References  pp. 291-326


By Gabor Forgacs and Stuart A. Newman
Adams, C. L., Chen, Y. T., Smith, S. J., and Nelson, W. J. (1998). Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell Biol. 142, 1105–19.
Adams, C. L., Nelson, W. J., and Smith, S. J. (1996). Quantitative analysis of cadherin–catenin–actin reorganization during development of cell–cell adhesion. J. Cell Biol. 135, 1899–911.
Afzelius, B. A. (1985). The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit. Rev. Biochem. 19, 63–87.
Agius, E., Oegeschlager, M., Wessely, O., Kemp, C., and De Roberts, E. M. (2000). Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–83.
Agutter, P. S., and Wheatley, D. N. (2000). Random walk and cell size. BioEssays 22, 1018–23.
Akam, M. (1989). Making stripes inelegantly. Nature 341, 282–3.
Akatiya, T., and Bronner-Fraser, M. (1992). Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev. Dyn. 194, 12–20.
Alber, M. S., Kiskowski, M. A., Glazier, J. A., and Jiang, Y. (2003). On cellular automaton approaches to modeling biological cells. In Mathematical Systems Theory in Biology, Communication, and Finance (J. Rosenthal and D. S. Gilliam, eds.), Vol. 134, pp. 1–40. New York, Springer-Verlag.
Alber, M., Hentschel, H. G. E., Kazmierczak, B., and Newman, S. A. (2005). Existence of solutions to a new model of biological pattern formation. Journal of Mathematical Analysis and Application 308, 175–194.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology of the Cell. Garland Science, New York.
Allaerts, W. (1991). On the role of gravity and positional information in embryological axis formation and tissue compartmentalization. Acta Biotheor. 39, 47–62.
Amonlirdviman, K., Khare, N. A., Tree, D. R., Chen, W. S., Axelrod, J. D., and Tomlin, C. J. (2005).Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–6.
Anderson, A. R., and Chaplain, M. A. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–99.
Anderson, K. V., and Ingham, P. W. (2003). The transformation of the model organism: a decade of developmental genetics. Nat. Genet. 33 Suppl., 285–93.
Angres, B., Barth, A., and Nelson, W. J. (1996). Mechanism for transition from initial to stable cell–cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J. Cell Biol. 134, 549–57.
Armstrong, P. B. (1989). Cell sorting out: the self-assembly of tissues in vitro. Crit. Rev. Biochem. and Mol. Biol. 24, 119–49.
Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–6.
Arthur, W. (1997). The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge, New York, Cambridge University Press.
Atherton-Fessler, S., Hannig, G., and Piwnica-Worms, H. (1993). Reversible tyrosine phosphorylation and cell cycle control. Semin. Cell Biol. 4, 433–42.
Augustin, H. G. (2001). Tubes, branches, and pillars: the many ways of forming a new vasculature. Circ. Res. 89, 645–7.
Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., and Herrmann, B. G. (2003). Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406.
Aylsworth, A. S. (2001). Clinical aspects of defects in the determination of laterality. Am. J. Med. Genet. 101, 345–55.
Bachvarova, R. (1985). Gene expression during oogenesis and oocyte development in mammals. Dev. Biol. 1, 453–524.
Ball, W. D. (1974). Development of the rat salivary glands. 3. Mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat. J. Exp. Zool. 188, 277–88.
Ballaro, B., and Reas, P. G. (2000). Chemical and mechanical waves on the cortex of fertilized egg cells: a bioexcitability effect. Rev. Biol. 93, 83–101.
Baoal, D. (2002). Mechanics of the Cell. Cambridge University Press, Cambridge.
Barabási, A.-L. (2002). Linked: The New Science of Networks. Perseus Publications, Cambridge, MA.
Bard, J. B. (1999). A bioinformatics approach to investigating developmental pathways in the kidney and other tissues. Int. J. Dev. Biol. 43, 397–403.
Barkai, N., and Leibler, S. (2000). Circadian clocks limited by noise. Nature 403, 267–8.
Basu, S., Gerchmann, Y., Collins, C. H., Arnold, F. H., Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–4.
Bateman, E. (1998). Autoregulation of eukaryotic transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 60, 133–68.
Bateson, W. (1894). Materials for the Study of Variation. Macmillan. London.
Baumgartner, W., Hinterdorfer, P., Ness, W., et al. (2000). Cadherin interaction probed by atomic force microscopy. Proc. Nat. Acad. Sci. USA 97, 4005–10.
Bausch, A. R., Moller, W., and Sackmann, E. (1999). Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–9.
Becker, M., Baumann, C., John, S., et al. (2002). Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3, 1188–94.
Beddington, R. S., and Robertson, E. J. (1999). Axis development and early asymmetry in mammals. Cell 96, 195–209.
Bejsovec, A., and Wieschaus, E. (1993). Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 119, 501–17.
Bell, G. I. (1978). Models for the specific adhesion of cells to cells. Science 200, 618–27.
Beloussov, L. (1998). The Dynamic Architecture of a Developing Organism. Kluwer Academic Publishers, Dordrecht.
Ben-Avraham, D., and Havlin, S. (2000). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, New York.
Benink, H. A., Mandato, C. A., and Bement, W. M. (2000). Analysis of cortical flow models in vivo. Mol. Biol. Cell 11, 2553–63.
Berg, H. C. (1993). Random Walks in Biology. Princeton University Press, Princeton.
Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.
Berry, L. D., and Gould, K. L. (1996). Regulation of Cdc2 activity by phosphorylation at T14/Y15. Prog. Cell. Cycle Res. 2, 99–105.
Bertrand, N., Castro, D. S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–30.
Bevilacqua, M., Butcher, E., Furie, B., et al. (1991). Selectins: a family of adhesion receptors. Cell 67, 233.
Beysens, D. A., Forgacs, G., and Glazier, J. A. (2000). Cell sorting is analogous to phase ordering in fluids. Proc. Nat. Acad. Sci. USA 97, 9467–71.
Bhalla, U. S., and Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science 283, 381–7.
Bissell, M. J., and Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: is structure the message? J. Cell Sci. Suppl. 8, 327–43.
Blair, S. S. (2003). Developmental biology: boundary lines. Nature 424, 379–81.
Boal, D. H. (2002). Mechanics of the Cell. Cambridge University Press, Cambridge, New York.
Boggon, T. J., Murray, J., Chappuis-Flament, S., et al. (2002). C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–13.
Boissonade, J., Dulos, E., and DeKepper, P. (1994). Turing patterns: from myth to reality. In Chemical Waves and Patterns (R. Kapral and K. Showalter, eds.), pp. 221–68. Kluwer, Boston.
Bolouri, H., and Davidson, E. H. (2003). Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Nat. Acad. Sci. USA 100, 9371–6.
Bonner, J. T. (1998). The origins of multicellularity. Integrative Biology 1, 27–36.
Boring, L. (1989). Cell–cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc. Dev. Biol. 136, 239–53.
Borisuk, M. T., and Tyson, J. J. (1998). Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85.
Borkhvardt, V. G. (2000). The growth and form development of the limb buds in vertebrate animals. Ontogenez 31, 192–200.
Bouligand, Y. (1972). Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217.
Braat, A. K., Zandbergen, T., van de Water, S., Goos, H. J., and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153–67.
Braga, V. M. (2002). Cell–cell adhesion and signalling. Curr. Opin. Cell. Biol. 14, 546–56.
Branford, W. W., and Yost, H. J. (2002). Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr. Biol. 12, 2136–41.
Brasier, M., and Antcliffe, J. (2004). Paleobiology. Decoding the Ediacaran enigma. Science 305, 1115–7.
Breckenridge, R. A., Mohun, T. J., and Amaya, E. (2001). A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev. Biol. 232, 191–203.
Brinker, C. J., and Scherer, G. W. (1990). Sol–Gel Science. Academic Press, New York.
Brock, H. W., and Fisher, C. L. (2005). Maintenance of gene expression patterns. Dev. Dyn. 232, 633–55.
Bronner-Fraser, M. (1982). Distribution of latex beads and retinal pigment epithelial cells along the ventral neural crest pathways. Dev. Biol. 91, 50–63.
Bronner-Fraser, M. (1984). Latex beads as probes of a neural crest pathway: effects of laminin, collagen, and surface charge on bead translocation. J. Cell Biol. 98, 1947–60.
Bronner-Fraser, M. (1985). Effects of different fragments of the fibronectin molecule on latex bead translocation along neural crest migratory pathways. Dev. Biol. 108, 131–45.
Bronner-Fraser, M., Wolf, J. J., and Murray, B. A. (1992). Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev. Biol. 153, 291–301.
Brown, S. J., Hilgenfeld, R. B., and Denell, R. E. (1994a). The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc. Nat. Acad. Sci. USA 91, 12922–6.
Brown, S. J., Patel, N. H., and Denell, R. E. (1994b). Embryonic expression of the single Tribolium engrailed homolog. Dev. Genet. 15, 7–18.
Browne, E. N. (1909). The production of new hydranths in Hydra by insertion of small grafts. J. Exp. Zool. 7, 1–23.
Brunet, J. F., and Ghysen, A. (1999). Deconstructing cell determination: proneural genes and neuronal identity. Bioessays 21, 313–8.
Bryant, P. J. (1999). Filopodia: fickle fingers of cell fate? Curr. Biol. 9, R655–7.
Buckley, C. D., Rainger, G. E., Bradfield, P. F., Nash, G. B., and Simmons, D. L. (1998). Cell adhesion: more than just glue. Mol. Membr. Biol. 15, 167–76.
Bugrim, A. E., Zhabotinsky, A. M., and Epstein, I. R. (1997). Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73, 2897–906.
Bugrim, A., Fontanilla, R., Eutenier, B. B., Keizer, J., and Nuccitelli, R. (2003). Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+ waves initiated by IP3 than by Ca2+. Biophys. J. 84, 1580–90.
Callamaras, N., Marchant, J. S., Sun, X. P., and Parker, I. (1998). Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J. Physiol. 509, 81–91.
Campochiaro, P. A. (2000). Retinal and choroidal neovascularization. J. Cell Physiol. 184, 301–10.
Canman, J. C., and Bement, W. M. (1997). Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes. J. Cell Sci. 110, 1907–17.
Capco, D. G., and McGaughey, R. W. (1986). Cytoskeletal reorganization during early mammalian development: analysis using embedment-free sections. Dev. Biol. 115, 446–58.
Carnac, G., and Gurdon, J. B. (1997). The community effect in Xenopus myogenesis is promoted by dorsalizing factors. Int. J. Dev. Biol. 41, 521–4.
