Analog Optical Links

Theory and Practice

Analog Optical Links

Unlike books that focus on the devices used in links, such as lasers and photodiodes, among others, this text focuses on the next level. It covers the collection of devices that form a link, how the individual device performance affects the link performance, or the reverse. Analog links are used for the distribution of cable TV signals, and in conveying the signals to and from antennas (so called antenna remoting). The design of analog links differs significantly from digital links which are primarily used in telecommunications.


 Reviews:

"[T]his is a valuable text both for newcomers and those seeking further knowledge." Philip Bartholomew, Communications Engineer

'I think that this is a very useful text for those involved in designing optical links, or those considering entering this area.' Ronan McMahon, Journal Robotica

10. R. Huang, D. Wolf, W. Cheng, C. Jiang, R. Agarwal, D. Renner, A. Mar and J. Bowers. High-speed, low-threshold InGaAsP semi-insulating buried crescent lasers with 22 GHz bandwidth, IEEE Photon. Technol. Lett., 4 (1992), 293–5
A. Wey, J. Bristow, S. Sriram and D. Ott. Electrode optimization of high speed Mach–Zender interferometer, Proc. SPIE, 835 (1987), 238–45
A. Williams, A. Kellner and P. Yu. High frequency saturation measurements of an InGaAs/InP waveguide photodetector, Electron. Lett., 29 (1993), 1298–9
Abramowitz, M. and Stegun, I. A. 1964. Handbook of Mathematical Functions, New York: Dover Publications, Section 10.4, p. 446
Ackerman, E. 1999. Broadband linearization of a Mach-Zehnder electro -optic modulator, IEEE Trans. Microwave Theory Tech., 47, 2271–9
Ackerman, E. I. 1997. Personal communication
Ackerman, E. I. 1998. Personal communication
Ackerman, E. I. 1998. Personal communication
Ackerman, E. I., Cox, C. H. III, Betts, G. E., Roussell, H. V., Ray, K. and O'Donnell, F. J. 1998. Input impedance conditions for minimizing the noise figure of an optical link, IEEE Trans. Microwave Theory Tech., 46, 2025–31
Ackerman, E. I., Cox, C. H., Betts, G. A., Roussell, H. V., Ray, K. and O'Donnell, F. J. 1998. Input impedance conditions for minimizing the noise figure of an analog optical link, IEEE Trans. Microwave Theory Tech., 46, 2025–31
Ackerman, E. I., Kasemset, D., Wanuga, S., Hogue, D. and Komiak, J. 1990. A high-gain directly modulated L-band microwave optical link, Proc. IEEE MTT-S Int. Microwave Symp., paper C-3, 153–5
Ackerman, E. I., Wanuga, S., Kasemset, D., Daryoush, A. S. and Samant, N. R. 1993. Maximum dynamic range operation of a microwave externalmodulation fiber optic link, IEEE Trans. Microwave Theory Techn., 41, 1299–306
Agrawal, G. P. and Dutta, N. K. 1986. Long-Wavelength Semiconductor Lasers, New York: Van Nostrand Reinhold
Alferness, R. C. 1982. Waveguide electrooptic modulators, IEEE Trans. Microwave Theory Tech., 30, 1121–37
Alferness, R., Korotky, S. and Marcatili, E. 1984. Velocity-matching techniques for integrated optic traveling wave switch/modulators, IEEE J. Quantum Electron., 20, 301–9
Armstrong, J. A. and Smith, A. W. 1965. Intensity fluctuations in GaAs laser emission, Phys. Rev., 140, A155–A164
B. Moller, E. Zeeb, T. Hackbarth and K. Ebeling, High speed performance of 2-D vertical-cavity laser diode arrays, IEEE Photon. Technol. Lett., 6 (1994), 1056–8
Bertelsmeier, M. andZschunke, W. 1984. Linearization of broadband optical transmission systems by adaptive predistortion, Frequenz, 38, 206–12
Betts, G. 1994. Linearized modulator for suboctave-bandpass optical analog links, IEEE Trans. Microwave Theory Tech., 42, 2642–9
Betts, G. 1994. Linearized modulator for suboctave-bandpass optical analog links,IEEETrans. Microwave Theory Tech., 42, 2642–9
Betts, G. E. 1989. Microwave bandpass modulators in lithium niobate, Integrated and Guided Wave Optics, 1989 Technical Digest Series, vol. 4, Washington, DC: Optical Society of America, 14–17
Betts, G. E. 1994. Linearized modulator for suboctave-bandpass optical analog links, IEEE Trans. Microwave Theory Tech., 42, 2642–9
