4 - LiNbO3 external modulators and their use in high performance analog links  pp. 81-132

LiNbO3 external modulators and their use in high performance analog links

By Garry E. Betts

Image View Previous Chapter Next Chapter



Introduction

This chapter will cover the design of modulators for high performance externally modulated analog links. This includes development of a model of the externally modulated analog link so that the connection between modulator design parameters and link performance is clear. The only type of link considered here is one using amplitude modulation of the light and direct detection.

Section 4.2 will go through the basic modulator designs in detail. Section 4.3 will relate the modulator performance to link performance, including an explanation of modulator linearization and an overview of several types of linearized modulator.

The link analysis in Section 4.3 is applicable to any externally modulated link using a modulator that can be characterized by a transfer function that depends on voltage (i.e., the optical transmission depends on voltage). It applies to modulators of any type in any material that meet this criterion. The modulator designs given in Section 4.2, and the linearized modulators described in Section 4.3.2, can be built on a variety of materials.

Lithium niobate (LiNbO3) presently is the material in widest use as a modulator substrate for modulators used in analog links. It is an insulating crystal whose refractive index changes with voltage. It has a high electro-optic coefficient, it is stable at normal electronic operating temperatures, low-loss (0.1 dB/cm) optical waveguides can be made in it, there are manufacturable ways to attach optical fibers with low coupling loss, and its dielectric constant is low enough that high speed modulators can be made without too much trouble.

4

Reference Title: References

Reference Type: reference-list

C. Cox, Analog Optical Links: Theory and Practice, Cambridge, Cambridge University Press. To be published
E. Ackerman, D. Kasemset, S. Wanuga, D. Hogue, and J. Komiak, “A high-gain directly modulated L-band microwave optical link,” IEEE MTT-S Int. Microwave Symp. Dig., Dallas, Texas, pp. 153–5, 1990
R. Fano , “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Franklin Inst., 249, 57–84 and 139–54, 1950
C. Cox , G. Betts , and L. Johnson , “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech., 38, 501–9, 1990
K. Williams , L. Nichols , and R. Esman , “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link,” J. Lightwave Technol., 16, 192–9, 1998
C. Cox, H. Roussell, R. Ram, and R. Helkey, “Broadband, directly modulated analog fiber optic link with positive intrinsic gain and reduced noise figure,” Proc. IEEE International Topical Meeting on Microwave Photonics, Princeton, New Jersey, 1998
C. Cox, E. Ackerman, and G. Betts, “Relationship between gain and noise figure of an optical analog link,” IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, California, pp. 1551–4, 1996
E. Ackerman , C. Cox , G. Betts , H. Roussell , K. Ray , and F. O'Donnell , “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microwave Theory Tech., 46, 2025–31, 1998
T. Darcie and G. Bodeep , “Lightwave subcarrier CATV transmission systems,” IEEE Trans. Microwave Theory Tech., 38, 524–33, 1990
W. Bridges and J. Schaffner , “Distortion in linearized electro-optic modulators,” IEEE Trans. Microwave Theory Tech., 43, 2184–97, 1995
G. Betts , “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech., 42, 2642–9, 1994

Reference Title: References

Reference Type: reference-list

T. E. Darcie, Broadband Subscriber Access Architectures and Technologies, OFC'96 tutorial, 1996
N. J. Frigo, “A survey of fiber optics in local access architecture”, in Optical Fiber Telecommunications: IIIA, Academic Press, 1997
X. Lu, Broadband Access: Technologies and Opportunities, Globecom'99 tutorial, 1999
T. E. Darcie , “Subscriber multiplexing for multiple-access lightwave networks”, J. Lightwave Technol., LT-5, 1103–10, 1987
J. A. Chiddix , H. Laor , D. M. Pangrac , L. D. Williamson , and R. W. Wolfe , “AM video on fiber in CATV systems, need and implementation”, J. Select. Areas Commun., 8, 1990
J. A. Chiddix , J. A. Vaughan , and R. W. Wolfe , “The Use of Fiber Optics in Cable Communication Networks”, J. Lightwave Technol., 11 (1), 154–66, 1993
A. E. Werner and O. J. Sniezko, “HFC optical technology: ten years of progress and today's status, choices and challenges”, CED, September 1998
O. J. Sniezko, “Reverse path for advanced services – architecture and technology”, NCTATechnical Papers, 1999
Data Over Cable Service Interface Specifications, Cable Labs, July 1998
A. ;E. Werner, “Regional and metropolitan hub architecture consideration”, SCTE Conference on Emerging Technology, 1995
T. G. Elliot and O. J. Sniezko, “Transmission technologies in secondary hub rings – SONET versus FDM once more”, NCTATechnical Papers, 1996
O J. Sniezko and A. E. Werner, “Invisible hub or end-to-end transparency”, NCTATechnical Papers, 1998
O. J. Sniezko, “Video and Data Transmission in Evolving HFC Network”, OFC'98, 1998
F. T. Andrews, “The heritage of telephony”, IEEECommun. Mag., 27, 8, 1989
F. T. Andrews, “The evolution of digital loop carrier”, IEEE Commun. Mag., 29, 3, 1991
P. W. Shumate and R. K. Snelling, “Evolution of fiber in the residential loop plant”, IEEE Commun. Mag., 29, 3, 1991
P. W. Shumate, “What's happening with fiber to the home?”, Opt. Photon. News, 7, 1996
M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission”, in Optical Fiber Telecommunications: IIIA, Academic Press, 1997
K. Y. Lau and A. Yariv , “Intermodulation distortion in a directly modulated semiconductor injection laser”, Appl. Phys. Lett., 45, 1984
R. Olshasky, V. Lanzisera, and P. Hill, “Design and performance of wideband subcarrier multiplexed lightwave systems”, ECOC'88, 1988
T. E. Darcie, R. S. Tucker, and G. J. Sullivan, “Intermodulation and harmonic distortion in InGaAsP lasers”, Electron. Lett., 21, 1984
G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, New York, Van Nostrand Reinhold, 1986
M. Nazarathy , J. Berger , A. J. Ley , I. M. Levi , and Y. Kagan , “Progress in externally modulated AM CATV transmission systems”, J. Lightwave Technol., 11, 1993
A. Gnauck , T. Darcie , and G. Bodeep , “Comparison of direct and external modulation for CATV lightwave transmission at 1.55μm wavelength”, Electron. Lett., 28, 1992
N. Frigo , M. Phillips , and G. Bodeep , “Clipping distortion in lightwave CATV systems: model, simulation and measurements”, J. Lightwave Technol., 11, 1993
A. Saleh , “Fundamental limit of number of channels in subcarrier multiplexed lightwave CATV system”, Electron. Lett., 25, 1989
U. Cebulla, J. Bouayad, H. Haisch, M. Klenk, G. Laube, H. Mayer, R. Weinmann, and E. Zielinski, “1.55 mm strained layer quantum well DFB lasers with low chirp and low distortions for optical analog CATV distribution systems”, Proceedings of Conference on Lasers and Electron-optics, 1993
F. Koyama and K. Iga , “Frequency chirping in external modulators”, J. Lightwave Technol., 6, 1988
A. Judy, “The generation of intensity noise from fiber Rayleigh back-scattering and discrete reflections”, Proceedings of European Conference on Optical Communications, 1989
T. Darcie , G. Bodeep , and A. Saleh , “Fiber-reflection induced impairments in lightwave AM–VSB CATV systems”, J. Lightwave Technol., 9, 1991
S. Woodward and T. Darcie, “A method for reducing multipath interference noise”, IEEEPhoton. Technol. Lett., 6, 1994
M. Phillips, T. Darcie, D. Marcuse, G. Bodeep, and N. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals”, IEEEPhoton. Technol. Lett., 3, 1991
C. Poole and T. Darcie , “Distortion related to polarization-mode dispersion in analog lightwave systems”, J. Lightwave Technol., 11, 1993
M. Phillips, G. Bodeep, X. Lu, and T. Darcie, “64QAM BER measurements in an analog lightwave link with large polarization-mode dispersion-, Proceedings of Conference on Optical Fiber Communication, 1994
A. Chraplyvy , “Limitation on lightwave communication imposed by optical-fiber nonlinearities”, J. Lightwave Technol., 8, 1990
X. Mao, G. Bodeep, R. Tkach, A. Chraplyvy, T. Darcie, and R. Derosier, “Brillouin scattering in externally modulated lightwave AM–VSB CATV transmission systems-, IEEEPhoton. Technol. Lett., 4, 1992
X. Mao, G. Bodeep, R. Tkach, A. Chraplyvy, T. Darcie, and R. Derosier, “Suppression of Brillouin scattering in externally modulated lightwave AM–VSB CATV transmission systems-, Proceedings of Conference on Optical Fiber Communication, 1993
G. Agrawal, Nonlinear Fiber Optics, Academic Press, 1989
A. Saleh , T. Darcie , and R. Jopson , “Nonlinear distortion due to optical amplifiers in subcarrier-multiplexed lightwave communications systems”, Electron. Lett., 25, 1989
E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994
S. L. Woodward and G. E. Bodeep, “Uncooled Fabry–Perot lasers for QPSK transmission-, IEEEPhoton. Technol. Lett., 7, 558, 1995
X. Lu, T. E. Darcie, A. H. Gnauck, S. L. Woodward, B. Desai, and Xiaoxin Qui, “Low-cost cable network upgrade for two-way broadband”, ET'98, 1998
O. Sniezko, T. Werner, D. Combs, E. Sandino, Xiaolin Lu, T. Darcie, A. Gnauck, S. Woodward, B. Desai, “HFC architecture in the making-, NCTA Technical Papers, 1999
O. Sniezko and Xiaolin Lu, “How much “F” and “C” in HFC”, ET2000, 2000

