Pathway Analysis and Optimization in Metabolic Engineering


Pathway Analysis and Optimization in Metabolic Engineering

This book introduces researchers and advanced students in biology and engineering to methods of optimizing biochemical systems of biotechnological relevance. It examines the development of strategies for manipulating metabolic pathways, demonstrates the need for effective systems models, and discusses their design and analysis, while placing special emphasis on optimization. The authors propose power-law models and methods of Biochemical Systems Theory toward these ends. All concepts are derived from first principles, and the text is richly illustrated with numerous graphs and examples throughout.

Reference Title: REFERENCES

Reference Type: reference-list

Aiba, S., and M. Shoda: Reassessment of the product inhibition in alcohol fermentation. J. Ferment. Technol. Jpn. 47, 790–805, 1969
Aiba S., M. Shoda, and M. Nagatani: Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 10, 845–64, 1968
Alberty, R. A.: Biochemical thermodynamics. Biochim. Biophys. Acta 1207, 1–11, 1994
Alberty, R. A.: Calculation of biochemical net reactions and pathways by using matrix operations. Biophys. J. 71, 507–15, 1996
Alberty, R. A., Calculation of equilibrium compositions of large systems of biochemical reactions. J. Phys. Chem. 104(19), 4808–14, 2000
Bailey, J. E., and D. F. Ollis: Biochemical Engineering Fundamentals. McGraw-Hill, New York, 1977
Bode, H. W.: Network Analysis and Feedback Amplifier Design. Van Nostrand, Princeton, NJ, 1945
Briggs, G. E., and J. B. S. Haldane: A note on the kinetics of enzyme action. Biochem. J. 19, 338–9, 1925
Callen, H. B.: Thermodynamics, John Wiley & Sons, New York, 1960
Cascante M., A. Sorribas, R. Franco, and E. I. Canela: Biochemical systems theory: Increasing predictive power by using second-order derivatives measurements J. Theor. Biol. 149, 521–35, 1991
Cha, S., and C.-J. M. Cha: Kinetics of cyclic enzyme systems. Mol. Pharmacol. 1, 178–89, 1965
Clarke, B. L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–215, 1980
Corless, R. M., G. H. Gonnett, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth: On the Lambert W function. Adv. Comp. Math. 5, 329–59, 1996
Cornish-Bowden, A., and M. L. Cárdenas (Eds.): Control of Metabolic Processes, NATO ASI Series A (Vol. 190). Plenum Press, New York, 1990
Covert, M. W., C. H. Schilling, J. S. Edwards, I. Famili, and B.Ø. Palsson: Constraints-based metabolic analysis of Helicobacter pylori. Session 69 of the AIChE Annual Meeting, Los Angeles, CA, 2000
Curto R., E. O. Voit, A. Sorribas, and M. Cascante: Validation and steady-state analysis of a power-law model of purine metabolism. Biochem. J. 324, 761–75, 1997
Curto, R., E. O. Voit, A. Sorribas, and M. Cascante: Mathematical models of purine metabolism in man. Math. Biosci 151, 1–49, 1998a
Curto R., E. O. Voit, A. Sorribas, and M. Cascante: Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man. Biochem. J. 329, 477–87, 1998b
Danenberg, K. D., and W. W. Cleland: Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry 14(1), 28–39, 1975
Duncan, T. M., and J. A. Reimer: Chemical Engineering Design and Analysis: An Introduction. Cambridge University Press, Cambridge, U.K., 1998
Edelstein-Keshet, L.: Mathematical Models in Biology, Birkhäuser Mathematics Series. McGraw-Hill, New York, 1988
Edwards, J. S., and B.Ø. Palsson: The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–33, 2000
Fell, D. A.: Understanding the Control of Metabolism. Portland Press, London, 1997
Fell, D. A., and H. M. Sauro: Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148, 555–61, 1985
Fell, D. A., and J. R. Small: Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–6, 1986
Fermi, E.: Thermodynamics. Dover, New York, 1956 (originally published in 1937)
Galazzo, J. L., and J. E. Bailey: Fermentation pathway kinetics and metabolic flux control in suspended and immobilized S. cerevisiae. Enzyme Microbiol. Technol. 12, 162–72, 1990
Galazzo, J. L., and J. E. Bailey: Errata. Enzyme Microbiol. Technol. 13, 363–71, 1991
Garfinkel, D.: The role of computer simulation in biochemistry. Comp. Biomed. Res. 2(1), 31–44, 1968
Garfinkel, D.: Computer modeling, complex biological systems, and their simplifications. Am. J. Phys. 239(1), R1–6, 1980
Garfinkel, D.: Computer-based modeling of biological systems which are inherently complex: Problems, strategies, and methods. Biomed. Biochim. Acta 44(6), 823–9, 1985
Gavalas, G. R.: Nonlinear Differential Equations of Chemically Reacting Systems. Springer-Verlag, Berlin, 1968
Gerthsen, C., and H. O. Kneser: Physik (11th ed.). Springer-Verlag, Berlin, 1971
Giersch, C.: Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur. J. Biochem. 174, 515–19, 1988
Glansdorff, P., and I. Prigogine: Thermodynamics of Structure, Stability, and Fluctuations. Wiley, New York, 1971
Goldbeter, A.: Biochemical Oscillations and Biological Rhythms. Cambridge University Press, Cambridge, U.K., 1996
Goldstein, A.: The mechanism of enzyme-inhibitor-substrate reactions. J. Gen. Physiol. 27, 529–80, 1944
Heijnen, J. J.: Stoichiometry and kinetics of microbial growth from a thermodynamic perspective. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 3). Cambridge University Press, Cambridge, U.K., 2001
Heinrich, R., and T. A. Rapoport: A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. 42, 89–95, 1974
Heinrich, R., and S. Schuster: The Regulation of Cellular Systems. Chapman and Hall, New York, 1996
Heinrich, R., and S. Schuster: The modeling of metabolic systems. Structure, control, and optimality. BioSystems 47, 61–77, 1998
Heinrich R., S. M. Rapoport, and T. A. Rapoport: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977
Henri, M. V.: Lois générales de l'action des diastases. Hermann, Paris, 1903
Hess, B.: Periodical patterns in biochemical reactions. Quart. Rev. Biophys. 30, 121–76, 1997
Hill, C. M., R. D. Waight, and W. G. Bardsley: Does any enzyme follow the Michaelis-Menten equation? Mol. Cell. Biochem. 15, 173–8, 1977
Horn, F., and R. Jackson: General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116, 1972
Jacquez, J. A.: Compartmental Analysis in Biology and Medicine (3rd ed.). Thomson-Shore, Dexter, MI, 1996
Jorgensen, H., J. Nielsen, and J. Villadsen: Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46, 117–31, 1995
Jou, D., and J. E., Llebot: Introduction to the Thermodynamics of Biological Processes. Prentice Hall, Englewood Cliffs, NJ, 1990
Kacser, H., and J. A. Burns: The control of flux. Symp. Soc. Exp. Biol. 27, 65–104, 1973
Kacser H., H. M. Sauro, and L. Acerenza: Enzyme-enzyme interactions and control analysis. Eur. J. Biochem. 187, 481–91, 1990
Katchalsky, A., and P. F. Curran: Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA, 1967
Kestin, J.: A Course in Thermodynamics. Blaisdell Publishing Company, Waltham, MA, 1966
Kohen, E., C. Kohen, B. Thorell, and G. Wagner: Quantitative aspects of rapid microfluorometry for the study of enzyme reactions and transport mechanisms in single living cells. In: A. A. Thaer and M. Sernetz (Eds.), Fluorescence Techniques in Cell Biology. Springer-Verlag, New York, pp. 207–18, 1973
Kohen, E., B. Thorell, C. Kohen, and J. M. Solmon: Studies on metabolic events in localized compartments of the living cell by rapid microspectro-fluorometry. Adv. Biol. Med. Phys. 15, 271–97, 1974
Lotka, A. J.: Elements of Physical Biology. Williams and Wilkins, Baltimore, 1924 (reprinted as Elements of Mathematical Biology, Dover, New York, 1956)
Mavrovouniotis M. L., G. Stephanopoulos, and G. Stephanopoulos: Computer-aided synthesis of biochemical pathways. Biotechn. Bioeng. 36, 1119–32, 1990
Michaelis, L., and M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Zeitschrift 49, 333–69, 1913
Nielsen, J.: Microbial process kinetics. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 6). Cambridge University Press, Cambridge, U.K., 2001
Ogata, K.: Modern Control Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice Hall, 1990
Papoutsakis, E. T.: Equations and calculations for fermentations of butyric acid bacteria Biotechnol. Bioeng. 26, 174–87, 1984
Papoutsakis, E. T., and C. L. Meyer: Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27, 50–66, 1985
Peschel, M., and W. Mende: The Predator-Prey Model: Do We Live in a Volterra World? Akademie-Verlag, Berlin, 1986