Betts, G. E. 1998. Personal communication
Betts, G. E. and O'Donnell, F. J. 1993. Improvements in passive, low-noise-figure optical links, Proc. Photonics Systems for Antenna Applications Conf. – III, Monterey, CA
Betts, G. E. and O'Donnell, F. J. 1996. Microwave analog optical links using suboctave linearized modulators, IEEE Photon. Technol. Lett., 8, 1273–5
Betts, G. E., Cox, C. H. III and Ray, K. G. 1990. 20 GHz optical analog link using an external modulator, IEEE Photon. Technol. Lett., 2, 923–5
Betts, G. E., Donnelly, J. P., Walpole, J. N., Groves, S. H., O'Donnell, F. J., Missaggia, L. J., Bailey, R. J. and Napoleone, A. 1997. Semiconductor laser sourcesfor externally modulated microwave analog links, IEEE Trans. Microwave Theory Tech., 45, 1280–7
Betts, G. E., Johnson, L. M. and Cox, C. H. III 1988. High-sensitivity bandpass RF modulator in LiNbO3, Proc. SPIE, 993, 110–16
Betts, G. E., Johnson, L. M. and Cox, C. H. III 1991. Optimization of externally modulated analog optical links, Devices for Optical Processing, Proc. SPIE, 1562, 281–302
Betts, G. E., O'Donnell, F. J. and Ray, K. G. 1995. Sub-octave-bandwidth analog link using linearized reflective modulator, PSAA-5 Proceedings, pp. 269–99
Betts, G. E., Walpita, L. M., Chang, W. S. C. and Mathis, R. F. 1986. On the linear dynamic range of integrated electrooptical modulators, IEEE J. Quantum Electron., 22, 1009–11
Betts, G., Johnson, L. and Cox, C., III. 1990. High-dynamic-range, low-noise analog optical links usingexternal modulators: analysis and demonstration, Proc. SPIE, 1371, 252–7
Bode, H. W. 1945. Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, Section 16.3
Bowers, J. E., Chipaloski, A. C., Boodaghians, S. and Carlin, J. W. 1987. Long distance fiber-optic transmission of C-band microwave signals to and from a satellite antenna, J. Lightwave Technol., 5, 1733–41
Bridges, W. B. 2000. Personal communication
Bridges, W. B. 2001. Personal communication
Bridges, W. B. and Schaffner, J. H. 1995. Distortion in linearized electrooptic modulators, IEEE Trans. Microwave Theory Tech., 43, 2184–97
Bridges, W. B. and Schaffner, J. H. 1995. Distortion in linearized electrooptic modulators, IEEE Trans. Microwave Theory Tech., 43, 2184–97
Bridges, W. B. and Schaffner, J. H. 1995. Distortion inlinearized electrooptic modulators, IEEE Trans. Microwave Theory Tech., 43, 2184–97
Bridges, W., Sheehy, F. and Schaffner, J. 1991. Wave-coupled LiNbO3 electrooptic modulator for microwave and millimeter-wave modulation, IEEE Photon. Technol. Lett., 3, 133–5
Brooks, J., Maurer, G. and Becker, R. 1993. Implementation and evaluationof a dual parallel linearization system for AM-SCM video transmission, J. Lightwave Technol., 11, 34
Buckley, R. H. and Sonderegger, J. F. 1991. A novel single-fiber antenna remoting link using a reflective external modulator, Proc. Photonic Systems for Antenna Applications Conf. (PSAA) 2, Monterey
Bulmer, C. H. and Burns, W. K. 1983. Linear interferometric modulators in Ti:LiNbO3, J. Lightwave Technol., 2, 512–21
C. Cox, E. Ackerman and G. Betts. Relationship between gain and noise figure of an optical analog link, IEEE MTT -S Digest (1996), 1551–4
C. Gee, G. Thurmond and H. Yen. 17-GHz bandwidth electro-optic modulator, Appl. Phys. Lett., 43 (1993), 998–1000
C. Rolland, G. Mak, K. Prosyk, C. Maritan and N. Puetz. High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 μm, IEEE Photon. Technol. Lett., 3 (1991), 894–6
Carlin, H. J. 1954. Gain-bandwidth limitations on equalizers and matching networks, Proc. IRE, 42, 1676–85
Chen, T. R., Eng, L. E., Zhao, B., Zhuanag, Y. H. and Yariv, A. 1993. Strained single quantum well InGaAs lasers with a threshold current of 0.25 mA, Appl. Phys. Lett., 63, 2621–3
Childs, R. B. and O'Byrne, V. A. 1990. Multichannel AM video transmission usinga high-power Nd:YAG laser and linearizedexternal modulator, IEEE J. Selected Areas Commun., 8, 1376–96
Choquette, K. and Hou, H. 1997. Vertical-cavity surface emitting lasers: moving from research to manufacturing, Proc. IEEE, 85, 1730–9