Reference Title: References

Reference Type: reference-list

E. I. Ackerman, C. H. Cox III,III and N. A. Riza (eds.), Selected Papers on Analog Fiber-Optic Links, SPIE Milestone Series, vol. 149, Bellingham, 1998
S. L. Chuang, Physics of Optoelectronic Devices, Wiley & Sons, New York, 1995
R. Nagarajan , T. Fukushima , M. Ishikawa , J. E. Bowers , R. S. Geels , and L. A. Coldren , “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett., 4 (2), 121–3, 1992
G. Morthier , “Design and optimization of strained-layer-multiquantum-well lasers for high-speed analog communication,” IEEE J. Quantum Electron., 30, 1520–7, 1994
C. Wilmsen, H. Temkin, and L. A Coldren (eds.), Vertical Cavity Surface Emitting Lasers, Cambridge University Press, 1999
L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York, 1995
J. Piprek , P. Abraham , and J. E. Bowers , “Carrier non-uniformity effects on the internal efficiency of multi-quantum-well laser diodes,” Appl. Phys. Lett., 74 (4), 489–91, 1999
T. R. Chen , P. C. Chen , J. Ungar , J. Paslaski , S. Oh , H. Luong , and N. Bar-Chaim , “Wide temperature range linear DFB lasers with very low threshold current,” Electron. Lett., 33, 963–4, 1997
T. Olson , “An RF and microwave fiber-optic design guide,” Microwave J., 39 (8), 54–78, 1996
R. Jaeger , M. Grabherr , C. Jung , R. Michalzik , G. Reiner , B. Weigl , and K. J. Ebeling , “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs,” Electron. Lett., 33, 330–1, 1997
N. M. Margalit , J. Piprek , S. Zhang , D. I. Babic , K. Streubel , R. P. Mirin , J. R. Wesselmann , J. E. Bowers , and E. L. Hu , “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron., 3, 359–65, 1997
V. Jayaraman , J. C. Geske , M. H. MacDougal , F. H. Peters , T. D. Lowes , and T. T. Char , “Uniform threshold current, continuous-wave, singlemode 1300nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett., 34, 1405–6, 1998
I. Joindot and J. L. Beylat , “Intervalence band absorption coefficient measurements in bulk layer, strain and unstrained multiquantum well 1.55 μm semiconductor lasers,” Electron. Lett., 29 (7), 604–6, 1993
N. Tessler and G. Eisenstein , “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron., 29 (6), 1586–93, 1993
J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, IEE/SPIE Press, London/Washington, 1998
G. Morthier and P. Vankwikelberge, Handbook of Distributed Feedback Laser Diodes, Artech House, Norwood, 1997
K. Petermann, Laser Diode Modulation and Noise, Kluwer Academic Publishers, Dordrecht, 1988
G. H. B. Thompson, Physics of Semiconductor Laser Devices, John Wiley & Sons, New York, 1980
K. Y. Lau and A. Yariv, “High-frequency current modulation of semiconductor injection lasers,” Ch. 2 in Semiconductors and Semimetals, vol. 22, Academic Press, Orlando, 1985
J. Katz , S. Margalit , C. Harder , D. Wilt , and A. Yariv , “The intrinsic equivalent circuit of a laser diode,” IEEE J. Quantum Electron., 17 (1), 4–7, 1981
C. Harder , J. Katz , S. Margalit , J. Shacham , and A. Yariv , “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron., 18 (3), 333–7, 1982
E. J. Flynn , “A note on the semiconductor laser equivalent circuit,” J. Appl. Phys., 85 (4), 2041–5, 1999
K. Y. Lau, “Dynamics in quantum well lasers,” Ch. 5 in Quantum Well Lasers, ed. P. S. Zory, Academic Press, San Diego, 1993
J. E. Bowers, “Modulation properties of semiconductor lasers,” in Optoelectronics for the Information Age, ed. C. Lin, Van Nostrand, New York, 1989
D. A. Atlas and A. Rosiewicz , “A 20 GHz bandwidth InGaAsPΓInP MTBH laser module,” IEEE Photon. Technol. Lett., 5 (2), 123–6, 1993
C. L. Goldsmith and B. Kanack , “Broad-band reactive matching of high-speed directly modulated laser diodes,” IEEE Microwave & Guided Wave Lett., 3 (9), 336–8, 1993
O. Kjebon , R. Schatz , S. Lourdudoss , S. Nilsson , B. Stalnacke , and L. Backbom , “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett., 33, 488–9, 1997
K. L. Lear , A. Mar , K. D. Choquette , S. P. Kilcoyne , R. P. Schneider , and K. M. Geib , “High-frequency modulation of oxide-confined vertical-cavity surface emitting lasers,” Electron. Lett., 32, 457–8, 1996
O. Kjebon , R. Schatz , S. Lourdudoss , S. Nilsson , and B. Stalnacke , “Modulation response measurement and evaluation of MQW InGaAsP lasers of various design,” Proc., SPIE, 2687, 138–52, 1996
D. Tauber , G. Wang , R. S. Geels , J. E. Bowers , and L. A. Coldren , “Large and small dynamics of vertical cavity surface emitting lasers,” Appl. Phys. Lett., 62, 325–7, 1993
J. E. Bowers , “High speed semiconductor laser design and performance,” Solid State Electron., 30, 1–11, 1987
K. Kishino, “Direct modulation of semiconductor lasers,” in Handbook of Semiconductor Lasers and Photonic Integrated Circuits, eds. Y. Suematsu and A. R. Adams, Chapman & Hall, London, 1994
Y. Yamamoto and S. Machida , “High-impedance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A, 35 (12), 5114–30, 1987
N. Schunk and K. Petermann , “Numerical analysis of feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., 24 (7), 1242–7, 1988
T. R. Chen , W. Hsin , and N. Bar-Chaim , “Very high-power InGaAsP/InP distributed feedback lasers at 1.55 μm wavelength,” Appl. Phys. Lett., 72, 1269–71, 1998
C. H. Cox, “Optical transmitters,” in The Electronics Handbook, ed. J. C. Whitaker, CRC Press & IEEE Press, 1996
H. Roussell , R. Helkey , G. Betts , and C. Cox , “Effect of optical feedback on high-dynamic-range Fabry–Perot laser optical links,” IEEE Photon Technol. Lett., 9, 106–8, 1997
T. Yoshikawa , T. Kawakami , H. Saito , H. Kosaka , M. Kajita , K. Kurihara , Y. Sugimoto , and K. Kasahara , “Polarization-controlled single-mode VCSEL,” IEEE J. Quantum Electron., 34 (6), 1009–15, 1998
J. W. Bae , H. Temkin , S. E. Swirhun , W. E. Quinn , P. Brusenbach , C. Parson , M. Kim , and T. Uchida , “Reflection noise in vertical cavity surface emitting lasers,” Appl. Phys. Lett., 63, 1480–2, 1993
M. S. Lin , S. J. Wang , and N. Dutta , “Measurement and modeling of the harmonic distortion in InGaAsP/InP distributed feedback lasers,” IEEE J. Quantum Electron., 26, 998–1004, 1990
G. Morthier , F. Libbrecht , K. David , P. Vankwikelberge , and R. G. Baets , “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 μm FP and DFB lasers,” IEEE J. Quantum Electron., 27, 1990–2002, 1991
G. Morthier , “Influence of the carrier density dependence of the absorption on the harmonic distortion in semiconductor lasers,” J. Lightwave Technol., 11, 16–19, 1993
V. B. Gorfinkel and S. Luryi , “Fundamental limits for linearity of CATV lasers,” J. Lightwave Technol., 13, 252–60, 1995
A. Takemoto , H. Watanabe , Y. Nakajima , Y. Sakakibara , S. Kakimoto , J. Yamashita , T. Hatta , and Y. Miyake , “Distributed feedback laser diode and module for CATV systems,” J. Select. Areas Commun., 8, 1359–64, 1990
J. Chen, R. Ram, and R. Helkey, “Linearity and third order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron., 1999
K. Y. Lau and A. Yariv , “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett., 45 (10), 1034–6, 1984
Q. Shi , R. S. Burroughs , and D. Lewis , “An alternative model for laser clipping-induced nonlinear distortion for analog lightwave CATV systems,” IEEE Photon Technol. Lett., 4 (7), 784–7, 1992
T. E. Darcie , R. S. Tucker , and G. J. Sullivan , “Intermodulation and harmonic distortion in InGaAsP lasers,” Electron. Lett., 21 (16), 665–6, 1985
T. E. Darcie, R. S. Tucker, and G. J. Sullivan, (correction in Electron. Lett., 22 (11), 619, 1986)
H. Lee, R. V. Dalal, R. J. Ram, and K D. Choquette, “Resonant distortion in vertical cavity surface emitting lasers for RF communication,” Optical Fiber Conference, Paper FE1, Digest F, pp. 84–6, Optical Society of America, Washington, 1999
J. Piprek, K. Takiguchi, A. Black, P. Abraham, A. Keating, V. Kaman, S. Zhang, and J. E. Bowers, “Analog modulation of 1.55 μm vertical cavity lasers,” Proc. SPIE, 3627, Vertical-Cavity Surface-Emitting Lasers III, eds. K. D. Choquette and C. Lei, 1999
C. Cox , E. Ackerman , R. Helkey , and G. E. Betts , “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., 45 (8), 1375–83, 1997
R. V. Dalal , R. J. Ram , R. Helkey , H. Roussell , and K. D. Choquette , “Low distortion analogue signal transmission using vertical cavity lasers,” Electron. Lett., 34, 1590–1, 1998
J. R. Wesselmann , N. M. Margalit , and J. E. Bowers , “Analog measurements of long wavelength vertical cavity lasers,” Appl. Phys. Lett., 72, 2084–6, 1998
T. L. Koch and J. E. Bowers , “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett., 20 (25–26), 1038–40, 1984
S. Kobayashi , Y. Yamamoto , M. Ito , and T. Kimura , “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron., 18 (4), 582–95, 1982
T. Kimura , “Coherent optical fiber transmission,” J. Lightwave Technol., 5 (4) 414–28, 1987
B. Chai and A. J. Seeds , “Optical frequency modulation links: theory and experiments,” IEEE Trans. Microwave Theory Tech., 45 (4), 505–11, 1997
Fujitsu 1.3 μm DFB laser with bulk active region, R. Ram, personal communication