Castets, V., Dulos, E., Boissonade, J., and DeKepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–6.
Cayan, S., Conaghan, J., Schriock, E. D., Ryan, I. P., Black, L. D., and Turek, P. J. (2001). Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener/immotile cilia syndrome. Fertil. Steril. 76, 612–4.
Chambon, F., and Winter, H. H. (1987). Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31, 683–97.
Chan, A. P., and Etkin, L. D. (2001). Patterning and lineage specification in the amphibian embryo. Curr. Top. Dev. Biol. 51, 1–67.
Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J. A., Glimm, T., Hentschel, H. G. E., Newman, S. A., Glazier, J. A., and Alber, M. (2005). On multiscale approaches to three-dimensional modeling of morphogenesis. J. Roy. Soc. London Interface 2, 237–53.
Cheer, A., Vincent, J. P., Nuccitelli, R., and Oster, G. (1987). Cortical activity in vertebrate eggs. I: The activation waves. J. Theor. Biol. 124, 377–404.
Chen, J. N., van Eeden, F. J., Warren, K. S., et al. (1997). Left–right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373–82.
Chen, J.-Y., Bottjer, D. J., Oliveri, P., et al. (2004). Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218–22.
Chen, Y., and Schier, A. F. (2002). Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr. Biol. 12, 2124–8.
Cheng, A., Ross, K. E., Kaldis, P., and Solomon, M. J. (1999). Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev. 13, 2946–57.
Christen, B., and Slack, J. (1999). Spatial response to fibroblast growth factor signalling in Xenopus embryos. Development 126, 119–25.
Chuong, C. M. (1993). The making of a feather: homeoproteins, retinoids and adhesion molecules. BioEssays 15, 513–21.
Cickovski, T., Huang, C., Chaturvedi, R., et al. (2005). A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Computat. Biol. Bioinformatics, in press.
Cinquin, O., and Demongeof, J. (2005). High-dimensional switches and the modelling of cellular differentiation. J. Theor. Biol. 233, 391–411.
Clements, D., Friday, R. V., and Woodland, H. R. (1999). Mode of action of VegT in mesoderm and endoderm formation. Development 126, 4903–11.
Clerk, J. P., Giraud, G., Laugier, J. M., and Luck, J. M. (1990). The AC electrical conductance of binary disordered systems, percolation custers, fractals and related models. Adv. Phys. 39, 191–309.
Cline, C. A., Schatten, H., Balczon, R., and Schatten, G. (1983). Actin-mediated surface motility during sea urchin fertilization. Cell Motil. 3, 513–24.
Clyde, D. E., Corado, M. S., Wu, X., Pare, A., Papatsenko, D., and Small, S. (2003). A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426, 849–53.
Colas, J. F., and Schoenwolf, G. C. (2001). Towards a cellular and molecular understanding of neurulation. Dev. Dyn. 221, 117–45.
Collier, J. R., Monk, N. A., Maini, P. K., and Lewis, J. H. (1996). Pattern formation by lateral inhibition with feedback: a mathematical model of Delta–Notch intercellular signalling. J. Theor. Biol. 183, 429–46.
Comper, W. D. (1996). Extracellular Matrix. Vol. I. Tissue Function; Vol. II. Molecular Components and Interactions. Harwood Academic Publishers, Amsterdam.
Comper, W. D., Pratt, L., Handley, C. J., and Harper, G. S. (1987). Cell transport in model extracellular matrices. Arch. Biochem. Biophys. 252, 60–70.
Conway Morris, S. (2003). The Cambrian “explosion” of metazoans. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology (G. B. Müller and S. A. Newman, eds.), pp. 13–32. MIT Press, Cambridge, MA.
Cooke, J., and Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–76.
Cooke, J., Nowak, M. A., Boerlijst, M., and Maynard-Smith, J. (1997). Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 13, 360–4.
Cormack, D. H. (1987). Ham's Histology, ninth edn. Lippincott, Philadelphia.
Cornish-Bowden, A. (1995). Fundamentals of Enzyme Kinetics. Ashgate Publ. Co., London.
Coulombe, J. N., and Bronner-Fraser, M. (1984). Translocation of latex beads after laser ablation of the avian neural crest. Dev. Biol. 106, 121–34.
Crawford, K., and Stocum, D. L. (1988). Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102, 687–98.
Crick, F. H. C. (1970). Diffusion in embryogenesis. Nature 225, 420–2.
Crick, F. H. C., and Lawrence, P. A. (1975). Compartments and polyclones in insect development. Science 189, 340–7.
Cross, N. L., and Elinson, R. P. (1980). A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75, 187–98.
Cunliffe, V. T. (2003). Memory by modification: the influence of chromatin structure on gene expression during vertebrate development. Gene 305, 141–50.
Czirok, A., Rupp, P. A., Rongish, B. J., and Little, C. D. (2002). Multi-field 3D scanning light microscopy of early embryogenesis. J. Microsc. 206, 209–17.
Dale, J. K., Maroto, M., Dequeant, M. L., Malapert, P., McGrew, M., and Pourquie, O. (2003). Periodic notch inhibition by Lunatic fringe underlies the chick segmentation clock. Nature 421, 275–8.
Danos, M. C., and Yost, H. J. (1996). Role of notochord in specification of cardiac left–right orientation in zebrafish and Xenopus. Dev. Biol. 177, 96–103.
Dathe, V., Gamel, A., Manner, J., Brand-Saberi, B., and Christ, B. (2002). Morphological left–right asymmetry of Hensen's node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo. Anat. Embryol. (Berlin) 205, 343–54.
Davidson, E. H. (2001). Genomic Regulatory Systems: Development and Evolution. Academic Press, San Diego.
Davidson, E. H., Rast, J. P., Oliveri, P., et al. (2002). A genomic regulatory network for development. Science 295, 1669–78.
Davidson, L. A., Koehl, M. A., Keller, R., and Oster, G. F. (1995). How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–18.
Davidson, L. A., Oster, G. F., Keller, R. E., and Koehl, M. A. (1999). Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209, 221–38.
Dawes, R., Dawson, I., Falciani, F., Tear, G., and Akam, M. (1994). Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561–72.
Dawson, S. P., Keizer, J., and Pearson, J. E. (1999). Fire–diffuse–fire model of dynamics of intracellular calcium waves. Proc. Nat. Acad. Sci. USA 96, 6060–3.
De Felici, M. (2000). Regulation of primordial germ cell development in the mouse. Int. J. Dev. Biol. 44, 575–80.
de Gennes, P. G. (1976a). Critical dimensionality for a special percolation problem (relevant to the gelation in polymers). J. Physique (Paris) 30, 1049–54.
de Gennes, P. G. (1976b). On the relation between percolation and the elasticity of gels. J. Physique (Paris) 37, L1–2.
de Gennes, P. G. (1992). Soft matter. Science 256, 495–7.
de Gennes, P. G., and Prost, J. (1993). The Physics of Liquid Crystals. Clarendon Press, Oxford.
De Smedt, V., Poulhe, R., Cayla, X., et al. (2002). Thr-161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopus oocytes. J. Biol. Chem. 277, 28592–600.
Deguchi, R., Shirakawa, H., Oda, S., Mohri, T., and Miyazaki, S. (2000). Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal–vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev. Biol. 218, 299–313.
DeMarais, A. A., and Moon, R. T. (1992). The armadillo homologs beta-catenin and plakoglobin are differentially expressed during early development of Xenopus laevis. Dev. Biol. 153, 337–46.
Dembo, M., Glushko, V., Aberlin, M. E., and Sonenberg, M. (1979). A method for measuring membrane microviscosity using pyrene excimer formation. Application to human erythrocyte ghosts. Biochim. Biophys. Acta 552, 201–11.
Derganc, J., Bozic, B., Svetina, S., and Zeks, B. (2000). Stability analysis of micropipette aspiration of neutrophils. Biophys. J. 79, 153–62.
Dewar, H., Tanaka, K., Nasmyth, K., and Tanaka, T. U. (2004). Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–7.
Dickinson, R. B., and Tranquillo, R. T. (1993). A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 31, 563–600.
Djabourov, M., Leblond, J., and Papon, P. (1988). Gelation of aqueous gelatin solutions. II. Rheology of the sol–gel transition. J. Phys. (Paris) 49, 333–343.
Djabourov, M., Lechaire, J. P., and Gaill, F. (1993). Structure and rheology of gelatin and collagen gels. Biorheology 30, 191–205.
Doedel, E. J., and Wang, X. J. (1995). AUTO94: Software for continuation and bifurcation problems in ordinary differential equations. Center for Research on Parallel Computing, California Institute of Technology, Pasadena, CA.
Dolmetsch, R. E., Xu, K., and Lewis, R. S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–6.
Dosch, R., Gawantka, V., Delius, H., Blumenstock, C., and Niehrs, C. (1997). Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124, 2325–34.
Downie, S. A., and Newman, S. A. (1994). Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation. Dev. Biol. 162, 195–208.
Downie, S. A., and Newman, S. A. (1995). Different roles for fibronectin in the generation of fore and hind limb precartilage condensations. Dev. Biol. 172, 519–30.
Drasdo, D., and Forgacs, G. (2000). Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev. Dyn. 219, 182–91.
Drasdo, D., Kree, R., and McCaskill, J. S. (1995). Monte Carlo approach to tissue-cell populations. Phys. Rev. E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 52, 6635–57.
Duband, J. L., Monier, F., Delannet, M., and Newgreen, D. (1995). Epithelium–mesenchyme transition during neural crest development. Acta Anat. (Basel) 154, 63–78.
Dubrulle, J., McGrew, M. J., and Pourquié, O. (2001). FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–32.
Ducibella, T., Huneau, D., Angelichio, E., Xu, Z., Schultz, R. M., Kopf, G. S., Fissore, R., Madoux, S., and Ozil, J. P. (2002). Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev. Biol. 250, 280–91.
Duguay, D., Foty, R. A., and Steinberg, M. S. (2003). Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–23.
Dumollard, R., Carroll, J., Dupont, G., and Sardet, C. (2002). Calcium wave pacemakers in eggs. J. Cell Sci. 115, 3557–64.
Dumont, J. N., and Brummett, A. R. (1985). Egg envelopes in vertebrates. Dev. Biol. 1, 235–88.
Durand, D., Delsanti, M., Adam, M., and Luck, J. M. (1987). Frequency dependence of viscoelastic properties of branched polymers near gelation threshold. Europhys. Lett. 3, 297–301.
Edelman, G. M. (1992). Morphoregulation. Dev. Dyn. 193, 2–10.