Chou, S. and Liu, M. 1992. Nanoscale tera-hertz metal-semiconductor-metal photodetectors, IEEE J. Quantum Electron., 28, 2358–68
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons, Figure 5.18
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons, 195–6
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons, Chapter 2
Cox, C. H. 1992. Gain and noise figure in analogue fibre-optic links, IEE Proc. J, 139, 238–42
Cox, C. H. III, and Ackerman, E. I. 1999. Limits on the performanceof analog optical links, Chapter 10, Review of Radio Science 1996-1999, W. Ross Stone, ed., Oxford: Oxford University Press
Cox, C. H., III 1986. Unpublished laboratory notes
Cox, C. H., III and Ackerman, E. I. 1999. Limits on the performance of analog optical links. In Review of Radio Science 1996–1999, ed. W. Ross Stone, Oxford: Oxford University Press, Chapter 10
Cox, C. H., III and Ackerman, E. I. 1999. Limits on the performance of analog optical links. In Review of Radio Science 1996–1999, ed. W. Ross Stone, Oxford: Oxford University Press, Chapter 10
Cox, C. H., III, 1996. Optical transmitters. In The Electronics Handbook, J. C. Whitaker, ed., Boca Raton, FL: CRC Press, Chapter 57
Cox, C. H., III, Ackerman, E. I. and Betts, G. E. 1996. Relationship between gain and noise figure of an optical analog link, Proc. 1996 IEEE MTT-S International Microwave Symposium, paper TH3D-2, San Francisco, CA
Cox, C. H., III, Ackerman, E. I. and Betts, G. E. 1996. Relationship between gain and noise figure of an optical analog link, IEEE MTT -S Symp. Dig., 1551–4
Cox, C. H., III, Roussell, H. V., Ram, R. J. and Helkey, R. J. 1998. Broadband, directly modulated analog fiber link with positive intrinsic gain and reduced noise figure, Proc. Int. Topical Meeting on Microwave Photonics 1998, IEEE, 157–60
Cox, C., III, Ackerman, E., Helkey, R. and Betts, G. E. 1997. Techniques and performance of intensity-modulation direct-detection analog optical links, IEEE Trans. Microwave Theory Tech., 45, 1375–83
Cummings, U. V. and Bridges, W. B. 1998. Bandwidth of linearized electro-optic modulators, J. Lightwave Technol., 16, 1482–90
D. Wake, T. Spooner, S. Perrin and I. Henning. 50 GHz InGaAs edge-coupled pin photodetector, Electron. Lett., 27 (1991), 1073–5
Darcie, T. E. and Bodeep, G. E. 1990. Lightwave subcarrier CATV transmission systems, IEEE Trans. Microwave Theory Tech., 38, 524–33
Darcie, T. E., Tucker, R. S. and Sullivan, G. J. 1985. Intermodulation and harmonic distortion in InGaAsP lasers, Electron. Lett., 21, 665–6. See also correction in vol. 22, p. 619
Dentan, M. and de Cremoux, B. 1990. Numerical simulation of the nonlinear response of a p-i-n photodiode underhigh illumination, J. Lightwave Technol., 8, 1137–44
deRidder, R. M. and Korotky, S. K. 1990. Feedforward compensation of integrated optic modulator distortion, Proc. Optical Fiber Communications Conference, paper WH5
Desurvire, E. 1994. Erbium-Doped Fiber Amplifiers, New York: Wiley
Dolfi, D. and Ranganath, T. 1992. 50 GHz velocity-matched broad wavelength lithium niobate modulator with multimode active section, Electron. Lett., 28, 1197–98
E. Ozbay, K. Li and D. Bloom. 2.0 ps, 150 GHz GaAs monolithic photodiode and all-electronic sampler, IEEE Photon. Technol. Lett., 3 (1991), 570–2
Esman, R. D. and Williams, K. J. 1990. Measurement of harmonic distortion in microwave photodetectors, IEEE Photon. Technol. Lett., 2, 502–4
F. Devaux, P. Bordes, A. Ougazzaden, M. Carre and F. Huet. Experimental optimization of MQW electroabsorption modulators with up to 40 GHz bandwidths, Electron. Lett., 30 (1994), 1347–8
Fano, R. M. 1950. Theoretical limitations on the broadband matching of arbitrary impedances, J. Franklin Inst., 249, 57–83; 249, 139–54
Farwell, M. L., Chang, W. S. C. and Huber, D. R. 1993. Increased linear dynamic range by low biasing the Mach-Zehnder modulator, IEEE Photon. Technol. Lett., 5, 779–82
Farwell, M. L., Lin, Z. Q., Wooten, E. and Chang, W. S. C. 1991. An electrooptic intensity modulator with improved linearity, IEEE Photon. Technol. Lett., 3, 792–5
