetti V, et al. A modified high-dose dexamethasone regimen for primary systemic (AL) amyloidosis. Br J Haematol 2001;113:1044–6.
Dhodapkar MV, Hussein MA, Rasmussen E, et al. Clinical efficacy of high-dose dexamethasone with maintenance dexamethasone/alpha interferon in patients with primary systemic amyloidosis: results of United States Intergroup Trial Southwest Oncology Group (SWOG) S9628. Blood 2004;104:3520–6.
Palladini G, Perfetti V, Obici L, et al. Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood 2004;103:2936–8.
Palladini G, Russo P, Nuvolone M, et al. Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis. Blood 2007;110:787–8.
Seldin DC, Choufani EB, Dember LM, et al. Tolerability and efficacy of thalidomide for the treatment of patients with light chain-associated (AL) amyloidosis. Clin Lymphoma 2003;3:241–6.
Dispenzieri A, Lacy MQ, Rajkumar SV, et al. Poor tolerance to high doses of thalidomide in patients with primary systemic amyloidosis. Amyloid 2003;10:257–61.
Palladini G, Perfetti V, Perlini S, et al. The combination of thalidomide and intermediate-dose dexamethasone is an effective but toxic treatment for patients with primary amyloidosis (AL). Blood 2005;105:2949–51.
Sanchorawala V, Wright DG, Rosenzweig M, et al. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial. Blood 2007;109:492–6.
Dispenzieri A, Lacy MQ, Zeldenrust SR, et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood 2007;109:465–70.
Wechalekar AD, Gillmore JD, Lachmann HJ, Offer M, Hawkins PN. Efficacy and safety of bortezomib in systemic AL amyloidosis – a preliminary report (Abstract). Blood (ASH Annual Meeting Abstracts) 2006;108:29.
Reece DE, Sanchorawala V, Hegenbart U, et al. Phase I/II study of bortezomib (B) in patients with systemic AL-amyloidosis (AL) (Abstract 8050). J Clin Oncol (Meeting Abstracts) 2006;25:8050.
Kastritis E, Anagnostopoulos A, Roussou M, et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica 2007;92:1351–8.
Gertz MA, Lacy MQ, Dispenzieri A, Hayman SR, Kumar S. Transplantation for amyloidosis. Curr Opin Oncol 2007;19: 136–41.
Gertz MA, Lacy MQ, Dispenzieri A, Hayman SR. Amyloidosis. Best Pract Res Clin Haematol 2005;18:709–27.
Sanchorawala V, Wright DG, Seldin DC, et al. High-dose intravenous melphalan and autologous stem cell transplantation as initial therapy or following two cycles of oral chemotherapy for the treatment of AL amyloidosis: results of a prospective randomized trial. Bone Marrow Transplant 2004;33:381–8.
Comenzo RL, Sanchorawala V, Fisher C, et al. Intermediate-dose intravenous melphalan and blood stem cells mobilized with sequential GM+G-CSF or G-CSF alone to treat AL (amyloid light chain) amyloidosis. Br J Haematol 1999;104:553–9.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Transplantation without growth factor: engraftment kinetics after stem cell transplantation for primary systemic amyloidosis (AL). Bone Marrow Transplant 2007;40:989–3.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Risk-adjusted manipulation of melphalan dose before stem cell transplantation in patients with amyloidosis is associated with a lower response rate. Bone Marrow Transplant 2004;34:1025–31.
Cohen AD, Zhou P, Chou J, et al. Risk-adapted autologous stem cell transplantation with adjuvant dexamethasone ± thalidomide for systemic light-chain amyloidosis: results of a phase II trial. Br J Haematol 2007;139:224–33.
Vesole DH, Perez WS, Akasheh M, Boudreau C, Reece DE, Bredeson CN. High-dose therapy and autologous hematopoietic stem cell transplantation for patients with primary systemic amyloidosis: a Center for International Blood and Marrow Transplant Research Study. Mayo Clin Proc 2006;81:880–8.
Gertz MA, Blood E, Vesole DH, Abonour R, Lazarus HM, Greipp PR. A multicenter phase 2 trial of stem cell transplantation for immunoglobulin light-chain amyloidosis (E4A97): an Eastern Cooperative Oncology Group Study. Bone Marrow Transplant 2004;34:149–54.
Jaccard A, Moreau P, Leblond V, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med 2007;357:1083–93.
Dispenzieri A, Kyle RA, Lacy MQ, et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 2004;103:3960–3.
Porrata LF, Gertz MA, Litzow MR, et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation for patients with primary systemic amyloidosis. Clin Cancer Res 2005;11:1210–18.
Leung N, Leung TR, Cha SS, Dispenzieri A, Lacy MQ, Gertz MA. Excessive fluid accumulation during stem cell mobilization: a novel prognostic factor of first-year survival after stem cell transplantation in AL amyloidosis patients. Blood 2005;106:3353–7.
Leung N, Dispenzieri A, Fervenza FC, et al. Renal response after high-dose melphalan and stem cell transplantation is a favorable marker in patients with primary systemic amyloidosis. Am J Kidney Dis 2005;46:270–7.
Seldin DC, Anderson JJ, Sanchorawala V, et al. Improvement in quality of life of patients with AL amyloidosis treated with high-dose melphalan and autologous stem cell transplantation. Blood 2004;104:1888–93.
Schonland SO, Perz JB, Hundemer M, et al. Indications for high-dose chemotherapy with autologous stem cell support in patients with systemic amyloid light chain amyloidosis. Transplantation 2005;80:S160–3.
Sanchorawala V, Wright DG, Quillen K, et al. Tandem cycles of high-dose melphalan and autologous stem cell transplantation increases the response rate in AL amyloidosis. Bone Marrow Transplant 2007;40:607.

Reference Title: References

Reference Type: reference-list

Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's macroglobulinemia. Semin Oncol 2003; 30:110–15.
Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84:1361–92.
Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 1999; 10:1419–32.
Groves FD, Travis LB, Devesa SS, Ries LA, Fraumeni JF Jr. Waldenström's macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer 1998; 82:1078–81.
Herrinton LJ, Weiss NS. Incidence of Waldenström's macroglobulinemia. Blood 1993; 82:3148–50.
Bjornsson OG, Arnason A, Gudmunosson S, Jensson O, Olafsson S, Valimarsson H. Macroglobulinaemia in an Icelandic family. Acta Med Scand 1978; 203:283–8.
Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom's Macroglobulinemia. Ann Oncol 2006; 17:488–94.
Renier G, Ifrah N, Chevailler A, Saint-Andre JP, Boasson M, Hurez D. Four brothers with Waldenström's macroglobulinemia. Cancer 1989; 64:1554–9.
Ogmundsdottir HM, Sveinsdottir S, Sigfusson A, Skaftadottir I, Jonasson JG, Agnarsson BA. Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp Immunol 1999; 117:252–60.
Linet MS, Humphrey RL, Mehl ES, Brown LM, Pottern LM, Bias WB, et al. A case-control and family study of Waldenström's macroglobulinemia. Leukemia 1993; 7:1363–9.
Santini GF, Crovatto M, Modolo ML, et al. Waldenström macroglobulinemia: a role of HCV infection? Blood 1993; 82:2932.
Silvestri F, Barillari G, Fanin R, et al. Risk of hepatitis C virus infection, Waldenström's macroglobulinemia, and monoclonal gammopathies. Blood 1996; 88:1125–6.
Leleu X, O'Connor K, Ho A, et al. Hepatitis C viral infection is not associated with Waldenstrom's macroglobulinemia. Am J Hematol 2007; 82: 83–4.
Carbone P, Caradonna F, Granata G, Marceno R, Cavallaro AM, Barbata G. Chromosomal abnormalities in Waldenstrom's macroglobulinemia. Cancer Genet Cytogenet 1992; 61:147–51.
Mansoor A, Medeiros LJ, Weber DM, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol 2001; 116:543–9.
Han T, Sadamori N, Takeuchi J, et al. Clonal chromosome abnormalities in patients with Waldenstrom's and CLL-associated macroglobulinemia: significance of trisomy 12. Blood 1983; 62:525–31.
Rivera AI, Li MM, Beltran G, Krause Jr. Trisomy 4 as the sole cytogenetic abnormality in a Waldenstrom macroglobulinemia. Cancer Genet Cytogenet 2002; 133:172–3.
Wong KF, So CC, Chan JC, Kho BC, Chan JK. Gain of chromosome 3/3q in B-cell chronic lymphoproliferative disorder is associated with plasmacytoid differentiation with or without IgM overproduction. Cancer Genet Cytogenet 2002; 136:82–5.
Schop RF, Kuehl WM, Van Wier SA, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002; 100:2996–3001.
Avet-Loiseau H, Garand R, Lode L, Robillard N, Bataille R. 14q32 translocations discriminate IgM multiple myeloma from Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30:153–5.
Preud'Homme JL, Seligmann M. Immunoglobulins on the surface of lymphoid cells in Waldenström's macroglobulinemia. J Clin Invest 1972; 51:701–5.
Smith BR, Robert NJ, Ault KA. In Waldenstrom's macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood 1983; 61:911–14.
Levy Y, Fermand JP, Navarro S, et al. Interleukin 6 dependence of spontaneous in vitro differentiation of B cells from patients with IgM gammopathy. Proc Natl Acad Sci USA 1990; 87:3309–13.
Owen RG, Barrans SL, Richards SJ, et al. Waldenström macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol 2001; 116:420–8.
Feiner HD, Rizk CC, Finfer MD, et al. IgM monoclonal gammopathy/Waldenström's macroglobulinemia: a morphological and immunophenotypic study of the bone marrow. Mod Pathol 1990; 3:348–56.
San Miguel JF, Vidriales MB, Ocio E, et al. Immunophenotypic analysis of Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30:187–95.
Hunter ZR, Branagan AR, Manning R, et al. CD5, CD10, CD23 expression in Waldenstrom's Macroglobulinemia. Clin Lymph 2005; 5:246–9.
Wagner SD, Martinelli V, Luzzatto L. Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenström's macroglobulinemia, and myeloma. Blood 1994; 83:3647–53.
Aoki H, Takishita M, Kosaka M, Saito S. Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenström's macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter's syndrome but not in common CLL. Blood 1995; 85:1913–19.
Shiokawa S, Suehiro Y, Uike N, Muta K, Nishimura J. Sequence and expression analyses of mu and delta transcripts in patients with Waldenström's macroglobulinemia. Am J Hematol 2001; 68:139–43.
Sahota SS, Forconi F, Ottensmeier CH, et al. Typical Waldenström macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002; 100:1505–7.
Paramithiotis E, Cooper MD. Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci USA 1997; 94:208–12.
Tournilhac O, Santos DD, Xu L, et al. Mast cells in Waldenstrom's Macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol 2006; 17:1275–82.
Ho A, Leleu X, Hatjiharissi E, et al. CD27-CD70 interactions in the pathogenesis of Waldenstrom's Macroglobulinemia. Blood 2008; Epub ahead of print.
Merlini G, Farhangi M, Osserman EF. Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin Oncol 1986; 13:350–65.
Farhangi M, Merlini G. The clinical implications of monoclonal immunoglobulins. Semin Oncol 1986; 13:366–79.
Marmont AM, Merlini G. Monoclonal autoimmunity in hematology. Haematologica 1991; 76:449–59.
Mackenzie MR, Babcock J. Studies of the hyperviscosity syndrome. II. Macroglobulinemia. J Lab Clin Med 1975; 85: 227–34.
Gertz MA, Kyle RA. Hyperviscosity syndrome. J Intens Care Med 1995; 10:128–41.