Eichmann, A., Pardanaud, L., Yuan, L., and Moyon, D. (2002). Vasculogenesis and the search for the hemangioblast. J. Hematother. Stem Cell Res. 11, 207–14.
Eidne, K. A., Zabavnik, J., Allan, W. T., Trewavas, A. J., Read, N. D., and Anderson, L. (1994). Calcium waves and dynamics visualized by confocal microscopy in Xenopus oocytes expressing cloned TRH receptors. J. Neuroendocrinol. 6, 173–8.
Ekblom, P. (1992). Renal Development. Raven Press, New York.
Elinson, R. P., and Rowning, B. (1988). A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128, 185–97.
Ellis, R. J. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–9.
Ellis, R. J., and Minton, A. P. (2003). Cell biology: join the crowd. Nature 425, 27–8.
Elowitz, M. B., and Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–8.
Entchev, E. V., Schwabedissen, A., and Gonzalez-Gaitan, M. (2000). Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–91.
Erickson, C. A. (1985). Control of neural crest cell dispersion in the trunk of the avian embryo. Dev. Biol. 111, 138–57.
Erickson, C. A. (1988). Control of pathfinding by the avian trunk neural crest. Development 103, 63–80.
Erickson, C. A., and Isseroff, R. R. (1989). Plasminogen activator activity is associated with neural crest cell motility in tissue culture. J. Exp. Zool. 251, 123–33.
Erickson, C. A., and Perris, R. (1993). The role of cell–cell and cell–matrix interactions in the morphogenesis of the neural crest. Dev. Biol. 159, 60–74.
Eshkind, L., Tian, Q., Schmidt, A., et al. (2002). Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells of mice and models: improved animal models for biomedical research. Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. Eur. J. Cell. Biol. 81, 592–8.
Espeseth, A., Johnson, E., and Kintner, C. (1995). Xenopus F-cadherin, a novel member of the cadherin family of cell adhesion molecules, is expressed at boundaries in the neural tube. Mol. Cell. Neurosci. 6, 199–211.
Essner, J. J., Vogan, K. J., Wagner, M. K., Tabin, C. J., Yost, H. J., and Brueckner, M. (2002). Conserved function for embryonic nodal cilia. Nature 418, 37–8.
Ettensohn, C. A. (1999). Cell movements in the sea urchin embryo. Curr. Opin. Genet. Dev. 9, 461–5.
Ettinger, L., and Doljanski, F. (1992). On the generation of form by the continuous interactions between cells and their extracellular matrix. Biol. Rev. Camb. Philos. Soc. 67, 459–89.
Evans, E., and Yeoung, A. (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–60.
Fagotto, F., Guger, K., and Gumbiner, B. M. (1997). Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/beta-catenin signaling pathway, but not by Vg1, Activin or Noggin. Development 124, 453–60.
Ferrell, J. E., Jr, Wu, M., Gerhart, J. C., and Martin, G. S. (1991). Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11, 1965–71.
Fitch, J., Fini, M. E., Beebe, D. C., and Linsenmayer, T. F. (1998). Collagen type IX and developmentally regulated swelling of the avian primary corneal stroma. Dev. Dyn. 212, 27–37.
Fleming, T. P., and Goodall, H. (1986). Endocytic traffic in trophectoderm and polarised blastomeres of the mouse preimplantation embryo. Anat. Rec. 216, 490–503.
Folkman, J. (2003). Angiogenesis and proteins of the hemostatic system. J. Thromb. Haemost. 1, 1681–2.
Folkman, J., and Moscona, A. (1978). Role of cell shape in growth control. Nature 273, 345–9.
Fontanilla, R. A., and Nuccitelli, R. (1998). Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys. J. 75, 2079–87.
Forgacs, G. (1995). On the possible role of cytoskeletal filamentous networks in intracellular signalling: an approach based on percolation. J. Cell Sci. 108, 2131–2143.
Forgacs, G., and Foty, R. A. (2004). Biological implications of tissue viscoelasticity. In Function and Regulation of Cellular Systems: Experiments and Models (A. Deutsch, M. Falke, J. Howard, and W. Zimmerman, eds.), pp. 269–77. Biskhauser Basel.
Forgacs, G., and Newman, S. A. (1994). Phase transitions, interfaces, and morphogenesis in a network of protein fibers. Int. Rev. Cytol. 150, 139–48.
Forgacs, G., Foty, R. A., Shafrir, Y., and Steinberg, M. S. (1998). Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–34.
Forgacs, G., Jaikaria, N. S., Frisch, H. L., and Newman, S. A. (1989). Wetting, percolation and morphogenesis in a model tissue system. J. Theor. Biol. 140, 417–430.
Forgacs, G., Newman, S. A., Hinner, B., Maier, C. W., and Sackmann, E. (2003). Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies. Biophys. J. 84, 1272–80.
Forgacs, G., Newman, S. A., Obukhov, S. P., and Birk, D. E. (1991). Phase transition and morphogenesis in a model biological system. Phys. Rev. Lett. 67, 2399–402.
Forgacs, G., Yook, S. H., Janmey, P. A., Jeong, H., and Burd, C. G. (2004). Role of the cytoskeleton in signaling networks. J. Cell. Sci. 117, 2769–75.
Foty, R. A., and Steinberg, M. S. (1997). Measurement of tumor cell cohesion and suppression of invasion by E- or P-cadherin. Cancer Res. 57, 5033–6.
Foty, R. A., and Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–63.
Foty, R. A., Forgacs, G., Pfleger, C. M., and Steinberg, M. S. (1994). Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett. 72, 2298–301.
Foty, R. A., Pfleger, C. M., Forgacs, G., and Steinberg, M. S. (1996). Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–20.
Frasch, M., and Levine, M. (1987). Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev. 1, 981–95.
Freeman, M. (2002). Morphogen gradients, in theory. Dev. Cell 2, 689–90.
Frenz, D. A., Akiyama, S. K., Paulsen, D. F., and Newman, S. A. (1989a). Latex beads as probes of cell surface–extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin. Dev. Biol. 136, 87–96.
Frenz, D. A., Jaikaria, N. S., and Newman, S. A. (1989b). The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev. Biol. 136, 97–103.
Freyman, T. M., Yannas, I. V., Yokoo, R., and Gibson, L. J. (2001). Fibroblast contraction of a collagen-GAG matrix. Biomaterials 22, 2883–91.
Friedlander, D. R., Mege, R.-M., Cunningham, B. A., and Edelman, G. M. (1989). Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces. Proc. Nat. Acad. Sci. USA 86, 7043–7047.
Fristrom, D., and Chihara, C. (1978). The mechanism of evagination of imaginal discs of Drosophila melanogaster. V. Evagination of disc fragments. Dev. Biol. 66, 564–570.
Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–81.
Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.
Furusawa, C., and Kaneko, K. (1998). Emergence of rules in cell society: differentiation, hierarchy, and stability. Bull. Math. Biol. 60, 659–87.
Furusawa, C., and Kaneko, K. (2001). Theory of robustness of irreversible differentiation in a stem cell system: chaos hypothesis. J. Theor. Biol. 209, 395–416.
Gaill, F., Lechaire, J. P., and Denefle, J. P. (1991). Fibrillar pattern of self-assembled and cell-assembled collagen: resemblance and analogy. Biol. Cell 72, 149–58.
Gamba, A., Ambrosi, D., Coniglio, A., et al. (2003). Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118 101.
Garcia-Bellido, A. (1975). Genetic control of wing disc development in Drosophila. Ciba Found. Sym. 29, 169–78.
Garcia-Bellido, A., Ripoll, P., and Morata, G. (1976). Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev. Biol. 48, 132–47.
Garcia-Perez, A. I., Lopez-Beltran, E. A., Kluner, P., Luque, J., Ballesteros, P., and Cerdan, S. (1999). Molecular crowding and viscosity as determinants of translational diffusion of metabolites in subcellular organelles. Arch. Biochem. Biophys. 362, 329–38.
Gardner, R. L. (2001). The initial phase of embryonic patterning in mammals. Int. Rev. Cytol. 203, 233–90.
Gerhart, J. (2002). Changing the axis changes the perspective. Dev. Dyn. 225, 380–3.
Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M. (1981). A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292, 511–6.
Ghosh, S., and Comper, W. D. (1988). Oriented fibrillogenesis of collagen in vitro by ordered convection. Connect. Tissue. Res. 17, 33–41.
Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028–32.
Giansanti, M. G., Bonaccorsi, S., Bucciarelli, E., and Gatti, M. (2001). Drosophila male meiosis as a model system for the study of cytokinesis in animal cells. Cell Struct. Funct. 26, 609–17.
Gierer, A. (1977). Physical aspects of tissue evagination and biological form. Quart. Rev. Biophys. 10, 529–93.
Gilbert, S. F. (2003). Developmental Biology. Sinauer Associates, Sunderland, MA.
Gilkey, J. C., Jaffe, L. F., Ridgway, E. B., and Reynolds, G. T. (1978). A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol. 76, 448–66.
Gimlich, R. L. (1985). Cytoplasmic localization and chordamesoderm induction in the frog embryo. J. Embryol. Exp. Morphol. 89 Suppl., 89–111.
Gimlich, R. L. (1986). Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115, 340–52.
Ginsburg, M., Snow, M. H., and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–8.
Giraud-Guille, M. M. (1996). Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int. Rev. Cytol. 166, 59–101.
Glahn, D., and Nuccitelli, R. (2003). Voltage-clamp study of the activation currents and fast block to polyspermy in the egg of Xenopus laevis. Dev. Growth Differ. 45, 187–97.
Glazier, J. A., and Graner, F. (1993). A simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–54.
Godt, D., and Tepass, U. (1998). Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–91.
Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms: the Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge.
Gomperts, M., Wylie, C., and Heasman, J. (1994). Primordial germ cell migration. Ciba Found. Symp. 182, 121–34; discussion 134–9.
Gong, Y., Mo, C., and Fraser, S. E. (2004). Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–93.
Gonzalez-Reyes, A., and St Johnston, D. (1998). The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125, 3635–44.
Gonze, D., and Goldbeter, A. (2001). A model for a network of phosphorylation–dephosphorylation cycles displaying the dynamics of dominoes and clocks. J. Theor. Biol. 210, 167–86.
Gosden, R., Krapez, J., and Briggs, D. (1997). Growth and development of the mammalian oocyte. Bioessays 19, 875–82.
Gossler, A., and Hrabe de Angelis, M. (1998). Somitogenesis. Curr. Top. Dev. Biol. 38, 225–87.