Frankart et al. 1983. Analog transmissionof TV-channels on optical fibers, withnonlinearities corrected by regulated feedforward, Proc. European Conference on Optical Communications (ECOC), pp. 347–50
Fujitsu, Fujitsu Laser Model FLD3F7CX, 1996
G. Betts, L. Johnson and C. Cox. High-sensitivity lumped-element bandpass modulators in LiNbO3, IEEE J. Lightwave Technol. (1989), 2078–83
Georges, J., Kiang, M., Heppell, K., Sayed, M. and Lau, K. 1994. Optical transmission of narrow-band millimeter-wave signals by resonant modulation of monolithic semiconductor lasers, IEEE Photon. Technol. Lett., 6, 568–70
Giboney, K. S., Rodwell, M. J. W. and Bowers, J. E. 1997. Traveling-wave photodetector theory, IEEE Trans. Microwave Theory Tech., 45, 1310–19
Goldsmith, C. L. and Kanack, B. 1993. Broad-band reactive matching of high-speed directly modulated laser diodes, IEEE Microwave and Guided Wave Letters, 3, 336–8
Gonzalez, G. 1984. Microwave Transistor Amplifiers Analysis and Design, Englewood Cliffs, NJ: Prentice-Hall, Inc., 175–6
Gopalakrishnan, G., Bulmer, C., Burns, W., McElhanon, R. and Greenblatt, A. 1992a. 40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator, Electron. Lett., 28, 826–7
Gopalakrishnan, G., Burns, W. and Bulmer, C. 1992b. Electrical loss mechanisms in travelling wave LiNbO3 optical modulators, Electron. Lett., 27, 207–9
Gowar, J. 1983. Optical Communication Systems I, Englewood Cliffs, NJ: Prentice Hall, Section 16.2.1
Gradshteyn I. S. and Ryzhik I. M. 1965. Tables of Integrals, Series and Products, 4th edition, New York: Academic Press, equation 1.412.1
Graham, C. H., Bartlett, N. R., Brown, J. L., Hsia, Y., Mueller, C. G. and Riggs, L. A. 1965. Vision and Visual Perception, New York: John Wiley & Sons, 351–3
Gray, P. E. and Searle, C. L. 1969. Electronic Principles Physics, Models, and Circuits, New York: John Wiley& Sons, Inc., Section 4.3.2
Gray, P. E. and Searle, C. L. 1969. Electronic Principles: Physics, Models and Circuits, New York: John Wiley & Sons, Section 11.4.1
Gulick, J. J., de La Chapelle, M. and Hsu, H. P. 1986. Fundamental gain/bandwidth limitations in high frequency fiber-optic links, High Frequency Optical Communications, Proc. SPIE, 716, 76–81
H. Lipsanen, D. Coblentz, R. Logan, R. Yadvish, P. Moreton and H. Temkin. High-speed InGaAsP/InP multiple-quantum-well laser, IEEE Photon. Technol. Lett., 4 (1992), 673–5
Halemane, T. R. and Korotky, S. K. 1990. Distortion characteristics of optical directional coupler modulators, IEEE Trans. Microwave Theory Tech., 38, 669–73
Helms, J. 1991. Intermodulation and harmonic distortions of laser diodes with optical feedback, J. Lightwave Technol., 9, 1567–75
I. Kotaka, K. Wakita, K. Kawano, M. Asai and M. Naganuma. High speed and low-driving voltage InGaAs/InAlAs multiquantum well optical modulators, Electron. Lett., 27 (1991), 2162–3
Iannone, P. and Darcie, T. 1987. Multichannel intermodulation distortionin high-speed GaInAsP lasers, Electron. Lett., 23, 1361–2
IEEE 1964. IEEE standard letter symbols for semiconductor devices, IEEE Trans. Electron Devices, 11, no. 8
IRE 1960. IRE standards on methods of measuring noise in linear two ports, Proc. IRE, 48, 60–8. Note: the IRE was one of the two professional organizations that merged to form the present IEEE
Izutsu, M. 1996. Band operated light modulators, Proc. 25 General Assembly of the International Union of Radio Science, Lille, France, August 28–September 5, 1996, paper DC-4, 639
J. Bowers and C. Burrus. Heterojunction waveguide photodetectors, Proc. SPIE, 716 (1986), 109–13
J. Bowers and C. Burrus. Ultrawide-band long-wavelength p-i-n photodetectors, J. Lightwave Technol., 15 (1987), 1339–50
J. Bowers and C. Burrus. Ultrawide-band long-wavelength p-i-n photodetectors, J. Lightwave Technol., 15 (1987), 1339–50
J. Ralston, S. Weisser, K. Eisele, R. Sah, E. Larkins, J. Rosenzweig, J. Fleissner and K. Bender. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide devices, IEEE Photon. Technol. Lett., 6 (1994), 1076–9