Kwaan HC, Bongu A. The hyperviscosity syndromes. Semin Thromb Hemost 1999; 25:199–208.
Singh A, Eckardt KU, Zimmermann A, et al. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J Clin Invest 1993; 91:251–6.
Menke MN, Feke GT, Mcmeel JW, Branagan A, Hunter Z, Treon SP. Hyperviscosity-related retinopathy in Waldenstrom's Macroglobulinemia. Arch Opthalmol 2006; 124:1601–6.
Merlini G, Baldini L, Broglia C, et al. Prognostic factors in symptomatic Waldenström's macroglobulinemia. Semin Oncol 2003; 30:211–15.
Dellagi K, Dupouey P, Brouet JC, et al. Waldenström's macroglobulinemia and peripheral neuropathy: a clinical and immunologic study of 25 patients. Blood 1983; 62:280–5.
Nobile-Orazio E, Marmiroli P, Baldini L, et al. Peripheral neuropathy in macroglobulinemia: incidence and antigen-specificity of M proteins. Neurology 1987; 37:1506–14.
Nemni R, Gerosa E, Piccolo G, Merlini G. Neuropathies associated with monoclonal gammopathies. Haematologica 1994; 79:557–66.
Ropper AH, Gorson KC. Neuropathies associated with paraproteinemia. N Engl J Med 1998; 338:1601–7.
Vital A. Paraproteinemic neuropathies. Brain Pathol 2001; 11: 399–407.
Latov N, Braun PE, Gross RB, Sherman WH, Penn AS, Chess L. Plasma cell dyscrasia and peripheral neuropathy: identification of the myelin antigens that react with human paraproteins. Proc Natl Acad Sci USA 1981; 78:7139–42.
Chassande B, Leger JM, Younes-Chennoufi AB, et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve 1998; 21:55–62.
Weiss MD, Dalakas MC, Lauter CJ, Willison HJ, Quarles RH. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J Neuroimmunol 1999; 95:174–84.
Latov N, Hays AP, Sherman WH. Peripheral neuropathy and anti-MAG antibodies. Crit Rev Neurobiol 1988; 3:301–32.
Dalakas MC, Quarles RH. Autoimmune ataxic neuropathies (sensory ganglionopathies): are glycolipids the responsible autoantigens? Ann Neurol 1996; 39:419–22.
Eurelings M, Ang CW, Notermans NC, van Doorn PA, Jacobs BC, Van Den Berg LH. Antiganglioside antibodies in polyneuropathy associated with monoclonal gammopathy. Neurology 2001; 57:1909–12.
Ilyas AA, Quarles RH, Dalakas MC, Fishman PH, Brady RO. Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosyl groups. Ann Neurol 1985; 18:655–9.
Willison HJ, O'Leary CP, Veitch J, et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain 2001; 124:1968–77.
Lopate G, Choksi R, Pestronk A. Severe sensory ataxia and demyelinating polyneuropathy with IgM anti-GM2 and GalNAc-GD1A antibodies. Muscle Nerve 2002; 25:828–36.
Jacobs BC, O'Hanlon GM, Breedland EG, Veitch J, Van Doorn PA, Willison HJ. Human IgM paraproteins demonstrate shared reactivity between Campylobacter jejuni lipopolysaccharides and human peripheral nerve disialylated gangliosides. J Neuroimmunol 1997; 80:23–30.
Nobile-Orazio E, Manfredini E, Carpo M, et al. Frequency and clinical correlates of antineural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann Neurol 1994; 36:416–24.
Gordon PH, Rowland LP, Younger DS, et al. Lymphoproliferative disorders and motor neuron disease: an update. Neurology 1997; 48:1671–8.
Pavord SR, Murphy PT, Mitchell VE. POEMS syndrome and Waldenström's macroglobulinaemia. J Clin Pathol 1996; 49: 181–2.
Crisp D, Pruzanski W. B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med 1982; 72:915–22.
Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (first of two parts). N Engl J Med 1977; 297:538–42.
Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (second of two parts). N Engl J Med 1977; 297:583–9.
Whittaker SJ, Bhogal BS, Black MM. Acquired immunobullous disease: a cutaneous manifestation of IgM macroglobulinaemia. Br J Dermatol 1996; 135:283–6.
Daoud MS, Lust JA, Kyle RA, Pittelkow MR. Monoclonal gammopathies and associated skin disorders. J Am Acad Dermatol 1999; 40:507–35.
Gad A, Willen R, Carlen B, Gyland F, Wickander M. Duodenal involvement in Waldenström's macroglobulinemia. J Clin Gastroenterol 1995; 20:174–6.
Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 3–1990. A 66-year-old woman with Waldenström's macroglobulinemia, diarrhea, anemia, and persistent gastrointestinal bleeding. N Engl J Med 1990; 322:183–92.
Isaac J, Herrera GA. Cast nephropathy in a case of Waldenström's macroglobulinemia. Nephron 2002; 91:512–15.
Morel-Maroger L, Basch A, Danon F, Verroust P, Richet G. Pathology of the kidney in Waldenström's macroglobulinemia. Study of sixteen cases. N Engl J Med 1970; 283:123–9.
Gertz MA, Kyle RA, Noel P. Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenström's macroglobulinemia. J Clin Oncol 1993; 11:914–20.
Moyner K, Sletten K, Husby G, Natvig JB. An unusually large (83 amino acid residues) amyloid fibril protein AA from a patient with Waldenström's macroglobulinaemia and amyloidosis. Scand J Immunol 1980; 11:549–54.
Gardyn J, Schwartz A, Gal R, Lewinski U, Kristt D, Cohen AM. Waldenström's macroglobulinemia associated with AA amyloidosis. Int J Hematol 2001; 74:76–8.
Dussol B, Kaplanski G, Daniel L, Brunet P, Pellissier JF, Berland Y. Simultaneous occurrence of fibrillary glomerulopathy and AL amyloid. Nephrol Dial Transplant 1998; 13:2630–2.
Rausch PG, Herion JC. Pulmonary manifestations of Waldenström macroglobulinemia. Am J Hematol 1980; 9:201–9.
Fadil A, Taylor DE. The lung and Waldenström's macroglobulinemia. South Med J 1998; 91:681–5.
Kyrtsonis MC, Angelopoulou MK, Kontopidou FN, et al. Primary lung involvement in Waldenström's macroglobulinaemia: report of two cases and review of the literature. Acta Haematol 2001; 105:92–6.
Kaila VL, El-Newihi HM, Dreiling BJ, Lynch CA, Mihas AA. Waldenström's macroglobulinemia of the stomach presenting with upper gastrointestinal hemorrhage. Gastrointest Endosc 1996; 44:73–5.
Yasui O, Tukamoto F, Sasaki N, et al. Malignant lymphoma of the transverse colon associated with macroglobulinemia. Am J Gastroenterol 1997; 92:2299–301.
Rosenthal JA, Curran Wj Jr, Schuster SJ. Waldenström's macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma. Am J Hematol 1998; 58:244–5.
Recine MA, Perez MT, Cabello-Inchausti B, Lilenbaum RC, Robinson MJ. Extranodal lymphoplasmacytoid lymphoma (immunocytoma) presenting as small intestinal obstruction. Arch Pathol Lab Med 2001; 125:677–9.
Veltman GA, van Veen S, Kluin-Nelemans JC, Bruijn JA, van Es LA. Renal disease in Waldenström's macroglobulinaemia. Nephrol Dial Transplant 1997; 12:1256–9.
Moore Df Jr, Moulopoulos LA, Dimopoulos MA. Waldenström macroglobulinemia presenting as a renal or perirenal mass: clinical and radiographic features. Leuk Lymphoma 1995; 17:331–4.
Mascaro JM, Montserrat E, Estrach T, et al. Specific cutaneous manifestations of Waldenström's macroglobulinaemia. A report of two cases. Br J Dermatol 1982; 106:17–22.
Schnitzler L, Schubert B, Boasson M, Gardais J, Tourmen A. Urticaire chronique, lésions osseuses, macroglobulinémie IgM: Maladie de Waldenström? Bull Soc Fr Dermatol Syphiligr 1974; 81:363–8.
Roux S, Fermand JP, Brechignac S, Mariette X, Kahn MF, Brouet JC. Tumoral joint involvement in multiple myeloma and Waldenström's macroglobulinemia – report of 4 cases. J Rheumatol 1996; 23:2175–8.
Orellana J, Friedman AH. Ocular manifestations of multiple myeloma, Waldenström's macroglobulinemia and benign monoclonal gammopathy. Surv Ophthalmol 1981; 26:157–69.
Ettl AR, Birbamer GG, Philipp W. Orbital involvement in Waldenström's macroglobulinemia: ultrasound, computed tomography and magnetic resonance findings. Ophthalmologica 1992; 205:40–5.
Civit T, Coulbois S, Baylac F, Taillandier L, Auque J. [Waldenström's macroglobulinemia and cerebral lymphoplasmocytic proliferation: Bing and Neel syndrome. Apropos of a new case.] Neurochirurgie 1997; 43:245–9.
Mcmullin MF, Wilkin HJ, Elder E. Inaccurate haemoglobin estimation in Waldenström's macroglobulinaemia. J Clin Pathol 1995; 48:787.
Treon SP, Branagan AR, Hunter Z, et al. IgA and IgG hypogammaglobulinemia persists in most patients with Waldenstrom's macroglobulinemia despite therapeutic responses, including complete remissions. Blood 2004; 104:306b.
Hunter Z, Leleu X, Hatjiharissi E, et al. IgA and IgG hypogammaglobulinemia are associated with mutations in the APRIL/BLYS receptor TACI in Waldenstrom's macroglobulinemia (WM). Blood 2006; 108:228.
Dutcher TF, Fahey JL. The histopathology of macroglobulinemia of Waldenström. J Natl Cancer Inst 1959; 22:887–917.
Moulopoulos LA, Dimopoulos MA, Varma DG, et al. Waldenström macroglobulinemia: MR imaging of the spine and CT of the abdomen and pelvis. Radiology 1993; 188:669–73.
Gobbi PG, Bettini R, Montecucco C, et al. Study of prognosis in Waldenström's macroglobulinemia: a proposal for a simple binary classification with clinical and investigational utility. Blood 1994; 83:2939–45.
Morel P, Monconduit M, Jacomy D, et al. Prognostic factors in Waldenström macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients. Blood 2000; 96:852–8.
Dhodapkar MV, Jacobson JL, Gertz MA, et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001; 98:41–8.
Kyle RA, Treon SP, Alexanian R, et al. Prognostic markers and criteria to initiate therapy in Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's macroglobulinemia. Semin Oncol 2003; 30:116–20.
Dimopoulos M, Gika D, Zervas K, et al. The international staging system for multiple myeloma is applicable in symptomatic Waldenstrom's macroglobulinemia. Leuk Lymph 2004; 45:1809–13.
Anagnostopoulos A, Zervas K, Kyrtsonis M, et al. Prognostic value of serum beta2-microglobulin in patients with Waldenstrom's macroglobulinemia requiring therapy. Clin Lymph Myeloma 2006; 7:205–9.
Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system (IPSS) for Waldenstrom's macroglobulinemia. Blood 2006; 108:42a.
Gertz M, Anagnostopoulos A, Anderson KC, et al. Treatment recommendations in Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's macroglobulinemia. Semin Oncol 2003; 30:121–6.
Treon SP, Gertz MA, Dimopoulos M, et al. Update on treatment recommendations from the Third International Workshop on Waldenstrom's Macroglobulinemia. Blood 2006; 107:3442–6.
Kyle RA, Greipp PR, Gertz MA, et al. Waldenström's macroglobulinaemia: a prospective study comparing daily with intermittent oral chlorambucil. Br J Haematol 2000; 108:737–42.
