# 5 - The natural-range conception of probability  pp. 71-91

By Jacob Rosenthal

Image View

Objective interpretations of probability

Objective interpretations claim that probability statements are made true or false by physical reality, and not by our state of mind or information. The task is to provide truth conditions for probability statements that are objective in this sense. Usually, two varieties of such interpretations are distinguished and discussed: frequency interpretations and propensity interpretations. Both face considerable problems, the most serious of which I will briefly recall to motivate the search for an alternative.

Firstly, the frequency interpretations. Here the central problem is that it is very implausible (to say the least) to postulate a non-probabilistic connection between probabilities and relative frequencies. What a frequency approach claims seems either to be false or to presuppose the notion of probability. Take, for example, the repeated throwing of a fair die that has equal probabilities for each side. All you can say is that it is very probable that upon many repetitions each face will turn up with a relative frequency of approximately 1/6 (weak law of large numbers). Or that, with probability 1, the limiting relative frequency of each face would be 1/6 in an infinite number of repetitions (strong law of large numbers). You cannot drop the clauses ‘very probable’ or ‘with probability 1’ in these statements. There are no relative frequencies that the die would produce on repeated throwing, but it could, with varying probabilities, yield any frequency of a given outcome.

• pp. i-iv

• pp. v-v

• pp. vi-vi

• pp. 1-10

• pp. 11-12

• pp. 13-33

• pp. 34-58

• pp. 59-68

• pp. 69-70

• pp. 71-91

• pp. 92-118

• pp. 119-136

• pp. 137-138

• pp. 139-158

• pp. 159-179

• pp. 180-207

• pp. 208-211

5

Reference Title: References

Reference Type: reference-list

Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press.
Batterman, R. (2002). The Devil in the Details. Oxford: Oxford University Press.
Ernst, G. (2003). Die Zunahme der Entropie. Eine Fallstudie zum Problem nomologischer Reduktion. Paderborn: Mentis.
Exner, F. (1922). Vorlesungen über die physikalischen Grundlagen der Naturwissenschaften. Vienna: Franz Deuticke.
Hitchcock, C. (2004). Current Debates in Philosophy of Science. Oxford: Oxford University Press.
Horwich, P. (1987). Asymmetries in Time. Cambridge, MA: MIT Press.
Nagel, E. (1961). The Structure of Science. London: Routledge.
Sklar, L. (1993). Physics and Chance. Cambridge: Cambridge University Press.
Stöltzner, M. (1999). Vienna Indeterminism: Mach, Boltzmann, Exner. Synthese, 119, 85–111.
Uffink, J. (2007). Compendium of the Foundations of Classical Statistical Physics. In Philosophy of Physics, ed. J. Butterfield and J. Earman. Amsterdam: North-Holland, pp. 923–1047.
Von Plato, J. (1994). Creating Modern Probability. Cambridge: Cambridge University Press.
Von Plato, J. (2003). The rise of probabilistic thinking. In: The Cambridge History of Philosophy 1870–1945, ed. T. Baldwin. Cambridge: Cambridge University Press, pp. 621–628.

Reference Title: References

Reference Type: reference-list

Albert, D. Z. (2000). Time and Chance. Cambridge, MA: Harvard University Press.
Baez, J. (2007). The End of the Universe 2004 (accessed 1 February 2007). Available from: Causation in Physics/Baez_universe_end.html.
Earman, J. (2006). The ‘Past Hypothesis’: not even false. Studies in the History and Philosophy of Modern Physics, 37(3), 399–430.
Frisch, M. (2000). (Dis-)solving the puzzle of the arrow of radiation. British Journal for the Philosophy of Science, 51, 381–410.
Frisch, M. (2005). Inconsistency, Asymmetry and Non-locality: a Philosophical Investigation of Classical Electrodynamics. New York: Oxford University Press.
Frisch, M. (2006a). Causal asymmetry, counterfactual decisions and entropy. Philosophy of Science, 72(5), 739–750.
Frisch, M. (2006b). A tale of two arrows. Studies in the History and Philosophy of Modern Physics, 37(3), 542–558.
Frisch, M. (2007). Causation, counterfactuals and the past-hypothesis. In Russell's Republic: the Place of Causation in the Constitution of Reality, ed. H. Price and R. Corry. Oxford: Oxford University Press.
Holton, R. (2006). The act of choice. Philosophers' Imprint, 6(3), 1–15.
Loewer, B. (2007). Counterfactuals and the second law. In Causality, Physics, and the Constitution of Reality: Russell's Republic Revisited, ed. H. Price and R. Corry. Oxford: Oxford University Press.
Uffink, J. (2006). Compendium to the foundations of classical statistical physics. In Philosophy of Physics, Handbooks of the Philosophy of Science, ed. J. Butterfield and J. Earman. Amsterdam: Elsevier, North-Holland.
Winsberg, E. (2004). Can conditioning on the ‘past hypothesis’ militate against the reversibility objection? Philosophy of Science, 71, 489–504.