Planck, M.: Treatise on Thermodynamics (3rd ed.). Dover, New York, 1945 (translated from the 7th German edition with the author's sanction by Alexander Ogg)
Pons, A., C. G. Dussap, C. Pequignot, and J. B. Gros: Metabolic flux distribution in Cornybacterium melassecola ATCC 17965 for various carbon sources. Biotechnol. Bioeng. 51, 177–89, 1996
Pramanik, J., and J. D. Keasling: Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421, 1997
Prigogine, I.: Étude Thermodynamique des Processus Irreversibles. Desoer, Liège, 1947 (Introduction to the Thermodynamics of Irreversible Processes, Thomas, Springfield, IL, 1955)
Reder, C.: Metabolic control theory: A structural approach. J. Theor. Biol. 135, 175–201, 1988
Reiner, J. M.: Behavior of Enzyme Systems. Van Nostrand Reinhold, New York, 1969
Ricard, J.: Biological Complexity and the Dynamics of Life Processes. Elsevier, Amsterdam, 1999
Richter., P. H., I. Procaccia, and J. Ross: Chemical instabilities. Adv. Chem. Phys. 43, 217–68, 1980
Roberts, D. V.: Enzyme Kinetics. Cambridge University Press, Cambridge, U.K., 1977
Sauro H. M., J. R. Small, and D. A. Fell: Metabolic control and its analysis. Extensions to the theory and matrix methods. Eur. J. Biochem. 165, 215–22, 1987
Savageau, M. A., Biochemical systems analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. 25, 365–9, 1969a
Savageau, M. A., Biochemical systems analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969b
Savageau, M. A., Biochemical systems analysis, III. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26, 215–26, 1970
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savageau, M. A.: Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. USA 76, 5413–17, 1979a
Savageau, M. A.: Allometric morphogenesis of complex systems: Derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. USA 76, 6023–5, 1979b
Savageau, M. A.: Mathematics of organizationally complex systems. Biomed. Biochim. Acta 44, 839–44, 1985
Savageau, M. A., Biochemical systems theory: Operational differences among variant representations and their significance. J. Theor. Biol. 151, 509–30, 1991
Savageau, M. A.: Critique of the enzymologist's test tube. In: E. E. Bittar (Ed.), Fundamentals of Medical Cell Biology (Vol. 3A, pp. 45–108). JAI Press, Greenwich, CT, 1992a
Savageau, M. A.: Dominance according to metabolic control analysis: Major achievement or house of cards? J. Theor. Biol. 154, 131–6, 1992b
Savageau, M. A.: Design principles for elementary gene circuits: Elements, methods, and examples. Chaos II, 142–59, 2001
Savageau M. A., E. O. Voit, and D. H. Irvine: Biochemical systems theory and metabolic control theory. I. Fundamental similarities and differences. Math. Biosci. 86, 127–45, 1987a
Savageau, M. A., Michaelis-Menten mechanism reconsidered: Implications of fractal kinetics. J. Theor. Biol. 176, 115–24, 1995a
Savageau, M. A.: Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited. In: E. E. Bittar (Ed.), Principles of Medical Biology (Vol. 4, pp. 93–146). JAI Press, Greenwich, CT, 1995b
Savageau, M. A., and A. Sorribas: Constraints among molecular and systemic properties: Implications for physiological genetics. J. Theor. Biol. 141, 93–115, 1989
Savageau, M. A., and E. O. Voit: Recasting nonlinear differential equations as S-systems: A canonical form. Mathem. Biosci. 87, 83–115, 1987
Savageau M. A., E. O. Voit, and D. H. Irvine: Biochemical systems theory and metabolic control theory. II. The role of summation and connectivity relationships. Math. Biosci. 86, 147–69, 1987b
Savinell, J. M.: Analysis of Stoichiometry in Metabolic Networks. Ph.D. dissertation, University of Michigan, 1991
Savinell, J. M., and B.Ø. Palsson: Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154(4), 421–54, 1992a
Savinell, J. M., and B.Ø. Palsson: Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154(4), 455–73, 1992b
Savinell, J. M., and B.Ø. Palsson: Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. J. Theor. Biol. 155(2), 201–14, 1992c
Savinell, J. M., and B.Ø. Palsson: Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992d
Schauer, M., and R. Heinrich: Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks. Math. Biosci. 65, 155–70, 1983
Schilling, C. H., and B.Ø. Palsson: The underlying pathway structure of biochemical reaction networks. Proc. Natl. Acad. Sci. USA 95(8), 4193–8, 1998
Schilling, C. H., and B.Ø. Palsson: Assessment of metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–83, 2000
Schilling, C. H., S. Schuster, B.Ø. Palsson, and R. Heinrich: Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15(3), 296–303, 1999
Schilling, C. H., D. Letscher, and B.Ø. Palsson: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248, 2000
Schnell, S., and P. K. Maini: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–99, 2000
Schnell, S., and C. Mendoza: Closed-form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–12, 1997
Schulz, A. R.: Enzyme Kinetics. From Diastase to Multi-enzyme Systems. Cambridge University Press, Cambridge, U.K., 1994
Segel, L. A., On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–93, 1988
Segel, L. A.: Biological Kinetics. Cambridge University Press, Cambridge, U.K., 1991
Segel, L. A., and M. Slemrod: The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31, 446–77, 1989
Seressiotis, A., and J. E. Bailey: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602, 1988
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267, 22912–18, 1992a
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267, 22919–25, 1992b
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behaviour. J. Biol. Chem. 267, 22926–33, 1992c
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alterntative methods of analysis. J. Biol. Chem. 267, 22934–43, 1992d
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. V. Systemic effects of including protein turnover in the current model. J. Biol. Chem. 268, 16917–28, 1993
Sols, A., and R. Marco: Concentrations of metabolites and binding sites. Implications in metabolic regulation. Curr. Top. Cell. Reg. 2, 227–73, 1970
Sorribas, A., J. March, and E. O. Voit: Estimating age-related trends in cross-sectional studies using S-distributions. Stat. Med. 10(5), 697–713, 2000
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering. Principles and Methodologies. Academic Press, San Diego, CA, 1998
Thornton, H. G.: On the development of a standardised Agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. IX, 241–74, 1922
Tsai, S. P., and Y. H. Lee: Application of Gibbs' rule and a simple pathway method to microbial stoichiometry. Biotechnol. Prog. 4(2), 82–8, 1988
Tyson, J. J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics (Vol. 10). Springer Verlag, Berlin, 1976
Vallino, J. J., and G. Stephanopoulos: Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41, 633–46, 1993
Varma, A., and B.Ø. Palsson: Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism. Biotechnol. Bioeng. 45, 69–79, 1995
Varma, A., B. W. Boesch, and B.Ø. Palsson: Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73, 1993
Varma, A., B. W. Boesch, and B.Ø. Palsson: Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technol. 12, 994–8, 1994
Voit, E. O. (Ed.): Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, (ⅺ + 365 pp.). Van Nostrand Reinhold, New York, 1991
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ 530 pp.). Cambridge University Press, Cambridge, U.K., 2000a
Voit, E. O.: Canonical modeling: A review of concepts with emphasis on environmental health. Environ. Health Perspect. 108 (Suppl. 5): (Mathematical Modeling in Environmental Health Studies), 895–909, 2000b
Voit, E. O., and M. A. Savageau: Accuracy of alternative representations for integrated biochemical systems. Biochem. 26, 6869–80, 1987
Waller, K. V., and P. M. Mäkllä: Chemical reaction invariants and variants and their use in reactor modeling, simulation, and control. Ind. Eng. Chem. Proc. Des. Dev. 20, 1–11, 1981
Westerhoff, H. V., and K. van Dam: Thermodynamics and Control of Biological Free-Energy Transduction. Elsevier, Amsterdam, 1987
Woolfolk, C. A., and E. R. Stadtman: Regulation of glutamine synthetase. III. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli. Arch. Biochem. Biophys. 118, 736–55, 1967
Wright, B. E., M. H., Butler, and K. R. Albe: Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction. J. Biol. Chem. 267, 3101–5, 1992
Wright, E. M.: Solution of the equation z exp(z) = a. Proc. Roy. Soc. Edinburgh, A 65, 193–203, 1959