Dimopoulos MA, Alexanian R. Waldenstrom's macroglobulinemia. Blood 1994; 83:1452–9.
Petrucci MT, Avvisati G, Tribalto M, Giovangrossi P, Mandelli F. Waldenström's macroglobulinaemia: results of a combined oral treatment in 34 newly diagnosed patients. J Intern Med 1989; 226:443–7.
Case Dc Jr, Ervin TJ, Boyd MA, Redfield DL. Waldenström's macroglobulinemia: long-term results with the M-2 protocol. Cancer Invest 1991; 9:1–7.
Facon T, Brouillard M, Duhamel A, et al. Prognostic factors in Waldenström's macroglobulinemia: a report of 167 cases. J Clin Oncol 1993; 11:1553–8.
Dimopoulos MA, Kantarjian H, Weber D, et al. Primary therapy of Waldenström's macroglobulinemia with 2-chlorodeoxyadenosine. J Clin Oncol 1994; 12:2694–8.
Delannoy A, Ferrant A, Martiat P, Bosly A, Zenebergh A, Michaux JL. 2-Chlorodeoxyadenosine therapy in Waldenström's macroglobulinaemia. Nouv Rev Fr Hematol 1994; 36:317–20.
Fridrik MA, Jager G, Baldinger C, Krieger O, Chott A, Bettelheim P. First-line treatment of Waldenström's disease with cladribine. Arbeitsgemeinschaft Medikamentose Tumortherapie. Ann Hematol 1997; 74:7–10.
Liu ES, Burian C, Miller WE, Saven A. Bolus administration of cladribine in the treatment of Waldenström macroglobulinaemia. Br J Haematol 1998; 103:690–5.
Hellmann A, Lewandowski K, Zaucha JM, Bieniaszewska M, Halaburda K, Robak T. Effect of a 2-hour infusion of 2-chlorodeoxyadenosine in the treatment of refractory or previously untreated Waldenström's macroglobulinemia. Eur J Haematol 1999; 63:35–41.
Betticher DC, Hsu Schmitz SF, Ratschiller D, et al. Cladribine (2-CDA) given as subcutaneous bolus injections is active in pretreated Waldenström's macroglobulinaemia. Swiss Group for Clinical Cancer Research (SAKK). Br J Haematol 1997; 99:358–63.
Dimopoulos MA, Weber D, Delasalle KB, Keating M, Alexanian R. Treatment of Waldenström's macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine: identification of prognostic factors. Ann Oncol 1995; 6:49–52.
Dimopoulos MA, O'Brien S, Kantarjian H, et al. Fludarabine therapy in Waldenström's macroglobulinemia. Am J Med 1993; 95:49–52.
Foran JM, Rohatiner AZ, Coiffier B, et al. Multicenter phase II study of fludarabine phosphate for patients with newly diagnosed lymphoplasmacytoid lymphoma, Waldenström's macroglobulinemia, and mantle-cell lymphoma. J Clin Oncol 1999; 17:546–53.
Thalhammer-Scherrer R, Geissler K, Schwarzinger I, et al. Fludarabine therapy in Waldenström's macroglobulinemia. Ann Hematol 2000; 79:556–9.
Dhodapkar MV, Jacobson JL, Gertz MA, et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001; 98:41–8.
Zinzani PL, Gherlinzoni F, Bendandi M, et al. Fludarabine treatment in resistant Waldenström's macroglobulinemia. Eur J Haematol 1995; 54:120–3.
Leblond V, Ben Othman T, Deconinck E, et al. Activity of fludarabine in previously treated Waldenström's macroglobulinemia: a report of 71 cases. Groupe Cooperatif Macroglobulinemie. J Clin Oncol 1998; 16:2060–4.
Dimopoulos MA, Weber DM, Kantarjian H, Keating M, Alexanian R. 2Chlorodeoxyadenosine therapy of patients with Waldenström macroglobulinemia previously treated with fludarabine. Ann Oncol 1994; 5:288–9.
Lewandowski K, Halaburda K, Hellmann A. Fludarabine therapy in Waldenström's macroglobulinemia patients treated previously with 2-chlorodeoxyadenosine. Leuk Lymphoma 2002; 43:361–3.
Leleu XP, Manning R, Soumerai JD, et al. Increased incidence of disease transformation and development of MDS/AML in Waldenstrom's Macroglobulinemia patients treated with nucleoside analogues. Proc Am Soc Clin Oncol 2007; 25:445s.
Treon SP, Kelliher A, Keele B, et al. Expression of serotherapy target antigens in Waldenstrom's macroglobulinemia: Therapeutic applications and considerations. Semin Oncol 2003; 30:248–52.
Treon SP, Shima Y, Preffer FI, et al. Treatment of plasma cell dyscrasias with antibody-mediated immunotherapy. Semin Oncol 1999;26(Suppl 14):97–106.
Byrd JC, White CA, Link B, et al. Rituximab therapy in Waldenstrom's macroglobulinemia: preliminary evidence of clinical activity. Ann Oncol 1999; 10:1525–7.
Weber DM, Gavino M, Huh Y, et al. Phenotypic and clinical evidence supports rituximab for Waldenstrom's macroglobulinemia. Blood 1999; 94:125a.
Foran JM, Rohatiner AZ, Cunningham D, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol 2000; 18:317–24.
Treon SP, Agus DB, Link B, et al. CD20-directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom's macroglobulinemia. J Immunother 2001; 24:272–9.
Gertz MA, Rue M, Blood E, et al. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): An Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma 2004; 45:2047–55.
Dimopoulos MA, Zervas C, Zomas A, et al. Treatment of Waldenstrom's macroglobulinemia with rituximab. J Clin Oncol 2002; 20:2327–33.
Treon SP, Emmanouilides C, Kimby E, et al. Extended rituximab therapy in Waldenström's Macroglobulinemia. Ann Oncol 2005; 16:132–8.
Donnelly GB, Bober-Sorcinelli K, Jacobson R, Portlock CS. Abrupt IgM rise following treatment with rituximab in patients with Waldenstrom's macroglobulinemia. Blood 2001; 98:240b.
Treon SP, Branagan AR, Anderson KC. Paradoxical increases in serum IgM levels and serum viscosity following rituximab therapy in patients with Waldenstrom's macroglobulinemia. Blood 2003; 102:690a.
Ghobrial IM, Fonseca R, Greipp PR, et al. The initial “flare” of IgM level after rituximab therapy in patients diagnosed with Waldenstrom Macroglobulinemia: An Eastern Cooperative Oncology Group Study. Blood 2003; 102:448a.
Dimopoulos MA, Anagnostopoulos A, Zervas C, et al. Predictive factors for response to rituximab in Waldenstrom's macroglobulinemia. Clin Lymphoma 2005; 5:270–2.
Treon SP, Hansen M, Branagan AR, et al. Polymorphisms in FcɡRIIIA (CD16) receptor expression are associated with clinical responses to Rituximab in Waldenstrom's Macroglobulinemia. J Clin Oncol 2005; 23:474–81.
Weber DM, Dimopoulos MA, Delasalle K, et al. 2-Chlorodeoxyadenosine alone and in combination for previously untreated Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30:243–7.
Treon SP, Branagan A, Wasi P, et al. Combination therapy with Rituximab and Fludarabine in Waldenstrom's macroglobulinemia. Blood 2004; 104:215a.
Tam CS, Wolf MM, Westerman D, et al. Fludarabine combination therapy is highly effective in first-line and salvage treatment of patients with Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma 2005; 6:136–9.
Hensel M, Villalobos M, Kornacker M, et al. Pentostatin/cyclophosphamide with or without rituximab: an effective regimen for patients with Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma. Clin Lymphoma Myeloma 2005; 6:131–5.
Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Primary treatment of Waldenstrom's macroglobulinemia with Dexamethasone, Rituximab and Cyclophosphamide. J Clin Oncol 2007; 25:3344–9.
Buske C, Dreyling MH, Eimermacher H, et al. Combined immuno-chemotherapy (R-CHOP) results in significantly superior response rates and time to treatment failure in first line treatment of patients with lymphoplasmacytoid/ic immunocytoma. Results of a prospective randomized trial of the German Low Grade Lymphoma Study Group. Blood 2004; 104:162a.
Treon SP, Hunter Z, Branagan A. CHOP plus rituximab therapy in Waldenström's Macroglobulinemia. Clin Lymphoma Myeloma 2005; 5:273–7.
Dimopoulos MA, Hamilos G, Efstathiou E, et al. Treatment of Waldenstrom's macroglobulinemia with the combination of fludarabine and cyclophosphamide. Leuk Lymphoma 2003; 44:993–6.
Tamburini J, Levy V, Chateilex C, et al. Fludarabine plus cyclophosphamide in Waldenstrom's macroglobulinemia: results in 49 patients. Leukemia 2005; 19:1831–4.
Jagannath S, Durie BG, Wolf J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005; 129:776–83.
Oakervee HE, Popat R, Curry N, et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005; 129:755–62.
Harousseau JL, Attal M, Leleu X, et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma. Preliminary results of an IFM Phase II Study. Blood 2004; 104:416a.
Mitsiades CS, Mitsiades N, Mcmullan CJ, et al. The proteasome inhibitor bortezomib (PS-341) is active against Waldenstrom's macroglobulinemia. Blood 2003; 102:181a.
Treon SP, Hunter ZR, Matous J, et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom's macroglobulinemia: results of WMCTG Trial 03–248. Clin Cancer Res 2007; 13:3320–5.
Chen CI, Kouroukis CT, White D, et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom's macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25:1570–5.
Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Treatment of relapsed or refractory Waldenstrom's macroglobulinemia with bortezomib. Haematologica 2005; 90:1655–7.
Goy A, Younes A, Mclaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 2005; 23:667–75.
Treon SP, Ioakimidis L, Soumerai JD, et al. Primary Therapy of Waldenstrom's Macroglobulinemia with Bortezomib, Dexamethasone and Rituximab: Results of WMCTG Clinical Trial 05–180. J Clin Oncol 2008;26(suppl):abstr 8519.
Ghobrial IM, Padmanabhan S, Badros A, et al. Phase II trial of combination of bortezomib and rituximab in relapsed and/or refractory Waldenstrom's Macroglobulinemia: preliminary results. Blood 2007; 110;195b.
Agathocleous A, Rule S, Johson P. Preliminary results of a phase I/LL study of weekly or twice weekly bortezomib in combination with rituximab in patients with follicular lymphoma, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. Blood 2007; 110:754a.
Hunter ZR, Boxer M, Kahl B, et al. Phase II study of alemtuzumab in lymphoplasmacytic lymphoma: results of WMCTG trial 02–079. Proc Am Soc Clin Oncol 2006; 24:427s.
Owen RG, Rawstron AC, Osterborg A, Lundin J, Svensson G, Hillmen P. Activity of alemtuzumab in relapsed/refractory Waldenstrom's macroglobulinemia. Blood 2003; 102:644a.
Dimopoulos MA, Zomas A, Viniou NA, et al. Treatment of Waldenström's macroglobulinemia with thalidomide. J Clin Oncol 2001; 19:3596–601.
Coleman C, Leonard J, Lyons L, Szelenyi H, Niesvizky R. Treatment of Waldenström's macroglobulinemia with clarithromycin, low-dose thalidomide and dexamethasone. Semin Oncol 30:270–4.
Dimopoulos MA, Zomas K, Tsatalas K, et al. Treatment of Waldenström's macroglobulinemia with single agent thalidomide or with combination of clarithromycin, thalidomide and dexamethasone. Semin Oncol 2003; 30:265–9.