Gould, S. E., Upholt, W. B., and Kosher, R. A. (1992). Syndecan 3: a member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc. Nat. Acad. Sci. USA 89, 3271–75.
Gould, S. J. (1977). Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.
Goulian, M., and Simon, S. M. (2000). Tracking single proteins within cells. Biophys. J. 79, 2188–98.
Graner, F., and Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–16.
Green, J. (2002). Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev. Dyn. 225, 392–408.
Greenwald, I. (1998). LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–62.
Greenwald, I., and Rubin, G. M. (1992). Making a difference: the role of cell–cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–81.
Gregory, P. D., Wagner, K., and Horz, W. (2001). Histone acetylation and chromatin remodeling. Exp. Cell Res. 265, 195–202.
Gritsman, K., Talbot, W. S., and Schier, A. F. (2000). Nodal signaling patterns the organizer. Development 127, 921–32.
Gullberg, D. E., and Lundgren-Akerlund, E. (2002). Collagen-binding I domain integrins – what do they do? Prog. Histochem. Cytochem. 37, 3–54.
Gumbiner, B. M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–57.
Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. J. Cell. Biol. 148, 399–404.
Gurdon, J. B. (1988). A community effect in animal development. Nature 336, 772–4.
Guthrie, S., and Lumsden, A. (1991). Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112, 221–9.
Hörstadius, S., and Sellman, S. (1946). Experimentelle Untersuchungen uber die Determination des knorpeligen Kopfskelettes bei Urodelen. Nova Acta R. Soc. Scient. Upsal. Ser. 4 13, 1–170.
Haddon, C., Smithers, L., Schneider-Maunoury, S., Coche, T., Henrique, D., and Lewis, J. (1998). Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125, 359–70.
Hafner, M., Petzelt, C., Nobiling, R., Pawley, J. B., Kramp, D., and Schatten, G. (1988). Wave of free calcium at fertilization in the sea urchin egg visualized with fura-2. Cell Motil. Cytoskeleton 9, 271–7.
Haga, H., Nagayama, M., Kawabata, K., Ito, E., Ushiki, T., and Sambongi, T. (2000). Time-lapse viscoelastic imaging of living fibroblasts using force modulation mode in AFM. J. Electron Microsc. (Tokyo) 49, 473–81.
Hahn, H. S., Ortoleva, P. J., and Ross, J. (1973). Chemical oscillations and multiple steady states due to variable boundary permeability. J. Theor. Biol. 41, 503–21.
Hall, B. K., and Miyake, T. (1995). Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881–93.
Hall, B. K., and Miyake, T. (2000). All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22, 138–47.
Hall, D., and Minton, A. P. (2003). Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 1649, 127–39.
Hardin, J. (1996). The cellular basis of sea urchin gastrulation. Curr. Top. Dev. Biol. 33, 159–262.
Harding, K., Hoey, T., Warrior, R., and Levine, M. (1989). Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J. 8, 1205–12.
Hardman, P., and Spooner, B. S. (1992). Salivary epithelium branching morphogenesis. In Epithelial Organization and Development. (T. P. Fleming, ed.), pp. 353–75. Chapman and Hall, London.
Harland, R., and Gerhart, J. (1997). Formation and function of Spemann's organizer. Ann. Rev. Cell Dev. Biol. 13, 611–67.
Harper, G. S., Comper, W. D., and Preston, B. N. (1984). Dissipative structures in proteoglycan solutions. J. Biol. Chem. 259, 10582–9.
Harrison, L. J. (1993). Kinetic Theory of Living Form. Cambridge University Press, Cambridge.
Harrisson, F. (1989). The extracellular matrix and cell surface, mediators of cell interactions in chicken gastrulation. Int. J. Dev. Biol. 33, 417–38.
Hayashi, T., and Carthew, R. W. (2004). Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–52.
He, X., and Dembo, M. (1997). On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell Res. 233, 252–73.
Heintzelman, K. F., Phillips, H. M., and Davis, G. S. (1978). Liquid-tissue behavior and differential cohesiveness during chick limb budding. J. Embryol. Exp. Morphol. 47, 1–15.
Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703.
Hentschel, H. G., Glimm, T., Glazier, J. A., and Newman, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B Biol. Sci. 271, 1713–22.
Heyman, I., Faissner, A., and Lumsden, A. (1995). Cell and matrix specialisations of rhombomere boundaries. Dev. Dyn. 204, 301–15.
Hieda, Y., and Nakanishi, Y. (1997). Epithelial morphogenesis in mouse embryonic submandibular gland: its relationships to the tissue organization of epithelium and mesenchyme. Dev. Growth Differ. 39, 1–8.
Hiramoto, Y. (1956). Cell division without mitotic apparatus in sea urchin eggs. Exp. Cell Res. 11, 630–636.
Hiramoto, Y. (1958). A quantitative description of protoplasmic movement during cleavage in the sea-urchin egg. J. Exp. Biol. 35, 407–424.
Hiramoto, Y. (1963). Mechanical properties of sea urchin eggs. I. Surface force and elastic modulus of the cell membrane. Exp. Cell Res. 32, 59–75.
Hiramoto, Y. (1968). The mechanics and mechanism of cleavage in the sea-urchin egg. Symp. Soc. Exp. Biol. 22, 311–27.
Hiramoto, Y. (1978). Mechanical properties of the dividing sea urchin egg. In Cell Motility: Molecules and Organization (S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 653–63. University Park Press, Baltimore.
Hobbie, R. K. (1997). Intermediate Physics for Medicine and Biology. Springer-Verlag, New York.
Hofmeyr, J. H., and Cornish-Bowden, A. (1997). The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comput. Appl. Biosci. 13, 377–85.
Holley, S. A., Geisler, R., and Nusslein-Volhard, C. (2000). Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–90.
Holley, S. A., Julich, D., Rauch, G. J., Geisler, R., and Nusslein-Volhard, C. (2002). her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175–83.
Holtzendorff, J., Hung, D., Brende, P., et al. (2004). Oscillating global regulator control the genetic circuit driving a bacterial cell cycle. Science 304, 983–7.
Hoshi, M. (1979). Exogastrulation induced by heavy water in sea urchin larvae. Cell Differ. 8, 431–5.
Howard, J. (2001). Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc., Sunderland.
Howard, K., and Ingham, P. (1986). Regulatory interactions between the segmentation genes fushi tarazu, hairy, and engrailed in the Drosophila blastoderm. Cell 44, 949–57.
Huang, F. Z., Bely, A. E., and Weisblat, D. A. (2001). Stochastic WNT signaling between nonequivalent cells regulates adhesion but not fate in the two-cell leech embryo. Curr. Biol. 11, 1–7.
Hunkapiller, T., and Hood, L. (1989). Diversity of the immunoglobulin gene superfamily. Adv. Immunol. 44, 1–63.
Huppert, S. S., Jacobsen, T. L., and Muskavitch, M. A. (1997). Feedback regulation is central to Delta–Notch signalling required for Drosophila wing vein morphogenesis. Development 124, 3283–91.
Hutson, M. S., Tokutake, Y., Chang, M. S., Bloor, J. W., Venakides, S., Kiehart, D. P., and Edwards, G. S. (2003). Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–9.
Hynes, R. O. (1987). Integrins: a family of cell surface receptors. Cell 48, 349–54.
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.
Hynes, R. O., and Lander, A. D. (1992). Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68, 303–22.
Ingber, D. E. (1991). Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell. Biochem. 47, 236–41.
Ingber, D. E., and Folkman, J. (1989a). How does extracellular matrix control capillary morphogenesis? Cell 58, 803–5.
Ingber, D. E., and Folkman, J. (1989b). Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109, 317–30.
Ingham, P. W. (1988). The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–34.
Ingolia, N. T. (2004). Topology and robustness in the Drosophila segment polarity network. PLoS Biol. 2, 805–15.
International Human Genome Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature 431, 931–45.
Irvine, K. D., and Wieschaus, E. (1994). Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–41.
Ish-Horowicz, D., Pinchin, S. M., Ingham, P. W., and Gyurkovics, H. G. (1989). Autocatalytic ftz activation and instability induced by ectopic ftz expression. Cell 57, 223–232.
Israelachvili, J. N. (1991). Intermolecular and Surface Forces. Academic Press, London, San Diego.
Itow, T. (1986). Inhibitors of DNA synthesis change the differentiation of body segments and increase the segment number in horseshoe crab embryos. Roux's Arch. Dev. Biol. 195, 323–33.
Jacobson, A. G., Oster, G. F., Odell, G. M., and Cheng, L. Y. (1986). Neurulation and the cortical tractor model for epithelial folding. J. Embryol. Exp. Morphol. 96, 19–49.
Jacobson, K. A., Moore, S. E., Yang, B., Doherty, P., Gordon, G. W., and Walsh, F. S. (1997). Cellular determinants of the lateral mobility of neural cell adhesion molecules. Biochim. Biophys. Acta 1330, 138–44.
Jacobson, K. A., Sheets, E. D., and Simson, R. (1995). Revisiting the fluid mosaic model of membranes. Science 268, 1441–2.
Jaffe, L. A. (1976). Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261, 68–71.
Jaffe, L. A., and Cross, N. L. (1986). Electrical regulation of sperm–egg fusion. Ann. Rev. Physiol. 48, 191–200.
Jaffe, L. A., Giusti, A. F., Carroll, D. J., and Foltz, K. R. (2001). Ca2+ signalling during fertilization of echinoderm eggs. Semin. Cell Dev. Biol. 12, 45–51.
Jaffe, L. A., Sharp, A. P., and Wolf, D. P. (1983). Absence of an electrical polyspermy block in the mouse. Dev. Biol. 96, 317–23.
Jakab, K., Neagu, A., Mironov, V., Markwald, R. R., and Forgacs, G. (2004). Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Nat. Acad. Sci. USA 101, 2864–9.
Janmey, P. (1998). The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763–81.
Janson, L. W., and Taylor, D. L. (1993). In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells. J. Cell Biol. 123, 345–56.
Jen, W. C., Gawantka, V., Pollet, N., Niehrs, C., and Kintner, C. (1999). Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–99.
Jiang, T., Jung, H., Widelitz, R. B., and Chuong, C. (1999). Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126, 4997–5009.
Jiang, Y. J., Aerne, B. L., Smithers, L., Haddon, C., Ish-Horowicz, D., and Lewis, J. (2000). Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–9.
Jiang, Y., Levine, H., and Glazier, J. A. (1998). Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium. Biophys. J. 75, 2615–25.
Jimenez, G., Griffiths, S. D., Ford, A. M., Greaves, M. F., and Enver, T. (1992). Activation of the beta-globin locus control region precedes commitment to the erythroid lineage. Proc. Nat. Acad. Sci. USA 89, 10618–22.