Reference Title: References

Reference Type: reference-list

Albert, D. Z. (2000). Time and Chance. Cambridge, MA: Harvard University Press.
Balescu, R. (1963). Statistical Mechanics of Charged Particles. New York: Interscience Publishers.
Binney, J. J. and Tremaine, S. (1987). Galactic Dynamics. Princeton, NJ: Princeton University Press.
Callender, C. (2004). Measures, explanations and the past: should ‘special’ initial conditions be explained? The British Journal for the Philosophy of Science, 55(2), 195–217.
Callender, C. (2010). The past histories of molecules. In Probabilities in Physics, ed. C. Beisbart and S. Hartmann. Oxford: Oxford University Press.
Chavanis, P. H. (1998). On the ‘coarse-grained’ evolution of collisionless stellar systems. Monthly Notices of the Royal Astronomical Society, 300, 981–991.
Chavanis, P. H. (2005). On the lifetime of metastable states in self-gravitating systems. Astronomy and Astrophysics, 432, 117–138.
Dauxois, T., Ruffo, S., Arimondo, E. and Wilkens, M. (eds.) (2002). Dynamics and Thermodynamics of Systems with Long Range Interactions. Berlin: Springer-Verlag.
DeRoeck, W., Maes, C. and Netočný, K. (2006). H-theorems from macroscopic autonomous equations. Journal of Statistical Physics, 123(3), 571–584.
Dunning-Davies, J. (1983). On the Meaning of Extensivity. Physics Letters, 94A, 346–348.
Earman, J. (2006). The past hypothesis: not even false. Studies in History and Philosophy of Modern Physics, 37(3), 399–430.
Frank, T. (2005). Nonlinear Fokker–Planck Equations. Berlin: Springer-Verlag.
Frigg, R. (2009). Typicality and the approach to equilibrium in Boltzmannian Statistical Mechanics. Philosophy of Science (Suppl.).
Garrido, P. L., Goldstein, S. and Lebowitz, J. L. (2004). Boltzmann entropy for dense fluids not in local equilibrium. Physical Review Letters, 92, 50602-1–50602-4.
Goldstein, S. (2002). Boltzmann's approach to statistical mechanics. In Chance in Physics, Foundations and Perspectives, ed. J. Bricmont, D. Durr, M. C. Galavotti et al., Berlin: Springer-Verlag.
Goldstein, S. and Lebowitz, J. L. (2004). On the (Boltzmann) entropy of non-equilibrium systems. Physica D: Nonlinear Phenomena, 193, 53–66.
Green, M. S. (1952). Markoff random processes and the statistical mechanics of time dependent phenomena. Journal of Chemical Physics, 20, 1281.
Heggie, D. C. and Hut, P. (2003). The Gravitational Million-body Problem. Cambridge: Cambridge University Press.
Hertel, P., Narnhofer, H. and Thirring, W. (1972). Thermodynamic functions for fermions with gravostatic and electrostatic interactions. Communications in Mathematical Physics, 28, 159–176.
Kandrup, H. (1981). Generalized Landau equation for a system with a self-consistent mean field–Derivation from an N-particle Liouville equation. The Astrophysical Journal, 244, 316.
Kandrup, H. Theoretical techniques in modern galactic dynamics, unpublished class notes available at http://www.astro.ufl.edu/~galaxy/papers/.
Landau, L. D. and Lifshitz, E. (1969). Statistical Physics, part 1. Oxford: Pergamon.
Lavis, D. A. (2005). Boltzmann and Gibbs: an attempted reconciliation. Studies in History and Philosophy of Modern Physics, 36(2), 245–273.
Lévy-Leblond, J.-M. (1969). Nonsaturation of gravitational forces. Journal of Mathematical Physics, 10(5), 806–812.
Liboff, R. L. and Fedele, J. B. (1967). Properties of the Fokker–Planck equation. Physics of Fluids, 10, 1391–1402.
Lieb, E. H. and Yngvason, J. (1998). A guide to entropy and the second law of thermodynamics. Notices of the American Mathematical Society 45, 571–581.
Lynden-Bell, D. (1967). Statistical mechanics of violent relaxation in stellar systems. Monthly Notices of the Royal Astronomical Society, 136, 101–121.
Lynden-Bell, D. and Wood, R. (1968). The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Monthly Notices of the Royal Astronomical Society, 138, 495.
Nauenberg, M. (2003). Critique of Q-entropy for thermal statistics. Physical Review E, 67(3), 036114.
Ogorodnikov, K. F. (1965). Dynamics of Stellar Systems. New York: Pergamon.
Padmanabhan, T. (1990). Statistical mechanics of gravitating systems. Physics Reports, 188(5), 285–362.
Price, H. (1996). Time's Arrow and Archimedes' Point. New York: Oxford University Press.
Reichenbach, H. (1999). The Direction of Time. Dover, NY: Mineola.
Risken, H. (1989). The Fokker–Planck Equation: Methods of Solution and Applications. Berlin: Springer-Verlag.
Rowlinson, J. S. (1993). Thermodynamics of inhomogeneous systems. Pure and Applied Chemistry, 65, 873.
Saslaw, W. C. (2000). The Distribution of the Galaxies: Gravitational Clustering in Cosmology. Cambridge: Cambridge University Press.
Schrödinger, E. (1989 [1948]). Statistical Thermodynamics. Dover reprint.
Spohn, H. (1991). Large Scale Dynamics of Interfacing Particles. Berlin: Springer.
Touchette, H. (2002). When is a quantity additive, and when is it extensive? Physica A: Statistical Mechanics and its Applications, 305(1–2), 84–88.
Uffink, J. (2007). Compendium of the foundations of classical statistical physics. In Philosophy of Physics, Handbook of the Philosophy of Science, eds. J. Butterfield and J. Earman. Amsterdam: North-Holland, pp. 923–1047.
Van Kampen (1981). Stochastic Processes in Physics and Chemistry. Amsterdam North-Holland.
Wald, R. M. (2006). The arrow of time and the initial conditions of the Universe. Studies in History and Philosophy of Modern Physics, 37(3), 394–398.