Hayashi T, Hideshima T, Akiyama M, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128:192–203.
Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98:210–16.
Janakiraman N, Mclaughlin P, White CA, et al. Rituximab: correlation between effector cells and clinical activity in NHL. Blood 1998; 92:337a.
Soumerai JD, Branagan AR, Patterson CJ, et al. Long term responses to thalidomide and rituximab in Waldenstrom's Macroglobulinemia. Proc Am Soc Clin Oncol 2007; 25:445s.
Treon S, Patterson C, Hunter Z, Branagan A. Phase II study of CC 5013 (revlimid) and rituximab in Waldenström's macroglobulinemia: preliminary safety and efficacy results. Blood 2005; 106:2443.
Desikan R, Dhodapkar M, Siegel D, et al. High-dose therapy with autologous haemopoietic stem cell support for Waldenström's macroglobulinaemia. Br J Haematol 1999; 105:993–6.
Munshi NC, Barlogie B. Role for high dose therapy with autologous hematopoietic stem cell support in Waldenström's macroglobulinemia. Semin Oncol 2003; 30:282–5.
Dreger P, Glass B, Kuse R, et al. Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenström's macroglobulinaemia. Br J Haematol 1999; 106:115–18.
Anagnostopoulos A, Dimopoulos MA, Aleman A, et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenström's macroglobulinemia. Bone Marrow Transplant 2001; 27:1027–9.
Tournilhac O, Leblond V, Tabrizi R, et al. Transplantation in Waldenström's macroglobulinemia – the French Experience. Semin Oncol 2003; 30:291–6.
Anagnostopoulos A, Hari PN, Perez WS, et al. Autologous or allogeneic stem cell transplantation in patients with Waldenstrom's macroglobulinemia. Biol Blood Marrow Transplant 2006; 12: 845–54.
Maloney DG, Sandmaier B, Maris M, Storb R. The use of non-myeloablative allogeneic hematopoietic cell transplantation for patients with refractory Waldenström's macroglobulinemia: replacing high-dose cytotoxic therapy with graft versus tumor effects. Proceedings of the Second International Workshop on Waldenström's Macroglobulinemia, 2002, Athens, Greece.
Weber D, Treon SP, Emmanouilides C, et al. Uniform response criteria in Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol 2003; 30:127–31.
Kimby E, Treon SP, Anagnostopoulos A, et al. Update on recommendations for assessing response from the Third International Workshop on Waldenstrom's Macroglobulinemia. Clin Lymphoma Myeloma 2006; 6:380–3.
Strauss SJ, Maharaj L, Hoare S, et al. Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 2006; 24: 2105–12.

Reference Title: References

Reference Type: reference-list

International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders.. Br J Haematol 2003;121(5):749–57.
Dimopoulos MA, Moulopoulos LA, Maniatis A, Alexanian R. Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Blood 2000;96(6):2037–44.
Nanni C, Zamagni E, Farsad M, Franchi R, Franti S. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 2006;33(5):525–31.
Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 2007;92(1):50–5.
Hill QA, de Tute RM, Child JA, De Tute RM, Owen RG. Neoplastic plasma cells are demonstrable at bone marrow sites distant to solitary plasmacytoma of bone and predict for progression to multiple myeloma. ASH Annual Meeting Abstracts 2006;108(11):3512-.
Mclain RF, Weinstein JN. Solitary plasmacytomas of the spine: a review of 84 cases. J Spinal Disord 1989;2(2):69–74.
Alexander MP, Goodkin DE, Poser CM. Solitary plasmacytoma producing cranial neuropathy. Arch Neurol 1975;32(11):777–8.
Prasad ML, Mahapatra AK, Kumar L, et al. Solitary intracranial plasmacytoma of the skull base. Indian J Cancer 1994;31(3):174–9.
Higurashi M, Yagishita S, Fujitsu K, Kitsuta Y, Yakemoto Y, Osano S. Plasma cell myeloma of the skull base: report of two cases. Brain Tumor Pathol 2004;21(3):135–41.
Pambuccian SE, Horyd ID, Cawte T, Huvos AG. Amyloidoma of bone, a plasma cell/plasmacytoid neoplasm. Report of three cases and review of the literature. Am J Surg Pathol 1997;21(2):179–86.
Rawlings NG, Brownstein S, Robinson JW, Jordan DR. Solitary osseous plasmacytoma of the orbit with amyloidosis. Ophthal Plast Reconstr Surg 2007;23(1):79–80.
Cooper JH, Rootman J, Ramsey MS. Extramedullary plasmacytoma (amyloid tumour) of the caruncle. Can J Ophthalmol 1989;24(4):166–8.
Nagasaka T, Lai R, Kuno K, Nakashima T, Nakashima N. Localized amyloidosis and extramedullary plasmacytoma involving the larynx of a child. Hum Pathol 2001;32(1):132–4.
Dispenzieri A, Kyle RA, Lacy MQ, et al. POEMS syndrome: definitions and long-term outcome. Blood 2003;101(7):2496–506.
Moulopoulos LA, Dimopoulos MA, Weber D, Fuller L, Libshitz HI, Alexanian R. Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol 1993;11(7):1311–5.
Wilder RB, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Persistence of myeloma protein for more than one year after radiotherapy is an adverse prognostic factor in solitary plasmacytoma of bone. Cancer 2002;94(5):1532–7.
Moulopoulos LA, Dimopoulos MA. Magnetic resonance imaging of the bone marrow in hematologic malignancies. Blood 1997;90(6):2127–47.
Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys 1998;41(5):1063–7.
Schirrmeister H, Buck AK, Bergmann L, et al. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm 2003;18(5):841–5.
Dimopoulos MA, Pouli A, Anagnostopoulos A, et al. Macrofocal multiple myeloma in young patients: a distinct entity with favorable prognosis. Leuk Lymphoma 2006;47(8):1553–6.
Dingli D, Kyle RA, Rajkumar SV, et al. Immunoglobulin free light chains and solitary plasmacytoma of bone. Blood 2006;108(6):1979–83.
Soutar R, Lucraft H, Jackson G, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Br J Haematol 2004;124(6):717–26.
Barosi G, Boccadoro M, Cavo M, et al. Management of multiple myeloma and related-disorders: guidelines from the Italian Society of Hematology (SIE), Italian Society of Experimental Hematology (SIES) and Italian Group for Bone Marrow Transplantation (GITMO). Haematologica 2004;89(6):717–41.
Knobel D, Zouhair A, Tsang RW, et al. Prognostic factors in solitary plasmacytoma of the bone: a multicenter Rare Cancer Network study. BMC Cancer 2006;6:118.
Mill WB, Griffith R. The role of radiation therapy in the management of plasma cell tumors. Cancer 1980;45(4):647–52.
Chak LY, Cox RS, Bostwick DG, et al. Solitary plasmacytoma of bone: treatment, progression, and survival. J Clin Oncol 1987;5(11):1811–5.
Delauche-Cavallier MC, Laredo JD, Wybier M, et al. Solitary plasmacytoma of the spine. Long-term clinical course. Cancer 1988;61(8):1707–14.
Frassica DA, Frassica FJ, Schray MF, et al. Solitary plasmacytoma of bone: Mayo Clinic experience. Int J Radiat Oncol Biol Phys 1989;16(1):43–8.
Mayr NA, Wen BC, Hussey DH, et al. The role of radiation therapy in the treatment of solitary plasmacytomas. Radiother Oncol 1990;17(4):293–303.
Holland J, Trenkner DA, Wasserman TH, et al. Plasmacytoma. Treatment results and conversion to myeloma. Cancer 1992;69(6):1513–7.
Aviles A, Huerta-Guzman J, Delgado S, et al. Improved outcome in solitary bone plasmacytomata with combined therapy. Hematol Oncol 1996;14(3):111–7.
Bolek TW, Marcus RB, Mendenhall NP. Solitary plasmacytoma of bone and soft tissue. Int J Radiat Oncol Biol Phys 1996;36(2):329–33.
Jyothirmayi R, Gangadharan VP, Nair MK, et al. Radiotherapy in the treatment of solitary plasmacytoma. Br J Radiol 1997;70(833):511–6.
Tsang RW, Gospodarowicz MK, Pintilie M, et al. Solitary plasmacytoma treated with radiotherapy: impact of tumorsize on outcome. Int J Radiat Oncol Biol Phys 2001;50(1):113–20.
Ozsahin M, Tsang RW, Poortmans P, et al. Outcomes and patterns of failure in solitary plasmacytoma: a multicenter Rare Cancer Network study of 258 patients. Int J Radiat Oncol Biol Phys 2006;64(1):210–7.
Knowling MA, Harwood AR, Bergsagel DE. Comparison of extramedullary plasmacytomas with solitary and multiple plasma cell tumors of bone. J Clin Oncol 1983;1(4):255–62.
Mendenhall CM, Thar TL, Million RR. Solitary plasmacytoma of bone and soft tissue. Int J Radiat Oncol Biol Phys 1980;6(11):1497–501.
Bataille R, Sany J. Solitary myeloma: clinical and prognostic features of a review of 114 cases. Cancer 1981;48(3):845–51.
Weber DM. Solitary bone and extramedullary plasmacytoma. Hematology Am Soc Hematol Educ Program 2005:373–6.
Alexanian R. Localized and indolent myeloma. Blood 1980;56(3):521–5.
Alexiou C, Kau RJ, Dietzfelbinger H, et al. Extramedullary plasmacytoma: tumor occurrence and therapeutic concepts. Cancer 1999;85(11):2305–14.
Durr HR, Kuhne JH, Hagena FW, et al. Surgical treatment for myeloma of the bone. A retrospective analysis of 22 cases. Arch Orthop Trauma Surg 1997;116(8):463–9.
Burt M, Karpeh M, Ukoha O, et al. Medical tumors of the chest wall. Solitary plasmacytoma and Ewing's sarcoma. J Thorac Cardiovasc Surg 1993;105(1):89–96.
Chang MY, Shih LY, Dunn P, et al. Solitary plasmacytoma of bone. J Formos Med Assoc 1994;93(5):397–402.
Shih LY, Dunn P, Leung WM, et al. Localised plasmacytomas in Taiwan: comparison between extramedullary plasmacytoma and solitary plasmacytoma of bone. Br J Cancer 1995;71(1):128–33.
Galieni P, Cavo M, Avvisati G, et al. Solitary plasmacytoma of bone and extramedullary plasmacytoma: two different entities? Ann Oncol 1995;6(7):687–91.
Dimopoulos MA, Kiamouris C, Moulopoulos LA. Solitary plasmacytoma of bone and extramedullary plasmacytoma. Hematol Oncol Clin North Am 1999;13(6):1249–57.
Dimopoulos MA, Moulopoulos A, Delasalle K, et al. Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Hematol Oncol Clin North Am 1992;6(2):359–69.
Dimopoulos MA, Goldstein J, Fuller L, et al. Curability of solitary bone plasmacytoma. J Clin Oncol 1992;10(4):587–90.
Kumar S, Fonseca R, Dispenzieri A, et al. Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 2003;101(5):1715–7.
Morgan TK, Zhao S, Chang KL, et al. Low CD27 expression in plasma cell dyscrasias correlates with high-risk disease: an immunohistochemical analysis. Am J Clin Pathol 2006;126(4):545–51.
Galieni P, Cavo M, Pulsoni A, et al. Clinical outcome of extramedullary plasmacytoma. Haematologica 2000;85(1):47–51.
Susnerwala SS, Shanks JH, Banerjee SS, et al. Extramedullary plasmacytoma of the head and neck region: clinicopathological correlation in 25 cases. Br J Cancer 1997;75(6):921–7.