Jones, K. T. (1998). Protein kinase C action at fertilization: overstated or undervalued? Rev. Reprod. 3, 7–12.
Joos, T. O., Whittaker, C. A., Meng, F., DeSimone, D. W., Gnau, V., and Hausen, P. (1995). Integrin alpha 5 during early development of Xenopus laevis. Mech. Dev. 50, 187–99.
Jouve, C., Iimura, T., and Pourquié, O. (2002). Onset of the segmentation clock in the chick embryo: evidence for oscillations in the somite precursors in the primitive streak. Development 129, 1107–17.
Jouve, C., Palmeirim, I., Henrique, D., et al. (2000). Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421–9.
Juan, H., and Hamada, H. (2001). Roles of nodal–lefty regulatory loops in embryonic patterning of vertebrates. Genes Cells 6, 923–30.
Kabata, H., Kurosawa, O., Arai, I., et al. (1993). Visualization of single molecules of RNA polymerase sliding along DNA. Science 262, 1561–3.
Kadler, K. E., Holmes, D. F., Trotter, J. A., and Chapman, J. A. (1996). Collagen fibril formation. Biochem. J. 316, 1–11.
Kalodimos, C. G., Biris, N., Bonvin, A. M., et al. (2004). Structure and flexibility adaptation in nonspecific and specific protein–DNA complexes. Science 305, 386–9.
Kamawaki, Y., Raya, A., Raya, R. M., Rodriquez-Esteban, C., and Belmont, J. C. I. (2005). Retinoic acid signalling links, left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435, 165–71.
Kamei, N., Swanson, W. J., and Glabe, C. G. (2000). A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development. Dev. Biol. 225, 267–76.
Kaneko, K. (2003). Organization through intra–inter dynamics. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology (G. B. Müller and S. A. Newman, eds.), pp. 195–220. MIT Press, Cambridge, MA.
Kaneko, K., and Yomo, T. (1994). Cell division, differentiation and dynamic clustering. Physica D 75, 89–102.
Kaneko, K., and Yomo, T. (1997). Isologous diversification: a theory of cell differentiation. Bull. Math. Biol. 59, 139–96.
Kaneko, K., and Yomo, T. (1999). Isologous diversification for robust development of cell society. J. Theor. Biol. 199, 243–56.
Karr, T. L., Weir, M. P., Ali, Z., and Kornberg, T. (1989). Patterns of engrailed protein in early Drosophila embryos. Development 105, 605–612.
Kawaki, Y., Raya, A., Raya, R. M., Rodriguez-Esteban, C., and Belmonte, J. C. I. (2005). Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435, 165–71.
Keller, A. D. (1995). Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169–85.
Keller, R. (2000). The origin and morphogenesis of amphibian somites. Curr. Top. Dev. Biol. 47, 183–246.
Keller, R. (2002). Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–4.
Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985). The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89 Suppl., 185–209.
Keller, R., and Danilchik, M. (1988). Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193–209.
Keller, R., Cooper, M. S., Danilchik, M., Tibbetts, P., and Wilson, P. A. (1989). Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251, 134–54.
Keller, R., Davidson, L., Edlund, A. et al. (2000). Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 897–922.
Keller, R., Shih, J., and Sater, A. (1992a). The cellular basis of the convergence and extension of the Xenopus neural plate. Dev. Dyn. 193, 199–217.
Keller, R., Shih, J., Sater, A. K., and Moreno, C. (1992b). Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev. Dyn. 193, 218–34.
Kerszberg, M., and Changeux, J. P. (1998). A simple molecular model of neurulation. Bioessays 20, 758–70.
Kerszberg, M., and Wolpert, L. (1998). Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–14.
Kimmins, S., and Sassone-Corsi, P. (2005). Chromatin remodeling and epigenetic features of germ cells. Nature 434, 583–9.
Kiskowski, M. A., Alber, M. S., Thomas, G. L., et al. (2004). Interplay between activator–inhibitor coupling and cell–matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol. 271, 372–87.
Klein, C., and Hurlbut, C. S. (2002). Manual of Mineral Science. Wiley, New York.
Knoll, A. H. (2003). Life on a Young Planet: the First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, NJ.
Kofron, M., Heasman, J., Lang, S. A., and Wylie, C. C. (2002). Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing. J. Cell Biol. 158, 695–708.
Kofron, M., Spagnuolo, A., Klymkowsky, M., Wylie, C., and Heasman, J. (1997). The roles of maternal alpha-catenin and plakoglobin in the early Xenopus embryo. Development 124, 1553–60.
Kohn, K. W. (1999). Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell. 10, 2703–34.
Kondo, S., and Asai, R. (1995). A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–8.
Kosher, R. A., Savage, M. P., and Chan, S. C. (1979). In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud. J. Embryol. Exp. Morphol. 50, 75–97.
Kosher, R. A., Walker, K. H., and Ledger, P. W. (1982). Temporal and spatial distribution of fibronectin during development of the embryonic chick limb bud. Cell. Differ. 11, 217–228.
Kruse, K., Pantazis, P., Bollenbach, T., Julicher, F., and Gonzalez-Gaitan, M. (2004). Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–56.
Kubota, H. Y., Yoshimoto, Y., Yoneda, M., and Hiramoto, Y. (1987). Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119, 129–36.
Kulesa, P. M., and Fraser, S. E. (2000). In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 127, 1161–72.
Kulesa, P. M., and Fraser, S. E. (2002). Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–5.
Kumano, G., and Smith, W. C. (2002). Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev. Dyn. 225, 409–21.
Lallier, T. E., Whittaker, C. A., and DeSimone, D. W. (1996). Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis. Development 122, 2539–54.
Lander, A. D., Nie, Q., and Wan, F. Y. (2002). Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–96.
Lane, M. C., and Sheets, M. D. (2000). Designation of the anterior/posterior axis in pregastrula Xenopus laevis. Dev. Biol. 225, 37–58.
Lane, M. C., and Sheets, M. D. (2002). Rethinking axial patterning in amphibians. Dev. Dyn. 225, 434–47.
Lane, M. C., and Smith, W. C. (1999). The origins of primitive blood in Xenopus: implications for axial patterning. Development 126, 423–34.
Lane, M. C., Koehl, M. A., Wilt, F., and Keller, R. (1993). A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 117, 1049–60.
Langille, R. M., and Hall, B. K. (1993). Pattern formation and the neural crest. In The Vertebrate Skull (J. Hanken and B. K. Hall, eds.), Vol. 1, Development, pp. 77–111. University of Chicago Press, Chicago.
Langman, J. (1981). Medical Embryology. Williams & Wilkins, Baltimore.
Lawrence, P. A. (1992). The Making of a Fly: the Genetics of Animal Design. Blackwell Scientific Publications, Oxford, Boston.
Lawson, K. A. (1983). Stage specificity in the mesenchyme requirement of rodent lung epithelium in vitro: a matter of growth control? J. Embryol. Exp. Morphol. 74, 183–206.
Leal, L. G. (1992). Laminar Flow and Convective Processes: Scaling Principles and Asymptotic Analysis. Butterworth-Heinemann, Boston.
Lechleiter, J. D., John, L. M., and Camacho, P. (1998). Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. Biophys. Chem. 72, 123–9.
Lechleiter, J., Girard, S., Clapham, D., and Peralta, E. (1991). Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature 350, 505–8.
Lengyel, I., and Epstein, I. R. (1991). Diffusion-induced instability in chemically reacting systems: steady-state multiplicity, oscillation, and chaos. Chaos 1, 69–76.
Lengyel, I., and Epstein, I. R. (1992). A chemical approach to designing Turing patterns in reaction–diffusion systems. Proc. Nat. Acad. Sci. USA 89, 3977–9.
Leonard, C. M., Fuld, H. M., Frenz, D. A., Downie, S. A., Massague, J., and Newman, S. A. (1991). Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-beta and evidence for endogenous TGF-β-like activity. Dev. Biol. 145, 99–109.
Lercher, M. J., Urrutia, A. O., and Hurst, L. D. (2002). Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat. Genet. 31, 180–3.
Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–45.
Levi, G., Ginsberg, D., Girault, J. M., Sabanay, I., Thiery, J. P., and Geiger, B. (1991). EP-cadherin in muscles and epithelia of Xenopus laevis embryos. Development 113, 1335–44.
Lewis, J. (2003). Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–408.
Li, S., Piotrowicz, R. S., Levin, E. G., Shyy, Y. J., and Chien, S. (1996). Fluid shear stress induces the phosphorylation of small heat shock proteins in vascular endothelial cells. Am. J. Physiol. 271, C994–1000.
Li, S., Zhou, D., Lu, M. M., and Morrisey, E. E. (2004). Advanced cardiac morphogenesis does not require heart tube fusion. Science 305, 1619–22.
Linsenmayer, T. F., Fitch, J. M., Gordon, M. K., Cai, C. X., Igoe, F., Marchant, J. K., and Birk, D. E. (1998). Development and roles of collagenous matrices in the embryonic avian cornea. Prog. Retin. Eye Res. 17, 231–65.
Lowery, L. A., and Sive, H. (2004). Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech. Dev. 121, 1189–97.
Lubarsky, B., and Krasnow, M. A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28.
Lubkin, S. R., and Li, Z. (2002). Force and deformation on branching rudiments: cleaving between hypotheses. Biomech. Model Mechanobiol. 1, 5–16.
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H., and Ismagilov, R. F. (2005). Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–8.
Luo, Y., Kostetskii, I., and Radiche, G. L. (2005). N-cadherin is not essential for limb mesenchymal chondrogenesis. Dev. Dyn. 232, 336–44.
Mandato, C. A., Benink, H. A., and Bement, W. M. (2000). Microtubule-actomyosin interactions in cortical flow and cytokinesis. Cell Motil. Cytoskeleton 45, 87–92.
Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. W. H. Freeman, New York.
Maniatis, T., and Tasic, B. (2002). Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–43.
Manner, J. (2000). Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat. Rec. 259, 248–62.
Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999). Transcriptional coregulators in development. Science 284, 606–9.
Marom, K., Shapira, E., and Fainsod, A. (1997). The chicken caudal genes establish an anterior–posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech. Dev. 64, 41–52.
Marsden, M., and DeSimone, D. W. (2003). Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr. Biol. 13, 1182–91.
Marshall, B. T., Long, M., Piper, J. W., Yago, T., McEver, R. P., and Zhu, C. (2003). Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–3.
Martin, G. R. (1998). The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–86.