Reference Title: References

Reference Type: reference-list

A. Yariv, Introduction to Optical Electronics, Holt, Rinehart and Winston, New York, 1976
T. Tamir, Guided-Wave Optoelectronics, Springer-Verlag, New York, 1990
J. Pankove, Optical Processes in Semiconductors, Dover Publications, New York, 1971
W. E. Martin , “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett. 26, 562–3, 1975
R. C. Alferness , “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121–37, 1982
R. G. Walker , “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–67, 1991
A. H. Gnauck , S. K. Korotky , J. J. Veselka , J. Nagel , C. T. Kemmerer , W. J. Minford , and D. T. Moser , “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett. 3, 916–18, 1991
R. H. Rediker and F. J. Leonberger , “Analysis of integrated-optics near 3 dB coupler and Mach-Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–16, 1982
R. A. Soref , D. L. McDaniel, Jr. , and B. R. Bennett , “Guided-wave intensity modulators using amplitude-and-phase perturbations,” J. Lightwave Technol. 6, 437–44, 1988
K. M. Kissa , P. G. Suchoski , and D. K. Lewis , “Accelerated aging of annealed proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–9, 1995
K. J. Williams and R. D. Esman , “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–50, 1996
V. Ramaswamy , M. D. Devino , and R. D. Standley , “Balanced bridge modulator switch using Ti-indiffused LiNb03 strip waveguides,” Appl. Phys. Lett. 32, 644–6, 1978
C. H. Bulmer , W. K. Burns , and A. S. Greenblatt , “Phase tuning by laser ablation of LiNb03 interferometric modulators to optimum linearity,” IEEE Photon. Technol. Lett. 3, 510–12, 1991
C. H. Bulmer and W. K. Burns , “Linear interferometric modulators in Ti:LiNb03 ,” J. Lightwave Technol. LT-2, 512–21, Aug. 1984
G. E. Betts , L. M. Johnson , and, C. H. Cox III , “High-sensitivity lumped-element bandpass modulators in LiNb03 ,” J. Lightwave Technol. 7, 2078–83, 1989
M. M. Howerton , R. P. Moeller , A. S. Greenblatt , and R. Krahenbuhl , “Fully packaged, broadband LiNb03 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–4, 2000
R. A. Becker , “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. QE-20, 723–7, 1984
J. P. Donnelly and A. Gopinath , “A comparison of power requirements of traveling-wave LiNb03 optical couplers and interferometric modulators,” IEEE J. Quantum Electron. QE-23, 30–41, 1987
K. Noguchi , O. Mitomi , and H. Miyazawa , “Millimeter-wave Ti:LiNb03 optical modulators,” J. Lightwave Technol. 16, 615–19, 1998
U. V. Cummings and W. B. Bridges , “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16, 1482–90, 1998
S. Kurazono , K. Iwasaki , and N. Kumagai , “New optical modulator consisting of coupled optical waveguides,” Electron. Commun. Jap. 55, 103–9, 1972
H. Kogelnik and R. V. Schmidt , “Switched directional couplers with alternating Δβ” IEEE J. Quantum Electron. QE-12, 396–401, 1976
E. Marom , O. G. Ramer , and S. Ruschin , “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. QE-20, 1311–19, 1984
T. R. Halemane and S. K. Korotky , “Distortion characteristics of optical directional coupler modulators,” IEEE Trans. Microwave Theory Tech. 38, 669–73, 1990
J. E. Watson , M. A. Milbrodt , K. Bahadori , M. F. Dautartas , C. T. Kemmerer , D. T. Moser , A. W. Schelling , T. O. Murphy , J. J. Veselka , and D. A. Herr , “A lowvoltage TiLiNb03 switch with a dilated-Benes architecture,” J. Lightwave Technol. 8, 794–801, 1990
W. K. Burns , M. M. Howerton , and, R. P. Moeller , “Performance and modeling of proton exchanged LiTaO3 branching modulators,” J. Lightwave Technol. 10, 1403–8, 1992
Y. Silberberg , P. Perlmutter , and J. E. Baran , “Digital optical switch,” Appl. Phys. Lett. 51, 1230–2, 1987
W. K. Burns , “Shaping the digital switch,” IEEE Photon. Technol. Lett. 4, 861–3, 1992
W. K. Burns and A. F. Milton , “Mode conversion in planar dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–9, 1975
S. K. Sheem , “Total internal reflection integrated-optics switch: a theoretical evaluation,” Appl. Opt. 17, 3679–87, 1978
A. Neyer , “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. QE-20, 999–1002, 1984
G. E. Betts , and W. S. C. Chang , “Crossing-channel waveguide electrooptic modulators,” IEEE J. Quantum Electron. QE-22, 1027–38, 1986
S. Baba , K. Shimomura , and S. Arai , “A novel integrated twin guide (ITG) optical switch with a built-in TIR region,” IEEE Photon. Technol. Lett. 4, 486–8, 1992
A. Neyer and W. Sohler , “High-speed cutoff modulator using a Ti-diffused LiNb03 channel waveguide,” Appl. Phys. Lett. 35, 256–8, 1979
S. A. Hamilton , D. R. Yankelevich , A. Knoesen , R. T. Weverka , R. A. Hill , and G. C. Bjorklund , “Polymer in-line fiber modulators for broadband radio-frequency optical links,” J. Opt. Soc. Am. B 15, 740–50, 1998
J. S. Weiner , D. A. B. Miller , and D. S. Chemla , “Quadratic electro-optic effect due to quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–4, 1987
Y. Kim , H. Lee , J. Lee , J. Han , T. W. Oh , and J. Jeong, , “Chirp characteristics of 10Gb/s electroabsorption modulator integrated DFB lasers,” IEEE J. Quantum Electron. 36, 900–8, 2000
S. Z. Zhang , Y. J. Chiu , P. Abraham , and J. E. Bowers , “25-GHz polarization- insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11, 191–3, 1999
Properties of lithium niobate, The institution of Electrical Engineers, London, 1989
K. Noguchi , H. Miyazawa , and, O. Mitomi , “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNb03 optical modulator,” Electron. Lett. 34, 661–3, 1998
W. K. Burns , P. H. Klein , E. J. West , and L. E. Plew , “Ti diffusion in Ti:LiNb03 planar and channel optical waveguides,” J. Appl. Phys. 50, 6175–82, 1979
X. F. Cao , R. V. Ramaswamy , and R. Srivastava , “Characterization of annealed proton exchanged LiNb03 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–13, 1992
P. G. Suchoski , T. K. Findakly , and F. J. Leonberger , “Stable low-loss proton- exchanged LiNb03 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–52, 1988
E. L. Wooten , K. M. Kissa , A. Yi-Yan , E. J. Murphy , D. A. Lafaw , P. F. Hallemeier , D. Maack , D. V. Attanasio , D. J. Fritz , G. J. McBrien , and D. E. Bossi , “A review of lithium niobate modulators for fiber-optic communications systems,”IEEE J. Sel. Topics Quantum Electron. 6, 69–82, 2000
G. E. Betts , F. J. O'Donnell , and K. G. Ray , “Effect of annealing on photorefractive damage in titanium-indiffused LiNb03 modulators,” IEEE Photon. Technol. Lett. 6, 211–13, 1994
C. H. Bulmer , W. K. Burns , and S. C. Hiser , “Pyroelectric effects in LiNb03 channel-waveguide devices,”Appl. Phys. Lett. 48, 1036–8, 1986
J. Nayyer and H. Nagata , “Suppression of thermal drifts of high speed Ti:LiNb03 optical modulators,” IEEE Photon. Technol. Lett. 6, 952–5, 1994
M. Seino, M. Naoyuki, T. Nakazawa, Y. Kubota, and M. Doi, “Optical waveguide device with suppressed dc drift,”US Patent 5,214,724, May 25,1993
G. E. Betts, K. G. Ray, and L. M. Johnson, “Suppression of acoustic effects in lithium niobate integrated-optical modulators,” in Integrated Photonics Research, 1990 Technical Digest Series Vol. 5, Optical Society of America, Washington, D.C., 1990, pp. 37–8
C. Y. Kuo and E. E. Bergmann , “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10, 1751–9, 1992
K. J. Williams , R. D. Esman , and M. Dagenais , “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14, 84–96, 1996
S. B. Alexander, Optical Communication Receiver Design, SPIE Press, Bellingham, WA, 1997
Uehara, S. , “Calibration of optical modulator frequency response with application to signal level control,”Appl. Opt. 17, 68–71, 1978
R. B. Childs and V. B. O'Byrne , “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Commun. 8, 1369–76, 1990
M. Nazarathy , J. Berger , A. J. Ley , I. M. Levi , and Y. Kagan , “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11, 82–105, 1993
J. C. Twichell and R. J. Helkey, “Linearized optical sampler,” US patent 6,028,424, Feb. 22,2000
W. B. Bridges and J. H. Schaffner , “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–97, 1995
R. B. Welstand , C. K. Sun , S. A. Pappert , Y. Z. Liu , J. M. Chen , J. T. Zhu , A. L. Kellner , and P. K. L. Yu , “Enhanced linear dynamic range property of Franz–Keldysh effect waveguide modulator,” IEEE Photon. Technol. Lett. 7, 751–3, 1995
Z.- Q. Lin and W. S. C. Chang , “Reduction of intermodulation distortion of interferometric optical modulators through incoherent mixing of optical waves,” Electron. Lett. 26, 1980–2, 1990
S. K. Korotky and R. M. de Ridder , “Dual parallel modulation schemes for low- distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–81, 1990
L. M. Johnson and H. V. Roussell , “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13, 928–30, 1988
P.- L. Liu , B. J. Li , and Y. S. Trisno , “In search of a linear electrooptic amplitude modulator,” IEEE Photon. Technol. Lett. 3, 144–6, 1991
G. E. Betts , “A linearized modulator for sub-octave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech. 42, 2642–9, 1994
G. E. Betts, F. J. O'Donnell, K. G. Ray, D. K. Lewis, D. E. Bossi, K. Kissa, and G. W. Drake, “Reflective linearized modulator,” in Integrated Photonics Research, 1996 OSA Technical Digest Series Vol. 6, Optical Society of America, Washington, D.C., 1996, pp. 626–9
W. K. Burns , M. M. Howerton , R. P. Moeller , A. S. Greenblatt , and R. W. McElhanon , “Broad-band reflection traveling-wave LiNb03 modulator,” IEEE Photon. Technol. Lett. 10, 805–6, 1998
G. J. McBrien and J. D. Farina, “Cascaded optic modulator arrangement,” US patent 5,168,534, Dec. 1, 1992
H. Skeie and R. V. Johnson , “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–64, 1991
M. Nazarathy, Y. Kagan, and Y. Simler, “Cascaded optical modulation system with high linearity,” US patent 5,278,923, Jan. 11, 1994
M. L. Farwell , Z.- Q. Lin , E. Wooten , and W. S. C. Chang , “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–5, 1991
E. I. Ackerman , C. H. Cox III , G. E. Betts , H. V. Roussell , K. G. Ray , and F. J. O'Donnell , “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microwave Theory Tech. 46, 2025–31, 1998
J. L. Gimlett and N. K. Cheung , “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–95, 1989
S. E. Wilson, “Evaluate the distortion of modular cascades,” Microwaves 67–70, March 1981
J. H. Schaffner and W. B. Bridges , “Intermodulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6, 1993
M. L. Farwell , W. S. C. Chang , and D. R. Huber , “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 5, 779–82, 1993

Reference Title: References

Reference Type: reference-list

I. P. Kaminow and J. Liu , “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, 51, 132–6, 1963
M. Izutsu , Y. Yamane , and T. Sueta , “Broadband traveling wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron., QE-13, 287–90, 1977
M. Izutsu , T. Itoh , and T. Sueta , “10 GHz bandwidth traveling wave LiNbO3 optical waveguide modulator,” IEEE J. Quantum Electron., QE-14, 394–5, 1978
M. Seino, N. Mekada, T. Namiki, and H. Nakajima, “33-GHz-cm broadband Ti:LiNbO3 Mach–Zehnder modulator,” Tech. Dig. ECOC'89, paper ThB22–5, 1989
M. Seino, N. Mekada, T. Yamane, Y. Kubota, M. Doi, and T. Nakazawa, “20-GHz 3-dB-bandwidth Ti:LiNbO3 Mach–Zehnder modulator,” Tech. Dig.ECOC '90, paper ThG1-5, 1990
K. Noguchi , O. Mitomi , K. Kawano , and M. Yanagibashi , “Highly efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure,” IEEE Photon. Technol. Lett., 5, 52–4, 1993
K. Noguchi , H. Miyazawa , and O. Mitomi , “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett., 30, 949–51, 1994
K. Noguchi , O. Mitomi , H. Miyazawa , and S. Seki , “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” IEEE J. Quantum Electron., 13, 1164–8, 1995
K. Noguchi , O. Mitomi , and H. Miyazawa , “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol., 16, 615–19, 1998
K. Noguchi , H. Miyazawa , and O. Mitomi , “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett., 34, 662–3, 1998
W. K. Burns , M. M. Howerton , R. P. Moeller , R. Krähenbühl , R. W. McElhanon , and A. S. Greenblatt , “Low drive voltage, broadband LiNbO3 modulators with and without etched ridges,” IEEE J. Lightwave Technol., 17, 2551–5, 1999
W. K. Burns , M. M. Howerton , R. P. Moeller , A. S. Greenblatt , and R. W. McElhanon , “Broadband reflection traveling wave LiNbO3 modulator,” IEEE Photon. Technol. Lett., 10, 805–6, 1998
W. K. Burns, “Prospects for low drive voltage LiNbO3 modulators,” Proc. IEEE Antennas and Propagation Society International Symposium 1997, pp. 759–61
R. C. Alferness , S. K. Korotky , and E. A. J. Marcatili , “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum. Electron., QE-20, 301–9, 1984
R. C. Alferness , “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech.,” MTT-30, 121–37, 1982
S. Martelluci and A. N. Chester, eds., Integrated Optics, section by R. V. Schmidt, Plenum Press, New York, 1983
R. A. Becker , “Traveling-wave electro-optic modulator with maximum bandwidth–length product,” Appl. Phys. Lett., 45, 1168–70, 1984
H. Chung , W. S. C. Chang , and E. L. Adler , “Modeling and optimization of traveling -wave LiNbO3 interferometric modulators,” IEEE J. Quantum. Electron., 27, 608–17, 1991
K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, MA, Chapters 1 and 7, 1979
C. M. Gee , G. D. Thurmond , and H. W. Yen , “17 GHz bandwidth electro-optic modulator,” Appl. Phys. Lett., 43, 998–1000, 1983
S. K. Korotky , G. Eisenstein , R. S. Tucker , J. J. Veselka , and G. Raybon , “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett., 50, 1631–3, 1987
D. Erasme , M. G. F. Wilson , “Analysis and optimization of integrated-optic travelling-wave modulators using periodic and non-periodic phase reversals,” Opt. Quantum Electron., 18, 203–11, 1986
D. Erasme , D. A. Humphreys , A. G. Roddie , and M. G. F. Wilson , “Design and performance of phase reversal traveling wave modulators,” J. Lightwave Technol., 6, 933–6, 1988
A. DjupsjÖbacka , “Novel type of broadband travelling-wave integrated-optic modulator,” Electron. Lett., 21, 908–9, 1985
M. Nazarathy and D. W. Dolfi , “Velocity-mismatch compensation in traveling-wave modulators using pseudorandom switched-electrode patterns,” J. Opt. Soc. Am. A, 4, 1073–9, 1987
D. W. Dolfi , M. Nazarathy , and R. L. Jungerman , “40 GHz electro-optic modulator with 7.5V drive voltage,” Electron. Lett., 24, 528–9, 1988
W. K. Burns , “Analytic output expression for integrated optic phase reversal modulators with microwave loss, Appl. Opt. 25, 3280–3, 1989
K. Kawano , T. Kitoh , H. Jumonji , T. Nozawa , and M. Yanagibashi , “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett., 25, 1382–3, 1989
D. W. Dolfi , “Travelling-wave 1.3 μm interferometer with high bandwidth, low drive power, and low loss,” Appl. Opt. 25, 2479–80, 1986
D. W. Dolfi and T. R. Ranganath , “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett., 28, 1197–8, 1992
G. K. Gopalakrishnan , C. H. Bulmer , W. K. Burns , R. W. McElhanon , and A. S. Greenblatt , “40 GHz low half-wave voltage Ti:LiNbO3 intensity modulator,” Electron. Lett., 28, 826–7, 1992
G. K. Gopalakrishnan , W. K. Burns , R. W. McElhanon , C. H. Bulmer , and A. S. Greenblatt , “Performance and modeling of broadband LiNbO3 traveling wave modulators,” J. Lightwave Technol., 2, 1807–19, 1994
G. K. Gopalakrishnan , W. K. Burns , and C. H. Bulmer , “Electrical loss mechanisms in traveling wave LiNbO3 optical modulators,” Electron. Lett., 28, 207–8, 1992
J. L. Nightingale , R. A. Becker , R. C. Willis , and J. S. Vrhel , “Characterization of frequency dispersion in Ti-indiffused lithium niobate optical devices,” Appl. Phys. Lett., 51, 716–18, 1987
R. L. Jungerman and C. A. Flory , “Low-frequency acoustic anomalies in lithium niobate Mach–Zehnder interferometers,” Appl. Phys. Lett., 53, 1477–9, 1988
W. K. Burns , M. M. Howerton , and R. P. Moeller , “Broadband, unamplified optical link with RF gain using a LiNbO3 modulator,” IEEE Photon. Technol. Lett., 11, 1656–8, 1999
M. M. Howerton , R. P. Moeller , A. S. Greenblatt , and R. Krähenbühl , “Fully packaged, broadband LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett., 12, 792–4, 2000