Reference Title: REFERENCES

Reference Type: reference-list

Almeida, J. S., M. A. M. Reis, and M. J. T. Carrondo: Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescence. Biotechnol. Bioeng. 46, 476–84, 1995
Alves, R., and M. Savageau: Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics 16, 527–33, 2000a
Alves, R., and M. Savageau: Systemic properties of ensembles of metabolic networks: Application of graphical and statistical methods to simple unbranched pathways. Bioinformatics 16, 534–47, 2000b
Alves, R., and M. Savageau: Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16, 786–98, 2000c
Alves, R., and M. Savageau: Effect of overall feedback inhibition in unbranched biosynthetic pathways. Biophys. J. 79, 2290–304, 2000d
Bar-Eli, K., and W. Geiseler: Perturbations around steady states in a continuous stirred tank reactor. J. Phys. Chem. 87, 1352–7, 1983
Berg, P. H., E. O. Voit, and R. White: A pharmacodynamic model for the action of the antibiotic Imipenem on Pseudomonas in vitro. Bull. Math. Biol. 58(5), 923–38, 1996
Cascante, M., R. Franco, and E. Canela: Sensitivity analysis: A common foundation of theories for the quantitative study of metabolic control. In E. O. Voit (Ed.), Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (Chapter 4). Van Nostrand Reinhold, New York, 1991
Casti, J. L.: Nonlinear System Theory. Academic Press, Orlando, FL, 1985
Chen, C.-T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York, 1984
Chevalier, T., I. Schreiber, and J. Ross: Toward a systematic determination of complex reaction mechanisms. J. Phys. Chem. 97, 6776–87, 1993
Clarke, B. L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–215, 1980
Curto, R., E. O. Voit, A. Sorribas, and M. Cascante: Mathematical models of purine metabolism in man. Math. Biosci. 151, 1–49, 1998
Degn, H., L. F. Olsen, and J. W. Perram: Bistability, oscillation, and chaos in an enzyme reaction. Ann. N.Y. Acad. Sci. 316, 622–37, 1979
Díaz-Sierra, R., and V. Fairén: Simplified method for the computation of parameters of power-law equations from time-series. Math. Biosci. 171, 1–19, 2001
Díaz-Sierra, R., J. B. Lozano, and V. Fairén: Deduction of chemical mechanisms from the linear response around steady state. J. Phys. Chem. 103, 337–43, 1999
Edelstein-Keshet, L.: Mathematical Models in Biology. Birkhäuser Mathematics Series. McGraw-Hill, New York, 1988
Fell, D. A.: Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–30, 1992
Fell, D. A.: Understanding the Control of Metabolism. Portland Press, London, 1997
Ferreira, A. E. N.: PLAS©: http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Gavalas, G. R.: Nonlinear Differential Equations of Chemically Reacting Systems. Springer-Verlag, Berlin, 1968
Groen, A. K., R. van den Meer, H. V. Westerhoff, R. J. A. Wanders, T. P. M. Akerboom, and J. M. Tager: Control of metabolic fluxes. In H. Sies (Ed.), Metabolic Compartmentation (pp. 9–37). Academic Press, New York, 1982
Guckenheimer, J., and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983
Haefner, J. A.: Modeling Biological Systems. Principles and Applications. Chapman and Hall, New York, 1996
Haldane, J. B. S: Enzymes (pp. 28–64). Longmans, Green and Co., London, 1930
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996b
Jou, D., and J. E. Llebot: Introduction to the Thermodynamics of Biological Processes. Prentice Hall, Englewood Cliffs, NJ, 1990
Jury, E. I.: The inners approach to some problems of systems theory. IEEE Trans. Automatic Contr. AC-16, 233–40, 1971
Kacser, H., and J. A. Burns: Molecular democracy: Who shares the controls? Biochem. Soc. Trans. 7, 1149–60, 1979
Kopelman, R.: Rate processes on fractals: Theory, simulations, experiments. J. Stat. Phys. 42, 185–200, 1986
Kopelman, R.: Reaction kinetics in restricted spaces. Israel J. Chem. 31, 147–57, 1991
Lang, S.: A Second Course in Calculus. Addison-Wesley Publishing Company, Reading, MA, 1968
Lewis, D. C.: A qualitative analysis of S-systems: Hopf bifurcations. In E. O. Voit (Ed.), Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (Chapter 16). Van Nostrand Reinhold, New York, 1991
Lübbert, A., and R. Simutis: Measurement and control. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 10). Cambridge University Press, Cambridge, U.K., 2001
Mayhan, R. J.: Discrete-Time and Continuous-Time Linear Systems. Addison-Wesley, Reading, MA, 1983
Neves, A. R., A. Ramos, M. C. Nunes, M. Kleerebezem, J. Hugenholtz, W. M. de Vos, J. Almeida, and H. Santos: In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64(2), 200–12, 1999
Ogata, K.: Modern Control Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice Hall, 1990
Okamoto, M., Y. Morita, D. Tominaga, K. Tanaka, N. Kinoshita, J.-I. Ueno, Y. Miura, Y. Maki, and Y. Eguchi: Design of virtual-labo-system for metabolic engineering: Development of biochemical engineering system analyzing tool-kit (BEST KIT). Comp. Chem. Eng. 21(Suppl.), S745–50, 1997
Olsen, L. F., and H. Degn: Chaos in an enzyme reaction. Nature 267, 177–8, 1977
Olsen, L. F., and H. Degn: Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochem. Biophys. Acta 523(2), 321–34, 1978
Palsson, B.Ø., and E. N. Lightfoot: Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. J. Theor. Biol. 111, 273–302, 1984
Palsson, B.Ø., R. Jamier, and E. N. Lightfoot: Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes. J. Theor. Biol. 111, 303–21, 1984
Palsson, B.Ø., H. Palsson, and E. N. Lightfoot: Mathematical modelling of dynamics and control in metabolic networks. III. Linear reaction sequences. J. Theor. Biol. 113, 231–59, 1985
Richter, P. H., I. Procaccia, and J. Ross: Chemical instabilities. Adv. Chem. Phys. 43, 217–68, 1980
Routh, E. J.: Advanced Part of Dynamics of a System of Rigid Bodies (6th edition, Vol. II). Macmillan, London, 1930
Rugen, P., and B. Callahan: An overview of Monte-Carlo, a fifty year perspective. Human Ecological Risk Assess. 2(4), 671–80, 1996
Sands, P. J., and E. O. Voit: Flux-based estimation of parameters in S-systems. Ecol. Model. 93, 75–88, 1996
Savageau, M. A.: Biochemical Systems Analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–79, 1969
Savageau, M. A.: Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229(5286), 542–4, 1971a
Savageau, M. A.: Concepts relating behaviour of biochemical systems to their underlying molecular properties. Arch. Biochem. Biophys. 145, 612–21, 1971b
Savageau, M. A.: The behavior of intact biochemical control systems. Curr. Top. Cell. Reg. 6, 63–129, 1972
Savageau, M. A.: Optimal design of feedback control by inhibition: Dynamic considerations. J. Mol. Evol. 5, 199–222, 1975
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savageau, M. A.: Influence of fractal kinetics on molecular recognition. J. Mol. Recogn. 6, 149–157, 1993
Savageau, M. A.: Michaelis-Menten mechanism reconsidered: Implications of fractal kinetics. J. Theor. Biol. 176, 115–24, 1995a
Savageau, M. A.: Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited. In: E. E. Bittar (Ed.), Principles of Medical Biology (Vol. 4, pp. 93–146). JAI Press, Greenwich, CT 1995b
Segall, J. E, S. M. Block, and H. C. Berg: Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 83, 8987–91, 1986
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267, 22919–25, 1992
Sorribas, A., and M. A. Savageau: Strategies for representing metabolic pathways within biochemical systems theory: Reversible Pathways. Math. Biosci. 94, 239–69, 1989
Sorribas, A., S. Samitier, E. I. Canela, and M. Cascante: Metabolic pathway characterization from transient response data obtained in situ: Parameter estimation in S-system models. J. Theor. Biol. 162, 81–102, 1993
Sorribas, A., J. B. Lozano, and V. Fairén: Deriving chemical and biochemical model networks from experimental measurements. Rec. Devel. Phys. Chem. 2, 553–73, 1998
Steinmetz, C. G., and R. Larter: The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction. J. Chem. Phys. 94(2), 1388–96, 1991
Tominaga, D., M. Okamoto, Y. Maki, S. Watanabe, and Y. Eguchi: Nonlinear numerical optimization technique based on genetic algorithm for inverse problem: towards the inference of genetic networks. Proc. German Conf. on Bioinformatics, 127–140, 1999
Torsella, J., and A. M. Bin Razali: An analysis of forestry data. In: E. O. Voit (Ed.), Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (Chapter 10). Van Nostrand Reinhold, New York, 1991
U.S. EPA: Guiding Principles for Monte-Carlo Analysis (EPA/630/R-97/001), http://www.epa.gov/ncea/monteabs.htm, 1997
Voit, E. O. (Ed.): Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, (ⅺ + 365 pp.). Van Nostrand Reinhold, New York, 1991
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 532 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O.: Models-of-data and models-of-processes in the post-genomic era (Mathem. Biosci. (in press))
Voit, E. O., and M. Del Signore: Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001
Voit, E. O., and T. Radivoyevitch: Biochemical systems analysis of genome-wide expression data. Bioinformatics 16(11), 1023–37, 2000
Voit, E. O., and P. J. Sands: Modeling forest growth. II. Biomass partitioning in Scots pine. Ecol. Model. 86, 73–89, 1996
Voit, E. O., and M. A. Savageau: Power-law approach to modeling biological systems. III. Methods of analysis. J. Ferment. Technol. 60(3), 233–41, 1982
Yamazaki, I., K. Yokota, and R. Nakajima: Oscillatory oxidations of reduced pyridine nucleotide by peroxidase. Biochem. Biophys. Res. Commun. 21, 582–6, 1965
Zhang, Z., E. O. Voit, and L. H. Schwacke: Parameter estimation and sensitivity analysis of S-systems using a genetic algorithm. In: T. Yamakawa and G. Matsumoto (Eds.), Methodologies for the Conception, Design, and Application of Intelligent Systems. World Scientific, Singapore, 1996