Jasmin, S., Vodjdani, N., Renaud, J.-C. and Enard, A. 1997. Diluted- and distributed-absorption microwave waveguide photodiodes forhigh efficiency and high power, IEEE Trans. Microwave Theory Tech., 45, 1337–41
Johnson, J. B. 1928. Thermal agitation of electricity in conductors, Phys. Rev., 32, 97–109
Johnson, L. M. and Roussell, H. V. 1988. Reduction of intermodulation distortion in interferometric optical modulators, Opt. Lett., 13, 928–30
K. Giboney, R. Nagarajan, T. Reynolds, S. Allen, R. Mirin, M. Rodwell and J. Bowers. Travelling-wave photodetectors with 172-GHz bandwidth-efficiency product, IEEE Photon. Technol. Lett., 7 (1995), 412–14
K. Kato, A. Kozen, Y. Maramoto, T. Nagatsuma and M. Yaita. 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a l.55-μm wavelength, IEEE Photon. Technol. Lett., 6 (1994), 719–21
K. Kato, S. Hata, A. Kozen, J. Yoshida and K. Kawano. High-efficiency waveguide InGaAs pin photodiode with bandwidth of over 40 GHz, IEEE Photon. Technol. Lett., 3 (1991), 473–5
K. Kato, S. Hata, K. Kawano, H. Yoshida and A. Kozen. A high-efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEE J. Quantum Electron., 28 (1992), 2728–35
K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa and M. Yanagibashi. New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength, Electron. Lett., 25 (1989), 1382–3
K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M Yanagibashi and T. Suzuki. Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach–Zehnder optical modulators, IEEE Trans. Microwave Theory Tech., 39 (1991), 1595–601
K. Noguchi, H. Miyazawa and O. Mitomi. 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30 (1994), 949–51
K. Noguchi, K. Kawano, T. Nozawa and T. Suzuki. A Ti:LiNbO3 optical intensity modulator with more than 20 GHz bandwidth and 5.2 V driving voltage, IEEE Photon. Technol. Lett., 3 (1991), 333–5
K. Noguchi, O. Mitomi, K. Kawano and M. Yanagibashi. Highly efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure, IEEE Photon. Technol. Lett., 5 (1993), 52–4
Kanaglekar, N. G., McIntosh, R. E. and Bryant, W. E. 1988. Analysis of two-tone, third-order distortionin cascaded two-ports, IEEE Trans. Microwave Theory Tech., 36, 701–5
Kato, K., Hata, S., Kawano, K., Yoshida, H. and Kozen, A. 1992. A high-efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEE J. Quantum Electron., 28, 2728–35
Kato, K., Kozen, A., Maramoto, Y., Nagatsuma, T. and Yaita, M. 1994. 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a l.55-㎛ wavelength, IEEE Photon. Technol. Lett., 6, 719–21
Kim, E. M., Tucker, M. E. and Cummings, S. L. 1989. Method for including CTBR, CSO and channel addition coefficient in multichannel AM fiber optic system models, NCTA Technical Papers, p. 238
Knupfer, B., Kiesel, P., Kneissl, M., Dankowski, S., Linder, N., Weimann, G. and Dohler, G. H. 1993. Polarization-insensitive high-contrast GaAs/AlGaAs waveguide modulator based on the Franz-Keldysh effect, IEEE Photon. Technol. Lett., 5, 1386–8
Kolner, B. H. and Dolfi, D. W. 1987. Intermodulation distortion and compression in an integrated electrooptic modulator, Appl. Opt., 26, 3676–80
Kurazono, S., Iwasaki, K. and Kumagai, N. 1972. A new optical modulatorconsisting of coupled optical waveguides, Electron. Comm. Jap., 55, 103–9
L. Lester, S. O'Keefe, W. Schaff and L. Eastman. Multiquantum well strained layer lasers with improved low frequency response and very low damping, Electron. Lett., 28 (1991), 383–5
L. Lin, M. Wu, T. Itoh, T. Vang, R. Muller, D. Sivco and A. Cho. Velocity-matched distributed photodetectors with high-saturation power and large bandwidth, IEEE Photon. Technol. Lett., 8 (1996), 1376–8
Lau, K. Y. and Yariv, A., 1984. Intermodulation distortion in a directly modulated semiconductor injection laser, Appl. Phys. Lett., 45, 1034–6
Lax, M. 1960. Fluctuations from the nonequilibrium steady state, Rev. Mod. Phys., 32, 25–64
Lee, H. 1998. Personal communication
Lee, H. 1998. Personal communication
Lee, H. 2001. Direct Modulation of Multimode Vertical Cavity Surface Emitting Lasers, Master of Science Thesis, MIT, Cambridge, MA