Reference Title: References

Reference Type: reference-list

D. Ackerman, C. Cox III and N. Rizza, Editors, Selected Papers on Analog Fiber-Optic Links, SPIE Milestone Series, V. MS-149, 1998
C. H. Cox III, Analog Optical Links: Theory and Practice, Cambridge University Press, to be published
D. A. B. Miller , D. S. Chemla , T. C. Damen , A. C. Gossard , W. Wiegmann , T. H. Wood , and C. A. Burrus , “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett., 53, 2173, 1984
C. Rolland , G. Mak , K. L. Prosyk , C. M. Maritan , and N. Puertz , “High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 μm,” IEEE Photon. Technol. Lett., 3, 894, 1991
R. B. Welstand, “High linearity modulation and detection of semiconductor electroabsorption waveguides,” Ph. D. Thesis, University of California San Diego, 1997
D. A. B. Miller , D. S. Chemla , T. C. Damen , A. C. Gossard , W. Wiegmann , T. H. Wood , and C. A. Burns , “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev. B, 32, 1043, 1985
D. A. B. Miller , J. S. Weiner , and D. S. Chemla , “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE, J. Quantum Electron., QE-22, 816, 1986
W. K. Burns , M. M. Howerton , R. P. Moeller , A. S. Greenblatt , and R. W. McElhanon , “Broad-band reflection traveling wave LiNbO 3 modulator,” IEEE Photon. Technol. Lett., 10, 805, 1998
K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, W. S. C. Chang, D. T. Nicols, L. J. Lembo, and J. C. Brock,” Low loss 1.3 μm MQW electroadbsorption modulators for high-linearity analog optical links,” IEEEPhoton. Technol. Lett., 10, 1998
G. Metzler and T. Schwander , “RF small-signal equivalent circuit of MQW InGaAs/InAlAs electroabsorption modulator,” Electron. Lett., 33, 1822, 1997
K. K. Loi , X. B. Mei , J. H. Hodiak , C. W. Tu , and W. S. C. Chang , “38 GHz bandwidth 1.3 μm MQW elecroabsorption modulators for RF photonic links,” Electron. Lett., 10, 1018, 1998
X. B. Mei , K. K. Loi , H. H. Wieder , W. S. C. Chang , and C. W. Tu , “Strain-compensated InAsP/GaInP multiple quantum wells for 1.3 μm waveguide modulators,” Appl. Phys. Lett., 68, 90, 1996
T. Ido , S. Tanaka , M. Suzuki , and H Inoue , “MQW electroabsorption optical modulator for 40 Gbt/s modulation,” Electron. Lett., 31, 2124, 1995
K. K. Loi, “Multiple-quantum-well waveguide modulators at 1.3 μm wavelength for analog fiber-optic links,” Ph. D. thesis, University of California San Diego, 1998
G. L. Li, P. K. L. Yu, S. A. Pappert, and C. K. Sun, “The effects of photocurrent on microwave properties of electroabsorption modulators,” IEEE MTT-SInternational Microwave Symposium Digest, Paper WE2B-2, Anaheim, CA, June 1999
H. H. Liao , X. B. Mei , K. K. Loi , C. W. Tu , P. K. L. Yu , P. M. Asbeck , and W. S. C. Chang , “Design of millimeter wave optical modulators with monolithically integrated narrow band impedance matching circuits,” Proc. SPIE, 3006, 318, 1997
H. H. Liao, “Novel microwave structures for ultra high frequency operation of MQW electroabsorption waveguide modulators,” Ph. D. Thesis, University of California San Diego, 1997
D. S. Chemla , D. A. B. Miller , P. W. Smith , A. G. Gossard , and W. Wiegmann , “Room temperature excitonic non linear absorption and refraction in Ga| As/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., QE-20, 265, 1984
An-Nien Cheng, “Quaternary InGaAlAs/InAlAs quantum wells for 1.3 μm electroabsorption modulators,” Ph. D. Thesis, University of California San Diego, 1994
T. H. Wood , J. Z. Pastalan , C. A. Burrus , B. C. Johnson , B. I. Miller , J. L. Demiguel , U. Koren , and M. G. Young , “Electric field screening by photogenerated holes in MQWs: A new mechanism for absorption saturation,” Appl. Phys. Lett., 57, 1081, 1990
A. M. Fox , D. A. B. Miller , G. Livescu , J. E. Cunningham , and W. Y. Jan , “Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron., 27, 2281, 1991
Courtesy of Dr. P. K. Tien, AT&T Research Laboratory, unpublished
J. W. Mathews and A. E. Blakeslee , “Defects in epitaxial multilayers,” J. Crys. Growth, 27, 118, 1974
R. People and J. C. Bean , “Calculations of critical thickness versus lattice mismatch for GeSi strained-layer heterostructures,” Appl. Phys. Lett. 47, 322, 1985
L. Shen, “InGaAs/InAlAs quantum wells for 1.3 μm electroabsorption modulators on GaAs substrates,” Ph. D. Thesis, University of California San Diego, 1997
L. Shen , H. H. Wieder , and W. S. C. Chang , “Electroabsorption at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett., 8, 352, 1996
S. M. Lord, “Growth of high indium content InGaAs on GaAs substrates for optical applications,” Ph. D. Thesis, Stanford University, 1993
H. C. Chui and J. S. Harris Jr. , “Growth studies on the In0.5Ga0.5As/Al GaAs quantum wells grown on GaAs with a linearly graded InGaAs buffer,” J. Vac. Soc. Technol. B, 12, 1019, 1994
B. K. Tanner and D. K. Brown , “Advanced x-ray scattering techniques for the characterization of semiconductor material,” J. Cryst. Growth, 126, 1, 1993
P. F. Fewster , “X-ray diffraction from low dimensional structures,” Semicond, Sci. Technol. 8, 1915, 1993
R. M. Feenstra , “Cross-sectional scanning tunneling microscopy of III–V semiconductor structures,” Semicond. Sci. Technol. 9, 2157, 1994
J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy, Academic Press, Boston, Chapters 5 and 6, 1993
D. C. Joy, A. D. Romig, and J. I. Goldstein, Principles of Analytical Electron Microscopy, Plenum Press, New York, 1986
R. D. Leapman and D. E. Newbury , “Trace element analysis at nanometer spatial resolution by parallel-detection electron energy loss spectroscopy,” Anal. Chem., 65, 2409, 1993
H. Hovel , “Scanning photoluminescence of semiconductors,” Semicond. Sci. Technol., 7, A1, 1992
C. J. Miner, Rapid Non-destructive Scanning of Compound Semiconductor Wafers and Epitaxial Layers, Semiconductor Characterization, Present Status and Future Needs, ed. W. M. Bullis, D. C. Seiler, and A. C. Diebold, AIP Press, 1996, p. 605
J. H. van der Merwe , “Misfit dislocation generation in epitaxial layers,” Crit. Rev. Solid State Mater. Sci., 17, 187, 1991, CRC Press
A. Nandedkar and J. Narayan , “Atomic structure of dislocations in silicon, germanium and diamond,” Philos. Mag., A62, 873, 1990
Xiaobing Mei, “InAsP/GaInP strain-compensated multiple quantum wells and their optical modulator applications,” Ph. D. Thesis, University of California, San Diego, 1997
G. Bastard , “Theoretical investigation of superlattice band structure in the envelope function approximation,” Phys. Rev., B25, 7584, 1982
D. A. B. Miller , D. S. Chemla , T. C. Damen , A. C. Gossard , W. Wiegmann , T. H. Wood , and C. A. Burrus , Phys. Rev., B32, 1043, 1985
F. Y. Juang , J. Singh , P. K. Bhatacharya , K. Bajema , and R. Merlin , “Field dependent linewidths and photoluminescence energies in GaAs-AlGaAs multi-quantum well modulator,” Appl. Phys. Lett., 48. 1246, 1986
S. Hong and J. Singh , “Excitonic energies and inhomogeneous line broadening effects in InAsAs-InGaAs modulator structures,” J. Appl. Phys., 42, 1994, 1987
D. A. B. Miller , D. S. Chemla , D. J. Eilenberger , P. W. Smith , A. C. Gossard , W. Wiegmann , T. H. Wood , and C. A. Burrus , “Large room-temperature optical nonlinearity in GaAs/Ga 11-x As x multiple quantum well structures,” Appl. Phys. Lett., 41, 679, 1982
A.-N. Cheng , H. H. Wieder , and W. S. C. Chang , “Electroabsorption in lattice- matched InGaAlAs-InAlAs quantum wells at 1.3 μm,” IEEE Photon. Technol. Lett., 7, 1159, 1995
T. He , P. Ehrhart , and P. Mauffels , “Optical band gap and Urbach tail in Y-doped BaCeO 3 ,” J. Appl. Phys., 79, 3129, 1996
J. H. Hodiak, “Design of fiber-coupled surface-normal Fabry Perot electroabsorption modulators for analog applications,” Ph. D. Thesis, University of California San Diego, 1999
Y. Okuno , K. Uomi , M. Aoki , and T. Tsuchia , “Direct wafer bonding of III–V compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron. 33, 959, 1997
K. K. Loi , I. Sakamoto , X. B. Mei , C. W. Tu , and W. S. C. Chang , “High efficiency 1.3 μm InAsP/GaInP MQW electroabsorption waveguide modulators for microwave fiber optic links,” IEEE Photon. Technol. Lett., 8, 626, 1996
K. K. Loi , J. H. Hodiak , C. W. Tu and W. S. C. Chang , “Linearization of 1.3 μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., 10, 964, 1998
H. H. Liao , X. B. Mei , P. M. Asbeck , C. W. Tu , and W. S. C. Chang , “Microwave structures for traveling wave MQW electroabsorption modulators for wide band 1.3 μm photonic links,” Proc. SPIE, 3006, 291, 1997
H. H. Liao, “Novel microwave structures for ultra high frequency operation of MQW electroabsorption waveguide modulators,” Ph. D. Thesis, University of California San Diego, 1997
G. L. Li, S. A. Pappert, C. K. Sun, W. S. C. Chang, and P. K. L. Yu, “50 GHz traveling-wave InGaAsP/InP electroabsorption modulator: measurement and analysis,” IEEETrans. Microwave Theory Tech., special issue, Microwave and Millimeter Wave Photonics, 2001

