Combinatorial properties of permutation tableaux  pp. 171-192

Combinatorial properties of permutation tableaux

By Alexander Burstein and Niklas Eriksen
[10] E. Steingrímsson and L. K. Williams . Permutation tableaux and permutation patterns. J. Combin. Theory Ser. A, 114(2):211–234, 2007.
[11] L. K. Williams . Enumeration of totally positive Grassmann cells. Adv. Math., 190(2):319–342, 2005.
[1] A. Burstein . On some properties of permutation tableaux. Ann. Comb., 11(3-4):355–368, 2007.
[2] R. Chapman and L. K. Williams . A conjecture of Stanley on alternating permutations. Electron. J. Combin., 14(1):Note 16, 7 pp., 2007.
[3] S. Corteel . Crossings and alignments of permutations. Adv. in Appl. Math., 38(2):149–163, 2007.
[4] S. Corteel and P. Nadeau . Bijections for permutation tableaux. European J. Combin., 30(1):295–310, 2009.
[5] S. Corteel and L. K. Williams . A Markov chain on permutations which projects to the PASEP. Int. Math. Res. Not. IMRN, 2007(17):Art. ID rnm055, 27, 2007.
[6] S. Corteel and L. K. Williams . Tableaux combinatorics for the asymmetric exclusion process. Adv. in Appl. Math., 39(3):293–310, 2007.
[7] K. Eriksson . Strongly convergent games and Coxeter groups. PhD thesis, KTH Royal Institute of Technology, 1993.
[8] A. Postnikov . Webs in totally positive Grassmann cells. Manuscript, 2001.
[9] N. J. A. Sloane . The On-line Encyclopedia of Integer Sequences. Available online at http://www.research.att.com/∼njas/sequences/.