Lin, L. Y., Wu, M. C., Itoh, T., Vang, T. A., Muller, R. E., Sivco, D. L. and Cho, A. Y. 1997. High-power high-speed photodetectors – Design, analysis and experimentaldemonstrations, IEEE Trans. Microwave Theory Tech., 45, 1320–31
Linvill, J. G. and Gibbons, J. F. 1961. Transistor and Active Circuits, New York: McGraw-Hill Book Company, Inc., 233–6
Liu, P., Li, B. and Trisno, Y. 1991. In search of a linear electrooptic amplitude modulator, IEEE Photon. Technol. Lett., 3, 144–6
M. Makiuchi, H. Hamaguchi, T. Mikawa and O. Wada. Easily manufactured high-speed back-illuminated GaInAs/InP p-i-n photodiode, IEEE Photon. Technol. Lett., 3 (1991), 530–1
M. Peters, M. Majewski and L. Coldren, Intensity modulation bandwidth limitations of vertical-cavity surface-emitting laser diodes, Proc. IEEE LEOS Summer Topical Meeting (LEOS-STM'93), March 1993, pp. 111–13
M. Rangaraj, T. Hosoi and M. Kondo. A wide-band Ti:LiNbO3 optical modulator with a conventional coplanar waveguide type electrode, IEEE Photon. Technol. Lett., 4 (1992), 1020–2
Manley, J. M. 1951. Some general properties of magnetic amplifiers, Proc.IRE (now IEEE), 39, 242–51
Manley, J. M. and Rowe, H. E. 1956. Some general properties of nonlinear elements – Part I. General energy relations, Proc. IRE (now IEEE), 44, 904–13
Martin, W. 1975. A new waveguide switch/modulator for integrated optics, Appl. Phys. Lett., 26, 562–4
Martin, W. E. 1975. A new waveguide switch/modulator for integrated optics, Appl. Phys. Lett., 26, 562–3
McCumber, D. E. 1966. Intensity fluctuations in the output of CW laser oscillations, Phys. Rev., 141, 306–22
Motchenbacher, C. D. and Connelly, J. A. 1993. Low-Noise Electronic System Design, New York: John Wiley & Sons, Inc., Section 2.8
Motchenbacher, C. D. and Fitchen, F. C. 1973. Low-Noise Electronic Design, New York: John Wiley & Sons
Nazarathy, M., Berger, J., Ley, A. J., Levi, I. M. and Kagan, Y. 1993. Progress inexternally modulated AM CATV transmission systems, J. Lightwave Technol., 11, 82–105
Noguchi, K., Miyazawa, H. and Mitomi, O. 1994. 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30, 949–51
Noguchi, K., Miyazawa, H. and Mitomi, O. 1994. 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30, 949–51
Nyquist, H. 1928. Thermal agitation of electric charge in conductors, Phys. Rev., 32, 110–13
O'Mahony, M. 1988. Semiconductor laser optical amplifiers for use in future fiber systems, J. Lightwave Technol., 6, 531–44
O. Mikami, J. Noda and M. Fukuma (NTT, Musashino, Japan). Directional coupler type light modulator using LiNbO3 waveguides, Trans. IECE Japan, E-61 (1978), 144–7
Olshansky, R., Lanzisera, V. A. and Hill, P. M. 1989. Subcarrier multiplexed lightwave systems for broad band distribution, J. Lightwave Technol., 7, 1329–42
Onnegren, J. and Alping, A. 1995. Reactive matching of microwave fiber-optic links, Proc. MIOP-95, Sindelfingen, Germany, 458–62
Onnegren, J. and Alping, A. 1995. Reactive matching of microwave fiber-optic links, Proc. MIOP-95, Sindelfingen, Germany, pp. 458–62
Ortel Corporation. Microwave FP Laser Transmitters, 1530B, Microwaves on Fibers Catalog, 1995
Ozeki, T. and Hara, E. H. 1976. Measurements of nonlinear distortion in photodiodes, Electron. Lett., 12, 80
Papuchon, M., Roy, A. M. and Ostrowsky, B. 1977. Electrically active optical bifurcation: BOA, Appl. Phys. Lett., 31, 266–7
Penfield, P. 1960. Frequency Power Formulas, New York: John Wiley & Sons
Petermann, K. 1988. Laser Diode Modulation and Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers, Chapter 7
Petermann, K. 1988. Laser Diode Modulationand Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers, Section 4.7
Pettai, R. 1984. Noise in Receiving Systems, New York: John Wiley & Sons
Pettai, R. 1984. Noise in Receiving Systems, New York: John Wiley & Sons, Chapter 7
Phillips, M. R. and Darcie, T. E. 1997. Lightwave analog video transmission. In Optical Fiber Communications IIIA, I. P. Kaminow and T. L. Koch, eds., San Diego, CA: Academic Press, Chapter 14
Pozar, D. M. 1993. Microwave Engineering, Boston: Addison-Wesley, 325–7