Reference Title: References

Reference Type: reference-list

G. E. Betts , L. M. Johnson , and C. H. Cox , “Optimization of externally modulated analog optical links”, Proc. SPIE 1562, 281–302, 1991
E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure”, in IEEE Microwave Theory Tech. 1993 Symp. Dig., pp. 723–6
M. S. Islam , T. Chau , S. Mathai , T. Itoh , M. C. Wu , D. L. Sivco , and A. Y. Cho , “Distributed balanced photodetectors for broadband noise suppression”, IEEE Trans. Microwave Theory Tech. 47, 1282–8, 1999
Y. Shi , C. Zhang , H. Zhang , J. H. Bechtel , L. R. Dalton , B. Robinson , and W. H. Steier , “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape”, Science, 288, 119–22, 2000
K. D. Singer , M. G. Kuzyk , J. E. Sohn , “second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties” J. Opt. Soc. Am. B, 4, 968–76, 1987
H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics”, in Nonlinear Optics of Organic Molecules and Polymers, eds. H. S. Nalwa and S. Miyata, CRC Press, Boca Raton, 1997, p. 249
Y. M. Cai and A. K. Y. Jen , “Thermally stable poled polyquinoline thin film with very large electro-optic response”, Appl. Phys. Lett. 67, 299, 1995
C. C. Teng, “High-speed electro-optic modulators from nonlinear optical polymers”, in Nonlinear Optics of Organic Molecules and Polymers, eds. H. S. Nalwa and S. Miyata, CRC Press, Boca Raton, 1997, pp. 445–6
R. J. Roe, “Glass transition”, in Encyclopedia of Polymer Science and Engineering, 2nd Edn., Vol. 7, ed. J. I. Kroschwitz, John Wiley & Sons, New York, 1987, pp. 531–44
L. Dalton , A. Harper , A. Ren , F. Wang , G. Todorova , J. Chen , C. Zhang , and M. Lee , “Polymeric electro-optic modulators: from chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33, 1999
S. S. H. Mao , Y. Ra , L. Guo , C. Zhang , and L. R. Dalton , “Progress toward device-quality second-order nonlinear optical materials 1. Influence of composition and processing conditions on nonlinearity, temporal stability, and optical loss”, Chem. Mater. 10, 147, 1998
D. Chen , H. R. Fetterman , A. Chen , W. H. Steier , L. R. Dalton , W. Wang , and Y. Shi , “Demonstration of 110 GHz electro-optic polymer modulators”, Appl. Phys. Lett. 70, 3335–7, 1997
D. Chen , D. Bhattacharya , A. Udupa , B. Tsap , H. R. Fetterman , A. Chen , S.-S. Lee , J. Chen , W. H. Steier , and L. R. Dalton , “High-frequency polymer modulators with integrated finline transitions and low”, IEEE Photon. Technol. Lett. 11, 54–6, 1999
C. C. Teng , “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth”, Appl. Phys. Lett. 60, 1538–40, 1992
R. C. Alferness , “Waveguide electrooptic modulators”, IEEE Trans. Microwave Theory Tech. 30, 1121–37, 1982
K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Edn., Artech House, Boston, pp. 102–11, 1996
H. Y. Lee and T. Itoh , “Phenomenological loss equivalence method for planar quasi-TEM transmission lines with a thin normal conductor or superconductor”, IEEE Trans. Microwave Theory Tech., 37, 1904–9, 1989
G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide”, IEEE Trans. Components, Packag. Manuf. Technol. B, 21, 171–6, 1998
K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Edn., Artech House, Boston, pp. 364–8, 1996
Y. Shi , W. Wang , J. H. Bechtel , A. Chen , S. Garner , S. Kalluri , W. H. Steier , D. Chen , H. R. Fetterman , L. R. Dalton , and L. Yu , “Fabrication and characterization of high-speed polyurethane-disperse red 19 integrated electrooptic modulators for analog system applications”, IEEE J. Sel. Topics Quantum Electron., 2, 289–99, 1996
W. Wang , D. Chen , H. R. Fetterman , Y. Shi , W. H. Steier , and L. R. Dalton , “40-GHz polymer electrooptic phase modulators”, IEEE Photon. Technol. Lett. 7, 638–40, 1995
W. Wang , D. Chen , H. R. Fetterman , Y. Shi , W. H. Steier , and L. R. Dalton , “Optical heterodyne detection of 60 GHz electro-optic modulation from polymer waveguide modulators”, Appl. Phys. Lett. 67, 1806–8, 1995
W. Wang , Y. Shi , D. J. Olson , W. Lin , and J. H. Bechtel , “Push-pull poled polymer Mach–Zehnder modulators with a single microstrip line electrode”, IEEE Photon. Technol. Lett. 11, 51–3, 1999
Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, and W. Wang, “Microstrip line-slot ground electrode for high-speed optical push-pull polymer modulators”, paper FB3-1, Organic Thin Films for Photonics Applications 1999, Santa Clara, California, September 1999
D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, Appl. Phys. Lett. 58, 1730, 1991
K. H. Hahn , D. W. Dolfi , R. S. Moshrefzadeh , P. A. Pedersen , and C. V. Francis , “Novel two-arm microwave transmission line for high-speed electro-optic polymer modulators”, Electron. Lett., 30, 1220–2, 1994
S. Ermer , D. G. Girton , L. S. Dries , R. E. Taylor , W. Eades , T. E. Van Eck , A. S. Moss , and W. W. Anderson , “Low-voltage electro-optic modulation using amorphous polycarbonate host material”, Proc. SPIE 3949, 148–55, 2000
K. D. Singer, S. J. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials”, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, eds. D. S. Chemla and J. Zyss, Academic Press, Orlando, 1987, p. 462
S. R. Marder, L.-T. Cheng, B. G. Tiemann, and D. N. Beratan, “Structure/property relationships for molecular second-order nonlinear optics”, in Nonlinear Optical Properties of Organic Materials IV, ed. Kenneth D. Singer, Proc. SPIE, 1560, 86–97
D. G. Girton, W. W. Anderson, J. A. Marley, T. E. Van Eck, and S. Ermer, “Current flow in doped and undoped electro-optic polymer films during poling”, in Organic Thin Films for Photonics Applications, Vol. 21, 1995 OSA Technical Digest Series, Optical Society of America, Washington DC, 1995, pp. 470–473
A. Harper , S. Sun , L. R. Dalton , S. M. Garner , A. Chen , S. Kalluri , W. H. Steier , and B. H. Robinson , “Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore–chromophore electrostatic interactions”, J. Opt. Soc. Am. B, 15, 329–37 (1998)
Cheng Zhang, Ph. D. thesis, University of Southern California, May 1999, p. 161

Reference Title: References

Reference Type: reference-list

R. J. Keyes (ed.), Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19, Springer-Verlag, Berlin, 1980
D. P. Schinke, R. G. Smith, and A. R. Hartman, “Photodetectors,” in Semiconductor Devices for Optical Communication, 2nd Edn., ed. H. Kessel, Topics in Applied Physics, Vol. 39, Springer-Verlag, Heidelberg, 1982
S. B. Alexander, Optical Communication Receiver Design, SPIE Press Tutorial Texts in Optical Engineering, Vol. TT22, and IEE Telecommunication Series, Vol. 37, 1997
R. J. McIntyre, IEEE Trans. Electron. Dev., ED-19, 703, 1972
A. R. Williams, A. L. Kellner, and P. K. L. Yu, Electron. Lett., 29, 1298, 1993
T. Ishibashi et al., Technical Digest, 1999 Microwave Photonics Meeting MWP'99, p. 75, 1999
K. Kato, IEEE Trans. Microwave Theory Tech., 47, 1265, 1999
P. L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, IEEE Trans. Microwave Theory Tech., 47, 1297, 1999
W. Franz, Z. Naturforsch, A13, 484, 1958; L. V. Keldysh, Zh. Eskp. Teor. Fiz., 34, 1158, 1958
J. S. Weiner et al., Appl. Phys. Lett., 47, 1148, 1985
K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, IEEE J. Quantum Electron., 28, 2728, 1992
S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 649, 1981
D. Wake, R. H. Walling, S. K. Sargood, and I. D. Henning, Electron. Lett., 23, 415, 1987
M. A. Washington, R. E. Nahory, and E. D. Beebe, Appl. Phys. Lett., 33, 854, 1978
T. P. Lee, C. A. Burrus, and A. G. Dentai, IEEE. J. Quantum Electron., 17, 232, 1981
J. N. Patellon, J. P. Andre, J. P. Chane, J. L. Gentner, B. G. Martin, and G. M. Martin. Phillips J. Res., 44, 465, 1990
W. Gao, K. Al Sameen, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, Appl. Phys. Lett., 65, 1930, 1994
K. C. Hwang, S. S. Li, and Y. C. Kao, Proc. SPIE, 1371, 128, 1991
S. Y. Wang and D. M. Bloom, Electron. Lett., 19, 554, 1983
P. Bhattacharya, Semiconductor Optoelectronic Device, Ch. 9, 2nd Ed., Prentice Hall, 1986
A. van der Ziel, Noise in Solid State Devices and Circuits, Wiley, 1986
R. J. Deri et al., IEEE Photon. Technol. Lett., 4, 1238, 1992
M. S. Islam, T. Chau, S. Mathai, T. Itoh. M. C. Wu, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 47, 1282, 1999
H. Jiang and P. K. L. Yu, IEEE Photon. Technol. Lett., 10, 1608, 1998
C. K. Sun, P. K. L. Yu, C. T. Chang, and D. J. Albares, IEEE Trans. Electron Devices, 39, 2240, 1992
K. J. Williams, Appl. Phys. Lett., 65, 1219, 1994
R. R. Hayes and D. L. Persechini, IEEE Photon. Technol. Lett., 5, 70, 1993
J. Harari, G. Jin, J. P. Vilcot, and D. Decoster, IEEE Trans. Microwave Theory Tech., 45, 4332, 1997
T. Ozeki and E. H. Hara, Electron. Lett., 12, 80, 1976
H. Jiang, D. S. Shin, G. L. Li, J. T. Zhu, T. A. Vang, D. C. Scott, and P. K. L. Yu, IEEE Photon. Technol. Lett., 12, 540, 2000
D. Ralston, A. Metzger, Y. Kang, P. Asbeck, and P. K. L. Yu, Proc. SPIE, 4112, 132, 2000
H. Jiang and P. K. L. Yu, IEEE International Microwave Symposium, IMS 2000 Digest, Vol. 2, p. 679, 2000
K. Kato, IEEE Trans. Microwave Theory Tech., 37, 1265, 1999
J. E. Bowers and C. A. Burrus, Jr. J. Lightwave Technol., 5, 1339, 1987
G. H. Olsen and T. J. Zamesowski, IEEE J. Quantum Electron., 17, 128, 1981
Catalog, Discovery Semiconductor, Inc., 1999
Z. Zhu, R. Gillon, and A. V. Vorst, Microwave Opt. Technol. Lett., 8, 8, 1995
L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, IEEE Photon. Technol. Lett., 11, 111, 1999
H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, Proc. SPIE Optoelectronic Signal Processing Phased Array Antenna II, 1217, 59, 1990
K. S. Giboney, M. Rodwell, and J. Bowers, IEEE Photon. Technol. Lett., 4, 1363, 1992
L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 45, 1320, 1997
K. S. Giboney, R. Nagarajan, T. Reynolds, S. Allen, R. Mirin, M. Rodwell, and J. E. Bowers, IEEE Photon. Technol. Lett., 7, 412, 1995
E. Droge, E. H. Bottcher, S. Kollakowski, A. Strittmatter, O. Reimann, R. Steingruber, A. Umbach, and D. Bimberg, ECOC'98, vol. 1, p. 20, 1998
N. Shimuzu, Y. Miyamoto, A. Hirano, K. Sato, and T. Ishibashi, Electron. Lett., 36, 750, 2000
T. Furuta, S. Kodama, T. Ishibashi, Electron. Lett., 36, 1809, 2000