Reference Title: REFERENCES

Reference Type: reference-list

Aiba, S., and M. Matsuoka: Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21, 1373–86, 1979
Alvarez-Vasquez, F.: Modelización, análisis y optimización del metabolismo del hongo Aspergillus niger en condiciones de producción de ácido cítrico. PhD dissertation, University of La Laguna, Spain, 2000
Alvarez-Vasquez, F., C. González-Alcón, and N. V. Torres: Metabolism of citric acid production by Aspergillus niger: Model definition, steady state analysis and constrained optimization of the citric acid production rate. Biotechnol. Bioeng. 70(1), 82–108, 2000
Amaranisingham, C. F., and B. D. Davis: Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J. Biol. Chem. 240, 3664–8, 1965
Arisan-Atac, I., M. Wolschek, and C. P. Kubicek: Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 140, 77–83, 1996
Arts, E., C. P. Kubicek, and M. Röhr: Regulation of phosphofructokinase from Aspergillus niger: Effect of fructose 2,6 bisphosphate on the action of citrate, ammonium ions and AMP. J. Gen. Microbiol. 133, 1195–9, 1987
Blázquez, M. A., R. Lagunas, C. Gancedo, and J. M. Gancedo: Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–4, 1993
Bloom, S., and M. Johnson: The pyruvate carboxylase of Aspergillus niger. J. Biol. Chem. 237, 2718–20, 1962
Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet, and J. Labarre: The heat shock response in yeast: Differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33(2), 274–83, 1999
Briquet, M.: Transport of pyruvate and lactate in yeast mitochondria. Biochim. Biophys. Acta 459, 290–9, 1977
Cleland, W. W., and M. J. Johnson: Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208, 679–92, 1954
Crow, V. L., and C. L. Wittenberger: Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans. J. Biol. Chem. 254(4), 1134–42, 1979
Evans, C. T., A. H. Scragg, and C. Ratledge: Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast by adenine nucleotides. Eur. J. Biochem. 132, 609–15, 1981
Evans, C. T., A. H. Scragg, and C. Ratledge: A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast. Eur. J. Biochem. 130, 195–204, 1983
Feir, H. A., and I. Suzuki: Pyruvate carboxilase of Aspergillus niger: Kinetic study of a biotin-containing carboxilase. Can. J. Biochem. 47, 697–710, 1969
Fell, D. A.: Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–30, 1992
Ferreira, A.: PLAS©: http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Führer, L., C. P. Kubicek, and M. Röhr: Pyridine nucleotide levels and ratios in Aspergillus niger. Can. J. Biochem. 26, 405–8, 1980
Groen, A. K., R. J. A. Wanders, H. V. Westerhoff, R. van der Meer, and J. M. Tager: Control of metabolic fluxes. In: H. Sies (Ed.), Metabolic Compartmentation (pp. 9–37). Academic Press, New York, 1982
Guebel, D., and N. V. Torres: Optimization of the citric acid production by A. niger through a metabolic flux balance model. Elect. J. Biotechnol., in press
Habison, A., C. P. Kubicek, and M. Röhr: Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger. FEMS Microbiol. Lett. 5, 39–42, 1979
Habison, A., C. P. Kubicek, and M. Röhr: Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–76, 1983
Halestrap, A. P., R. D. Scott, and A. P. Thomas: Mitochondrial pyruvate transport and its hormonal regulation. Int. J. Biochem. 11, 97–105, 1980
Henry, M-F., and E.-J. Nyns: Cyanide-insensitive respiration. An alternative mitochondrial pathway. Sub-Cell. Biochem. 4, 1–65, 1975
Henson, C. P., and W. W. Cleland: Kinetic studies of glutamic-oxalacetate transaminase isoenzymes. Biochemistry 3, 338–48, 1964
Jaklitsch, W., C. P. Kubicek, and M. Scrutton: Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol. 37, 823–7, 1991
Kirimura, K., Y. Hirowatari, and S. Usami: Alterations of respiratory systems in Aspergillus niger under the condition of citric acid fermentation. Agric. Biol. Chem. 51, 1299–303, 1987
Kirimura, K., M. Yoda, H. Shimizu, S. Sugano, M. Mizuno, K. Kino, and S. Usami: Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase to citric acid production in Aspergillus niger. Biosci. Biotechnol. Biochem. 64(10), 2034–9, 2000
Kubicek, C. P.: Aspects of control of metabolic fluxes in microorganisms. Dechema-Monogr., VCH Verlagsgesellschaft 105, 81–95, 1987
Kubicek, C. P.: Organic acids. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 14). Cambridge University Press, Cambridge, U.K., 2001
Kubicek, C. P., and M. Röhr: Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger. Eur. J. Appl. Microbiol. 4, 167–173, 1977
Kubicek, C. P., and M. Röhr: The role of the tricarboxylic acid cycle in citric acid accumulation by Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 5, 263–71, 1978
Kubicek, C. P., and M. Röhr: Citric acid fermentation. CRC Crit. Rev. Biotechnol. 3(4), 331–73, 1986
Kubicek, C. P., W. Hampel, and M. Röhr: Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123, 73–9, 1979
Kubicek, C. P., O. Zehentgruber, H. El-Kalak, and M. Röhr: Regulation of citric acid production by oxygen: Effects of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 101–16, 1980
Kubicek-Pranz, E. M., M. Mozelt, M. Roehr, and C. P. Kubicek: Changes in the concentration of fructose 2, 6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim. Biophys. Acta 1033, 250–5, 1990
Legisa, M., and M. Mattey: Glycerol synthesis by Aspergillus niger under citric acid accumulating conditions. Enzyme Microbiol. Technol. 8, 607–9, 1988
Ma, H., C. P. Kubicek, and M. Röhr: Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiol. Lett. 12, 147–51, 1981
Mattey, M.: Citrate regulation of citric acid production by Aspergillus niger. FEMS Microbiol. Lett. 2, 71–4, 1977
Mattey, M.: The production of organic acids. Crit. Rev. Biotechnol. 12, 87–132, 1992
Meixner-Monori, B., C. P. Kubicek, and M. Röhr: Pyruvate kinase from Aspergillus niger: A regulatory enzyme in glycolysis? Can. J. Microbiol. 30, 16–22, 1983
Meixner-Monori, B., C. P. Kubicek, A. Habison, E. M. Kubicek-Pranz, and M. Röhr: Presence and regulation of the α-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J. Bacteriol. 161, 265–71, 1985
Meixner-Monori, B., C. P. Kubicek, W. Harrer, G. Schreferl, and M. Röhr: NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem. J. 236, 549–57, 1986
Meyrath, J.: Citric acid production. Proc. Biochem. 2, 25–7, 1967
Mischak, H., C. P. Kubicek, and M. Röhr: Citrate inhibition of glucose uptake in Aspergillus niger. Biotechnol. Lett. 6, 425–30, 1984
Netik, A., N. V. Torres, J. M. Riol, and C. P. Kubicek: Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta 1326, 287–94, 1997
Newsholme, E. A., and C. Start: Regulation in Metabolism. John Wiley & Sons, London, 1973
Ni, T.-C., and M. A. Savageau: Application of biochemical systems theory to metabolism in human red blood cells. Signal propagation and accuracy of representation. J. Biol. Chem. 271(14), 7927–41, 1996a
Ni, T.-C., and M. A. Savageau: Model assessment and refinement using strategies from biochemical systems theory: Application to metabolism in human red blood cells. J. Theor. Biol. 179, 329–68, 1996b
Osmani, S. A., and M. C. Scrutton: The subcellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–60, 1983
Panneman, H., G. J. G. Ruijter, H. C. Van der Broeck, E. T. Driever, and J. Visser: Cloning and biochemical characterization of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240, 518–25, 1996
Panneman, H., G. J. G. Ruijter, H. C. Van der Broeck, and J. Visser: Cloning and biochemical characterization of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur. J. Biochem. 258, 223–32, 1998
Pedersen, H., M. Carlsen, and J. Nielsen: Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl. Environ. Microbiol. 65(1), 11–19, 1999
Perkins, M., J. M. Haslam, and A. W. Linnane: Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport sysytem for tricarboxylate-cycle anions. Biochem. J. 134, 923–934, 1973
Prömper, C., R. Schneider, and H. Weiss: The role of the proton-pumping and alternative respiratory chain NADH: Ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur. J. Biochem. 216, 223–30, 1993
Reich, J. G., and E. E. Sel'kov: Energy Metabolism of the Cell. Academic Press, London, 1981
Röhr, M.: A century of citric acid fermentation and research. Food Technol. Biotechnol. 36(3), 163–71, 1998
Röhr, M., and C. P. Kubicek: Regulatory aspects of citric acid fermentation by Aspergillus niger. Proc. Biochem. 16, 34–7, 1981
Röhr, M., C. P. Kubicek, O. Zehentgruber, and R. Orthofer: Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. 27, 235–9, 1987
Sakai, K., K. Hasumi, and A. Endo: Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. Eur. J. Biochem. 193(1), 195–202, 1990
Salvador, A.: Synergism analysis of biochemical systems. I. Conceptual framework. Math. Biosci. 163(2), 105–29, 2000a
Salvador, A.: Synergism analysis of biochemical systems. II. Tensor formulation and treatment of stoichiometric constraints. Math. Biosci. 163(2), 131–58, 2000b
Savageau, M. A.: Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969
Savageau, M. A.: Optimal design of feedback control by inhibition: Dynamic considerations. J. Mol. Evol. 5, 199–222, 1975
Savageau, M. A.: Biochemical System Analysis: A study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Schmidt, M., J. Wallrath, A. Dörner, and H. Weiss: Disturbed assembly of the respiratory chain NADH: Ubiquinone reductase (complex I) in citric-acid-accumulating Aspergillus niger strain B60. Appl. Microbiol. Biotechnol. 36, 667–72, 1992
Schreferl-Kunar, G., M. Grotz, M. Röhr, and C. P. Kubicek: Increased citric acid production by mutants of Aspergillus niger with increased glycolytic capacity. FEMS Microbiol. Lett. 59, 297–300, 1989
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267(32), 22912–18, 1992a
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267(32), 22919–25, 1992b
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behavior. J. Biol. Chem. 267(32), 22926–33, 1992c
Sorribas, A., and M. A. Savageau: Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways. Math. Biosci. 94, 239–69, 1989
Steinbock, F. A.: Doctoral dissertation, Technical University of Vienna, Vienna, Austria, 1993
Steinbock, F. A., I. Held, S. Chojun, H. Harsen, M. Röhr, E. M. Kubicek-Prantz, and C. P. Kubicek: Regulatory aspects of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol. 116, 571–81, 1991
Supply, P., A. Wach, and A. Goffeau: Enzymatic properties of the PMA2 plasma membrane-bound H+-ATPase of Saccharomyces cerevisiae. J. Biol. Chem. 268(25), 19753–9, 1993
Torres, N. V.: Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. I. Model definition and stability of the steady state. Biotechnol. Bioeng. 44, 104–11, 1994a
Torres, N. V.: Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. II. Sensitivity analysis. Biotechnol. Bioeng. 44, 112–18, 1994b
Torres, N. V., J. M. Riol-Cimas, M. Wolschek, and C. P. Kubicek: Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–4, 1996
Verhoff, F. H., and J. E. Spradlin: Mass and energy balance analysis of metabolic pathways applied to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 18(3), 425–32, 1976
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 533 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O., and A. E. N. Ferreira: Buffering in models of integrated biochemical systems. J. Theor. Biol. 191, 429–38, 1998
Wallrath, J., J. Schmidt, and H. Weiss: Concomitant loss of respiratory chain NADH: ubiquinone reductase (complex I) and citric acid accumulation in Aspergillus niger. Appl. Microbiol. Biotechnol. 36, 76–81, 1991
Wehmer, C.: Beiträge zur Kenntnis einheimischer Pilze. I. Zwei neue Schimmelpilze als Erreger einer Citronensäure-Gärung. Halm, Hannover/Leipzig, 1903
Wolschek, M. F., and C. P. Kubicek: Biochemistry of citric acid accumulation in Aspergillus niger. In: B. Kristiansen, M. Mattey, and J. Linden (Eds.), Citric Acid Biotechnology (pp. 11–32). Taylor and Francis, London, U.K., 1998
Woronick, C., and M. J. Johnson: Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J. Biol. Chem. 235, 9–15, 1960
Xu, D.-B., C. P. Madrid, M. Röhr, and C. P. Kubicek: The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30, 553–8, 1989
Zahorsky, B.: U. S. Patent 1,065,358, 1913
Zehentgruber, O., C. P. Kubicek, and M. Röhr: Alternative respiration of Aspergillus niger. FEMS Microbiol. Lett. 8, 71–4, 1980

Reference Title: REFERENCES

Reference Type: reference-list

Bertsekas, D. P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont, MA, 1998
Courant, R.: Vorlesungen über Differential – und Integralrechnung. Zweiter Band. Springer-Verlag, Berlin, 1972
Glantz, S. A., and B. K. Slinker: Primer of Applied Regression and Analysis of Variance. McGraw-Hill, New York, 1990
Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, 1989
Kolman, B. Introductory Linear Algebra with Applications (6th ed.). Prentice Hall, Upper Saddle River, NJ, 1997
Kreyszig, E.: Advanced Engineering Mathematics (7th ed.). John Wiley & Sons, New York, 1993
Maki, Y., D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi: Development of a system for the inference of large scale genetic networks. Pacific Symp. Biocomputing, 446–58, 2001
Okamoto, M., Y. Morita, D. Tominaga, K. Tanaka, N. Kinoshita, J.-I. Ueno, Y. Miura, Y. Maki, and Y. Eguchi: Design of virtual-labo-system for metabolic engineering: Development of biochemical engineering system analyzing tool-kit (BEST KIT). Comp. Chem. Eng. 21(Suppl.), S745–50, 1997
Ribeiro Filho, J. L., P. C. Treleaven, and C. Alippi: Genetic-algorithm programming environments. IEEE Comp., pp. 28–43, June 1994
Saaty, T. L., and J. Bram: Nonlinear Mathematics. Dover, New York, 1964
Sakamoto, E., and H. Iba: Inferring a system of differential equations for a gene regulatory network by using genetic programming. Proc. of the 2001 Congress on Evolutionary Computation CEC 2001. Seoul, Korea, pp. 720–6, 2001
Srinivas, M., and L. M. Patnaik: Genetic algorithms: A survey. IEEE Comp., pp. 17–26, June 1994
Stewart, J.: Single Variable Calculus. Early Transcendentals (4th ed.). Brooks/Cole, Pacific Grove, 1999
Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA, 1986
Vagners, J.: Optimization techniques. In: C. E. Pearson (Ed.), Handbook of Applied Mathematics. Selected Results and Methods (2nd ed., pp. 1140–216). 1983
von Seggern, D. H.: CRC Handbook of Mathematical Curves and Surfaces. CRC Press, Boca Raton, FL, 1990
Yao, L., and W. A. Sethares: Nonlinear parameter estimation via the genetic algorithm. IEEE Trans. Signal Proc. 42(4), 927–35, 1994
Zhang, Z., Voit, E. O., and L. H. Schwacke: Parameter estimation and sensitivity analysis of S-systems using a genetic algorithm. In: T. Yamakawa and Matsumoto, G. (Eds.), Methodologies for the Conception, Design, and Application of Intelligent Systems. World Scientific, Singapore, 1996