Reference Title: References

Reference Type: reference-list

Bojowald, M. (2006). Universe scenarios from loop quantum cosmology. Annalen der Physik, 15, 326–341.
Da̧browski, M. P., Kiefer, C. and Sandhöfer, B. (2006). Quantum phantom cosmology. Physical Review D, 74, article number 044022.
Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J. and Stamatescu, I.-O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Berlin: Springer-Verlag. See also http://www.decoherence.de.
Kamenshchik, A. Y., Kiefer, C., and Sandhöfer, B. (2007). Quantum cosmology with a big-brake singularity. Physical Review D, 76, 064032.
Kiefer, C. (1988). Wave packets in minisuperspace. Physical Review D, 38, 1761–1772.
Kiefer, C. (1999). Thermodynamics of black holes and Hawking radiation. In Classical and Quantum Black Holes, ed. P. Fré et al. Bristol: IOP Publishing, pp. 17–74.
Kiefer, C. (2007). Quantum Gravity, 2nd edn. Oxford: Oxford University Press.
Kiefer, C. and Zeh, H. D. (1995). Arrow of time in a recollapsing quantum universe. Physical Review D, 51, 4145–4153.
Penrose, R. (1990). The Emperor's New Mind. Oxford: Oxford University Press.
Rovelli, C. (2004). Quantum Gravity. Cambridge: Cambridge University Press.
Zeh, H. D. (2007). The Physical Basis of the Direction of Time, 5th edn. Berlin: Springer-Verlag. See also http://www.time-direction.de.

Reference Title: References

Reference Type: reference-list

Eagle, A. (2004). Twenty-one arguments against propensity analyses of probability. Erkenntnis, 60, 371–416.
Engel, E. (1992). A Road to Randomness in Physical Systems. Berlin: Springer-Verlag.
Guttmann, Y. (1999). The Concept of Probability in Statistical Physics. Cambridge: Cambridge University Press.
Hájek, A. (1997). ‘Mises redux’ – redux: Fifteen arguments against finite frequentism. Erkenntnis, 45, 209–227.
Hájek, A. (2009). Fifteen arguments against hypothetical frequentism. Erkenntnis, 70, 211–235.
Heidelberger, M. (2001). Origins of the logical theory of probability: von Kries, Wittgenstein, Waismann. International Studies in the Philosophy of Science, 15, 177–188.
Hopf, E. (1934). On causality, statistics and probability. Journal of Mathematics and Physics, 13, 51–102.
Hopf, E. (1936). Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 46, 179–195.
Poincaré, H. (1896). Calcul des Probabilités, Paris.
Poincaré, H. (1902). La Science et l'Hypothèse, Paris.
Strevens, M. (2003). Bigger than Chaos. Cambridge, MA: Harvard University Press.
Von Kries, J. (1886). Die Principien der Wahrscheinlichkeitsrechnung. Tübingen: Mohr Siebeck (2nd unchanged printing 1927).
Von Plato, J. (1994). Creating Modern Probability. Cambridge: Cambridge University Press.
Von Wright, G. H. (1982). Wittgenstein on probability. In Wittgenstein, ed. G. H. von Wright. Oxford: Blackwell.