Webb HE, Harrison EG, Masson JK, et al. Solitary extramedullary myeloma (plasmacytoma) of the upper part of the respiratory tract and oropharynx. Cancer 1962;15: 1142–55.
Helmus C. Extramedullary plasmacytoma of the head and neck. Laryngoscope 1964;74: 553–9.
Kotner LM, Wang CC. Plasmacytoma of the upper air and food passages. Cancer 1972;30(2):414–8.
Medini E, Rao Y, Levitt SH. Solitary extramedullary plasmacytoma of the upper respiratory and digestive tracts. Cancer 1980;45(11):2893–6.
Segas J, Skoulakis H, Katrinakis G, et al. Solitary extramedullary plasmacytoma of the oropharynx: a rare location. Ear Nose Throat J 1993;72(11):743–5.
Remigio PA, Klaum A. Extramedullary plasmacytoma of stomach. Cancer 1971;27(3):562–8.
Preud'Homme JL, Galian A, Danon F, et al. Extramedullary plasmacytoma with gastric and lymph node involvement: an immunological study. Cancer 1980;46(8):1753–8.
Chim CS, Wong WM, Nicholls J, et al. Extramedullary sites of involvement in hematologic malignancies: case 3. Hemorrhagic gastric plasmacytoma as the primary presentation in multiple myeloma. J Clin Oncol 2002;20(1):344–7.
Amin R. Extramedullary plasmacytoma of the lung. Cancer 1985;56(1):152–6.
Chen KY, Wu HD, Chang YL, et al. Primary pulmonary plasmacytoma with lobar consolidation: an unusual presentation. J Formos Med Assoc 1998;97(7):507–10.
Joseph G, Pandit M, Korfhage L. Primary pulmonary plasmacytoma. Cancer 1993;71(3):721–4.
Shin MS, Carcelen MF, Ho KJ. Diverse roentgenographic manifestations of the rare pulmonary involvement in myeloma. Chest 1992;102(3):946–8.
Takahashi R, Nakano S, Namura K, et al. Plasmacytoma of the urinary bladder in a renal transplant recipient. Int J Hematol 2005;81(3):255–7.
Yang C, Motteram R, Sandeman TF. Extramedullary plasmacytoma of the bladder: a case report and review of literature. Cancer 1982;50(1):146–9.
More JR, Dawson DW, Ralston AJ, et al. Plasmacytoma of the thyroid. J Clin Pathol 1968;21(5):661–7.
Salazar JE, Nelson JF, Winer-Muram HT. Extramedullary plasmacytoma of the thyroid. Can Assoc Radiol J 1987;38(2): 136–8.
Bourtsos EP, Bedrossian CW, De Frias DV, et al. Thyroid plasmacytoma mimicking medullary carcinoma: a potential pitfall in aspiration cytology. Diagn Cytopathol 2000;23(5):354–8.
Iizumi T, Shinohara S, Amemiya H, et al. Plasmacytoma of the testis. Urol Int 1995;55(4):218–21.
Proctor NS, Rippey JJ, Shulman G, et al. Extramedullary plasmacytoma of the breast. J Pathol 1975;116(2):97–100.
Kirshenbaum G, Rhone DP. Solitary extramedullary plasmacytoma of the breast with serum monoclonal protein: a case report and review of the literature. Am J Clin Pathol 1985;83(2):230–2.
Alhan E, Calik A, Kucuktulu U, et al. Solitary extramedullary plasmocytoma of the breast with kappa monoclonal gammopathy. Pathologica 1995;87(1):71–3.
Cangiarella J, Waisman J, Cohen JM, et al. Plasmacytoma of the breast. A report of two cases diagnosed by aspiration biopsy. Acta Cytol 2000;44(1):91–4.
De Chiara A, Losito S, Terracciano L, et al. Primary plasmacytoma of the breast. Arch Pathol Lab Med 2001;125(8):1078–80.
Ferlito A, Polidoro F, Recher G. Extramedullary plasmacytoma of the parotid gland. Laryngoscope 1980;90(3):486–93.
Simi U, Marchetti G, Bruno R, et al. Plasmacytoma of the parotid gland. Report of a case and review of the world literature. Acta Otorhinolaryngol Belg 1988;42(1):93–6.
Gonzalez-Garcia J, Ghufoor K, Sandhu G, et al. Primary extramedullary plasmacytoma of the parotid gland: a case report and review of the literature. J Laryngol Otol 1998;112(2):179–81.
Liebross RH, Ha CS, Cox JD, et al. Clinical course of solitary extramedullary plasmacytoma. Radiother Oncol 1999;52(3):245–9.
Hari CK, Roblin DG. Solitary plasmacytoma of the parotid gland. Int J Clin Pract 2000;54(3):197–8.
Kanthan R, Torkian B. Solitary plasmacytoma of the parotid gGland with crystalline inclusions: a case report. World J Surg Oncol 2003;1(1):12.
Lin BT, Weiss LM. Primary plasmacytoma of lymph nodes. Hum Pathol 1997;28(9):1083–90.
Lim YH, Park SK, Oh HS, et al. A case of primary plasmacytoma of lymph nodes. Korean J Intern Med 2005;20(2):183–6.
Inbasekaran V, Vijayarathinam P, Arumugam S. Solitary intracerebral plasmacytoma. J Indian Med Assoc 1991;89(1):16–7.
Dimopoulos MA, Hamilos G. Solitary bone plasmacytoma and extramedullary plasmacytoma. Curr Treat Options Oncol 2002;3(3):255–9.
Bartl R, Frisch B, Fateh-Moghadam A, et al. Histologic classification and staging of multiple myeloma. A retrospectiveand prospective study of 674 cases. Am J Clin Pathol 1987;87(3):342–55.
Kremer M, Ott G, Nathrath M, et al. Primary extramedullary plasmacytoma and multiple myeloma: phenotypic differences revealed by immunohistochemical analysis. J Pathol 2005;205(1):92–101.
Hotz MA, Schwaab G, Bosq J, et al. Extramedullary solitary plasmacytoma of the head and neck. A clinicopathological study. Ann Otol Rhinol Laryngol 1999;108(5):495–500.
Hussong JW, Perkins SL, Schnitzer B, et al. Extramedullary plasmacytoma. A form of marginal zone cell lymphoma? Am J Clin Pathol 1999;111(1):111–6.
Wiltshaw E. The natural history of extramedullary plasmacytoma and its relation to solitary myeloma of bone and myelomatosis. Medicine (Baltimore) 1976;55(3):217–38.
Harwood AR, Knowling MA, Bergsagel DE. Radiotherapy of extramedullary plasmacytoma of the head and neck. Clin Radiol 1981;32(1):31–6.
Koss MN, Hochholzer L, Moran CA, et al. Pulmonary plasmacytomas: a clinicopathologic and immunohistochemical study of five cases. Ann Diagn Pathol 1998;2(1):1–11.
Brinch L, Hannisdal E, Abrahamsen AF, et al. Extramedullary plasmacytomas and solitary plasma cell tumours of bone. Eur J Haematol 1990;44(2):132–5.
Jackson A, Scarffe JH. Prognostic significance of osteopenia and immunoparesis at presentation in patients with solitary myeloma of bone. Eur J Cancer 1990;26(3):363–71

Reference Title: References

Reference Type: reference-list

WaldenströM J. Studies on conditions associated with disturbed gamma globulin formation (gammopathies). Harvey Lectures 1960–1961;56:211–31.
Kyle RA. Monoclonal gammopathy of undetermined significance. Natural history in 241 cases. Am J Med 1978;64(5):814–26.
Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the international myeloma working group. Br J Haematol 2003;121(5):749–57.
Katzmann JA, Kyle RA. Immunochemical characterization of immunoglobulins in serum, urine, and cerebrospinal fluid. In: B. Detrick, R. Hamilton, J. Folds, eds. Manual of molecular and clinical laboratory immunology. 7th ed. Washington DC, ASM Press 2006:88–100.
Katzmann JA, Clark RJ, Abraham RS, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clinical Chemistry 2002;48(9):1437–44.
Rajkumar SV, Kyle RA, Therneau TM, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005;106(3):812–17.
Dingli D, Kyle RA, Rajkumar SV, et al. Immunoglobulin free light chains and solitary plasmacytoma of bone. Blood 2006;108(6):1979–83.
Dispenzieri A, Kyle RA, Katzmann JA, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 2008;111(2):785–9.
Katzmann JA, Dispenzieri A, Kyle RA, et al. Elimination of the need for urine studies in the screening algorithm for monoclonal gammopathies by using serum immunofixation and free light chain assays. Mayo Clin Proc 2006;81(12):1575–8.
Axelsson U, Bachmann R, Hallen J. Frequency of pathological proteins (m-components) om 6,995 sera from an adult population. Acta Medica Scandinavica 1966;179(2):235–47.
Kyle RA, Finkelstein S, Elveback LR, Kurland LT. Incidence of monoclonal proteins in a Minnesota community with a cluster of multiple myeloma. Blood 1972;40(5):719–24.
Saleun JP, Vicariot M, Deroff P, Morin JF. Monoclonal gammopathies in the adult population of finistere, France. J Clin Pathol 1982;35(1):63–8.
Landgren O, Gridley G, Turesson I, et al. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood 2006;107(3):904–6.
Landgren O, Katzmann JA, Hsing AW, et al. Prevalence of monoclonal gammopathy of undetermined significance among men in Ghana. Mayo Clin Proc 2007;82(12):1468–73.
Iwanaga M, Tagawa M, Tsukasaki K, Kamihira S, Tomonaga M. Prevalence of monoclonal gammopathy of undetermined significance: study of 52,802 persons in Nagasaki city, Japan. Mayo Clin Proc 2007;82(12):1474–9.
Kyle RA, Therneau TM, Melton Iii LJ, et al. Monoclonal gammopathy of undetermined significance: estimated incidence and duration prior to recognition. Blood 2007;10(11):79a (Abstract #246).
Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton Lj III. Long-term follow-up of 241 patients with monoclonal gammopathy of undetermined significance: The original Mayo Clinic series 25 years later [see comment]. Mayo Clin Proc 2004;79(7):859–66.
Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance [see comment]. N Engl J Med 2002;346(8):564–9.
Surveillance, Epidemiology, and End Results (SEER) Program public-use data CD ROM (1973–1998). Bethesda, MD, National Cancer Institute, Cancer Statistics Branch, 2001.
Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma [see comment]. Mayo Clin Proc 2003;78(1):21–33.
Blade J, Lopez-Guillermo A, Rozman C, et al. Malignant transformation and life expectancy in monoclonal gammopathy of undetermined significance. Br J Haematol 1992;81(3): 391–4.
van De Poel MH, Coebergh JW, Hillen HF. Malignant transformation of monoclonal gammopathy of undetermined significance among out-patients of a community hospital in southeastern Netherlands. Br J Haematol 1995;91(1):121–5.
Baldini L, Guffanti A, Cesana BM, et al. Role of different hematologic variables in defining the risk of malignant transformation in monoclonal gammopathy. Blood 1996;87(3):912–18.
Pasqualetti P, Festuccia V, Collacciani A, Casale R. The natural history of monoclonal gammopathy of undetermined significance. A 5- to 20-year follow-up of 263 cases. Acta Haematol 1997;97(3):174–9.
Gregersen H, Ibsen J, Mellemkjoer L, Dahlerup J, Olsen J, Sorensen H. Mortality and causes of death in patients with monoclonal gammopathy of undetermined significance. Br J Haematol 2001;112(2):353–7.
Gregersen H, Mellemkjaer L, Salling Ibsen J, et al. Cancer risk in patients with monoclonal gammopathy of undetermined significance. Am J Hematol 2000;63(1):1–6.