Reference Title: REFERENCES

Reference Type: reference-list

Alves, R., and M. Savageau: Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics 16, 527–33, 2000a
Alves, R., and M. Savageau: Systemic properties of ensembles of metabolic networks: Application of graphical and statistical methods to simple unbranched pathways. Bioinformatics 16, 534–47, 2000b
Alves, R., and M. Savageau: Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16, 786–98, 2000c
Alves, R., and M. Savageau: Effect of overall feedback inhibition in unbranched biosynthetic pathways. Biophys. J. 79, 2290–304, 2000d
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Arkun, Y., and G. Stephanopoulos: Optimizing control of industrial chemical processes: State of the art review. Proc. Joint Autom. Contr. Conf., WP5–A, San Francisco, CA, 1980
Bailey, J.: Toward a science of metabolic engineering. Science 252, 1668–74, 1991
Bailey, J.: Mathematical modeling and analysis in biochemical engineering: Past accomplishment and future opportunities. Biotechnol. Prog. 14(1), 8–20, 1998
Bertsekas, D. P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont, MA, 1998
Brown, G. C., R. P. Hafner, and M. D. Brand: A “top-down” approach to the determination of control coefficients in metabolic control theory. Eur. J. Biochem. 188, 321–5, 1990
Candler, W., and R. Norton: Multilevel programming and development policy. World Bank Staff Working Paper No. 258, IBRD, Washington, D.C., 1977
Candler, W., and R. Townsley: A linear two-level programming problem. Comp. Ops. Res. 9, 59–76, 1982
Charnes, A., and W. W. Cooper: Management Models and Industrial Applications of Linear Programming (Vols. I and II). John Wiley & Sons, New York, 1961
Clark, P. A.: Bilevel programming for steady-state chemical process design – II. Performance study for nondegenerate problems. Comp. Chem. Eng. 14, 99–109, 1990
Clark, P. A., and A. W. Westerberg: Bilevel programming for steady-state chemical process design – I. Fundamentals and algorithms. Comp. Chem. Eng. 14, 87–97, 1990
Cochrane, J. L., and M. Zeleny (Eds.): Multiple Criteria Decision Making. University of South Carolina Press, Columbia, SC, 1973
Conejeros, R., and V. S. Vassiliadis: Analysis and optimization of biochemical process reaction pathways. 1. Pathway sensitivities and identification of limiting steps. Ind. Eng. Chem. Res. 37, 4699–708, 1998a
Conejeros, R., and V. S. Vassiliadis: Analysis and optimization of biochemical process reaction pathways. 2. Optimal selection of reaction steps for modification. Ind. Eng. Chem. Res. 37, 4709–14, 1998b
Conejeros, R., and V. S. Vassiliadis: Dynamic biochemical reaction process analysis and pathway modification predictions. Biotechnol. Bioeng. 68(3), 285–97, 2000
Dantzig, G. B.: Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963
Duncan, T. M., and J. A. Reimer: Chemical Engineering Design and Analysis: An Introduction. Cambridge University Press, Cambridge, U.K., 1998
Ebenhöh, O., and R. Heinrich: Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull. Math. Biol. 63, 21–55, 2001
Fell, D. A.: Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–30, 1992
Fell, D. A., and J. R. Small: Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–6, 1986
French, S., R. Hartley, L. C. Thomas, and D. J. White (Eds.): Multi-Objective Decision Making. Academic Press, London, 1983
Garcia, C. E., and M. Morari: Optimal operation of integrated processing systems. AIChE J. 27, 960–8, 1981
Garfinkel, R. S., and G. L. Nemhauser: Integer Programming. John Wiley & Sons, New York, 1972
Gass, S. I.: Linear Programming: Methods and Applications. McGraw-Hill, New York, 1985
Gavalas, G. R.: Nonlinear Differential Equations of Chemically Reacting Systems. Springer-Verlag, Berlin, 1968
Glansdorff, P., and I. Prigogine: Thermodynamic Theory of Structure, Stability, and Fluctuations. Wiley-Interscience, London, UK, 1971
Górak, A., A. Krasławski, and A. Vogelpohl: Simulation und optimierung der mehrstoff-rektifikation. Chem. Ing. Tech. 59, 95–106, 1987
Groetsch, C. W., and J. T. King: Matrix Methods and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1988
Hadley, G.: Linear Programming. Addison-Wesley, Reading, MA, 1962
Harmon, J., S. A. Svoronos, and G. Lyberatos: Adaptive steady-state optimization of biomass productivity in continuous fermentors. Biotechnol. Bioeng. 30, 335–44, 1987
Hartley, R.: Survey of algorithms for vector optimisation problems. In: S. French, R. Hatley, L. C. Thomas, and D. J. White (Eds.), Multi-Objective Decision Making (pp. 1–34). Academic Press, London, 1983
Harwood, C. R., and A. Wipat: Genome management and analysis: Prokaryotes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 4). Cambridge University Press, Cambridge, U.K., 2001
Hatzimanikatis, V., and J. E. Bailey: MCA has more to say. J. Theor. Biol. 182, 233–42, 1996
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996b
Heinrich, R., and S. Schuster: The Regulation of Cellular Systems. Chapman and Hall, New York, 1996
Heinrich, R., S. M. Rapoport, and T. A. Rapoport: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977
Hlavacek, W. S., and M. A. Savageau: Subunit structure of regulator proteins influences the design of gene circuitry: Analysis of perfectly coupled and completely uncoupled circuits. J. Mol. Biol. 248, 739–55, 1995
Hlavacek, W. S., and M. A. Savageau: Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol. 255(1), 121–39, 1996
Hlavacek, W. S., and M. A. Savageau: Completely uncoupled and perfectly coupled gene expression in repressible systems. J. Mol. Biol. 266, 538–58, 1997
Horn, F., and R. Jackson: General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116, 1972
Irvine, D. H.: The method of controlled mathematical comparison. In: E. O. Voit (Ed.), Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (Chapter 7). Van Nostrand Reinhold, New York, 1991
Irvine, D. H., and M. A. Savageau: Network regulation of the immune response: Alternative control points for suppressor modulation of effector lymphocytes. J. Immunol. 134, 2100–16, 1985a
Irvine, D. H., and M. A. Savageau: Network regulation of the immune response: Modulation of suppressor lymphocytes by alternative signals including contra-suppression. J. Immunol. 134, 2117–30, 1985b
Kacser, H., and L. Acerenza: A universal method for increase in metabolite production. Eur. J. Biochem. 216, 361–7, 1993
Koffas, M., C. Roberge, K. Lee, and G. Stephanopoulos: Metabolic engineering. Ann. Rev. Biomed. Eng. 1, 535–57, 1999
Kolman, B. Introductory Linear Algebra with Applications (6th ed.). Prentice Hall, Upper Saddle River, NJ, 1997
Kreyszig, E.: Advanced Engineering Mathematics (7th ed.). John Wiley & Sons, New York, 1993
Liao, J. C., and J. Delgado: Advances in metabolic control analysis. Biotechnol. Prog. 9, 221–33, 1993
Lübbert, A., and R. Simutis: Measurement and control. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 10). Cambridge University Press, Cambridge, U.K. 2001
Luenberger, D. G.: Linear and Nonlinear Programming. Addison-Wesley, Reading, MA, 1984
Majewski, R. A., and M. M. Domach: Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732–8, 1990
Marín-Sanguino, A., and N. V. Torres: Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization. Biotechnol. Prog. 16(2), 133–45, 2000
Mavrovouniotis, M. L., G. Stephanopoulos, and G. Stephanopoulos: Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119–32, 1990
Meléndez-Hevia, E.: The game of the pentose phosphate cycle: A mathematical approach to study the optimization in design of metabolic pathways during evolution. Biomed. Biochim. Acta 49, 903–16, 1990
Meléndez-Hevia, E., and A. Isidoro: The game of the pentose phosphate cycle. J. Theor. Biol. 117, 251–63, 1985
Meléndez-Hevia, E., and N. V. Torres: Economy of design in metabolic pathways: Further remarks on the game of the pentose phosphate cycle. J. Theor. Biol. 132, 97–111, 1988
Meléndez-Hevia, E., T. G. Waddell, and F. Montero: Optimization of metabolism: The evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J. Theor. Biol. 166, 201–19, 1994
Meléndez-Hevia, E., T. G. Waddell, and M. Cascante: The puzzle of the Krebs cycle: Assembling the pieces of chemically featusible reactions and opportunism in design of metabolic pathways during evolution. J. Mol. Evol. 43, 293–303, 1996
Meléndez-Hevia, E., T. G. Waddell, R. Heinrich, and F. Montero: Theoretical approaches to the evolutionary optimization of glycolysis. Eur. J. Biochem. 244, 527–43, 1997
Mittenthal, J. E., A. Yuan, B. Clarke, and A. Scheeline: Designing metabolism; alternative connectivities for the pentose-phosphate pathway. Bull. Math. Biol. 60, 815–56, 1998
Mittenthal, J. E., B. Clarke, T. G. Waddell, and G. Fawcett: A new method for assembling metabolic networks, with application to the Krebs citric acid cycle. J. Theor. Biol. 208(3), 361–82, 2001
Oldenburger, R.: Optimal Control. Holt, Rinehart and Winston, New York, 1966
Papoutsakis, E. T.: Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26, 174–87, 1984
Papoutsakis, E. T., and C. L. Meyer: Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27, 50–66, 1985a
Papoutsakis, E. T., and C. L. Meyer: Fermentation equations for propionic-acid bacteria and production of assorted oxychemicals from various sugars. Biotechnol. Bioeng. 27, 67–80, 1985b
Pareto, V.: Cours d'Econome Politique. Rouge, Lausanne, 1896
Petersen, J. N., and G. A. Whyatt: Dynamic on-line optimization of a bioreactor. Biotechnol. Bioeng. 35, 712–18, 1990
Pissara, P. N., J. Nielsen, and M. J. Bazin: Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 51, 168–76, 1996
Quant, P. A.: Experimental application of top-down analysis to metabolic systems. Trends Biochem. Sci. 18, 26–30, 1993
Regan, L., I. D. L. Bogle, and P. Dunhill: Simulation and optimization of metabolic pathways. Comp. Chem. Eng. 17(5/6), 627–37, 1993
Rodríguez-Acosta, F., C. M. Regalado, and N. V. Torres: Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. J. Biotechnol. 68, 15–28, 1999
Rolf, M. J., and H. C. Lim: Experimental adaptive on-line optimization of cellular productivity of a continuous bakers' yeast culture. Biotechnol. Bioeng. 27, 1236–45, 1985
Rustem, B.: Multiple objectives with convex constraints. In: S. French, R. Hartley, L. C. Thomas, and D. J. White (Eds.), Multi-Objective Decision Making (pp. 127–43). Academic Press, London, 1983
Savageau, M. A.: Biochemical systems analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969
Savageau, M. A.: Concepts relating behaviour of biochemical systems to their underlying molecular properties. Arch. Biochem. Biophys. 145, 612–21, 1971a
Savageau, M. A.: Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229 (5286), 542–4, 1971b
Savageau, M. A.: The behavior of intact biochemical control systems. Curr. Top. Cell Reg. 6, 63–130, 1972
Savageau, M. A.: Comparison of classical and autogenous systems of regulation in inducible operons. Nature (London) 252, 546–9, 1974a
Savageau, M. A.: Genetic regulatory mechanisms and the ecological niche of Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 2354–455, 1974b
Savageau, M. A.: Optimal design of feedback control by inhibition: Dynamic considerations. J. Mol. Evol. 5, 199–222, 1975
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savageau, M. A.: A theory of alternative designs for biochemical control systems. Biomed. Biochim. Acta 44, 875–80, 1985
Savageau, M. A.: Are there rules governing patterns of regulation? In: B. C. Goodwin and P. T. Saunders (Eds.), Theoretical Biology – Epigenetic and Evolutionary Order (pp. 42–66). Edinburgh University Press, Edinburgh, U.K., 1989
Savinell, J. M.: Analysis of Stoichiometry in Metabolic Networks. Ph. D. dissertation, University of Michigan, 1991
Savinell, J. M., and B.Ø. Palsson: Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154(4), 421–54, 1992a
Savinell, J. M., and B.Ø. Palsson: Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154(4), 455–73, 1992b
Savinell, J. M., and B.Ø. Palsson: Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. J. Theor. Biol. 155(2), 201–14, 1992c
Savinell, J. M., and B.Ø. Palsson: Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992d
Semones, G. B., and H. C. Lim: Experimental multivariable adaptive optimization of the steady-state cellular productivity of continuous baker's yeast culture. Biotechnol. Bioeng. 33, 16–25, 1989
Seressiotis, A., and J. E. Bailey: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602, 1988
Simpson, T. W., G. E. Colon, and G. Stephanopoulos: Two paradigms of metabolic engineering applied to amino acid biosynthesis. Biochem. Soc. Trans. 23(2), 381–7, 1995
Simpson, T. W., B. D. Follstad, and G. Stephanopoulos: Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71, 207–23, 1999
Stephanopoulos, G.: Metabolic engineering. Biotechnol. Bioeng. 58(2–3), 119–20, 1998
Stephanopoulos, G., and T. W. Simpson: Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52(15), 2607–27, 1997
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA, 1998
Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application. John Wiley & Sons, New York, 1986
Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA, 1986
Torres, N. V., E. O. Voit, and C. H. Alcón: Optimization of nonlinear biotechnological processes with linear programming. Application to citric acid production in Aspergillus niger. Biotechnol. Bioeng. 49, 247–58, 1996
Torres, N. V., E. O. Voit, C. Glez-Alcón, and F. Rodriguez: An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 55(5), 758–72, 1997
Torres, N. V., E. O. Voit, C. Glez-Alcón, and F. Rodríguez: A novel approach to design of overexpression strategy for metabolic engineering. Application to the carbohydrate metabolism in the citric acid producing mould Aspergillus niger. Food Technol. Biotechnol. 36(3), 177–84, 1998
Vagners, J.: Optimization techniques. In: C. E. Pearson (Ed.), Handbook of Applied Mathematics. Selected Results and Methods (2nd ed., pp. 1140–216). Van Nostrand Reinholt Company, New York, 1983
Voit, E. O. (Ed.): Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (ⅺ + 365 pp.). Van Nostrand Reinhold, New York, 1991
Voit, E. O.: Optimization in integrated biochemical systems. Biotechnol. Bioeng. 40, 572–82, 1992
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 532 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O., and M. Del Signore: Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001