Martin, J. E., Adolf, D., and Wilcoxon, J. P. (1989). Rheology of the incipient gel: theory and data for epoxies. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 30, 83–84.
Martin, V. J., Littlefield, C. L., Archer, W. E., and Bode, H. R. (1997). Embryogenesis in hydra. Biol. Bull. 192, 345–63.
Maynard Smith, J. (1978). Models in Ecology. Cambridge University Press, Cambridge, New York.
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press, Cambridge, MA.
McCarthy, R. A., and Hay, E. D. (1991). Collagen I, laminin, and tenascin: ultrastructure and correlation with avian neural crest formation. Int. J. Dev. Biol. 35, 437–52.
McDougall, A., Shearer, J., and Whitaker, M. (2000). The initiation and propagation of the fertilization wave in sea urchin eggs. Biol. Cell. 92, 205–14.
McDowell, N., Gurdon, J. B., and Grainger, D. J. (2001). Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo. Int. J. Dev. Biol. 45, 199–207.
McKim, K. S., Jang, J. K., and Manheim, E. A. (2002). Meiotic recombination and chromosome segregation in Drosophila females. Ann. Rev. Genet. 36, 205–32.
McLaren, A. (1984). Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 38, 7–23.
Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–13.
Meek, K. M., and Fullwood, N. J. (2001). Corneal and scleral collagens – a microscopist's perspective. Micron 32, 261–72.
Meier, S. (1984). Somite formation and its relationship to metameric patterning of the mesoderm. Cell Differ. 14, 235–43.
Meinhardt, H. (1982). Models of Biological Pattern Formation. Academic Press, New York.
Meinhardt, H. (2001). Organizer and axes formation as a self-organizing process. Int. J. Dev. Biol. 45, 177–88.
Meinhardt, H., and Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. Bioessays 22, 753–60.
Meir, E., von Dassow, G., Munro, E., and Odell, G. M. (2002). Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–86.
Melnick, M., and Jaskoll, T. (2000). Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit. Rev. Oral Biology and Medicine 11, 199–215.
Merks, R. M. H., Newman, S. A., and Glazier, J. A. (2004). Cell-oriented modeling of in vitro capillary development. In Cellular Automata: Proc. 6th International Conf. on Cellular Automata for Research and Industry (P. M. A. Sloot, B. Chopard, and A. G. Hoekstra, eds.), pp. 425–34. Springer-Verlag, Amsterdam, The Netherlands.
Metropolis, N., Rosenbluth, M. N., Rosenbluth, A., Teller, H., and Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–91.
Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge University Press, Cambridge, New York.
Minelli, A., and Fusco, G. (2004). Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol. Evol. 19, 423–9.
Miranti, C. K., and Brugge, J. S. (2002). Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell. Biol. 4, E83–E90.
Misteli, T. (2001). Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–7.
Mittenthal, J. E., and Mazo, R. M. (1983). A model for shape generation by strain and cell–cell adhesion in the epithelium of an arthropod leg segment. J. Theor. Biol. 100, 443–83.
Miura, T., and Maini, P. K. (2004). Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–49.
Miura, T., and Shiota, K. (2000a). Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–7.
Miura, T., and Shiota, K. (2000b). TGFβ2 acts as an “activator” molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–9.
Miura, T., and Shiota, K. (2000c). Time-lapse observation of branching morphogenesis of the lung bud epithelium in mesenchyme-free culture and its relationship with the localization of actin filaments. Int. J. Dev. Biol. 44, 899–902.
Miura, T., Komori, M., and Shiota, K. (2000). A novel method for analysis of the periodicity of chondrogenic patterns in limb bud cell culture: correlation of in vitro pattern formation with theoretical models. Anat. Embryol. (Berlin) 201, 419–28.
Miyazaki, S., Shirakawa, H., Nakada, K., and Honda, Y. (1993). Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62–78.
Mlodzik, M. (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet. 18, 564–71.
Moftah, M. Z., Downie, S. A., Bronstein, N. B., Mezentseva, N., Pu, J., Maher, P. A., and Newman, S. A. (2002). Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–82.
Mombach, J. C., Glazier, J. A., Raphael, R. C., and Zajac, M. (1995). Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett. 75, 2244–7.
Monk, N. A. (2003). Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr. Biol. 13, 1409–13.
Montalta-He, H., and Reichert, H. (2003). Impressive expressions: developing a systematic database of gene-expression patterns in Drosophila embryogenesis. Genome Biol. 4, 205.
Montero, J. A., and Heisenberg, C. P. (2003). Adhesive crosstalk in gastrulation. Dev. Cell 5, 190–1.
Morisco, C., Seta, K., Hardt, S. E., Lee, Y., Vatner, S. F., and Sadoshima, J. (2001). Glycogen synthase kinase 3β regulates GATA4 in cardiac myocytes. J. Biol. Chem. 276, 28586–97.
Morrison, S. J., Perez, S. E., Qiao, Z. et al. (2000). Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510.
Muratov, C. B. (1997). Synchronization, chaos, and the breakdown of the collective domain oscillations in reaction–diffusion systems. Phys. Rev. E 55, 1463–77.
Murray, A. W., and Hunt, T. (1993). The Cell Cycle: An Introduction. W. H. Freeman, New York.
Murray, A. W., and Kirschner, M. W. (1989). Dominoes and clocks: the union of two views of the cell cycle. Science 246, 614–21.
Murray, J. D. (2002). Mathematical biology. Springer, New York.
Nagafuchi, A., and Takeichi, M. (1988). Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7, 3679–84.
Nagar, B., Overduin, M., Ikura, M., and Rini, J. M. (1996). Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–4.
Nagata, W., Harrison, L. G., and Wehner, S. (2003). Reaction–diffusion models of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol. 65, 571–607.
Nakanishi, Y., Morita, T., and Nogawa, H. (1987). Cell proliferation is not required for the initiation of early cleft formation in mouse embryonic submandibular epithelium in vitro. Development 99, 429–37.
Nakatsuji, N., Snow, M. H., and Wylie, C. C. (1986). Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo. J. Embryol. Exp. Morphol. 96, 99–109.
Nakayama, T., Yakubo, K., and Orbach, R. (1994). Dynamical properties of fractal networks: scaling, numerical simulations and physical realizations. Rev. Mod. Phys. 66, 381–443.
Nanjundiah, V. (2005). Mathematics and biology. Current Science 88, 388–93.
Narbonne, G. M. (2004). Modular construction of early Ediacaran complex life forms. Science 305, 1141–4.
Needham, D., and Hochmuth, R. M. (1992). A sensitive measure of surface stress in the resting neutrophil. Biophys. J. 61, 1664–70.
Neff, A. W., Malacinski, G. M., Wakahara, M., and Jurand, A. (1983). Pattern formation in amphibian embryos prevented from undergoing the classical “rotation response” to egg activation. Dev. Biol. 97, 103–12.
Neff, A. W., Wakahara, M., Jurand, A., and Malacinski, G. M. (1984). Experimental analyses of cytoplasmic rearrangements which follow fertilization and accompany symmetrization of inverted Xenopus eggs. J. Embryol. Exp. Morphol. 80, 197–224.
Newgreen, D. F. (1989). Physical influences on neural crest cell migration in avian embryos: contact guidance and spatial restriction. Dev. Biol. 131, 136–48.
Newgreen, D. F., and Minichiello, J. (1995). Control of epitheliomesenchymal transformation. I. Events in the onset of neural crest cell migration are separable and inducible by protein kinase inhibitors. Dev. Biol. 170, 91–101.
Newman, S. A. (1977). Lineage and pattern in the developing wing bud. In Vertebrate Limb and Somite Morphogenesis (D. A. Ede, J. R. Hinchliffe, and M. Balls, eds.), pp. 181–97. Cambridge University Press, Cambridge.
Newman, S. A. (1988). Lineage and pattern in the developing vertebrate limb. Trends Genet. 4, 329–32.
Newman, S. A. (1993). Is segmentation generic? BioEssays 15, 277–83.
Newman, S. A. (1994). Generic physical mechanisms of tissue morphogenesis: a common basis for development and evolution. J. Evol. Biol. 7, 467–88.
Newman, S. A. (1995). Interplay of genetics and physical processes of tissue morphogenesis in development and evolution: the biological fifth dimension. In “Interplay of Genetic and Physical Processes in the Development of Biological Form (D. Beysens, G. Forgacs, and F. Gaill, eds.), pp. 3–12. World Scientific, Singapore.
Newman, S. A. (1998a). Epithelial morphogenesis: a physico-evolutionary interpretation. In Molecular Basis of Epithelial Appendage Morphogenesis (C.-M. Chuong, ed.), pp. 341–58. R. G. Landes, Austin, TX.
Newman, S. A. (1998b). Networks of extracellular fibers and the generation of morphogenetic forces. In Dynamical Networks in Physics and Biology (D. Beysens and G. Forgacs, eds.), pp. 139–48. Springer-Verlag, Berlin.
Newman, S. A. (2003a). The fall and rise of systems biology. GeneWatch 16, 8–12.
Newman, S. A. (2003b). From physics to development: the evolution of morphogenetic mechanisms. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. (G. B. Müller and S. A. Newman, eds.), pp. 221–39. MIT Press, Cambridge, MA.
Newman, S. A., and Comper, W. D. (1990). “Generic” physical mechanisms of morphogenesis and pattern formation. Development 110, 1–18.
Newman, S. A., and Frisch, H. L. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–8.
Newman, S. A., and Müller, G. B. (2000). Epigenetic mechanisms of character origination. J. Exp. Zool. (Mol. Evol. Dev.) 288, 304–17.
Newman, S. A., and Müller, G. B. (eds.) (2003). Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge, MA.
Newman, S. A., and Tomasek, J. J. (1996). Morphogenesis of connective tissues. In Extracellular Matrix (W. D. Comper, ed.), Vol. 2, Molecular Components and Interactions, pp. 335–69. Harwood Academic Publishers, Amsterdam.
Newman, S. A., Cloitre, M., Allain, C., Forgacs, G., and Beysens, D. (1997). Viscosity and elasticity during collagen assembly in vitro: relevance to matrix-driven translocation. Biopolymers 41, 337–47.
Newman, S. A., Forgacs, G., Hinner, B., Maier, C. W., and Sackmann, E. (2004). Phase transformations in a model mesenchymal tissue. Phys. Biol. 1, 100–9.
Newman, S. A., Frenz, D. A., Hasegawa, E., and Akiyama, S. K. (1987). Matrix-driven translocation: dependence on interaction of amino-terminal domain of fibronectin with heparin-like surface components of cells or particles. Proc. Nat. Acad. Sci. USA 84, 4791–5.