Reference Title: References

Reference Type: reference-list

J. Marion and W. Hornyak, Physics for Science and Engineering, Saunders College Publishing, Philadelphia, 1982, Ch. 15
B. van der Pol , “A theory of the amplitude of free and forced triode vibrations,” Radio Review, 7, 701–54, 1920
B. van der Pol , “The nonlinear theory of electric oscillations,” Proc. Inst. Radio Eng., 22 (9), 1051–86, 1934
O. Ishihara et al., “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28 (8), 817–24, 1980
A. Siegman, Microwave Solid State Masers, McGraw-Hill, 1964
A. Siegman, Lasers, University Science Books, Mill Valley, 1986, Ch. 11
A. Ballato, “Piezoelectric resonators,” in Design of Crystal and Other Harmonic Oscillators, ed., B. Parzen, John Wiley and Sons, 1983, pp. 66–122
W L. Smith, “Precision oscillators,” in Precision Frequency Control, Vol. 2, eds. E A. Gerber and A. Ballato, Academic Press, 1985, pp. 45–98
J K. Plourde and C R. Ren , “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech., MTT-29 (8), 754–69, 1981
M. W. Lawrence , “Surface acoustic wave oscillators,” Wave Electronics, 2, 199–218, 1976
H. Ogawa , D. Polifko , and S. Banba , “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., 40 (12), 2285–93, 1992
P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J., 160–6, 1987
X S. Yao and L. Maleki, “Field demonstration of X-band photonic antenna remoting in the deep space network,” TDA Progress Report 42–117, Jet Propulsion Laboratory, pp. 29–34, 1994
G K. Gopalakrishnan , W K. Burns , and C H. Bulmer , “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech., 41 (12), 2383–91, 1993
E. Toughlian and H. Zmuda , “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol., 8, 1824–8, 1990
X. Steve Yao and L. Maleki , “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett., 6 (12), 1463–5, 1994
D. Nortton, S. Johns, and R. Soref, “Tunable wideband microwave transversal filter using high dispersive fiber delay lines,” Proc. 4th Biennial Department of Defense Fiber Optics and Photonics Conference, Mclean, Virginia, 1994, pp. 297–301
B. Moslehi, K. Chau, and J. Goodman, “Fiber-optic signal processors with optical gain and reconfigurable weights,” ibid. pp. 303–9
B. Moslehi, K. Chau, and J. Goodman Lightwave Electronics Corp., “Introduction to diode-pumped solid state lasers,” Technical Information No. 1, 1993
X. S. Yao and L. Maleki , “High frequency optical subcarrier generator,” Electron. Lett. 30 (18), 1525–6, 1994
X. S. Yao and L. Maleki , “Opto-electronic oscillator,” J. Opt. Soc. Am. B, 13, (8), 1725–35, 1996
X. S. Yao and and L. Maleki , “Opto-electronic oscillator for photonic systems”, IEEE J. Quantum Electron., 32 (7), 1141–9, 1996
M. Rodwell, J E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electronic and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in The LEOS Summer Topical Meetings, 1995 Digest of the LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineering, Piscataway, NJ. IEEE catalog number 95 TH8031), RF Optoelectronics pp. 21–2
K. Noguchi , H. Miyazawa , and O. Mitomi , “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, (12), 949–51, 1994
A. Neyer and E. Voges , “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun., 37, 169–74, 1980
A. Neyer and E. Voges , “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron., QE-18 (12), 2009–15, 1982
H. F. Schlaak and R. Th. Kersten , “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun., 36, (3), 186–8, 1981
H M. Gibbs, F A. Hopf, D L. Kaplan, M W. Derstine, R L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE, 317, Integrated Optics and Millimeter and Microwave Integrated Circuits, pp. 297–304
E. Garmire , J H. Marburger , S D. Allen , and H G. Winful , “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett., 34, (6), 374–6, 1979
A. Neyer and L. Voges , “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett., 40, (1), 6–8, 1982
T. Aida and P. Davis, “Applicability of bifurcation to chaos: Experimental demonstration of methods for switching among multistable modes in a nonlinear resonator,” in OSA Proc. Nonlinear Dynamics in Optical Systems, eds. N B. Abraham, E. Garmire, and P. Mandel, Vol. 7, pp. 540–4, Optical Society of America, 1990
M F. Lewis, “Some aspects of saw oscillators,” Proc. 1973 Ultrasonics Symposium, IEEE, 1973, pp. 344–7
A L. Schawlow and C H. Townes , “Infared and optical masers,” Phys. Rev. 112, (6), 1940–9, 1958
R L. Byer , “Diode laser-pumped solid-state lasers,” Science, 239, 742–7, 1988
L. S. Culter and C L. Searle , “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE, 54, (2), 136–54, 1966
A. Yariv, Introduction to Optical Electronics, 2nd Edn., Holt, Rinehart and Winston, New York, 1976, Ch. 10
X S. Yao and L. Maleki, “Influence of an externally modulated photonic link on a microwave communications system,” The Telecommunication and Data Acquisition Progress Report 42–117, Vol. January–March, Jet Propulsion Laboratory, Pasadena, California, pp 16–28 (May 15, 1994), obtainable at http://tmo.jpl.nasa.gov/progress_report
M F. Lewis , “Novel RF oscillator using optical components,” Electron. Lett. 28, (1), 31–2, 1992
T J. Kane , “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett., 2, (4), 244–5, 1990
Hewlett-Packard Co., “Phase noise characterization of microwave oscillators – Frequency discriminator method,” Product note 11729C-2
P W. Smith , “Mode selection in lasers,” Proc. IEEE, 60 (4), 422–40, 1972
E N. Ivannov, M E. Tobar, and R. A. Woode, “Advanced phase noise suppression technique for next generation of ultra low noise microwave oscillator,” Proc. 1995IEEEInternational Frequency Control Symposium, pp. 314–20, 1995
J. Dick and D. Santiago, “Microwave frequency discriminator with a cryogenic sapphire resonator for ultra-low phase noise,” Proc. 6th European Frequency and Time Forum, held at ESTEC, Noordwijk, NJ, 17–19 March 1992, pp. 35–39
X. S. Yao and G. Lutes , “A high speed photonic clock and carrier regenerator,” IEEE Photon. Technol. Lett., 8, (5), 688–90, 1996
X. S. Yao, L. Maleki, and J. Dick, “Opto-electronic oscillator incorporating carrier suppression noise reduction technique,” 1999 IEEE Frequency Control Symposium, France, 1999
X. S. Yao , L. Maleki , and J. Dick , “Multiloop opto-electronic oscillator,” IEEE J. Quantum Electron., 36 (1), 79–84, 2000
X. S. Yao, “Optical resonator based opto-electronic oscillators,” New Technology Report, #NPO-20547, Jet Propulsion Laboratory, Pasadena, California, 1999
V. S. Ilchenko , X. S. Yao , L. Maleki , “High-Q microsphere cavity for laser stabilization and optoelectronic microwave oscillator”, Proc. SPIE, 3611, 190–8, 1999
V. S. Ilchenko , X S. Yao , L. Maleki , “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett., 24, (11), 723–5, 1999
Y K. Chen and M. Wu , “Monolithic colliding-pulse mode-locked quantum well lasers,” IEEE J. Quantum Electron., 28 (10), 2176–85, 1992
M. C. Wu, T K. Chen, T. Tanbun-Ek, and R A. Logan, Monolithic CPM Diode Lasers, Springer Series on Chemical Physics, Vol. 55, Ultrafast Phenomena VIII, eds. J L. Martin, A. Migus, G A. Mourou, and A G. Zewail, pp. 211–5, Springer-Verlag, Berlin Heidelberg, 1993
X. S. Yao and L. Maleki , “Dual microwave and optical oscillator,” Opt. Lett., 22, (24), 1867–9, 1997
X. S. Yao , L. Maleki , C. Wu , L. Davis , and S. Forouhar , “Recent results with coupled optoelectronic oscillator,” Proc. SPIE, 3463, 237-45, 1998