Reference Title: REFERENCES

Reference Type: reference-list

Alvarez-Vasquez, F.: Modelización, análisis y optimización del metabolismo del hongo Aspergillus niger en condiciones de producción de ácido cítrico. Ph. D. dissertation, University of La Laguna, Tenerife, Spain, 2000
Alvarez-Vasquez, F., C. González-Alcón, and N. V. Torres: Metabolism of citric acid production by Aspergillus niger: Model definition, steady state analysis and constrained optimization of the citric acid production rate. Biotechnol. Bioeng. 70(1), 82–108, 2000
Alvarez-Vasquez, F., M. Cánovas, J. L. Iborra, and N. V. Torres: Modelling and optimization of continuous L-(-)-carnitine production by high-density Escherichia coli cultures. Forthcoming
An, H., R. P. Scopes, M. Rodríguez, K.-F. Kesvav, and L. O. Ingram: Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of an alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173, 5975–82, 1991
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Bentley, W. E., N. Mirjalili, D. C. Andersen, R. H. Davis, and D. S. Kompala: Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechol. Bioeng. 35, 668–81, 1990
Currie, J. N.: On the citric acid production of Aspergillus Niger. Science 44, 215–16, 1916
Currie, J. N.: The citric acid fermentation. J. Biol. Chem. 31, 15–21, 1917
Ferreira, A. E. N.: PLAS©: http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Führer, L., C. P. Kubicek, and M. Röhr: Pyridine nucleotide levels and ratios in Aspergillus niger. Can. J. Microbiol. 26, 405–08, 1980
Geigy, A. G.: Documenta Geigy: Wissenschaftliche Tabellen (6th ed.). Pharmazeutische Abteilung der Firma J. R. Geigy A. G., Basel, 1960
Görgens, J. F., W. H. van Zyl, J. H. Knoetze, and B. Hahn-Hägerdal: The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol. Bioeng. 73(3), 238–45, 2001
Guarante, G., L. Gail, T. M. Roberts, and M. Ptashane: Improved methods for maximizing expression of a cloned gene: A bacterium that synthesizes rabbit β-globin. Cell 20, 543–53, 1980
Harwood, C. R., and A. Wipat: Genome management and analysis: Prokaryotes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 4). Cambridge University Press, Cambridge, U.K., 2001
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a
Hatzimanikatis, V., C. A. Floudas, and J. E. Bailey: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996b
Hottiger, T., P. Schmutz, and A. Wiemken: Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 5518–22, 1987
Jensen, P. R., and K. Hammer: Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–5, 1998
Koffas, M., C. Roberge, K. Lee, and G. Stephanopoulos: Metabolic engineering. Annu. Rev. Biomed. Eng. 1, 535–57, 1999
Mattanovitch, D., W. Kramer, C. Lüttich, R. Weik, K. Bayer, and H. Katinger: Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58, 296–8, 1998
Netik, A., N. V. Torres, J. M. Riol, and C. P. Kubicek: Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta 1326, 287–94, 1997
Niederberger, P., R. Prasad, G. Miozzari, and H. Kacser: A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem. J. 287, 473–9, 1992
Petkov, S. B., and C. D. Maranas: Quantitative assessment of uncertainty in the optimization of metabolic pathways. Biotechnol. Bioeng. 56, 145–61, 1997
Ratledge, C.: Look before you clone. Letter to the editor. FEMS Microbiol. Lett. 189, 317–18, 2000
Ruijter, C. J. G.: Life is not that simple. Letter to the editor. FEMS Microbiol. Lett. 189, 318–19, 2000
Ruijter, C. J. G., H. Panneman, and J. Visser: Overexpression of phosphofructokinase and pyruvate kinasse in citric acid producing Aspergillus niger. Biochim. Biophys. Acta 1334, 317–23, 1997
Ruijter, C. J. G., H. Panneman, and J. Visser: Metabolic engineering of the glycolytic pathway in Aspergillus niger. Food Technol. Biotechnol. 36(3), 185–8, 1998
Ruijter, C. J. G., H. Panneman, X. Ding-Bang, and J. Visser: Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40, 2000
Salvador, A.: Synergism analysis of biochemical systems. I. Conceptual framework. Math. Biosc. 163(2), 105–29, 2000a
Salvador, A.: Synergism analysis of biochemical systems. II. Tensor formulation and treatment of stoichiometric constraints. Math. Biosc. 163(2), 131–58, 2000b
Sargent, R., and E. Wainwright (Eds): Crystal Ball: Forecasting & Risk Analysis for Spreadsheet Users, Version 4.0, CG Press, Broomfield, CO, 1996
Savageau, M. A.: Biochemical systems analysis II. The steady state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969
Savageau, M. A. and E. O. Voit: Recasting nonlinear differential equations as S-systems: A canonical nonlinear form. Math. Biosci. 87, 83–115, 1987
Schmidt, M., J. Wallrath, A. Dörner, and H. Weiss: Disturbed assembly of the respiratory chain NADH: Ubiquinone reductase (complex I) in citric-acid-accumulating Aspergillus niger strain B60. Appl. Microbiol. Biotechnol. 36, 667–72, 1992
Schreferl-Kunar, G., M. Grotz, M. Röhr, and C. P. Kubicek: Increased citric acid production by mutants of Aspergillus niger with incresased glycolytic capacity. FEMS Microbiol. Lett. 59, 297–300, 1989
Smits, H. P., J. Hauf, S. Müller, T. J. Hobley, F. K. Zimmermann, B. Hahn-Hägerdal, J. Nielsen, and L. Olsson: Simultaneous overepression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 2000
Snoep, J. L., L. P. Yomano, H. V. Westerhoff, and L. O. Ingram: Protein burden in Zymomonas mobilis: Negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141, 2329–37, 1995
Steinbock, F. A., I. Held, S. Chojun, H. Harsen, M. Rohr, E. M. Kubicek-Pranz, and C. P. Kubicek: Regulatory aspects of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol. 11(6), 571–81, 1991
Stephanopoulos, G.: A platform of flux and gene expression measurements for metabolic engineering and drug discovery (Presentation). Biol. Inf. Proc. Syst. Workshop, Clemson University, Clemson, SC, January 19–20, 2001
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering. Academic Press, San Diego, 1998
Thomas, S., and S. Fell: The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Reg. 38, 65–85, 1998
Torres, N. V., J. M. Riol-Cimas, M. Wolschek, and C. P. Kubicek: Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–4, 1996a
Torres, N. V., E. O. Voit, and C. González-Alcón: Optimization of nonlinear biotechnological processes with linear programming: Application toXSXS citric acid production by Aspergillus niger. Biotechnol. Bioeng. 49, 247–58, 1996b
Torres, N. V., E. O. Voit, C. González-Alcón, and F. Rodríguez: An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 247–58, 1997
Voit, E. O.: Optimization in integrated biochemical systems. Biotechnol. Bioeng. 40, 572–82, 1992
Voit, E. O., and M. Del Signore: Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001
Wallach. J.: Interpretation of Diagnostic Tests (4th ed.). Little, Brown, and Company, Boston, 1986
Wallrath, J., J. Schmidt, and H. Weiss: Concomitant loss of respiratory chain NADH: ubiquinone reductase (complex I) and citric acid accumulation in Aspergillus niger. Appl. Microbiol. Biotechnol. 36, 76–81, 1991