Reference Title: References

Reference Type: reference-list

Abraham, R. and Marsden, J. E. (1980). Foundations of Mechanics, 2nd edn. London: Benjamin-Cummings.
Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press.
Arnold, V. and Avez, A. (1968). Ergodic Problems in Classical Mechanics. New York, Benjamin.
Boltzmann, L. (1877). Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht. Wiener Berichte, 76, 373–435. Reprinted in (1909). Wissenschaftliche Abhandlungen, vol. 2, ed. F. Hasenöhrl. Leipzig: J. A. Barth, pp. 164–223.
Callender, C. (1999) Reducing thermodynamics to statistical mechanics: the case of entropy. Journal of Philosophy, 96, 348–373.
Clark, P. (2001). Statistical mechanics and the propensity interpretation of probability. In Chance in Physics: Foundations and Perspectives. ed. J. Bricmont et al. Berlin: Springer-Verlag, pp. 271–281.
Earman, J. (1986). A Primer on Determinism. Dordrecht: Kluwer.
Earman, J. (2006). The ‘past hypothesis’: not even false. Studies in History and Philosophy of Modern Physics, 37, 399–430.
Earman, J. and Rédei, M. (1996). Why ergodic theory does not explain the success of equilibrium statistical mechanics. British Journal for the Philosophy of Science, 47, 63–78.
Ehrenfest, P. and Ehrenfest, T. (1907). Über Zwei Bekannte Einwände gegen das Boltzmannsche H-Theorem. Phyikalische Zeitschrift, 8, 311–14.
Ehrenfest, P. and Ehrenfest, T. (1912/1959). The Conceptual Foundations of the Statistical Approach in Mechanics. Mineola, NY: Dover (Reprinted 2002. First published in German in 1912; first English Translation 1959.)
Elga, A. (2004). Infinitesimal chances and the laws of nature. Australasian Journal of Philosophy, 82, 67–76.
Frigg, R. and Hoefer, C. (2007). Probability in GRW theory. Studies in the History and Philosophy of Modern Physics, 38, 371–389.
Frigg, R. (2008). A field guide to recent work on the foundations of statistical mechanics. In: The Ashgate Companion to Contemporary Philosophy. ed. D. Rickles. London: Ashgate, pp. 99–196.
Goldstein, S. (2001). Boltzmann's approach to statistical mechanics. In Chance in Physics: Foundations and Perspectives, ed. J. Bricmont et al. Berlin: Springer-Verlag.
Goldstein, S. and Lebowitz, J. L. (2004). On the (Boltzmann) entropy of non-equilibrium systems. Physica D: Nonlinear Phenomena, 193 (1–4), 53–66.
Hitchcock, C. (ed.) (2004). Contemporary Debates in Philosophy of Science. Oxford: Blackwell.
Hoefer, C. (2007). The third way on objective probability: a skeptic's guide to objective chance. Mind, 116, 549–596.
Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics. Mineola, NY: Dover.
Lavis, D. (2005). Boltzmann and Gibbs: an attempted reconciliation. Studies in History and Philosophy of Modern Physics, 36, 245–273.
Lebowitz, J. L. (1993a). Boltzmann's entropy and time's arrow. Physics Today, September issue, 32–38.
Lebowitz, J. L. (1993b). Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann's entropy. Physica A, 194, 1–27.
Lebowitz, J. L. (1999). Statistical mechanics: a selective review of two central issues. Reviews of Modern Physics, 71, 346–357.
Lewis, D. (1986). A Subjectivist's Guide to Objective Chance and Postscripts to ‘A subjectivist's guide to objective Chance’. In Philosophical Papers, vol. 2, Oxford: Oxford University Press, pp. 83–132.
Lewis, D. (1994). Humean supervenience debugged. Mind, 103, 473–90.
Loewer, B. (2001). Determinism and chance. Studies in History and Philosophy of Modern Physics, 32, 609–629.
Loewer, B. (2004). David Lewis' Humean theory of objective chance. Philosophy of Science, 71, 1115–1125.
Meacham, C. (2005). Three proposals regarding a theory of chance. Philosophical Perspectives, 19, 281–307.
Redhead, M. (1995). From Physics to Metaphysics. Cambridge: Cambridge University Press.
Sklar, L. (1993). Physics and Chance. Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: Cambridge University Press.
van Lith, J. (2001). Ergodic theory, interpretations of probability and the foundations of statistical mechanics. Studies in History and Philosophy of Modern Physics, 32, 581–594.
Uffink, J. (2007). Compendium of the foundations of classical statistical physics. In Philosophy of Physics, ed. J. Butterfield and J. Earman. Amsterdam: North-Holland, pp. 923–1047.
von Plato, J. (1988). Ergodic theory and the foundations of probability. In Causation, Chance and Credence, vol. 1, ed. B. Skyrms and W. L. Harper. Dordrecht: Kluwer, pp. 257–277.
von Plato, J. (1989). Probability in dynamical systems. In Logic, Methodology and Philosophy of Science, vol. VIII, ed. J. E. Fenstad, I. T. Frolov and R. Hilpinen. Amsterdam: North-Holland, pp. 427–443.
von Plato, J. (1994). Creating Modern Probability. Cambridge: Cambridge University Press.
Winsberg, E. (2004a). Can conditioning on the ‘past hypothesis’ militate against the reversibility objections? Philosophy of Science, 71, 489–504.
Winsberg, E. (2004b). Laws and statistical mechanics. Philosophy of Science, 71, 707–718.