Newman, S. A., Frenz, D. A., Tomasek, J. J., and Rabuzzi, D. D. (1985). Matrix-driven translocation of cells and nonliving particles. Science 228, 885–9.
Newman, S. A., Frisch, H. L., and Percus, J. K. (1988). On the stationary state analysis of reaction–diffusion mechanisms for biological pattern formation J. Theor. Biol. 134, 183–197 (published erratum appears in J. Theor. Biol. 135, 137 (1988)).
Newman, S. A., Frisch, H. L., Perle, M. A., and Tomasek, J. J. (1981). Limb development: aspects of differentiation, pattern formation and morphogenesis. In Morphogenesis and Pattern Formation (T. G. Connolly, L. L. Brinkley, and B. M. Carlson, eds.), pp. 163–78. Raven Press, New York.
Newport, J., and Kirschner, M. (1982a). A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–86.
Newport, J., and Kirschner, M. (1982b). A major developmental transition in early Xenopus embryos: I. Control of the onset of transcription. Cell 30, 687–96.
Nicklas, R. B., and Koch, C. A. (1969). Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43, 40–50.
Nieuwkoop, P. D. (1969). The formation of mesoderm in Urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux' Arch. Entw. Mech. Org. 162, 341–73.
Nieuwkoop, P. D. (1973). The “organization center” of the amphibian embryo: its origin, spatial organization and morphogenetic action. Adv. Morphogen. 10, 1–39.
Nieuwkoop, P. D. (1992). The formation of the mesoderm in Urodelean amphibians VI. The self-organizing capacity of the induced meso-endoderm. Roux's Arch. Dev. Biol. 201, 18–29.
Noden, D. M. (1984). Craniofacial development: new views on old problems. Anat. Rec. 208, 1–13.
Noden, D. M. (1988). Interactions and fates of avian craniofacial mesenchyme. Development Suppl. 103, 121–40.
Nogawa, H., and Ito, T. (1995). Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 121, 1015–22.
Nogawa, H., and Takahashi, Y. (1991). Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112, 855–61.
Nonaka, S., Shiratori, H., Saijoh, Y., and Hamada, H. (2002). Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–9.
Nonaka, S., Tanaka, Y., Okada, Y., et al. (1998). Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–37.
Norel, R., and Agur, Z. (1991). A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 251, 1076–8.
Novak, B., and Tyson, J. J. (1993). Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–68.
Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., and Tyson, J. J. (1998). Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 2063–76.
Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. J., and Nasmyth, K. (1999). Finishing the cell cycle. J. Theor. Biol. 199, 223–33.
Oates, A. C., and Ho, R. K. (2002). Hairy/E (spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929–46.
Oberlender, S. A., and Tuan, R. S. (1994). Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120, 177–87.
Oda, S., Deguchi, R., Mohri, T., Shikano, T., Nakanishi, S., and Miyazaki, S. (1999). Spatiotemporal dynamics of the [Ca2+]i rise induced by microinjection of sperm extract into mouse eggs: preferential induction of a Ca2+ wave from the cortex mediated by the inositol 1,4,5-trisphosphate receptor. Dev. Biol. 209, 172–85.
Odell, G. M., Oster, G., Alberch, P., and Burnside, B. (1981). The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85, 446–62.
Oheim, M., and Stuhmer, W. (2000). Tracking chromaffin granules on their way through the actin cortex. Eur. Biophys. J. 29, 67–89.
Oliveri, P., and Davidson, E. H. (2004). Gene regulatory network controlling embryonic specification in the sea urchin. Curr. Opin. Genet. Dev. 14, 351–60.
Oliveri, P., Carrick, D. M., and Davidson, E. H. (2002). A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–28.
Opas, M., Davies, J. R., Zhou, Y., and Dziak, E. (2001). Formation of retinal pigment epithelium in vitro by transdifferentiation of neural retina cells. Int. J. Dev. Biol. 45, 633–42.
Ornitz, D. M., and Marie, P. J. (2002). FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16, 1446–65.
Ouyang, Q., and Swinney, H. (1991). Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–12.
Owen, M. R., and Sherratt, J. A. (1998). Mathematical modelling of juxtacrine cell signalling. Math. Biosci. 153, 125–50.
Owen, M. R., Sherratt, J. A., and Myers, S. R. (1999). How far can a juxtacrine signal travel? Proc. R. Soc. Lond. B Biol. Sci. 266, 579–85.
Owen, M. R., Sherratt, J. A., and Wearing, H. J. (2000). Lateral induction by juxtacrine signaling is a new mechanism for pattern formation. Dev. Biol. 217, 54–61.
Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.-R., Zhang, Y., and Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–9.
Pagan-Westphal, S. M., and Tabin, C. J. (1998). The transfer of left–right positional information during chick embryogenesis. Cell 93, 25–35.
Palmeirim, I., Henrique, D., Ish-Horowicz, D., and Pourquié, O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–48.
Pardanaud, L., and Dieterlen-Lievre, F. (2000). Ontogeny of the endothelial system in the avian model. Adv. Exp. Med. Biol. 476, 67–78.
Pardanaud, L., Luton, D., Prigent, M., Bourcheix, L. M., Catala, M., and Dieterlen-Lievre, F. (1996). Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–71.
Parkinson, J., Kadler, K. E., and Brass, A. (1995). Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J. Mol. Biol. 247, 823–31.
Patan, S. (2000). Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50, 1–15.
Patel, N. H. (1994). Developmental evolution: insights from studies of insect segmentation. Science 266, 581–90.
Patel, N. H., Ball, E. E., and Goodman, C. S. (1992). Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–42.
Patel, N. H., Condron, B. G., and Zinn, K. (1994). Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367, 429–34.
Patel, N. H., Kornberg, T. B., and Goodman, C. S. (1989). Expression of engrailed during segmentation in grasshopper and crayfish. Development 107, 201–12.
Pearson, J. E., and Ponce-Dawson, S. (1998). Crisis on skid row. Physica A 257, 141–48.
Pecht, I., and Lancet, D. (1976). In Chemical Relaxation in Molecular Biology (R. Riegler and I. Pecht, eds.) Springer-Verlag, Heidelberg.
Perrin, F. (1934). Mouvement Brownien d'un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales. J. Physique et la Radium Serie 7, 5, 497–511.
Perrin, F. (1936). Mouvement Brownien d'un ellipsoide (II). Rotation libre et depolarisation des fluorescences. Translation et diffusion des molecules ellipsoidales. J. Physique et la Radium Serie 7, 7, 1–11.
Perris, R., and Perissonotto, D. (2000). Role of the extracellular matrix during neural crest migration. Mech. Dev. 95, 3–21.
Peters, K. G., Werner, S., Chen, G., and Williams, L. T. (1992). Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114, 233–43.
Phillips, H. M. (1969). Equilibrium measurements of embryonic cell adhesiveness: physical formulation and testing of the differential adhesion hypothesis. Ph.D. thesis, Johns Hopkins University, Baltimore.
Picton, H., Briggs, D., and Gosden, R. (1998). The molecular basis of oocyte growth and development. Mol. Cell. Endocrinol. 145, 27–37.
Pollack, G. H. (2001). Is the gel a gel – and why does it matter? Jpn J. Physiol. 51, 649–60.
Pourquié, O. (2000). Skin development: delta laid bare. Curr. Biol. 10, R425–8.
Pourquié, O. (2001). Vertebrate somitogenesis. Ann. Rev. Cell Dev. Biol. 17, 311–50.
Pourquié, O. (2003). The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–30.
Pourquié, O., and Goldbeter, A. (2003). Segmentation clock: insights from computational models. Curr. Biol. 13, R632–4.
Preston, B. N., Laurent, T. C., Comper, W. D., and Checkley, G. J. (1980). Rapid polymer transport in concentrated solutions through the formation of ordered structures. Nature 287, 499–503.
Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J., and Stern, C. D. (1989). Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–30.
Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys. 45, 3–11.
Quaas, J., and Wylie, C. (2002). Surface contraction waves (SCWs) in the Xenopus egg are required for the localization of the germ plasm and are dependent upon maternal stores of the kinesin-like protein Xklp1. Dev. Biol. 243, 272–80.
Raff, R. A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago.
Ramirez-Weber, F. A., and Kornberg, T. B. (1999). Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607.
Rappaport, R. (1966). Experiments concerning the cleavage furrow in invertebrate eggs. J. Exp. Zool. 161, 1–8.
Rappaport, R. (1986). Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105, 245–81.
Rappaport, R. (1996). Cytokinesis in Animal Cells. Cambridge University Press, Cambridge.
Rashevsky, N. (1960). Mathematical Biophysics: Physico-mathematical Foundations of Biology, Vol. 1, Dover, New York.
Raya, A., Kawakami, Y., Rodriguez-Esteban, C., et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature 427, 121–8.
Raya, A., Kawakami, Y., Rodriguez-Esteban, C., et al.(2003). Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos. Genes Dev. 17, 1213–8.
Redner, S. (2001). A Guide to First Passage Processes. Cambridge University Press, Cambridge.
Reilly, K. M., and Melton, D. A. (1996). Short-range signaling by candidate morphogens of the TGF beta family and evidence for a relay mechanism of induction. Cell 86, 743–54.
Reinitz, J., Mjolsness, E., and Sharp, D. H. (1995). Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. J. Exp. Zool. 271, 47–56.
Resnick, N., Collins, T., Atkinson, W., Bonthron, D. T., Dewey, C. F., Jr, and Gimbrone, M. A., Jr (1993). Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc. Nat. Acad. Sci. USA 90, 4591–5 (published erratum appears in Proc. Nat. Acad. Sci. USA 90, 7908 (1993)).
Riedl, R. (1977). A systems-analytical approach to macro-evolutionary phenomena. Q. Rev. Biol. 52, 351–70.
Rieu, J. P., Kataoka, N., and Sawada, Y. (1998). Quantitative analysis of cell motion during sorting in 2D aggregates of dissociated hydra cells. Phys. Rev. E 57, 924–31.
Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B., and Sawada, Y. (2000). Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J. 79, 1903–14.
Robinson, E. E., Zazzali, K. M., Corbett, S. A., and Foty, R. A. (2003). Alpha5beta1 integrin mediates strong tissue cohesion. J. Cell. Sci. 116, 377–86.
Rodriguez, I., and Basler, K. (1997). Control of compartmental affinity boundaries by hedgehog. Nature 389, 614–8.
Roegiers, F., Djediat, C., Dumollard, R., Rouviere, C., and Sardet, C. (1999). Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 126, 3101–17.