Reference Title: REFERENCES

Reference Type: reference-list

Alvarez-Vasquez, F., M. Cánovas, J. L. Iborra, and N. V. Torres: Modelling and optimization of continuous L-(-)-carnitine production by high-density Escherichia coli cultures, 2002
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Bothast, R. J., N. N. Nichols, and B. S. Dien: Fermentations with new recombinant organisms. Biotechnol. Prog. 15(5), 867–75, 1999
Brown, C. E., J. M. Taylor, and L. M. Chan: The effect of pH on the interaction of substrates and effector to yeast and rabbit muscle pyruvate kinases. Biochim. Biophys. Acta 829(3), 342–7, 1985
Cascante, M., R. Curto, and A. Sorribas: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Steady-state analysis. Math. Biosci. 130, 51–69, 1995
Cascante, M., M. Lloréns, E. Meléndez-Hevia, J. Puigjaner, F. Montero, and E. Martí: E. The metabolic productivity of the cell factory. J. Theor. Biol. 182, 317–25, 1996
Conejeros R., and V. S. Vassiliadis: Analysis and optimization of biochemical process reaction pathways. 1. Pathway sensitivities and identification of limiting steps. Ind. Eng. Chem. Res. 37, 4699–708, 1998
Conejeros R., and V. S. Vassiliadis: Dynamic biochemical reaction process analysis and pathway modification predictions. Biotechnol. Bioeng. 68(3), 285–97, 2000
Curto, R., A. Sorribas, and M. Cascante: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model definition and nomenclature. Math. Biosci. 130, 25–50, 1995
Curto, R., E. O. Voit, A. Sorribas, and M. Cascante: Validation and steady-state analysis of a power-law model of purine metabolism. Biochem. J. 324, 761–75, 1997
Curto, R., E. O. Voit, A. Sorribas, and M. Cascante: Mathematical models of purine metabolism in man. Math. Biosci. 151, 1–49, 1998a
Curto, R., E. O. Voit, A. Sorribas, and M. Cascante: Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man. Biochem. J. 329, 477–87, 1998b
Davies, S. E. C., and K. M. Brindle: Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 331, 4729–35, 1992
de Atauri, P., R. Curto, J. Puigjaner, A. Cornish-Bowden, and M. Cascante: Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modeling metabolic pathways. Eur. J. Biochem. 265, 671–9, 1999
Easterby, J. S.: A generalized theory of the transition time for sequential enzyme reactions. Biochem. J. 199, 155–61, 1981
Enfors, S.-O.: Baker's yeast. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 17). Cambridge University Press, Cambridge, U.K., 2001
Ferreira, A. E. N.: PLAS©. http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Galazzo, J. L., and J. E. Bailey: In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast S. cerevisiae. Biotechnol. Bioeng. 33, 1283–9, 1989
Galazzo, J. L., and J. E. Bailey: Fermentation pathway kinetics and metabolic flux control in suspended and immobilized S. cerevisiae. Enzyme Microbiol. Technol. 12, 162–72, 1990
Galazzo, J. L., and J. E. Bailey: Errata. Enzyme Microbiol. Technol. 13, 363–71, 1991
Gong, C. S., N. J. Cao, J. Du, and G. T. Tsao: Ethanol production from renewable resources. Adv. Biochem. Eng. Biotechnol. 65, 207–41, 1999
Hatzimanikatis, V., C., Floudas, and J. E. Bailey: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500, 1996a
Hatzimanikatis, V., C., Floudas, and J. E. Bailey: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–92, 1996b
Hauf, J., F. K. Zimmerman, and S. Müller: Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 26, 688–98, 2000
Heinish, J: Isolation and characterization of the two structural genes encoding for phosphofructokinase in yeast. Mol. Gen. Genet. 202, 75–80, 1986
Heinrich, R., and E. Hoffmann: Kinetic parameters of enzymatic reactions in states of maximal activity. An evolutionary approach. J. Theor. Biol. 151, 249–83, 1991
Heinrich, R., and S. Schuster: The Regulation of Cellular Systems. Chapman and Hall, New York, 1996
Heinrich, R., S. M. Rapoport, and T. A. Rapoport: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977
Heinrich, R., E. Hoffmann, and H.-G. Holzhütter: Calculation of kinetic parameters of a reversible enzymatic reaction in states of maximal activity. Biomed. Biochim. Acta 49, 891–902, 1990
Heinrich, R., S. Schuster, and H.-G. Holzhütter: Mathematical analysis of enzymatic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21, 1991
Hess, B., and T. Plesser: Temporal and spatial order in biochemical systems. Ann. N.Y. Acad. Sci. 316, 203–13, 1978
Hynne, F., S. Dane, and P. G. S⊘rensen: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94(1–2), 121–63, 2001
Isermann, H.: EFFACET Operating Manual. University of Frankfurt, Germany, 1977a
Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple objective program. Operations Res. Quart. 28(3), 711–25, 1977b
Jeffries, T. W., and N. Q. Shi: Genetic engineering for improved xylose fermentation by yeasts. Adv. Biochem. Eng.-Biotechnol. 65, 117–61, 1999
Jeong, H., B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási: The large-scale organization of metabolic networks. Nature 407, 651–4, 2000 (supplementary material to be found at http://www.nd.edu/~networks/cell/supply.htm)
Jorge-Santiso, J.: Aspectos metodológicos y computacionales de la optimización multiobjetivo. El caso lineal. Master's thesis, Universidad de La Laguna, 1992
Leicester, H. M.: Development of Biochemical Concepts from Ancient to Modern Times. Harvard University Press, Cambridge, MA, 1974
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–8, 1944
Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters. J. SIAM 11(2), 431–41, 1963
Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs. Springer, Berlin, 1992
Michalewicz, Z., and N. Attia: Evolutionary optimization of constrained problems. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming (pp. 150–65). World Scientific, Singapore, 1994
Moré, J., G. Burton, and H. Kenneth: User guide for MINIPACK-1. Argonne National Labs Report ANL-80-74. Argonne, IL, 1980
Niederberger, P., R. Prasad, G. Miozzari, and H. Kacser: A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem. J. 287, 473–9, 1992
Petkov, S. B., and C. D. Maranas: Quantitative assessment of uncertainty in the optimization of metabolic pathways. Biotechnol. Bioeng. 56(2), 145–61, 1997
Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 289–95, 1992
Pretorius, I. S.: Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16(8), 675–729, 2000
Rothman, L., and E. Cabib: Allosteric properties of yeast glycogen synthetase. I. General kinetic study. Biochemistry 6(7), 2098–112, 1967
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savinell, J. M., and B.Ø. Palsson: Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992
Schaaff, I., Heinish, J., and F. K. Zimmermann: Overproduction of glycolytic enzymes in yeast. Yeast 5, 285–90, 1989
Schlosser, P. M., G. Riedy, and J. E. Bailey: Ethanol production in baker's yeast: Application of experimental perturbation techniques for model development and resultant changes in flux control analysis. Biotechnol. Prog. 10, 141–54, 1994
Schuster, S., and R. Heinrich: Minimization of intermediates concentrations as a suggested optimality principle for biochemical networks. I. Theoretical analysis. J. Math. Biol. 29, 425–42, 1991
Schuster, S., R. Schuster, and R. Heinrich: Minimization of intermediates concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erytrocyte metabolism. J. Math. Biol. 29, 443–55, 1991
Shanks, J. V., and J. E. Bailey: Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P magnetic resonance spectroscopy. Biotechnol. Bioeng. 32, 1138–52, 1988
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267, 22912–18, 1992a
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267, 22919–25, 1992b
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behaviour. J. Biol. Chem. 267, 22926–33, 1992c
Shiraishi, F., and M. A. Savageau: The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alterntative methods of analysis. J. Biol. Chem. 267, 22934–43, 1992d
Smits, H. P., J. Hauf, S. Müller, T. J. Hobley, F. K. Zimmermann, B. Hahn-Hägerdal, J. Nielsen, and L. Olsson: Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 2000
Sorribas, A., R. Curto, and M. Cascante: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model validation and dynamic behavior. Math. Biosci. 130, 71–84, 1995
Stephanoupoulos, G., and T. W. Simpson: Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52(15), 2607–27, 1997
Steuer, R.: ADBASE. Multiple Objective Linear Programming Package. Operating Manual. Faculty of Management Science, University of Georgia, Athens, GA, 1995
Su, S., and P. J. Russel: Adenylate kinase from bakers' yeast. 3. Equilibria: Equilibrium exchange and mechanism. J. Biol. Chem. 243, 3826–33, 1968
Thomas, S., and D. Fell: The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Reg. 38, 65–85, 1998
Torres, N. V.: Application of the transition time of metabolic systems as a criterion for optimization of metabolic processes. Biotechnol. Bioeng. 44, 291–6, 1994
Torres, N. V., E. O. Voit, C. Glez-Alcón, and F. Rodriguez: An indirect optimization method for biochemical systems: Description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 55(5), 758–72, 1997
Vera, J., P. de Atauri, M. Cascante, and N. V. Torres: Multi-criteria optimization of biochemical systems by linear programming. Application to the ethanol production by Saccharomyces cerevisiae, submitted
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge, U.K, 2000
Voit, E. O., and M. Del Signore: Assessment of effects of experimental imprecision on optimized biochemical systems. Biotechnol. Bioeng. 74(5), 443–8, 2001
Voit, E. O., and A. E. N. Ferreira: Buffering in models of integrated biochemical systems. J. Theor. Biol. 191, 429–38, 1998
Voit, E. O., and M. A. Savageau: Analytical solutions to a generalized growth equation. J. Math. Anal. Appl. 103(2), 380–6, 1984
Voit, E. O., and M. A. Savageau: Accuracy of alternative representations for integrated biochemical systems. Biochemistry 26, 6869–80, 1987
Wilhelm, T., and R. Brüggermann: Goal functions for the developments of natural systems. Ecol. Model. 132, 231–46, 2000
Wilkinson, K. D., and I. A. Rose: Isotope trapping studies of yeast hexokinase during steady state catalysis. A combined rapid quench and isotope trapping technique. J. Biol. Chem. 254(24), 12567–72, 1979
Yang, S. T., and W. C. Deal, Jr.: Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 8(7), 2806–13, 1969

