By T. J. M. Boyd
By J. J. Sanderson
Publisher: Cambridge University Press
Print Publication Year: 2003
Online Publication Date:July 2010
Online ISBN:9780511755750
Hardback ISBN:9780521452908
Paperback ISBN:9780521459129
Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755750.013
Subjects: Plasma Physics and Fusion Physics, Astrophysics
Image View Extract Fullview: Text View | Enlarge Image ‹ Previous Chapter ›Next Chapter
Introduction
In this final chapter an attempt is made to sketch the classical mathematical structure underlying the various theoretical models which have been used throughout the book. The knowledge of where a particular model fits within the overall picture helps us both to understand the relationship to other models and to appreciate its limitations. Of course, we have touched upon these relationships and limitations already so the task remaining is to construct the framework of classical plasma theory and show how it all fits together.
Since collisional kinetic theory is the most comprehensive of the models that we have discussed we could begin with it as the foundation of the structure we wish to build. Indeed, we shall demonstrate its pivotal position. This would, however, be less than satisfactory for two reasons. The first and basic objection is that, so far, we have merely assumed a physically appropriate model for collisions. We have not carried out a mathematical derivation of the collision term. In fact, enormous effort has gone into this task though we shall present only a brief resumé. In doing so, we shall show how the separation of the effects of the Coulomb force into a macroscopic component (self-consistent field) and a microscopic component (collisions) appears quite naturally in the mathematical derivation of the collisional kinetic equation. This is the second reason for starting at a more fundamental level than the collisional kinetic equation itself.
To lighten the burden of the mathematical analysis we have, wherever convenient, restricted calculations to a one-component (electron) plasma. The ions, however, are not ignored but treated as a uniform background of positive charge.
pp. i-iv
pp. v-x
pp. xi-xii
pp. 1-11
2 - Particle orbit theory : Read PDF
pp. 12-47
3 - Macroscopic equations : Read PDF
pp. 48-76
4 - Ideal magnetohydrodynamics : Read PDF
pp. 77-139
5 - Resistive magnetohydrodynamics : Read PDF
pp. 140-196
6 - Waves in unbounded homogeneous plasmas : Read PDF
pp. 197-251
7 - Collisionless kinetic theory : Read PDF
pp. 252-295
8 - Collisional kinetic theory : Read PDF
pp. 296-323
9 - Plasma radiation : Read PDF
pp. 324-375
10 - Non-linear plasma physics : Read PDF
pp. 376-424
11 - Aspects of inhomogeneous plasmas : Read PDF
pp. 425-463
12 - The classical theory of plasmas : Read PDF
pp. 464-506
Appendix 1 - Numerical values of physical constants and plasma parameters : Read PDF
pp. 507-508
Appendix 2 - List of symbols : Read PDF
pp. 509-516
pp. 517-522
pp. 523-532