Reference Title: References

Reference Type: reference-list

G. K. Gopalakrishnan , C. H. Bulmer , W. K. Burns , R. W. McElhanon , and A. S. Greenblatt , “40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator,” Electron. Lett., 28, 826–7, 1992
D. Noguchi , H. Miyazawa , and O. Mitomi , “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett., 30, 949–51, 1994
C. Cox , E. Ackerman , R. Helkey , and G. Betts , “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., 45, 1375–83, 1997
N. Mineo, K. Yamada, K. Nakamura, S. Sakai, and T. Ushikobo, “60 GHz band electroabsorption modulator module,” Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series, Optical Society of America, Washington, D.C., pp. 287–8
A. J. Seeds and B. Lenoir , “Avalanche diode harmonic optoelectronic mixer,” IEE Proc., 133, pt. J, 353–7, 1986
G. Maury , A. Hilt , T. Berceli , B. Cabon , and A. Vilcot , “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microwave Theory Tech., 45, 1481–5, 1997
C. K. Sun , R. J. Orazi , and S. A. Pappert , “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett., 8, 154–6, 1996
R. Helkey , J. Twichell , and C. Cox , “A down-conversion optical link with RF gain,” J. Lightwave Technol., 15, 956–61, 1997
G. K. Gopalakrishnan , W. K. Burns , and C. H. Bulmer , “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech., 41, 2383–91, 1993
R. T. Logan and E. Gertel , “Millimeter-wave photonic downconvertors: theory and demonstrations,” Proc. SPIE, 2560, 58–65, 1995
C. R. Lima , D. Wake , and P. A. Davies , “Compact optical millimeter-wave source using a dual-mode semiconductor laser,” Electron. Lett., 31, 364–6, 1995
D. Wake , C. R. Lima , and P. A. Davies , “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech., 43, 2270–6, 1995
W. H. Loh , J. P. de Sandro , G. J. Cowle , B. N. Samson , and A. D. Ellis , “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett., 33, 594–5, 1996
S. Pajarola , G. Guekos , and H. Kawaguchi , “Frequency tunable beat note from a dual-polarization emitting external cavity diode laser,” Opt. Quantum Electron., 29, 489–99, 1997
S. Pajarola , G. Guekos , P. Nizzola , and H. Kawaguchi , “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microwave Theory Tech., 47, 1234–40, 1999
R. C. Steele , “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett., 19, 69–70, 1983
J. Harrison and A. Mooradian , “Linewidth and offset frequency locking of GaAlAs lasers,” IEEE J. Quantum Electron., 25, 1152–5, 1989
K. J. Williams , L. Goldberg , R. D. Esman , M. Dagenais , and J. F. Weller , “–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett., 25, 1242–3, 1989
G. J. Simonis and K. G. Purchase , “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech., 38, 667–9, 1990
M. J. Wale M. G. Holliday, “Microwave signal generation using optical phased locked loops,” 21st European Microwave Conference Workshop, pp. 78–82, 1991
R. T. Ramos A. J. Seeds , “Fast heterodyne optical phase lock loop using double quantum well laser diodes,” Electron. Lett., 28, 82–3, 1992
U. Gliese , T. N. Nielsen , M. Bruun , E. L. Christensen , K. E. Stubkjaer , S. Lindgren , and B. Broberg , “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett., 4, 936–8, 1992
G. Santarelli , A. Clairon , S. N. Lea , and G. M. Tino , “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Opt. Commun., 104, 339–44, 1994
R. P. Braun , G. Grosskopf , D. Rohde , and F. Schmidt , “Optical millimetre-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett., 32, 626–8, 1996
Z. F. Fan , P. J. S. Heim , and M. Dagenais , “Highly coherent RF signal generation by heterodyne optical phase locking of external cavity semiconductor lasers,” IEEE Photon. Technol. Lett., 10, 719–21, 1998
A. C. Davidson , F. W. Wise , and R. C. Compton , “Low phase noise 33–40 GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett., 10, 1304–6, 1998
L. Goldberg , H. F. Taylor , J. F. Weller , and D. M. Bloom , “Microwave signal generation with injection locked laser diodes,” Electron. Lett., 19, 491–3, 1983
L. Goldberg , A. M. Yurek , H. F. Taylor , and J. F. Weller , “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett., 21, 814–15, 1985
L. Goldberg , R. D. Esman , and K. J. Williams , “Generation and control of microwave signals by optical techniques,” IEE Proc., 139, 288–95, 1992
R. P. Braun , G. Grosskopf , R. Meschenmoser , D. Rohde , F. Schmidt , and G. Villino , “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett., 33, 1395–6, 1997
R. P Braun , G. Grosskopf , D. Rohde , and F. Schmidt , “;Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett., 10, 728–30, 1998
A. C Bordonalli , C. Walton , and A. J. Seeds , “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol., 17, 328–42, 1999
C. Laperle , M. Svilans , M. Poirier , and M. Tetu , “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech., 47, 1219–24, 1999
R. T. Ramos and A. J. Seeds , “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett., 26, 389–90, 1990
U. Gliese , E. L. Christensen , and K. E. Stubkjaer , “Laser linewidth requirements and improvements for coherent optical beam forming networks in satellites,” J. Lightwave Technol., 9, 779–90, 1991
L. N. Langley , C. Edge , M. J. Wale , U. Gliese , A. J. Seeds , C. Walton , J. Wright , and L. Coryell , “Optical phase locked loop signal sources for phased array communications antennas,” Proc. SPIE., 3160, 142–53, 1997
L. N. Langley , M. D. Elkin , C. Edge , M. J. Wale , U. Gliese , X. Huang , and A. J. Seeds , “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., 47, 1257–64, 1999
M. Margalit , M. Orenstein , G. Eisenstein , and V. Mikhailshvili , “Injection locking of an actively mode-locked semiconductor laser,” Opt. Lett., 19, 2125–7, 1994
D. Y. Kim , M. Pelusi , Z. Ahmed , D. Novak , H. F. Liu , and Y. Ogawa , “Ultrastable millimeter-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett., 31, 733–4, 1995
Z. Ahmed , H. F. Liu , D. Novak , M. Pelusi , Y. Ogawa , and D. Y. Kim , “Low phase noise millimetre-wave signal generation using a passively modelocked monolithic DBR laser injection locked by an optical DSBSC signal,” Electron. Lett., 31, 1254–5, 1995
D. Novak , Z. Ahmed , R. B. Waterhouse , and R. S. Tucker , “Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links,” IEEE Trans. Microwave Theory Tech., 43, 2257–62, 1995
A. C. Bordonalli , B Cai , A. J. Seeds , and P. J. Williams , “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett., 8, 151–3, 1996
R. T. Logan , “Photonic radio-frequency synthesizer,” Proc. SPIE, 2844, 312–17, 1996
R. T. Logan, R. D. Li, and R. Perusse, Demonstration of a 1–94 GHz photonic synthesizer, 9th Annual DARPA Photonic Systems for Antenna Applications Conference Proc., 1999
Z. Ahmed , H. F. Liu , D. Novak , Y. Ogawa , M. Pelusi , and D. Y. Kim , “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., 8, 37–9, 1996
A. Takada and W. Imajuku , “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett., 9, 1328–30, 1997
T. Jung , J. L. Shen , D. T. K. Tong , S. Murthy , M. C. Wu , T. Tanbun-Ek , W. Wang , R. Lodenkamper , R. Davis , L. J. Lembo , and J. C. Brock , “CW injection locking of a mode-locked semiconductor laser as a local oscillator comb for channelizing broad-band RF signals,” IEEE Trans. Microwave Theory Tech., 47, 1225–33, 1999
J. E. Bowers , P. A. Morton , A. Mar , and S. W. Corzine , “Actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron., 25, 1426–39, 1989
A. Mar , D. Derickson , R. Helkey , J. E. Bowers , R. T. Huang , and D. Wolf , “Actively mode-locked external-cavity semiconductor lasers with transform-limited single-pulse output,” Opt. Lett., 17, 868–70, 1992
J. J. O'Reilly , P. M. Lane , R. Heidelmann , and R. Hofstetter , “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett., 28, 2309–11, 1992
J. J. O'Reilly and P. M. Lane , “Fiber-supported optical generation and delivery of 60 GHz signals,” Electron. Lett., 30, 1329–30, 1994
J. J. O'Reilly and P. M. Lane , “Remote delivery of video services using mm-waves and optics,” J. Lightwave Technol., 12, 369–75, 1994
S. A. Pappert , C. K. Sun , and R. J. Orazi , “Tunable RF optical source using optical harmonic carrier generation,” Proc. SPIE, 3038, 89–96, 1997
J. Menders and E. Miles , “Agile MM-wave generation by sideband filtering,” Proc. SPIE, 3795, 272–8, 1999
C. K. Sun , R. J. Orazi , S. A. Pappert , and W. K. Burns , “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett., 8, 1166–8, 1996
W. P. Robins, Phase Noise in Signal Sources, IEE Telecommunications Series 9, Peter Peregrinus Ltd., p. 78, 1984
X. S. Yao and L. Maleki , “Converting light into spectrally pure microwave oscillation,” Opt. Lett., 21, 483–5, 1996
X. Wang , W. Mao , M. Al-Mumin , S. A. Pappert , J. Hong , and G. Li , “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett., 11, 1292–4, 1999
N. G. Walker , D. Wake , and I. C. Smith , “Efficient millimetre-wave signal generation through FM–IM conversion in dispersive optical fibre links,” Electron. Lett., 28, 2027–8, 1992
K. E. Razavi and P. A. Davies , “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc., 145, Pt. J, 159–63, 1998
R. P. Braun , G. Grosskopf , H. Heidrich , C. Helmolt , R. Kaiser , K. Kruger , D. Rohde , F. Schmidt , R. Stenzel , and D. Trommer , “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microwave Theory Tech., 46, 320–30, 1998
U. Gliese , T. Norskov Nielsen , S. Norskov , and K. E. Stubkjaer , “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microwave Theory Tech., 46, 458–68, 1998
U. Gliese , “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron., 30, 1005–19, 1998
D. Roulston , “Low-noise photoparametric up-converter,” IEEE J. Solid-State Circuits, SC-3, 431–40, 1968
W. Kulczyk and Q. Davis , “The avalanche photodiode as an electronic mixer in an optical receiver,” IEEE Trans. Electron. Dev., 19, 1181–90, 1972
R. MacDonald and K. Hill , “Avalanche optoelectronic downconverter,” Opt. Lett., 7, 83–5, 1982
D. A. Humphreys and R. A. Lobbett , “Investigation of an optoelectronic nonlinear effect in a GaInAs photodiode, and its application in a coherent optical communication system,” IEE Proc., 135, Pt. J, 45–51, 1988
R. MacDonald and B. Swekla , “Frequency domain optical reflectometer using a GaAs optoelectronic mixer,” Appl. Opt., 29, 4578–82, 1990
Q. Liu , R. Davies , and R. MacDonald , “Experimental investigation of fiber optic microwave link with monolithic integrated optoelectronic mixing receiver,” IEEE Trans. Microwave Theory Tech., 43, 2357–60, 1995
T. Hoshida and M. Tsuchiya , “Broad-band millimeter-wave upconversion by nonlinear photodetection using a waveguide p-i-n photodiode,” IEEE Photon. Technol. Lett., 10, 860–2, 1998
H. Ogawa and Y. Kamiya , “Fiber-optic microwave transmission using harmonic laser mixing, optoelectronic mixing, and optically pumped mixing,” IEEE Trans. Microwave Theory Tech., 39, 2045–51, 1991
Z. Urey , D. Wake , D. J. Newson , and I. D. Henning , “Comparison of InGaAs transistors as optoelectronic mixers,” Electron. Lett., 29, 1796–7, 1993
Y. Betser , D. Ritter , C. P. Liu , A. J. Seeds , and A. Madjar , “A single-stage three-terminal heterojunction bipolar transistor optoelectronic mixer,” J. Lightwave Technol., 16, 605–9, 1998
A. Foyt , F. Leonberger , and R. Williamson , “InP optoelectronic mixers,” Proc. SPIE, 269, 109–14 (1981)
D. Lam and R. MacDonald , “GaAs optoelectronic mixer operation at 4.5 GHz,” IEEE Trans. Electron Dev., ED-31, 1766–8, 1984
C. H. Cox , V. Diadiuk , R. C. Williamson , and A. C. Foyt , “Linearity measurements of high-speed InP optoelectronic switches,” Solid State Research Report MIT Lincoln Laboratory, vol. 3, p. 5–11, 1983
J. J. Pan , “Cost-effective microwave fiber optic links using the heterodyne laser,” Proc. SPIE, 995, 94–8, 1988
H. Ogawa and Y. Kamitsuna , “Fiber-optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microwave Theory Tech., 40, 2278–84, 1992
E. Portnoi , V. Gorfinkel , E. Avrutin , I. Thayne , D. Barrow , J. Marsh , and S. Luryi , “Optoelectronic microwave-range frequency mixing in semiconductor lasers,” IEEE J. Sel. Topics Quantum Electron., 1, 451–9, 1995
J. Lasri , M. Shtaif , G. Eisenstein , E. A. Avrutin , and U. Koren , “Optoelectronic mixing using a short cavity distributed Bragg reflector laser,” J. Lightwave Technol., 16, 443–7, 1998
E. Eichen , “Interferometric generation of high-power, microwave frequency, optical harmonics,” Appl. Phys. Lett., 51, 398–400, 1987
B. H. Kolner and D. W. Dolfi , “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Opt., 26, 3676–80, 1987
S. Pajarola , G. Guekos , and J. Mørk , “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photon. Technol. Lett., 8, 157–9, 1996
J. L. Hall and W. W. Morey , “Optical heterodyne measurement of Neon laser's millimeter wave difference frequency,” Appl. Phys. Lett., 10, 152–5, 1967
M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, and W. Nowak, “Simultaneous electro-optical upconversion to 60 GHz of uncoded OFDM signals,” International Topical Meeting on Microwave Photonics, Princeton, NJ, 219–21, 1998
T. Kuri, K. Kitayama, and Y. Ogawa, “A novel fiber-optic millimeter-wave uplink incorporating 60 GHz-band photonic downconversion with remotely fed optical pilot tone using an electroabsorption modulator,” International Topical Meeting on Microwave Photonics, Princeton, NJ, 17–20, 1998
G. H. Smith , D. Novak and Z. Ahmed , “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., 33, 74–5, 1997
G. P. Kurpis and J. J. Taub, “Wideband X-band microstrip image rejection balanced mixer,” IEEE MTT Symposium Digest, 200–5, 1970
L. Chao , C. Wenyue and J. F. Shiang , “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microwave Theory Tech., 45, 1478–80, 1997
R. Helkey, “Advances in frequency conversion optical links,” MICROCOLL, Budapest, 1999
G. K. Gopalakrishnan , R. P. Moeller , M. M. Howerton , W. K. Burns , K. J. Williams and R. D. Esman , “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech., 43, 2318–23, 1995
K. J. Williams , R. D. Esman and M. Dagenais , “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett., 6, 639–41, 1994
G. A. Davis , R. E. Weiss , R. A. LaRue , K. J. Williams , and R. D. Esman , “A 920–1650-nm high-current photodetector,” IEEE Photon. Technol. Lett., 8, 1373–5, 1996
L. Y. Lin , M. C. Wu , T. Itoh , T. A. Vang , R. E. Muller , D. L. Sivco , and A. Y. Cho , “Velocity-matched distributed photodetectors with high-saturation power and large bandwidth,” IEEE Photon. Technol. Lett., 8, 1376–8, 1996
M. M. Howerton , R. P. Moeller , G. K. Gopalakrishnan and W. K. Burns , “Low-biased fiber-optic link for microwave downconversion,” IEEE Photon. Technol. Lett., 8, 1692–4, 1996
K J. Williams and R. D. Esman , “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett., 8, 148–50, 1996
X. S. Yao , “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Technol. Lett., 10, 264–6, 1998
T. Young , J. Conradi , and W. R. Tinga , “Generation and transmission of FM and /4 DQPSK signals at microwave frequencies using harmonic generation and optoelectronic mixing in Mach-Zehnder modulators,” IEEE Trans. Microwave Theory Tech., 44, 446–53, 1996
K. P. Ho , S. K. Liaw , and C. Lin , “Efficient photonic mixer with frequency doubling,” IEEE Photon. Technol. Lett., 9, 511–13, 1997
E. Hashimoto , A. Takada , and Y. Katagiri , “Synchronisation of sub-Terahertz optical pulse train from PLL-controlled colliding pulse modelocked semiconductor laser,” Electron. Lett., 34, 580–2, 1998
R. Helkey , D. Derickson , A. Mar , J. Wasserbauer , J. E. Bowers , and R. Thornton , “Repetition frequency stabilisation of passively mode-locked semiconductor lasers,” Electron. Lett., 28, 1920–1, 1992
R. Helkey , A. Mar , W. Zou , D. Young , and J. E. Bowers , “Mode-locked repetition rate feedback stabilization of semiconductor diode lasers,” SPIE Ultrafast Pulse Generation and Spectroscopy Processings, 1861, 62–71, 1993
J. M. Fuster , J. Marti , and J. L. Corral , “Chromatic dispersion effects in electrooptical upconverted millimetre-wave fibre optic links,” Electron. Lett., 33, 1969–70, 1997
J. M. Fuster , J. Marti , V. Polo , and J. L. Corral , “Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers,” IEEE Photon. Technol. Lett., 9, 1161–3, 1997
C. H. Cox , G. E. Betts , and L. M. Johnson , “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech., 38, 501–9, 1990
A. C. Lindsay , G. A. Knight , and S. T. Winnall , “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech., 43, 2311–17, 1995
J. Önnegren and J. Svedin, “Photonic mixing using a Franz-Keldysh electroabsorption modulator monolithically integrated with a DFB laser,” International Topical Meeting on Microwave Photonics, IEEE, Kyoto, vol. WE1-4, 1996
X. S. Yao , “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett., 22, 1329–31, 1997
X. S. Yao , “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., 10, 138–40, 1998
C. K. Sun , R. J. Orazi , R. B. Welstand , J T. Zhu , P. K. L. Yu , Y. Z. Liu and J. M. Chen , “High spurious free dynamic range fibre link using a semiconductor electroabsorption modulator,” Electron. Lett., 31, 902–3, 1995
G. E. Betts, F. J. O'Donnell, K. G. Ray, D. K. Lewis, D. E. Bossi, K. Kissa, and G. W. Drake, “Reflective linearized modulator,” Integrated Photonics Research, OSA Technical Digest Series,vol. 6, 1996
H. Roussell and R. Helkey , “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett., 8, 408–10, 1998
G. E. Betts , “A linearized modulator for high performance bandpass optical analog links,” IEEE MTT-S Intl. Symp. Dig. vol. 2, 1097–1100, 1994
R. Helkey , “Narrowband optical A/D converter with suppressed second-order distortion,” IEEE Photon. Technol. Lett., 11, 599–601, 1999
H. Ogawa , D. Polifko , and S. Banda , “Millimeter-wave fiber optics systems for personal radio communications,” IEEE Trans. Microwave Theory Tech., 40, 2285–93, 1992
K. Morita and H. Ohtsuka , “The new generation of wireless communications based on fiber-radio technologies,” IEICE Trans. Commun., E76-B, 1061–8, 1993
J. J. O'Reilly , P. M. Lane , M. H. Capstick , H. M. Salgado , R. Heidemann , R. Hofstetter , and H. Schmuck , “Race R2005: microwave optical duplex antenna link,” IEE Proc. 140, pt. J, 385–91, 1993
S. Komaki and E. Ogawa , “Trends of fiber-optic microcellular radio communication networks,” IEICE Trans. Electron., E79-C, 98–104, 1996
T. Kuri , K. Kitayama , and Y. Ogawa , “Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz band optical pilot tone,” IEEE Trans. Microwave Theory Tech., 47, 1332–7, 1999
P. D. Biernacki , L. T. Nichols , D. G. Enders , K. J. Williams , and R. D. Esman , “A two-channel optical downcoverter for phase detection,” IEEE Trans. Microwave Theory Tech., 46, 1784–7, 1998
J. L. Corral , J. Marti , and J. M. Fuster , “Optical up-conversion on continuously variable true-time-delay lines based on chirped fiber gratings for millimeter-wave optical beamforming networks,” IEEE Trans. Microwave Theory Tech., 47, 1315–20, 1999
S. A. Pappert , C. K. Sun , R. J. Orazi , and T. E. Weiner , “Photonic link technology for shipboard rf signal distribution,” Proc. SPIE, 3463, 123–34, 1998
J. E. Roman , L. T. Nichols , K. J. Williams , R. D. Esman , G. C. Tavik , M. Livingston , and M. G. Parent , “Fiber optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Tech., 46, 2317–23, 1998