Reference Title: References

Reference Type: reference-list

Anjum, R. L. and Mumford, S. (2009). Dispositional modality. In Lebenswelt und Wissenschaft. XXI. Deutscher Kongress für Philosophie. Kolloquien, ed. C. F. Gethmann, Hamburg: Meiner, in press.
Armstrong, D. M. (1983). What is a Law of Nature? Cambridge: Cambridge University Press.
Bartels, A. (1996). Modern essentialism and the problem of individuation of spacetime points. Erkenntnis, 45, 25–43.
Bartels, A. (2009). Dispositionen in Raumzeit-Theorien. In Lebenswelt und Wissenschaft. XXI. Deutscher Kongress für Philosophie. Kolloquien, ed. C. F. Gethmann, Hamburg: Meiner, in press.
Beebee, H. (2006). Does anything hold the world together? Synthese, 149, 509–533.
Beebee, H. and Mele, A. (2002). Humean compatibilism. Mind, 111, 201–223.
Bird, A. (1998). Dispositions and antidotes. Philosophical Quarterly, 48, 227–234.
Bird, A. (2007). Nature's Metaphysics. Laws and Properties. Oxford: Oxford University Press.
Bird, A. (2009). Structural properties revisited. In Dispositions and Causes, ed. T. Handfield. Oxford: Oxford University Press, pp. 215–241.
Black, R. (2000). Against quidditism. Australasian Journal of Philosophy, 78, 87–104.
Callender, C. (2001). Thermodynamic asymmetry in time. In Stanford Encyclopedia of Philosophy, ed. E. N. Zalta. http://plato.stanford.edu/archives/win2001/entries/time-thermo.
Choi, S. (2008). Dispositional properties and counterfactual conditionals. Mind, 117, 795–841.
Cross, T. (2005). What is a disposition? Synthese, 144, 321–341.
Dorato, M. (2006). Properties and dispositions: some metaphysical remarks on quantum ontology. In Quantum Mechanics: Are There Quantum Jumps? On the Present State of Quantum Mechanics, American Institute of Physics Conference Proceedings, vol. ed. A. Bassi, D. Dürr, T. Weber and N. Zanghi. New York: American Institute of Physics, pp. 139–157.
Ellis, B. (2001). Scientific Essentialism. Cambridge: Cambridge University Press.
Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Modern Physics, 35B, 601–617.
Esfeld, M. (2007). Mental causation and the metaphysics of causation. Erkenntnis, 67, 207–220.
Esfeld, M. (2009). The modal nature of structures in moderate structural realism. International Studies in the Philosophy of Science, 23, 179–194.
Esfeld, M. and Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.
French, S. (2006). Structure as a weapon of the realist. Proceedings of the Aristotelian Society, 106, 167–185.
French, S. and Ladyman, J. (2003). Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese, 136, 31–56.
Frigg, R. and Hoefer, C. (2007). Probability in GRW theory. Studies in History and Philosophy of Modern Physics, 38B, 371–389.
Ghirardi, G., Rimini, A. and Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.
Gundersen, L. (2002). In defense of the conditional-account of dispositions. Synthese, 130, 389–411.
Handfield, T. (2008). Humean dispositionalism. Australasian Journal of Philosophy, 86, 113–126.
Hawthorne, J. (2001). Causal structuralism. Philosophical Perspectives, 15, 361–378.
Heil, J. (2003). From an Ontological Point of View. Oxford: Oxford University Press.