Ogmundsdottir HM, Haraldsdottir V, G MJ, et al. Monoclonal gammopathy in Iceland: a population-based registry and follow-up. Br J Haematol 2002;118(1):166–73.
Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance and smouldering multiple myeloma: emphasis on risk factors for progression. Br J Haematol 2007;139(5):730–43.
Avet-Loiseau H, Li JY, Facon T, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 1998;58(24):5640–5.
Fonseca R, Bailey RJ, Ahmann GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100(4):1417–24.
Chng WJ, van Wier SA, Ahmann GJ, et al. A validated fish trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 2005;106(6):2156–61.
Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe francophone du myelome. Blood 1999;94(8):2583–9.
Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl I, MS. Possible roles for activating ras mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 2005;105(1)317–23.
Vacca A, Ribatti D, Roncali L, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87(3):503–8.
Rajkumar SV, Mesa RA, Fonseca R. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002;8(7):2210–16.
Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999;93(9):3064–73.
Kumar S, Witzig TE, Timm M, et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 2004;104(4):1159–65.
Melton LJ III, Rajkumar SV, Khosla S, et al. Fracture risk in monoclonal gammopathy of undetermined significance. J Bone Miner Res 2004;19(1):25–30.
Roodman GD, Biology of myeloma bone disease. In: VC Broudy, JL. Abkowitz, JM Vose, eds. Hematology 2002: American society of hematology education program book. Washington, DC: 2002; 227–32.
Croucher PI, Shipman CM, Lippitt J, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001;98(13):3534–40.
Lust JA, Donovan Ka. Biology of the transition of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma. Cancer Control 1998;5(3):209–17.
Malik AA, Ganti AK, Potti A, Levitt R, Hanley JF. Role of Helicobacter pylori infection in the incidence and clinical course of monoclonal gammopathy of undetermined significance. Am J Gastroenterol 2002;97(6):1371–4.
Rajkumar SV, Kyle RA, Plevak MF, Murray JA, Therneau TM. Helicobacter pylori infection and monoclonal gammopathy of undetermined significance. Br J Haematol 2002;119(3):706–8.
Kyle RA. “Benign” monoclonal gammopathy-after 20 to 35 years of follow-up. Mayo Clin Proc 1993;68(1):26–36.
Rosinol L, Cibeira MT, Montoto S, et al. Monoclonal gammopathy of undetermined significance: predictors of malignant transformation and recognition of an evolving type characterized by a progressive increase in M protein size. Mayo Clin Proc 2007;82(4):428–34.
Cesana C, Klersy C, Barbarano L, et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. J Clin Oncol 2002;20(6):1625–34.
Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med 1980;302(24):1347–9.
Bellaiche L, Laredo JD, Liote F, et al. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI study group. Spine 1997;22(21):2551–7.
Kumar S, Rajkumar SV, Kyle RA, et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol 2005;23(24):5668–74.
Nowakowski GS, Witzig TE, Dingli D, et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 2005;106(7):2276–9.
Kyle RA, Robinson RA, Katzmann JA. The clinical aspects of biclonal gammopathies. Review of 57 cases. Am J Med 1981;71(6):999–1008.
Grosbois B, Jego P, De Rosa H, et al. [Triclonal gammopathy and malignant immunoproliferative syndrome]. [review] [25 refs] [in French]. Revue de Medecine Interne 1997;18(6):470–3.
Tirelli A, Guastafierro S, Cava B, Lucivero G. Triclonal gammopathy in an extranodal non-Hodgkin lymphoma patient. Am J Hematol 2003;73(4):273–5.
Kyle RA, Maldonado JE, Bayrd ED. Idiopathic Bence Jones proteinuria-a distinct entity? Am J Med 1973;55(2):222–6.
Kyle RA, Greipp PR. “Idiopathic” Bence Jones proteinuria: long-term follow-up in seven patients. N Engl J Med 1982; 306(10):564–7.
Rajkumar SV, Dispenzieri A, Kyle RA. Monoclonal gammopathy of undetermined significance, Waldenstrom macroglobulinemia, AL amyloidosis, and related plasma cell disorders: diagnosis and treatment. Mayo Clin Proc 2006;81(5):693–703.
Kyle RA, Garton JP. The spectrum of IgM monoclonal gammopathy in 430 cases. Mayo Clin Proc 1987;62(8):719–31.
Kyle RA, Therneau TM, Rajkumar SV, et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood 2003;102(10):3759–64.
Morra E, Cesana C, Klersy C, et al. Prognostic factors for transformation in asymptomatic immunoglobulin M monoclonal gammopathies. Clin Lymphoma 2005;5(4):265–9.
Cesana C, Barbarano L, Miqueleiz S, et al. Clinical characteristics and outcome of immunoglobulin M-related disorders. Clin Lymphoma 2005;5(4):261–4.
Baldini L, Goldaniga M, Guffanti A, et al. Immunoglobulin M monoclonal gammopathies of undetermined significance and indolent Waldenstrom's macroglobulinemia recognize the same determinants of evolution into symptomatic lymphoid disorders: proposal for a common prognostic scoring system. J Clin Oncol 2005;23(21):4662–8.
Ayto RM, Lambert C, Lampert I, Salooja, N. Monoclonal gammopathy of undetermined significance with an IgE paraprotein. Blood 2007;110(11):259b (Abstract #4744).
Kyle RA, Rajkumar SV. Monoclonal gammopathies of undetermined significance. In:J. Malpas and E. Al, eds. Myeloma: biology and management. 3rd ed. Philadelphia, PS: Saunders, 2004:315–52.
Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol 2006;134(6):573–89.
Azar HA, Hill WT, Osserman EF. Malignant lymphoma and lymphatic leukemia. Am J Med 1957;23:239–49.
Kyle RA, Bayrd ED, Mckenzie BF, Heck FJ. Diagnostic criteria for electrophoretic patterns of serum and urinary proteins in multiple myeloma: study of one hundred and sixty-five multiple myeloma patients with similar electrophoretic patterns. J Am Med Assoc 1960;174:245–51.
Alexanian R. Monoclonal gammopathy in lymphoma. Arch Intern Med 1975;135(1):62–6.
Lin P, Hao S, Handy BC, Bueso-Ramos CE, Medeiros LJ. Lymphoid neoplasms associated with IgM paraprotein: a study of 382 patients. Am J Clin Pathol 2005;123(2):200–5.
Asatiani E, Cohen P, Ozdemirli M, Kessler CM, Mavromatis B, Cheson, BD. Monoclonal gammopathy in extranodal marginal zone lymphoma (ENMZL) correlates with advanced disease and bone marrow involvement. Am J Hematol 2004;77(2): 144–6.
Noel P, Kyle RA. Monoclonal proteins in chronic lymphocytic leukemia. Am J Clin Pathol 1987;87(3):385–8.
Lamboley V, Zabraniecki L, Sie P, Pourrat J, Fournie B. Myeloma and monoclonal gammopathy of uncertain significance associated with acquired von Willebrand's syndrome. Seven new cases with a literature review. Joint, Bone, Spine: Revue du Rhumatisme 2002;69(1):62–7.
Sallah S, Husain A, Wan J, Vos P, Nguyen NP. The risk of venous thromboembolic disease in patients with monoclonal gammopathy of undetermined significance. Ann Oncol 2004;15(10):1490–4.
Kelly Jj Jr, Kyle RA, O'brien PC, Dyck PJ. Prevalence of monoclonal protein in peripheral neuropathy. Neurology 1981; 31(11):1480–3.
Quarles RH, Weiss MD. Autoantibodies associated with peripheral neuropathy. [review] [197 refs]. Muscle Nerve 1999;22(7):800–22.
Gosselin S, Kyle RA, Dyck PJ. Neuropathy associated with monoclonal gammopathies of undetermined significance [see comment]. Ann Neurol 1991;30(1):54–61.
Nobile-Orazio E. Treatment of dys-immune neuropathies. J Neurol 2005;252(4):385–95.
Dispenzieri A, Kyle RA, Lacy MQ, et al. Poems syndrome: definitions and long-term outcome. Blood 2003;101(7):2496–506.
Dispenzieri A, Moreno-Aspitia A, Suarez GA, et al. Peripheral blood stem cell transplantation in 16 patients with POEMS syndrome, and a review of the literature. Blood 2004;104(10):3400–7.
Mundis RJ, Kyle RA. Primary hyperparathyroidism and monoclonal gammopathy of undetermined significance. Am J Clin Pathol 1982;77(5):619–21.
Arnulf B, Bengoufa D, Sarfati E, et al. Prevalence of monoclonal gammopathy in patients with primary hyperparathyroidism: a prospective study. Arch Intern Med 2002;162(4):464–7.
Daoud MS, Lust JA, Kyle RA, Pittelkow MR. Monoclonal gammopathies and associated skin disorders. [review] [214 refs]. J Am Acad Dermatol 1999;40(4):507–35; quiz 536–8.
Rostaing L, Modesto A, Abbal M, Durand D. Long-term follow-up of monoclonal gammopathy of undetermined significance in transplant patients. Am J Nephrol 1994;14(3):187–91.
Droder RM, Kyle RA, Greipp PR. Control of systemic capillary leak syndrome with aminophylline and terbutaline. Am J Med 1992;92(5):523–6.
Pascual M, Widmann JJ, Schifferli JA. Recurrent febrile panniculitis and hepatitis in two patients with acquired complement deficiency and paraproteinemia. Am J Med 1987;83(5):959–62.
Dingli D, Larson DR, Plevak MF, Grande JP, Kyle RA. Focal and segmental glomerulosclerosis and plasma cell proliferative disorders. Am J Kidney Dis 2005;46(2):278–82.
Karlson EW, Tanasijevic M, Hankinson SE, et al. Monoclonal gammopathy of undetermined significance and exposure to breast implants. Arch Intern Med 2001;161(6):864–7.
Merlini G, Farhangi M, Osserman EF. Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. [review] [202 refs]. Semin Oncol 1986;13(3):350–65.
Alexanian R, Barlogie B, Dixon D. Prognosis of asymptomatic multiple myeloma. Arch Intern Med 1988;148(9):1963–5.
Dimopoulos MA, Moulopoulos A, Smith T, Delasalle KB, Alexanian R. Risk of disease progression in asymptomatic multiple myeloma. Am J Med 1993;94(1):57–61.
Facon T, Menard JF, Michaux JL, et al. Prognostic factors in low tumour mass asymptomatic multiple myeloma: a report on 91 patients. The groupe d'etudes et de recherche sur le myelome (germ). Am J Hematol 1995;48(2):71–5.
Rosinol L, Blade J, Esteve J, et al. Smoldering multiple myeloma: natural history and recognition of an evolving type. Br J Haematol 2003;123(4):631–6.
Weber DM, Dimopoulos MA, Moulopoulos LA, Delasalle KB, Smith T, Alexanian R. Prognostic features of asymptomatic multiple myeloma. Br J Haematol 1997;97(4):810–14.
Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007;356(25):2582–90.

Reference Title: References

Reference Type: reference-list

Bardwick PA, Zvaifler NJ, Gill GN, Newman D, Greenway GD, Resnick DL. Plasma cell dyscrasia with polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes: the POEMS syndrome. Report on two cases and a review of the literature. Medicine 1980;59:311–22.
Dispenzieri A, Kyle RA, Lacy MQ, et al. POEMS syndrome: definitions and long-term outcome. Blood 2003;101:2496–506.
Takatsuki K, Sanada I. Plasma cell dyscrasia with polyneuropathy and endocrine disorder: clinical and laboratory features of 109 reported cases. Jpn J Clin Oncol 1983;13:543–55.