Reference Title: REFERENCES

Reference Type: reference-list

Abrieu, A., M. Doree, and D. Fisher: The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J. Cell Sci. 114(2), 257–67, 2001
Aiba, S., and M. Matsuoka: Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21, 1373–86, 1979
Alvarez-Vasquez, F., M. Cánovas, J. L. Iborra, and N. V. Torres: Modelling and optimization of continuous L-(-)-carnitine production by high-density Escherichia coli cultures. Biotechnol. Bioeng. (in press)
An, H., R. P. Scopes, M. Rodríguez, K.-F. Kesvav, and L. O. Ingram: Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of an alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173, 5975–82, 1991
Archer, D. B., D. A. MacKenzie, and D. J. Jeenes: Genetic engineering: Yeasts and filamentous fungi. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 5). Cambridge University Press, Cambridge, U.K., 2001
Auge, N., A. Negre-Salvayre, R. Salvayre, and T. Levade: Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog. Lipid Res. 39(3), 207–29, 2000
Bailey, J.: Toward a science of metabolic engineering. Science 252, 1668–74, 1991
Bailey, J. E.: Lessons from metabolic engineering for functional genomics and drug discovery. Nature Biotechnol. 17, 616–18, 1999
Bentley, W. E., N. Mirjalili, D. C. Andersen, R. H. Davis, and D. S. Kompala: Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–81, 1990
Bhalla, U. S., and R. Iyenger: Emergent properties of networks of biological signaling pathways. Science 283, 381–7, 1999
Bliss, R. D., P. R. Painter, and A. G. Marr: Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–93, 1982
Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–12, 1995
Cánovas, M., J. R. Maiquez, J. M. Obón, and J. L. Iborra: Modelling of the biotransformation of crotonobetaine into L(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77, 764–775, 2002
Covert, M. W., C. H. Schilling, I. Famili, J. S. Edwards, I. I. Goryanin, E. Selkov, and B.Ø. Palsson: Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–86, 2001
Curto, R., A. Sorribas, and M. Cascante: Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis. Model definition and nomenclature. Math. Biosci. 130, 25–50, 1995
Duncan, T. M., and J. A. Reimer: Chemical Engineering Design and Analysis: An Introduction. Cambridge University Press, Cambridge, U.K., 1998
Edwards, J., and B.Ø. Palsson: How will bioinformatics influence metabolic engineering? Biotechnol. Bioeng. 58, 162–9, 1998
Eggeling, L., W. Pfefferle, and H. Sahm: Amino acids. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 13). Cambridge University Press, Cambridge, U.K., 2001
Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–8, 1998
Goodwin, B. C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Reg. 3, 425–38, 1965
Griffith, J. S.: Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 2, 202–8, 1968a
Griffith, J. S.: Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol. 2, 209–16, 1968b
Hannun, Y. A., C. Luberto, and K. M. Argraves: Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40(16), 4893–903, 2001
Harwood, C. R., and A. Wipat: Genome management and analysis: Prokaryotes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 4) Cambridge University Press, Cambridge, U.K., 2001
Jetton, M. S. M., and A. J. Sinskey: Recent advances in physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15(1), 73–103, 1995
Kelly, G. S.: L-Carnitine: Therapeutic applications of a conditionally-essential amino acid. Alt. Med. Rev. 3(5), 345–60, 1998
Koffas, M. A., C. Roberge, K. Lee, and G. Stephanopoulos: Metabolic engineering. Annu. Rev. Biomed. Eng. 1, 535–57, 1999
Kuhn, T. S.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago, IL, 1962
Kyriakis, J. M., and J. Avruch: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81(2), 807–69, 2001
Lanczos, C.: Applied Analysis. Prentice Hall, Englewood Cliffs, NJ, 1964
Lowe, D.: Antibiotics. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 16). Cambridge University Press, Cambridge, U.K., 2001a
Lowe, D.: Production of enzymes. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 18). Cambridge University Press, Cambridge, U.K., 2001b
Marín-Sanguino, A., and N. V. Torres: Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization. Biotechnol. Prog. 16(2), 133–45, 2000
Nelson, J. C.: Augmentation strategies in depression 2000. J. Clin. Psychiat. 61(Suppl. 2), 13–19, 2000
Nielsen, J.: Metabolic engineering: Techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58, 125–32, 1998
Obón, J. M., J. R. Maiquez, M. Cánovas, H. P. Kleber, and J. L. Iborra: High density E. coli cultures for continuous L(-)-carnitine production. Appl. Microbiol. Biotechnol. 51, 760–4, 1999
Patrick, L.: Nutrients and HIV: Part three – N-acetylcysteine, alpha-lipoic acid, L-glutamine, and L-carnitine. Alt. Med. Rev. 5(4), 290–305, 2000
Ratledge, C., and B. Kristiansen (Eds.): Basic Biotechnology. Cambridge University Press, Cambridge, U.K., 2001
Roth, S., K. Jung, R. K. Hommel, and H. P. Kleber: Crotonobetaine reductase from Escherichia coli. A new inducible enzyme of aerobic metabolism of L-(-)-carnitine. Antoine van Leuwenhoek J. Microbiol. Serol. 65, 63–9, 1994
Ruijter, C. J. G., H. Panneman, X. Ding-Bang, and J. Visser: Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40, 2000
Schaaff I., J. Heinisch, and F. K. Zimmermann: Overproduction of glycolytic enzymes in yeast. Yeast 5(4), 285–90, 1989
Sen, A. K., and W.-M. Liu: Dynamic analysis of genetic control and regulation of aminoacid synthesis: The tryptophan operon in Escherichia coli. Biotechnol. Bioeng. 35, 185–94, 1990
Sinha, S.: Theoretical study of tryptophan operon: Application in microbial technology. Biotechnol. Bioeng. 31, 117–24, 1988
Smith, J. E.: Public perception of biotechnology. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 1). Cambridge University Press, Cambridge, U.K., 2001
Smits, H. P., J. Hauf, S. Müller, T. J. Hobley, F. K. Zimmermann, B. Hahn-Hägerdal, J. Nielsen, and L. Olsson: Simultaneous overepression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16, 1325–34, 2000
Snoep, J. L., L. P. Yomano, H. V. Westerhoff, and L. O. Ingram: Protein burden in Zymomonas mobilis: Negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141, 2329–37, 1995
Sorribas, A., and M. Cascante: Structure identifiability in metabolic pathways: Parameter estimation in models based on the power-law formalism. Biochem. J. 298, 303–11, 1994
Stephanopoulos, G.: Metabolic enginnering. Biotechnol. Bioeng. 58, 119–20, 1998
Stephanopoulos, G.: A platform of flux and gene expression measurements for metabolic engineering and drug discovery (Presentation). Biological Information Processing and Systems Workshop, Clemson University, Clemson, SC, January 19–20, 2001
Stephanopoulos, G., and J. Kelleher: How to make a superior cell. Science 292, 2024–5, 2001
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering. Principles and Methodologies. Academic Press, San Diego, CA, 1998
Takiguchi, N., H. Shimizu, and S. Shioya: An online physiological-state recognition system for the lysine fermentation process – based on a metabolic reaction model. Biotechnol. Bioeng. 55, 170–81, 1997
Vandevivere, P., and W. Verstraete: Environmental applications. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 24). Cambridge University Press, Cambridge, U.K., 2001
van Gulik, W. M., W. T. A. M. de Laat, J. L. Vinke, and J. J. Heijnen: Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68(6), 602–18, 2000
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 532 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O.: Models-of-data and models-of-processes in the post-genomic era. Math. Biosci., in press
Voit, E. O., and T. Radivoyevitch: Biochemical systems analysis of genome-wide expression data. Bioinformatics 16(11), 1023–37, 2000
Vriezen, N., J. P. van Dijken, and L. Häggström: In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 21). Cambridge University Press, Cambridge, U.K., 2001
Weng, G., U. S. Bhalla, and R. Iyenger: Complexity in biochemical signaling systems. Science 284, 92–6, 1999
Werbach, M. R.: Nutritional strategies for treating chronic fatigue syndrome. Alt. Med. Rev. 5(2), 93–108, 2000
Winter, S. C., and N. R. Buist: Cardiomyopathy in childhood, mitochondrial dysfunction, and the role of L-carnitine. Am. Heart J. 139(2, Pt 3), S63–9, 2000
Xie, L., and D. I. C. Wang: Material balance studies on animal cell metabolism using a stoichiometrically based reaction network. Biotechnol. Bioeng. 52, 579–90, 1996
Xiu, Z.-L., A.-P. Zeng, and W.-D. Deckwer: Model analysis concerning the effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria. J. Biotechnol. 58, 125–40, 1997
Zaslavskaia, L. A., J. C. Lippmeier, C. Shih, D. Ehrhardt, A. R. Grossman, and K. E. Apt: Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292, 2073–5, 2001