Reference Title: References

Reference Type: reference-list

C. J. G. Kirkby, “Refractive index of lithium niobate, wavelength dependence”, Sections 5.1 and 5.2 in Properties of Lithium Niobate, EMIS Datareviews Series No. 5, INSPEC, The Institution of Electrical Engineers, London, 1989, pp. 131–42
A. R. Von Hippel, Dielectric Materials and Applications, The MIT Press, Cambridge MA, 1954, pp. 311, 402
J. H. Schaffner, HRL Laboratories, LLC, private communication
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edn., J. Wiley, New York, 1994
G. K. Gopalakrishnan , W. K. Burns , R. W. McElhanon , C. H. Bulmer , and A. S. Greenblatt , “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol., 12, 1807–18, 1994
O. Mitomi , K. Noguchi , and H. Miyazawa , “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microwave Theory Tech., QE-43, 2203–7, 1995
D. W. Dolfi and T. R. Ranganth , “50 GHz Velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett., 28, 1197–8, 1992
R. C. Alferness , S. K. Korotky , and E. A. J. Marcatili , “Velocity-matching techniques for integrated optic traveling wave switch modulators,” IEEE J. Quantum Electron., QE-20, 301–9, 1984
J. H. Schaffner , “Analysis of a millimeter wave integrated electro-optic modulator with a periodic electrode,” Proc. SPIE OE-LASE Conference, Los Angeles, CA, January 16–17, 1990, 1217, 101–10
J. H. Schaffner and W. B. Bridges, “Broad band, low power electro-optic modulator apparatus and method with segmented electrodes,” U.S. Patent 5,291,565, March 1, 1994
F. T. Sheehy, “Antenna-coupled mm-wave electro-optic modulators and linearized electro-optic modulators,”Ph.D. Thesis, California Institute of Technology, June 1993
W. B. Bridges, “Antenna-fed electro-optic modulator,” U.S. Patent 5,076,655, December 31, 1991
F. T. Sheehy , W. B. Bridges , and J. H. Schaffner , “Wave-coupled LiNbO3 electrooptic modulator for microwave and millimeter-wave modulation,” IEEE Photon. Technol. Lett., 3, 133–5, 1991
W. B. Bridges and F. T. Sheehy, “Velocity matched millimeterwave electro-optic modulator,” Final Technical Report RL-TR-93-57 on contract F30602-88-D-0026 with U.S. Air Force Rome Laboratories, May 1993
F. T. Sheehy , W. B. Bridges , and J. H. Schaffner , “60 GHz and 94 GHz antenna-coupled LiNbO3 electrooptic modulators,” IEEE Photon. Technol. Lett., 5, 307–10, 1993
W. B. Bridges, L. J. Burrows, U. V. Cummings, R. E. Johnson, and F. T. Sheehy, “60 and 94 GHz wave-coupled electro-optic modulators,” Final Technical Report RL-TR-96-188 on contract F30602-92-C-0005 with U.S. Air Force Rome Laboratories, September 1996
C. R. Brewitt-Taylor, K. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett., 17, 1981
N. Engheta , C. H. Papas , and C. Elachi , “Radiation patterns of interfacial dipole antennas,” Radio Sci., 17, 1557–66, 1982
G. S. Smith , “Directive properties of antennas for transmission into a material half-space,” IEEE Trans. Antennas Propag., AP- 32, 232–46, 1984
M. Kominami , D. M. Pozar , and D. H. Schaubert , “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antennas Propag., AP- 33, 600–7, 1985
D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated circuit antennas,” in Infrared and Millimeter Waves, Volume 10, Academic Press, 1983, Chapter 1
R. C. Compton , R. C. McPhedran , Z. Popovic , G. M. Rebeiz , P. P. Tong , and D. B. Rutledge , “Bow-tie antennas on a dielectric half-space: Theory and experiment,” IEEE Trans. Antennas Propag., 35, 622–31, 1987
R. V. Schmidt, “Integrated optics switches and modulators,” in Integrated Optics: Physics and Applications, eds. S. Martellucci and A. N. Chester, Plenum Press, New York, 1981, pp. 181–210
C. Gaeta, Hughes Research Laboratories, private communication
U. V. Cummings, W. B. Bridges, F. T. Sheehy, and J. H. Schaffner, “Wave-coupled LiNbO3 directional coupler modulator at 94 GHz,” Photonic Systems for Antenna Applications Conference (PSAA-4), Monterey, CA, 18–21 Jan. 1994, Paper 4.3
A. Moussessian and D. B. Rutledge, “A millimeter-wave slot-V antenna,” IEEE AP-S International Symposium, July 18–25, 1992, Chicago IL, Conference Digest, Vol. 4, pp. 1894–1897
L. J. Burrows and W. B. Bridges, “Slot-vee antenna-coupled electro-optic modulator,” Proc. SPIE Conference on Photonics and Radio Frequency II, 21–22 July 1998, Vol. 3463, pp. 56–65
W. B. Bridges, L. J. Burrows, and U. V. Cummings, “Wave-coupled millimeter-wave electro-optic techniques,” Final Technical Report AFRL-SN-RS-TR-2001-37 on contract F30602-96-C-0020 with U.S. Air Force Rome Laboratories, March 2001
E. Penard, K. Matsui, and H. Ogawa, “Intensity modulation of LiNbO3 electro-optic modulator by free space radiation coupling,” Proc. SPIE Conference on Optoelectronic Signal Processing for Phased-Array Antennas IV, 26-27 Jan. 1994, Vol. 2155, pp. 55–66

Reference Title: References

Reference Type: reference-list

R. Tang and R. W. Burns, “Phased arrays,” in Antenna Engineering Handbook, 2nd Edn., New York, McGraw-Hill, 1984, Ch. 20
USAF Rome Labs. Program (F30602-87-C-0014), “EHF optical fiber based subarrays.”
W. Ng , A. Walston , G. Tangonan , J. J. Lee , I. Newberg , and N. Bernstein , “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave. Technol., LT-9. 1124–31, 1991
C. Cox , III, G. Betts , and L. Johnson , “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech., 38, 501–9, 1990
J. J Lee , R. Loo , S. Livingston , V. Jones , J. Lewis , H. W. Yen , G. Tangonan , and M. Wechsberg , “Photonic wideband array antennas,” IEEE Trans. Antennas Propag., 43, 966–82, 1995
J. J Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H. W. Yen, G. Tangonan, and M. Wechsberg DARPA/USAF Rome Labs. Program (F30602-91-0006), “Optical control of phased arrays.”
J. J Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H. W. Yen, G. Tangonan, and M. Wechsberg AFRL (Rome) Program (F30602-96-C-0025), “SHF SATCOM array hardware.”
W. Ng , D. Yap , A. Narayanan , and A. Walston , “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett., 6, 231–4, 1994
W. Ng , A. Narayanan , R. R. Hayes , D. Persechini , and D. Yap , “High efficiency waveguide-coupled λ = 1.3 εm In x Ga1 - xAs/GaAs MSM detector exhibiting large extinction ratios at L and X Band,” IEEE Photon. Technol. Lett., 5, 514–17, 1993
W. Ng , R. Loo , V. Jones , J. Lewis , S. Livingston , and J. J. Lee , “Silica=waveguide optical time-shift network for steering a 96=element L=band conformal array,” in Proc. SPIE Conf. for Optical Technology for Microwave Applications VII, Vol. 2560, pp. 140–7, 1995
J. J. Lee , S. Livingston , and R. Loo , “Calibration of wideband arrays using photonic delay lines,” Electron. Lett., 31, 1533–4, 1995
W. Ng , R. Loo , G. Tangonan , J. J. Lee , R. Chu , S. Livingston and F. Rupp , “A photonically controlled airborne SATCOM array designed for the SHF band,” in Proc. SPIE Conf. for Optical Technology for Microwave Applications VIII, Vol. 3160, pp. 11–16, 1997
J. J. Lee, R. Stephens, W. Ng, H. Wang, and G. Tangonan, “Multibeam photonic Rotman lens antenna using an RF=heterodyne approach,” in Proc. SPIE Conf. for Photonics and Radio Frequency II, San Diego, CA, July 21–22, 1998
See for example, J. Ajioka and J. McFarland, “Beam-forming feeds,” in Chapter.19, Antenna Handbook, Vol. III, Applications, Chapman and Hall, 1993
A. Goutzoulis and D. K. Davies , “Hardware compressive 2=D fiber optic line architecture for time steering of phased-array antenna,” Appl. Opt., 29, 5353–9, 1990
D. T. K. Tong and M. C. Wu, “Common transmit/receive module for multiwavelength optically controlled phased array antennas,” Optical Fiber Communication Conference and Exhibit, 1998. OFC '98, Technical Digest, 354–5
C. R. Doerr , C. H. Joyner , and L. M. Stulz , “40 wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett., 11, 1139, 1999
J. L. Dexter, R. D. Esman, M. J. Monsma, and D. G. Cooper, “Continuously variable true time delay modulator,” OFC/IOOC'93 Technical Digest, Paper ThC6, p. 172
R. D. Esman , M. Y. Frankel , J. L. Dexter , L. Goldberg , M. G. Parent , D. Stilwell , and D. G. Cooper , “Fiber optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett., 5, 1347–9, 1993
M. Y. Frankel , R. D. Esman , and M. G. Parent , “Array transmitter/receiver controlled by a true time delay fiber optic beamformer,” IEEE Photon. Technol. Lett., 7, 1216, 1995
C. Dragone , “A N× N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., 3, 812–15, 1991
D. T. K. Tong and M. C. Wu , “A novel multiwavelength optical controlled phased array antenna with programmable dispersive matrix,” IEEE Photon. Technol. Lett., 8, 812, 1996
B. Jalali and S. Yegnanarayanan, “Advances in recirculating photonic true time delay for optically controlled phased array antennas,” Photonic Systems for Antenna Applications (PSSA=9), 17=19 Feb. 1999, Technical Digest