Nakanishi T, Sobue I, Toyokura Y, et al. The Crow-Fukase syndrome: a study of 102 cases in Japan. Neurology 1984;34:712–20.
Crow R. Peripheral neuritis in myelomatosis. Br Med J 1956;2:802–4.
Driedger H, Pruzanski W. Plasma cell neoplasia with osteosclerotic lesions. A study of five cases and a review of the literature. Arch Intern Med 1979;139:892–6.
Iwashita H, Ohnishi A, Asada M, Kanazawa Y, Kuroiwa Y. Polyneuropathy, skin hyperpigmentation, edema, and hypertrichosis in localized osteosclerotic myeloma. Neurology 1977;27:675–81.
Mangalik A, Veliath AJ. Osteosclerotic myeloma and peripheral neuropathy. A case report. Cancer 1971;28:1040–5.
Evison G, Evans KT. Sclerotic bone deposits in multiple myeloma [letter]. Br J Radiol 1983;56:145.
Reitan JB, Pape E, Fossa SD, Julsrud OJ, Slettnes ON, Solheim OP. Osteosclerotic myeloma with polyneuropathy. Acta Med Scand 1980;208:137–44.
Kelly Jj Jr., Kyle RA, Miles JM, Dyck PJ. Osteosclerotic myeloma and peripheral neuropathy. Neurology 1983;33:202–10.
Soubrier MJ, Dubost JJ, Sauvezie BJ. POEMS syndrome: a study of 25 cases and a review of the literature. French study group on POEMS syndrome. Am J Med 1994;97:543–53.
Watanabe O, Arimura K, Kitajima I, Osame M, Maruyama I. Greatly raised vascular endothelial growth factor (VEGF) in POEMS syndrome [letter]. Lancet 1996;347:702.
Soubrier M, Dubost JJ, Serre AF, et al. Growth factors in POEMS syndrome: evidence for a marked increase in circulating vascular endothelial growth factor. Arthritis Rheum 1997;40:786–7.
Hashiguchi T, Arimura K, Matsumuro K, et al. Highly concentrated vascular endothelial growth factor in platelets in Crow-Fukase syndrome. Muscle Nerve 2000;23:1051–6.
Gherardi RK, Belec L, Soubrier M, Malapert D, Zuber M, Viard JP. Overproduction of proinflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood 1996;87:1458–65.
Hitoshi S, Suzuki K, Sakuta M. Elevated serum interleukin-6 in POEMS syndrome reflects the activity of the disease. Intern Med 1994;33:583–7.
Rose C, Zandecki M, Copin MC, et al. POEMS syndrome: report on six patients with unusual clinical signs, elevated levels of cytokines, macrophage involvement and chromosomal aberrations of bone marrow plasma cells. Leukemia 1997;11:1318–23.
Orefice G, Morra VB, De Michele G, et al. POEMS syndrome: clinical, pathological and immunological study of a case. Neurol Res 1994;16:477–80.
Nakazawa K, Itoh N, Shigematsu H, Koh CS. An autopsy case of Crow-Fukase (POEMS) syndrome with a high level of IL-6 in the ascites. Special reference to glomerular lesions. Acta Pathol Jpn 1992;42:651–6.
Emile C, Danon F, Fermand JP, Clauvel JP. Castleman disease in POEMS syndrome with elevated interleukin-6 [letter; comment]. Cancer 1993;71:874.
Saida K, Ohta M, Kawakami H, Saida T. Cytokines and myelin antibodies in Crow-Fukase syndrome. Muscle Nerve 1996;19:1620–2.
Feinberg L, Temple D, de Marchena E, Patarca R, Mitrani A. Soluble immune mediators in POEMS syndrome with pulmonary hypertension: case report and review of the literature. Crit Rev Oncog 1999;10:293–302.
Soubrier M, Labauge P, Jouanel P, Viallard JL, Piette JC, Sauvezie B. Restricted use of Vlambda genes in POEMS syndrome. Haematologica 2004;89:ECR02.
Nakaseko C, Abe D, Takeuchi M, et al. Restricted oligo-clonal usage of monoclonal immunoglobulin {lambda} light chain germline in POEMS syndrome. ASH Annual Meeting Abstracts 2007;110:2483.
Bryce AH, Ketterling RP, Gertz MA, et al. Cytogenetic analysis using multiple myeloma targets in POEMS syndrome. Proceedings of American Society of Oncology Meeting, Chicago, IL, 2007.
Bergouignan FX, Massonnat R, Vital C, et al. Uncompacted lamellae in three patients with POEMS syndrome. Eur Neurol 1987;27:173–81.
Viard JP, Lesavre P, Boitard C, et al. POEMS syndrome presenting as systemic sclerosis. Clinical and pathologic study of a case with microangiopathic glomerular lesions. Am J Med 1988;84:524–8.
Belec L, Mohamed AS, Authier FJ, et al. Human herpesvirus 8 infection in patients with POEMS syndrome-associated multicentric Castleman's disease. Blood 1999;93:3643–53.
Belec L, Authier FJ, Mohamed AS, Soubrier M, Gherardi RK. Antibodies to human herpesvirus 8 in POEMS (polyneuropathy, organomegaly, endocrinopathy, M protein, skin changes) syndrome with multicentric Castleman's disease. Clin Infect Dis 1999;28:678–9.
Bosch EP, Smith BE. Peripheral neuropathies associated with monoclonal proteins. [Review] [63 refs]. Med Clin North Am 1993;77:125–39.
Tokashiki T, Hashiguchi T, Arimura K, Eiraku N, Maruyama I, Osame M. Predictive value of serial platelet count and VEGF determination for the management of DIC in the Crow-Fukase (POEMS) syndrome. Intern Med 2003;42:1240–3.
Endo I, Mitsui T, Nishino M, Oshima Y, Matsumoto T. Diurnal fluctuation of edema synchronized with plasma VEGF concentration in a patient with POEMS syndrome. Intern Med 2002;41:1196–8.
Nakano A, Mitsui T, Endo I, Takeda Y, Ozaki S, Matsumoto T. Solitary plasmacytoma with VEGF overproduction: report of a patient with polyneuropathy. Neurology 2001;56:818–19.
Koga H, Tokunaga Y, Hisamoto T, et al. Ratio of serum vascular endothelial growth factor to platelet count correlates with disease activity in a patient with POEMS syndrome. Eur J Intern Med 2002;13:70–4.
Watanabe O, Maruyama I, Arimura K, et al. Overproduction of vascular endothelial growth factor/vascular permeability factor is causative in Crow-Fukase (POEMS) syndrome. Muscle Nerve 1998;21:1390–7.
Scarlato M, Previtali SC, Carpo M, et al. Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain 2005;128:1911–20.
Loeb JM, Hauger PH, Carney JD, Cooper AD. Refractory ascites due to POEMS syndrome. Gastroenterology 1989;96:247–9.
Arimura K. Increased vascular endothelial growth factor (VEGF) is causative in Crow-Fukase syndrome. [Japanese]. Rinsho Shinkeigaku 1999;39:84–5.
Gherardi RK, Belec L, Fromont G, et al. Elevated levels of interleukin-1 beta (IL-1 beta) and IL-6 in serum and increased production of IL-1 beta mRNA in lymph nodes of patients with polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes (POEMS) syndrome. Blood 1994;83:2587–93.
Shikama N, Isono A, Otsuka Y, Terano T, Hirai A. A case of POEMS syndrome with high concentrations of interleukin-6 in pericardial fluid. J Intern Med 2001;250:170–3.
Michizono K, Umehara F, Hashiguchi T, et al. Circulating levels of MMP-1, -2, -3, -9, and TIMP-1 are increased in POEMS syndrome. Neurology 2001;56:807–10.
Saida K, Kawakami H, Ohta M, Iwamura K. Coagulation and vascular abnormalities in Crow-Fukase syndrome. Muscle Nerve 1997;20:486–92.
Yishay O, Eran E. POEMS syndrome: failure of newly suggested diagnostic criteria to anticipate the development of the syndrome. Am J Hematol 2005;79:316–18.
Mineta M, Hatori M, Sano H, et al. Recurrent Crow-Fukase syndrome associated with increased serum levels of vascular endothelial growth factor: a case report and review of the literature. Tohoku J Exp Med 2006;210:269–77.
Donaghy M, Hall P, Gawler J, et al. Peripheral neuropathy associated with Castleman's disease. J Neurol Sci 1989;89:253–67.
Lesprit P, Authier FJ, Gherardi R, et al. Acute arterial obliteration: a new feature of the POEMS syndrome? Medicine 1996;75:226–32.
Zenone T, Bastion Y, Salles G, et al. POEMS syndrome, arterial thrombosis and thrombocythaemia. J Intern Med 1996;240:107–9.
Soubrier M, Guillon R, Dubost JJ, et al. Arterial obliteration in POEMS syndrome: possible role of vascular endothelial growth factor. J Rheumatol 1998;25:813–15.
Bova G, Pasqui AL, Saletti M, Bruni F, Auteri A. POEMS syndrome with vascular lesions: a role for interleukin-1beta and interleukin-6 increase – a case report. Angiology 1998;49:937–40.
Kang K, Chu K, Kim DE, Jeong SW, Lee JW, Roh JK. POEMS syndrome associated with ischemic stroke. Arch Neurol 2003;60:745–9.
Atsumi T, Kato K, Kurosawa S, Abe M, Fujisaku A. A case of Crow-Fukase syndrome with elevated soluble interleukin-6 receptor in cerebrospinal fluid. Response to double-filtration plasmapheresis and corticosteroids. Acta Haematol 1995;94: 90–4.
Ghandi GY, Basu R, Dispenzieri A, Basu A, Montori V, Brennan MD. Endocrinopathy in POEMS syndrome: the Mayo clinic experience. Mayo Clin Proc 2007;82:836–42.
Sung JY, Kuwabara S, Ogawara K, Kanai K, Hattori T. Patterns of nerve conduction abnormalities in POEMS syndrome. Muscle Nerve 2002;26:189–93.
Suarez GA, Dispenzieri A, Gertz MA, Kyle RA. The electrophysiologic findings of the peripheral neuropathy associated with POEMS. Clin Neurophysiol 2002;113:S9.
Vital C, Vital A, Ferrer X, et al. Crow-Fukase (POEMS) syndrome: a study of peripheral nerve biopsy in five new cases. J Peripher Nerv Syst 2003;8:136–44.
Crisci C, Barbieri F, Parente D, Pappone N, Caruso G. POEMS syndrome: follow-up study of a case. Clin Neurol Neurosurg 1992;94:65–8.
Sanada S, Ookawara S, Karube H, et al. Marked recovery of severe renal lesions in POEMS syndrome with high-dose melphalan therapy supported by autologous blood stem cell transplantation. Am J Kidney Dis 2006;47:672–9.
Navis GJ, Dullaart RP, Vellenga E, Elema JD, de Jong PE. Renal disease in POEMS syndrome: report on a case and review of the literature. [Review] [25 refs]. Nephrology, Dialysis, Transplantation 1994;9:1477–81.
Sano M, Terasaki T, Koyama A, Narita M, Tojo S. Glomerular lesions associated with the Crow-Fukase syndrome. Virchows Arch A Pathol Anat Histopathol 1986;409:3–9.
Takazoe K, Shimada T, Kawamura T, et al. Possible mechanism of progressive renal failure in Crow-Fukase syndrome [letter]. Clin Nephrol 1997;47:66–7.
Mizuiri S, Mitsuo K, Sakai K, et al. Renal involvement in POEMS syndrome. Nephron 1991;59:153–6.
Stewart PM, Mcintyre MA, Edwards CR. The endocrinopathy of POEMS syndrome. Scott Med J 1989;34:520–2.