Prince, J. L. 1998. Personal communication
Prince, J. L. 1998. Personal communication
Prince, J. L. 1998. Personal communication
R. Jungerman and D. Dolfi. Lithium niobate traveling-wave optical modulators to 50 GHz, Proc. IEEE LEOS Summer Topical Meeting (LEOS-STM'92), August (1992), 27–8
R. Madabhushi. Wide-band Ti: LiNbO3 optical modulator with low driving voltage, Proc. Optical Fiber Communications Conf. (OFC '96), 206–7
Ralston, J., Weisser, S., Eisele, K., Sah, R., Larkins, E., Rosenzweig, J., Fleissner, J. and Bender, K. 1994. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide devices, IEEE Photon. Technol. Lett., 6, 1076–9
Roberge, J. K. 1975. Operational Amplifiers Theory and Practice, New York: John Wiley & Sons, 95
Robinson, F. N. H. 1974. Noise and Fluctuations in Electronic Devices and Circuits, London: Oxford University Press, Chapter 4
Roussell, H. V. 1995. Personal communication
Roussell, H. V. 2001. Personal communication
Roussell, H. V., Helkey, R. J., Betts, G. E. and Cox, C. H. III 1997. Effect of optical feedback on high-dynamic-range Fabry –Perot laser optical links, IEEE Photon. Technol. Lett., 9, 106–8
Rowe, H. E. 1958. Some general properties of nonlinear elements – II. Small-signal theory, Proc. IRE (now IEEE), 46, 850–60
S. Weisser, E. Larkis, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. Ralston, B. Romero, R. Sah, A. Schonfelder and J. Rosenzweig. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity multiple-quantum-well lasers, IEEE Photon. Technol. Lett., 8 (1996), 608–10
Schaffner, J. H. and Bridges, W. B. 1993. Intermodulation distortionin high dynamic range microwave fiber-optic links with linearized modulators, J. Lightwave Technol., 11, 3–6
Schottky, W. 1918. Uber spontane Stromschwankungen in verschiedenen Elektrizitatsleitern, Ann. Phys., 57, 541–67
Seeds, A. J. 1996. Optical transmission of microwaves. In Review of Radio Science 1993–1996, ed. W. Ross Stone, Oxford: Oxford University Press, Chapter 14
Skeie, H. and Johnson, R. V. 1991. Linearization of electro-optic modulators by a cascade coupling of phase modulatingelectrodes, Proc.SPIE, 1583, 153–64
Straus, J. 1978. Linearized transmitters for analog fiber links, Laser Focus, October, 54–61
T. Chen, J. Ungar, X. Yeh and N. Bar-Chaim. Very large bandwidth strained MQW DFB laser at 1.3 μm, IEEE Photon. Technol. Lett., 7 (1995), 458–60
T. Chen, P. Chen, J. Ungar and N. Bar-Chaim. High speed complex-coupled DFB laser at 1.3 μm, Electron. Lett., 30 (1994), 1055–7
T. Chen, Y. Zhuang, A. Yariv, H. Blauvelt and N. Bar-Chaim. Combined high power and high frequency operation of InGaAsP/InP lasers at 1.3 μm, Electron. Lett., 26 (1990), 985–7
T. Ido, H. Sano, D. J. Moss, S. Tanaka and A. Takai. Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage, IEEE Photon. Technol. Lett., 6 (1994), 1207–9
T. Ido, H. Sano, M. Suzuki, S Tanaka and H. Inoue. High-speed MQW electroabsorption optical modulators integrated with low-loss waveguides, IEEE Photon. Technol. Lett., 7 (1995), 170–2
Taylor, J. H. and Yates, H. W. 1957. Atmospheric transmission in the infrared, J. Opt. Soc. Am., 47, 223–6
Thomas, G. B. 1968. Calculus and Analytic Geometry, 4th edition, Reading, MA: Addison-Wesley Publishing Co., 651
Thomas, G. B. 1968. Calculus and Analytical Geometry, Reading, MA: Addison-Wesley Publishing Co
Thompson, G. H. B. 1980. Physics of Semiconductor Laser Devices, New York: John Wiley & Sons
Uitjens, A. G. W. and Kater, H. E. 1977. Receivers. In Electronics Designers' Handbook, 2nd edition, ed. L. J. Giacoletto, New York: McGraw-Hill Book Company, Section 23
Vahala, K., Newkirk, M. and Chen, T. 1989. The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers, Appl. Phys. Lett., 54, 2506–8
Van Valkenburg, M. E. 1964. Network Analysis, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall, Inc
Van Valkenburg, M. E. 1964. Network Analysis, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall, Inc., 338–9