Heil, J. (2009). Obituary. C. B. Martin. Australasian Journal of Philosophy, 87, 177–179.
Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Modern Science, 29, 409–424.
Ladyman, J. and Ross, D. (2007). Every Thing Must Go: Metaphysics Naturalised. Oxford: Oxford University Press.
Lewis, D. (1973a). Causation. Journal of Philosophy 70, 556–567. Reprinted in D. Lewis (1986). Philosophical Papers. vol. 2. Oxford: Oxford University Press, pp. 159–172.
Lewis, D. (1973b). Counterfactuals. Oxford: Blackwell.
Lewis, D. (1986). Philosophical Papers, vol. 2. Oxford: Oxford University Press.
Lewis, D. (1994). Humean supervenience debugged. Mind, 103, 473–490. Reprinted in D. Lewis (1999). Papers in Metaphysics and Epistemology. Cambridge: Cambridge University Press, pp. 224–247.
Lewis, D. (1997). Finkish dispositions. Philosophical Quarterly, 47, 145–158. Reprinted in D. Lewis (1999). Papers in Metaphysics and Epistemology. Cambridge: Cambridge University Press, pp. 133–151.
Lewis, D. (2004). Causation as influence. In Causation and Counterfactuals, ed. J. Collins, N. Hall and L. A. Paul. Cambridge, MA: MIT Press, pp. 75–106.
Lewis, D. (2009). Ramseyan humility. In Conceptual Analysis and Philosophical Naturalism, ed. D. Braddon-Mitchell and R. Nola. Cambridge, MA: MIT Press, pp. 203–222.
Loewer, B. (2007). Counterfactuals and the second law. In Causation, Physics, and the Constitution of Reality. Russell's Republic Revisited, ed. H. Price and R. Corry. Oxford: Oxford University Press, pp. 293–326.
Malzkorn, W. (2000). Realism, functionalism, and the conditional analysis of dispositions. Philosophical Quarterly, 50, 452–469.
Martin, C. B. (1994). Dispositions and conditionals. Philosophical Quarterly, 44, 1–8.
Martin, C. B. (1997). On the need for properties: the road to Pythagoreanism and back. Synthese, 112, 193–231.
Mumford, S. (1998). Dispositions. Oxford: Oxford University Press.
Mumford, S. (2006). The ungrounded argument. Synthese, 149, 471–489.
Popper, K. R. (1990). A World of Propensities. Bristol: Thoemmes.
Price, H. and Corry, R. (2007). Causation, Physics, and the Constitution of Reality. Russell's Republic Revisited. Oxford: Oxford University Press.
Psillos, S. (2006). What do powers do when they are not manifested? Philosophy and Phenomenological Research, 72, 137–156.
Russell, B. (1912). On the notion of cause. Proceedings of the Aristotelian Society, 13, 1–26.
Shoemaker, S. (1980). Causality and properties. In Time and Cause, ed. P. van Inwagen. Dordrecht: Reidel, pp. 109–135. Reprinted in S. Shoemaker (1984). Identity, Cause, and Mind. Philosophical Essays. Cambridge: Cambridge University Press, pp. 206–233.
Shoemaker, S. (2007). Physical realization. Oxford: Oxford University Press.
Sparber, G. (2006). Powerful causation. In John Heil. Symposium on his Ontological Point of View, ed. M. Esfeld. Frankfurt: Ontos, pp. 123–137.
Sparber, G. (2009). Unorthodox Humeanism. Frankfurt: Ontos-Verlag.
Suárez, M. (2007). Quantum propensities. Studies in History and Philosophy of Modern Physics, 38B, 418–438.
van Fraassen, B. C. (2006). Structure: its shadow and substance. British Journal for the Philosophy of Science, 57, 275–307.