Nakamoto Y, Imai H, Yasuda T, Wakui H, Miura AB. A spectrum of clinicopathological features of nephropathy associated with POEMS syndrome. Nephrol Dial Transplant 1999;14:2370–8.
Fukatsu A, Ito Y, Yuzawa Y, et al. A case of POEMS syndrome showing elevated serum interleukin 6 and abnormal expression of interleukin 6 in the kidney. Nephron 1992;62:47–51.
Mufti GJ, Hamblin TJ, Gordon J. Melphalan-induced pulmonary fibrosis in osteosclerotic myeloma [letter]. Acta Haematol 1983;69:140–1.
Iwasaki H, Ogawa K, Yoshida H, et al. Crow-Fukase syndrome associated with pulmonary hypertension. Intern Med 1993;32:556–60.
Ribadeau-Dumas S, Tillie-Leblond I, Rose C, et al. Pulmonary hypertension associated with POEMS syndrome. [Review] [17 refs]. Eur Respir J 1996;9:1760–2.
Okura H, Gohma I, Hatta K, Imanaka T. Thiamine deficiency and pulmonary hypertension in Crow-Fukase syndrome. Intern Med 1995;34:674–5.
Lesprit P, Godeau B, Authier FJ, et al. Pulmonary hypertension in POEMS syndrome: a new feature mediated by cytokines. Am J Respir Crit Care Med 1998;157:907–11.
Brazis PW, Liesegang TJ, Bolling JP, Kashii S, Trachtman M, Burde RM. When do optic disc edema and peripheral neuropathy constitute poetry? Surv Ophthalmol 1990;35:219–25.
Kishimoto S, Takenaka H, Shibagaki R, Noda Y, Yamamoto M, Yasuno H. Glomeruloid hemangioma in POEMS syndrome shows two different immunophenotypic endothelial cells. J Cutan Pathol 2000;27:87–92.
Paciocco G, Bossone E, Erba H, Rubenfire M. Reversible pulmonary hypertension in POEMS syndrome – another etiology of triggered pulmonary vasculopathy?. [Review] [17 refs]. Can J Cardiol 2000;16:1007–12.
Dispenzieri A, Moreno-Aspitia A, Suarez GA, et al. Peripheral blood stem cell transplantation in 16 patients with POEMS syndrome, and a review of the literature. Blood 2004;104:3400–7.
Allam JS, Kennedy CC, Aksamit TR, Dispenzieri A. Pulmonary manifestations are common and associated with shortened survival in POEMS syndrome: a retrospective review of 141 patients. 2008;133(4):969–74.
Lewerenz J, Gocht A, Hoeger PH, et al. Multiple vascular abnormalities and a paradoxical combination of vitamin B(12) deficiency and thrombocytosis in a case with POEMS syndrome. J Neurol 2003;250:1488–91.
Martinez-Lavin M, Vargas AS, Cabre J, et al. Features of hypertrophic osteoarthropathy in patients with POEMS syndrome: a metaanalysis [letter]. J Rheumatol 1997;24:2267–8.
Morley JB, Schwieger AC. The relation between chronic polyneuropathy and osteosclerotic myeloma. J Neurol Neurosurg Psychiatry 1967;30:432–42.
Davis L, Drachman D. Myeloma neuropathy. Arch Neurol 1972;27:507–11.
Philips ED, el-Mahdi AM, Humphrey RL, Furlong Mb Jr. The effect of the radiation treatment on the polyneuropathy of multiple myeloma. J Can Assoc Radiol 1972;23:103–6.
Broussolle E, Vighetto A, Bancel B, Confavreux C, Pialat J, Aimard G. P.O.E.M.S. syndrome with complete recovery after treatment of a solitary plasmocytoma. Clin Neurol Neurosurg 1991;93:165–70.
Ku A, Lachmann E, Tunkel R, Nagler W. Severe polyneuropathy: initial manifestation of Castleman's disease associated with POEMS syndrome. Arch Phys Med Rehabil 1995;76:692–4.
Cabezas-Agricola JM, Lado-Abeal JJ, Otero-Anton E, Sanchez-Leira J, Cabezas-Cerrato J. Hypoparathyroidism in POEMS syndrome [letter]. Lancet 1996;347:701–2.
Wong VA, Wade NK. POEMS syndrome: an unusual cause of bilateral optic disk swelling. Am J Ophthalmol 1998;126:452–4.
Hogan WJ, Lacy MQ, Wiseman GA, Fealey RD, Dispenzieri A, Gertz MA. Successful treatment of POEMS syndrome with autologous hematopoietic progenitor cell transplantation. Bone Marrow Transplant 2001;28:305–9.
Rovira M, Carreras E, Blade J, et al. Dramatic improvement of POEMS syndrome following autologous haematopoietic cell transplantation. Br J Haematol 2001;115:373–5.
Jaccard A, Royer B, Bordessoule D, Brouet JC, Fermand JP. High-dose therapy and autologous blood stem cell transplantation in POEMS syndrome. Blood 2002;99:3057–9.
Peggs KS, Paneesha S, Kottaridis PD, et al. Peripheral blood stem cell transplantation for POEMS syndrome. Bone Marrow Transplant 2002;30:401–4.
Soubrier M, Ruivard M, Dubost JJ, Sauvezie B, Philippe P. Successful use of autologous bone marrow transplantation in treating a patient with POEMS syndrome. Bone Marrow Transplant 2002;30:61–2.
Wiesmann A, Weissert R, Kanz L, Einsele H. Long-term follow-up on a patient with incomplete POEMS syndrome undergoing high-dose therapy and autologous blood stem cell transplantation. Blood 2002;100:2679–80.
Dispenzieri A, Kyle RA, Lacy MQ, et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 2004;103:3960–3.
Takai K, Niikuni K, Kurasaki T. Successful treatment of POEMS syndrome with high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Rinsho Ketsueki 2004;45:1111–14.
Ganti AK, Pipinos I, Culcea E, Armitage JO, Tarantolo S. Successful hematopoietic stem-cell transplantation in multicentric Castleman disease complicated by POEMS syndrome. Am J Hematol 2005;79:206–10.
Kastritis E, Terpos E, Anagnostopoulos A, Xilouri I, Dimopoulos MA. Angiogenetic factors and biochemical markers of bone metabolism in POEMS syndrome treated with high-dose therapy and autologous stem cell support. Clin Lymphoma Myeloma 2006;7:73–6.
Kuwabara S, Misawa S, Kanai K, et al. Autologous peripheral blood stem cell transplantation for POEMS syndrome. Neurology 2006;66:105–7.
Kojima H, Katsuoka Y, Katsura Y, et al. Successful treatment of a patient with POEMS syndrome by tandem high-dose chemotherapy with autologous CD34+ purged stem cell rescue. Int J Hematol 2006;84:182–5.
Imai N, Kitamura E, Tachibana T, et al. Efficacy of autologous peripheral blood stem cell transplantation in POEMS syndrome with polyneuropathy. Intern Med 2007;46:135–8.
Dispenzieri A, Lacy MQ, Hayman SR, et al. Peripheral blood stem cell transplant for POEMS syndrome is associated with high rates of engraftment syndrome. Eur J Haematol 2008;80:397–406.
Anonymous. Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. Myeloma Trialists’ Collaborative Group. J Clin Oncol 1998;16:3832–42.
Satoh K, Miura I, Chubachi A, Utsumi S, Imai H, Miura AB. Development of secondary leukemia associated with (1;7)(q10;p10) in a patient with Crow-Fukase syndrome. Intern Med 1996;35:660–2.
Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome [see comments]. N Engl J Med 1996;335:91–7.
Gertz MA, Lacy MQ, Dispenzieri A, et al. Stem cell transplantation for the management of primary systemic amyloidosis. Am J Med 2002;113:549–55.
Silberstein LE, Duggan D, Berkman EM. Therapeutic trial of plasma exchange in osteosclerotic myeloma associated with the POEMS syndrome. J Clin Apher 1985;2:253–7.
Chang YJ, Huang CC, Chu CC. Intravenous immunoglobulin therapy in POEMS syndrome: a case report. Chung Hua i Hsueh Tsa Chih Chinese Med J 1996;58:366–9.
Coto V, Auletta M, Oliviero U, et al. POEMS syndrome: an Italian case with diagnostic and therapeutic implications. Ann Ital Med Int 1991;6:416–19.
Barrier JH, Le Noan H, Mussini JM, Brisseau JM. Stabilisation of a severe case of P.O.E.M.S. syndrome after tamoxifen administration [letter]. J Neurol Neurosurg Psychiatry 1989;52:286.
Enevoldson TP, Harding AE. Improvement in the POEMS syndrome after administration of tamoxifen [letter]. J Neurology Neurosurg Psychiatry 1992;55:71–2.
Authier FJ, Belec L, Levy Y, et al. All-trans-retinoic acid in POEMS syndrome. Therapeutic effect associated with decreased circulating levels of proinflammatory cytokines. Arthritis Rheum 1996;39:1423–26.
Sinisalo M, Hietaharju A, Sauranen J, Wirta O. Thalidomide in POEMS syndrome: case report. Am J Hematol 2004;76:66–8.
Matsui H, Udaka F, Kubori T, Oda M, Nishinaka K, Kameyama M. POEMS syndrome demonstrating VEGF decrease by ticlopidine. Intern Med 2004;43:1082–3.
Sternberg AJ, Davies P, Macmillan C, Abdul-Cader A, Swart S. Strontium-89: a novel treatment for a case of osteosclerotic myeloma associated with life-threatening neuropathy. Br J Haematol 2002;118:821–4.
Badros A, Porter N, Zimrin A. Bevacizumab therapy for POEMS syndrome. Blood 2005;106:1135.
Straume O, Bergheim J, Ernst P. Bevacizumab therapy for POEMS syndrome. Blood 2006;107:4972–3; author reply 4973–4.
Dispenzieri A, Klein CJ, Mauermann ML. Lenalidomide therapy in a patient with POEMS syndrome. Blood 2007;110:1075–6.
Benito-Leon J, Lopez-Rios F, Rodriguez-Martin FJ, Madero S, Ruiz J. Rapidly deteriorating polyneuropathy associated with osteosclerotic myeloma responsive to intravenous immunoglobulin and radiotherapy. J Neurol Sci 1998;158:113–17.
Henze T, Krieger G. Combined high-dose 7S-IgG and dexamethasone is effective in severe polyneuropathy of the POEMS syndrome [letter] [see comments]. J Neurol 1995;242:482–3.
Rotta FT, Bradley WG. Marked improvement of severe polyneuropathy associated with multifocal osteosclerotic myeloma following surgery, radiation, and chemotherapy. Muscle Nerve 1997;20:1035–7.
Huang CC, Chu CC. Poor response to intravenous immunoglobulin therapy in patients with Castleman's disease and the POEMS syndrome [letter; comment]. J Neurol 1996;243:726–7.
Judge MR, Mcgibbon DH, Thompson RP. Angioendotheliomatosis associated with Castleman's lymphoma and POEMS syndrome. Clin Exp Dermatol 1993;18:360–2.
Kuwabara S, Hattori T, Shimoe Y, Kamitsukasa I. Long term melphalan-prednisolone chemotherapy for POEMS syndrome. J Neurol Neurosurg Psychiatry 1997;63:385–7.
Arima F, Dohmen K, Yamano Y, et al. Five cases of Crow-Fukase syndrome [Japanese]. Fukuoka Igaku Zasshi 1992;83:112–20.
Kim SY, Lee SA, Ryoo HM, Lee KH, Hyun MS, Bae SH. Thalidomide for POEMS syndrome. Ann Hematol 2006;85:545–6.