W. Cheng, K. Buehring, R. Huang, A. Appelbaum, D. Renner and C. Su. The effect of active layer doping on static and dynamic performance of 1.3 μm InGaAsP lasers with semi-insulating current blocking layers, Proc. SPIE, 1219 (1990)
Wang, J., Haldar, M. K. and Mendis, F. V. C., 1993. Formula for two-carrier third-order intermodulation distortionin semiconductor laser diodes, Electron. Lett., 29, 1341–3
Wang, W., Tavlykaev, R. and Ramaswamy, R. 1996. Bandpass traveling-wave modulator in LiNbO3 with a domain reversal, Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meet. (LEOS'96), 99–100
Weisser, S., Larkins, E., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J., Romero, B., Sah, R., Schonfelder, A. and Rosenzweig, J. 1996. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity multiple-quantum-well lasers, IEEE Photon. Technol. Lett., 8, 608–10
Welstand, R. 1997. High linearity modulation and detection in semiconductor electroabsorption waveguides, Ph. D. dissertation, University of California, San Diego, Chapter 3, pp. 62–4
Welstand, R. B., Pappert, S. A., Sun, C. K., Zhu, J. T., Liu, Y. Z. and Yu, P. K. L. 1996. Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications, IEEE Photon. Technol. Lett., 8, 1540–2
Welstand, R. B., Zhu, J. T., Chen, W. X., Yu, P. K. L. and Pappert, S. A. 1999. Combined Franz-Keldysh and quantum-confined Stark effect waveguide modulatorfor analog signal transmission, J. Lightwave Technol., 17, 497–502
Williams, A. R., Kellner, A. L. and Yu, P. K. L. 1993. High frequency saturation measurements of an InGaAs/InP waveguide photodetector, Electron. Lett., 29, 1298–9
Williams, K. J., Esman, R. D. and Dagenais, M. 1996. Nonlinearities in p-i-n microwave photodiodes, J. Lightwave Technol., 14, 84–96
Wilson, G. C., Wood, T. H., Gans, M., Zyskind, J. L., Sulhoff, J. W., Johnson, J. E., Tanbun-Ek, T. and Morton, P. A. 1998. Predistortion of electroabsorption modulators for analog CATV systems at 1.55 μm, J. Lightwave Technol., 15, 1654–61
WJ 1998. Preliminary datasheet for the AH22 High Dynamic Range Amplifier, WJ Wireless Products Group
Wylie, C. R. Jr. 1966. Advanced Engineering Mathematics, 3rd edition, New York: McGraw-Hill Book Co., 365
Y. Chen, S. Williamson, T. Brock, R. Smith and A. Calawa. 375-GHz-bandwidth photoconductive detector, Appl. Phys. Lett., 59 (1991), 1984–6
Y. Liu, J. Chen, S. Pappert, R. Orazi, A. Williams, A. Kellner, X. Jiang and P. Yu. Semiconductor electroabsorption waveguide modulator for shipboard analog link applications, Proc. SPIE, 2155 (1994), 98–106
Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa and Y. Ogawa. 30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser, IEEE Photon. Technol. Lett., 9 (1997), 25–7
Y. Nakano, M. Majewski, L. Coldren, H. Cao, K. Tada and H. Hosomatsu. Intrinsic modulation response of a gain-coupled MQW DFB laser with an absorptive grating, Proc. Integrated Photonics Research Conf., March 1993, pp. 23–6
Y. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan and G. Robinson. 108-GHz GaInAs/InP p-i-n photodiodes with integrated bias tees and matched resistors, IEEE Photon. Technol. Lett., 5 (1993), 1310–12
Yamada, M. 1986. Theory of mode competition noise in semiconductor injection lasers, IEEE J. Quantum Electron., 22, 1052–9
Yamamoto, Y. 1983. AM and FM quantum noise in semiconductor lasers – Part I: Theoretical analysis, IEEE J. Quantum Electron, 19, 34–46
Yamamoto, Y. and Kimura, T. 1981. Coherent optical fiber transmission systems, IEEE J. Quantum Electron., 17, 919–34
Yamamoto, Y., Saito, S. and Mukai, T. 1983. AM and FM quantum noise in semiconductor lasers – Part II: Comparison of theoretical and experimental results for AlGaAs lasers, IEEE J. Quantum Electron., 19, 47–58
Yang, G. M., MacDougal, M. H. and Dapkus, P. D. 1995. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation, Electron. Lett., 31, 886–8
Yu, P. K. L. 1996. Optical receivers. In The Electronics Handbook, ed. J. C. Whitaker, Boca Raton, FL: CRC Press, Chapter 58
Yu, P. K. L. 1997. Optical receivers. In The Electronics Handbook, Florida: CRC Press, Chapter 58
Yu, P. K. L. 1998. Personal communication.