Reference Title: References

Reference Type: reference-list

Balzer, W., Moulines, C. U. and Sneed, J. D. (1987). An Architectonic for Science. Dordrecht: Reidel.
Caamaño, M. C. (2004). El problema de la inconmensurabilidad de las teorías científicas. Ph.D. thesis, University of Santiago de Compostela.
Callen, H. B. (1960). Thermodynamics. New York: Wiley.
Clausius, R. J. (1850). Über die bewegende Kraft der Wärme. Annalen der Physik, 79, 368–397, 500–524.
Clausius, R. J. (1854). Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Annalen der Physik, 93, 481–506.
Clausius, R. J. (1857). Über die Art der Bewegung, die wir Wärme nennen. Annalen der Physik, 100, 497–507.
Elkana, Y. (1974). The Discovery of the Conservation of Energy. London: Hutchinson.
Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances, Part I. Transactions of the Connecticut Academy of Arts and Sciences 3. Reprinted in: The Scientific Papers of J. Willard Gibbs, ed. H. A. Bumstead and R. G. van Name. New York: Longmans, Green & Co, 1906 (2nd edn, New Haven CT: Yale Univ. Press, 1957).
Moulines, C. U. (1991). The classical spirit in J. Willard Gibbs's classical thermodynamics. In Thermodynamics: History and Philosophy, ed. K. Martinás, et al. Singapore: World Scientific.
Moulines, C. U. (1996). Zur Typologie wissenschaftlicher Entwicklung nach strukturalistischer Deutung. In Cognitio humana – Dynamik des Wissens und der Werte, ed. C. Hubig. Leipzig: Akademie-Verlag, pp. 397–410.
Sneed, J. D. (1971). The Logical Structure of Mathematical Physics. Dordrecht: Reidel (2nd revised edition 1978).
Stegmüller, W. (1973). Theorienstrukturen und Theoriendynamik. Berlin: Springer-Verlag.

Reference Title: References

Reference Type: reference-list

Batterman, R. W. (1995) Theories between theories: asymptotic limiting intertheoretic relations. Synthese, 103, 171–201.
Batterman, R. W. (2002a). Asymptotics and the role of minimal models. The British Journal for the Philosophy of Science, 53, 21–38.
Batterman, R. W. (2002b). The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford Studies in Philosophy of Science. Oxford: Oxford University Press.
Bleher, P. M. and Sinai, Ya. G. (1973). Investigation of the critical point in models of the type of Dyson's hierarchical models. Communications in Mathematical Physics, 33, 23–423.
Cassandro, M. and Jona-Lasinio, G. (1978). Critical point behaviour and probability theory. Advances in Physics, 27, 913–941.
Gallavotti, G. (1999). Statistical Mechanics: a Short Treatise. Texts and Monographs in Physics. Berlin: Springer-Verlag.
Gibbs, J. W. (1928). A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. In The Collected Works of J. Willard Gibbs, ch. II. New York: Longmans, Green and Co., pp. 33–54. (Originally published in (1893), Transactions of the Connecticut Academy, II, pp. 382–404)
Gibbs, J. W. (1981). Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics. Woodbridge, CN: Ox Bow Press. (First Published in 1902.)
Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group. Frontiers in Physics, no. 85 Reading, MA: Addison-Wesley.
Jona-Lasinio, G. (1975). The renormalization group: a probabilistic view. Il Nuovo Cimento B, 26(1), 99–119.
Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics. New York: Dover Publications.
Nagel. E. (1961). The Structure of Science: Problems in the Logic of Scientific Explanation. New York: Harcourt, Brace, & World.
Sinai, Ya. G. (1978). Mathematical foundations of the renormalization group method in statistical physics. In Mathematical Problems in Theoretical Physics. S. Doplicher, G. Dell'Antonio and G. Jona-Lasinio, Berlin: Springer-Verlag, pp. 303–311.
Sinai, Ya. G. (1982). Theory of Phase Transitions: Rigorous Results. Oxford: Pergamon Press.
Sinai, Ya. G. (1992). Probability Theory: an Introductory Course, transl. by D. Haughton. Berlin: Springer-Verlag.
Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of Statstical Mechanics. Cambridge: Cambridge University Press.
Wightman, A. S. (1989). On the prescience of J. Willard Gibbs. In Proceedings of the Gibbs Symposium: Yale University, May 15–17, 1989, G. D. Mostow and D. G. Caldi, ed. New York: American Mathematical Society, American Institute of Physics.

Reference Title: References

Reference Type: reference-list

Bacciagaluppi, G. (2007). Probability and time symmetry in classical Markov Processes. http://philsci-archive.pitt.edu/archive/00003534/
Balian, R. (2005). Information in statistical physics. Studies In History and Philosophy of Modern Physics, 36, 323–353.
Blatt, J. M. (1959). An alternative approach to the ergodic problem. Progress in Theoretical Physics, 22, 745–756.
Borel, E. (1914). Le Hasard. Paris: Alcan.
Callender, C. (1999). Reducing thermodynamics to statistical mechanics: the case of entropy. Journal of Philosophy, 96, 348–373.
Davies, E. B. (1974). Markovian master equations. Communications in Mathematical Physics, 39, 91–110.
Davies, E. B. (1976a). Markovian master equations II. Mathematische Annalen, 219, 147–158.
Davies, E. B (1976b). Quantum Theory of Open Systems. New York: Academic Press.
Edens, B. (2001). Semigroups and symmetry: an investigation of Prigogine's theories. http://philsci-archive.pitt.edu/archive/00000436/.
Ehrenfest, P. and Ehrenfest, T. (1907). Über Zwei Bekannte Einwände gegen das Boltzmannsche H-Theorem. Phyikalische Zeitschrift, 8, 311–314.
Gantmacher, F. R. (1959). Matrizenrechnung, vol. 2. Berlin: Deutscher Verlag der Wissenschaften.
Gorini, V., Kossakowski, A. and Sudarshan, E. C. G. Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics, 17, 8721–8825.
Grimmett, G. R. and Stirzaker, D. R. (1982). Probability and Random Processes. Oxford: Clarendon Press.
van Kampen, N. G. (1962). Fundamental problems in the statistical mechanics of irreversible processes. In Fundamental Problems in Statistical Mechanics, ed. E. G. D. Cohen. Amsterdam: North-Holland, pp. 173–202.
van Kampen, N. G. (1981). Stochastic Processes in Chemistry and Physics. Amsterdam: North-Holland.
van Kampen, N. G. (1994) Models for dissipation in quantum mechanics. In 25 Years of Non-equilibrium Statistical Mechanics, ed. J. J. Brey et al. Berlin: Springer-Verlag.
van Kampen, N. G. (2002) The road from molecules to Onsager. Journal of Statistical Physics, 109, 471–481.
Kelly F. P. (1979). Reversibility and Stochastic Networks. Chichester: Wiley. Also at http://www.statslab.cam.ac.uk/ afrb2/kelly_book.html.
Lavis, D. A. (2004). The spin-echo system reconsidered. Foundations of Physics, 34, 669–688.
Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48, 119–130.
Lindblad, G. (1983). Non-equilibrium Entropy and Irreversibility. Dordrecht: Reidel.
Maes, C. and Netočný, K. (2003). Time-reversal and entropy. Journal of Statistical Physics, 110, 269–310.
Mackey, M. C. (1992). Time's Arrow: the Origins of Thermodynamic Behavior. New York: Springer-Verlag.
Mackey, M. C. (2001). Microscopic dynamics and the second law of thermodynamics. In Time's Arrows, Quantum Measurements and Superluminal Behavior, ed. C. Mugnai, A. Ranfagni and L. S. Schulman. Rome: Consiglio Nazionale delle Ricerche.
Mehra, J. and Sudarshan, E. C. G. (1972). Some reflections on the nature of entropy, irreversibility and the second law of thermodynamics. Nuovo Cimento B, 11, 215–256.
Moran, P. A. P. (1961). Entropy, Markov processes and Boltzmann's H-theorem. Proceedings of the Cambridge Philosophical Society, 57, 833–842.
Morrison, P. (1966). Time's arrow and external perturbations. In Preludes in Theoretical Physics in Honor of V. F. Weisskopf, A. de Shalit, H. Feshbach and L. van Hove. Amsterdam: North-Holland, pp. 347–351.
Penrose, O. (1970). Foundations of Statistical Mechanics: a Deductive Treatment. Oxford: Pergamon Press.
Penrose, O. and Percival, I. (1962). The direction of time. Proceedings of the Physical Society, 79, 605–616.
Petersen, K. (1983). Ergodic Theory. Cambridge: Cambridge University Press.
Price, H. (1996). Time's Arrow and Archimedes' Point. New York: Oxford University Press.
Redhead, M. (1995). From Physics to Metaphysics. Cambridge: Cambridge University Press.
Ridderbos, T. M. (2002). The coarse-graining approach to statistical mechanics: how blissful is our ignorance. Studies in History and Philosophy of Modern Physics, 33, 65–77.
Ridderbos, T. M and Redhead, M. L. G. (1998). The spin-echo experiment and the second law of thermodynamics. Foundations of Physics, 28, 1237–1270.
Sklar, L. (1993). Physics and Chance. Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: Cambridge University Press.
Spohn, H. (1980). Kinetic equations from Hamiltonian dynamics: Markovian limits. Reviews of Modern Physics, 52, 569–615.
Streater, R. F. (1995). Statistical Dynamics; a Stochastic Approach to Non-equilibrium Thermodynamics. London: Imperial College Press.
Sudarshan, E. C. G., Mathews, P. M. and Rau, J. (1961). Stochastic dynamics of quantum-mechanical systems. Physical Review, 121, 920–924.
Uffink, J. (2007) Compendium of the foundations of classical statistical physics. In Handbook of the Philosophy of Physics, ed. J. Butterfield and J. Earman. Amsterdam: North-Holland, pp. 923–1074.