Roegiers, F., McDougall, A., and Sardet, C. (1995). The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 121, 3457–66.
Rooke, J. E., and Xu, T. (1998). Positive and negative signals between interacting cells for establishing neural fate. Bioessays 20, 209–14.
Ross, M. H., Kaye, G. I., and Pawlina, W. (2003). Histology: A Text and Atlas. Lippincott Williams & Wilkins, Philadelphia, PA.
Roy, P., Petroll, W. M., Cavanagh, H. D., and Jester, J. V. (1999). Exertion of tractional force requires the coordinated up-regulation of cell contractility and adhesion. Cell Motil. Cytoskeleton 43, 23–34.
Rubinstein, M., Colby, R. H., and Gillmor, J. R. (1989). Dynamic scaling for polymer gelation. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 30, 81–2.
Rudnick, J., and Gaspari, G. (2004). Elements of Random Walk. Cambridge University Press, Cambridge.
Runft, L. L., Jaffe, L. A., and Mehlmann, L. M. (2002). Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237–54.
Rupp, P. A., Czirok, A., and Little, C. D. (2003). Novel approaches for the study of vascular assembly and morphogenesis in avian embryos. Trends Cardiovasc Med. 13, 283–8.
Rupp, R. A., Singhal, N., and Veenstra, G. J. (2002). When the embryonic genome flexes its muscles. Eur. J. Biochem 269, 2294–9.
Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science 303, 1007–10.
Ryan, P. L., Foty, R. A., Kohn, J., and Steinberg, M. S. (2001). Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs. cell–substratum adhesivity. Proc. Nat. Acad. Sci. USA 98, 4323–7.
Sahimi, M. (1994). Applications of Percolation Theory. Taylor & Francis, London.
Sakai, T., Larsen, M., and Yamada, K. M. (2003). Fibronectin requirement in branching morphogenesis. Nature 423, 876–81.
Sakuma, R., Ohnishi Yi, Y., Meno, C. et al. (2002). Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401–12.
Salazar-Ciudad, I., and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proc. Nat. Acad. Sci. USA 99, 8116–20.
Salazar-Ciudad, I., Garcia-Fernandez, J., and Solé, R. V. (2000). Gene networks capable of pattern formation: from induction to reaction–diffusion. J. Theor. Biol. 205, 587–603.
Salazar-Ciudad, I., Jernvall, J., and Newman, S. A. (2003). Mechanisms of pattern formation in development and evolution. Development 130, 2027–37.
Salazar-Ciudad, I., Newman, S. A., and Solé, R. (2001a). Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype–phenotype relationships. Evolution & Development 3, 84–94.
Salazar-Ciudad, I., Solé, R., and Newman, S. A. (2001b). Phenotypic and dynamical transitions in model genetic networks. II. Application to the evolution of segmentation mechanisms. Evolution & Development 3, 95–103.
Salthe, S. N. (1993). Development and Evolution: Complexity and Change in Biology. MIT Press, Cambridge, MA.
Sanchez, L., and Thieffry, D. (2001). A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211, 115–41.
Sanders, E. J. (1991). Embryonic cell invasiveness: an in vitro study of chick gastrulation. J. Cell Sci. 98, 403–7.
Sardet, C., Prodon, F., Dumollard, R., Chang, P., and Chenevert, J. (2002). Structure and function of the egg cortex from oogenesis through fertilization. Dev. Biol. 241, 1–23.
Sardet, C., Roegiers, F., Dumollard, R., Rouviere, C., and McDougall, A. (1998). Calcium waves and oscillations in eggs. Biophys. Chem. 72, 131–40.
Sato, Y., Yasuda, K., and Takahashi, Y. (2002). Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 129, 3633–44.
Saunders, J. W., Jr (1948). The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–402.
Savill, N. J., and Sherratt, J. A. (2003). Control of epidermal stem cell clusters by Notch-mediated lateral induction. Dev. Biol. 258, 141–53.
Saxton, M. J., and Jacobson, K. (1997). Single-particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct. 26, 373–99.
Schier, A. F., and Gehring, W. J. (1993). Analysis of a fushi tarazu autoregulatory element: multiple sequence elements contribute to enhancer activity. EMBO J. 12, 1111–9.
Schlosser, G. and Wagner, G. P. (eds.) (2004). Modularity in Development and Evolution. University of Chicago Press, Chicago.
Schmalhausen, I. I. (1949). Factors of Evolution. Blakiston, Philadelphia.
Schroeder, T. E. (1975). Dynamics of the contractile ring. Soc. Gen. Physiol. Ser. 30, 305–34.
Schulte-Merker, S., and Smith, J. C. (1995). Mesoderm formation in response to Brachyury requires FGF signalling. Curr. Biol. 5, 62–7.
Schuster, S., Marhl, M., and Hofer, T. (2002). Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333–55.
Seifert, U. (1997). Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137.
Seilacher, A. (1992). Vendobionta and Psammocorallia – lost constructions of precambrian evolution. J. Geolog. Soc. Lond. 149, 607–13.
Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., and Bussolino, F. (2003). Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–9.
Shafrir, Y., and Forgacs, G. (2002). Mechanotransduction through the cytoskeleton. Am. J. Physiol. Cell Physiol. 282, C479–86.
Shafrir, Y., ben-Avraham, D., and Forgacs, G. (2000). Trafficking and signaling through the cytoskeleton: a specific mechanism. J. Cell Sci. 113, 2747–57.
Shapiro, L., Fannon, A. M., Kwong, P. D., et al. (1995). Structural basis of cell–cell adhesion by cadherins. Nature 374, 327–37.
Shav-Tal, Y., Darzacq, X., Shenoy, S. M., et al. (2004). Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–800.
Sheetz, M. P. (2001). Cell control by membrane-cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–6.
Sherwood, D. R., and McClay, D. R. (2001). LvNotch signaling plays a dual role in regulating the position of the ectoderm–endoderm boundary in the sea urchin embryo. Development 128, 2221–32.
Shih, J., and Keller, R. (1992). Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–14.
Shyy, J. Y., Li, Y. S., Lin, M. C., Chen, W., Yuan, S., Usami, S., and Chien, S. (1995a). Multiple cis-elements mediate shear stress-induced gene expression. J. Biomech. 28, 1451–7.
Shyy, J. Y., Lin, M. C., Han, J., Lu, Y., Petrime, M., and Chien, S. (1995b). The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”- responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc. Nat. Acad. Sci. USA 92, 8069–73.
Simonneau, L., Kitagawa, M., Suzuki, S., and Thiery, J. P. (1995). Cadherin 11 expression marks the mesenchymal phenotype: towards new functions for cadherins? Cell Adhes. Commun. 3, 115–30.
Singer, S. J., and Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720–31.
Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B., and Leckband, D. (1999). Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Nat. Acad. Sci. USA 96, 11820–4.
Sivasankar, S., Gumbiner, B., and Leckband, D. (2001). Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains. Biophys. J. 80, 1758–68.
Small, S., Blair, A., and Levine, M. (1992). Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047–57.
Small, S., Blair, A., and Levine, M. (1996). Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev. Biol. 175, 314–24.
Small, S., Kraut, R., Hoey, T., Warrior, R., and Levine, M. (1991). Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev. 5, 827–39.
Solnica-Krezel, L. (2003). Vertebrate development: taming the nodal waves. Curr. Biol. 13, R7–R9.
Spehr, M., Gisselmann, G., Poplawski, A., et al. (2003). Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–8.
Spemann, H., and Mangold, H. (1924). Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux' Arch. Entw. Mech. Org. 100, 599–638.
Spooner, B. S., and Wessells, N. K. (1972). An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev. Biol. 27, 38–54.
St Johnston, D., and Nusslein-Volhard, C. (1992). The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–19.
Standley, H. J., Zorn, A. M., and Gurdon, J. B. (2001). eFGF and its mode of action in the community effect during Xenopus myogenesis. Development 128, 1347–57.
Starz-Gaiano, M., and Lehmann, R. (2001). Moving towards the next generation. Mech. Dev. 105, 5–18.
Stauber, M., Jackle, H., and Schmidt-Ott, U. (1999). The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc. Nat. Acad. Sci. USA 96, 3786–9.
Steinberg, M. S. (1963). Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–8.
Steinberg, M. S. (1978). Specific cell ligands and the differential adhesion hypothesis: how do they fit together? In Specificity of Embryological Interactions (D. R. Garrod, ed.), pp. 97–130. Chapman and Hall, London.
Steinberg, M. S. (1998). Goal-directedness in embryonic development. Integrative Biology 1, 49–59.
Steinberg, M. S., and Foty, R. A. (1997). Intercellular adhesions as determinants of tissue assembly and malignant invasion. J. Cell Physiol. 173, 135–9.
Steinberg, M. S., and Poole, T. J. (1982). Liquid behavior of embryonic tissues. In Cell Behavior (R. Bellairs and A. S. G. Curtis, eds.), pp. 583–607. Cambridge University Press, Cambridge.
Steinberg, M. S., and Takeichi, M. (1994). Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Nat. Acad. Sci. USA 91, 206–9.
Stern, C. D., and Bellairs, R. (1984). Mitotic activity during somite segmentation in the early chick embryo. Anat. Embryol. (Berlin) 169, 97–102.
Stollewerk, A., Schoppmeier, M., and Damen, W. G. (2003). Involvement of Notch and Delta genes in spider segmentation. Nature 423, 863–5.
Stopak, D., and Harris, A. K. (1982). Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol. 90, 383–398.
Stossel, T. P. (2001). Manifesto for a cytoplasmic revolution. Science 293, 611.
Stricker, S. A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157–76.
Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus, Cambridge, MA.
Strogatz, S. H. (2003). Sync: The Emerging Science of Spontaneous Order. Theia, New York.
Subtelny, S., and Penkala, J. E. (1984). Experimental evidence for a morphogenetic role in the emergence of primordial germ cells from the endoderm in Rana pipiens. Differentiation 26, 211–19.
Sun, B., Bush, S., Collins-Racie, L., et al. (1999). derriere: a TGF-beta family member required for posterior development in Xenopus. Development 126, 1467–82.
Sun, Q. Y. (2003). Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc. Res. Tech. 61, 342–8.
Supp, D. M., Potter, S. S., and Brueckner, M. (2000). Molecular motors: the driving force behind mammalian left–right development. Trends Cell Biol. 10, 41–5.
Supp, D. M., Witte, D. P., Potter, S. S., and Brueckner, M. (1997). Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–6.
Suzuki, K., Tanaka, Y., Nakajima, Y., et al. (1995). Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Biophys. J. 68, 739–48.
Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. J., and Novak, B. (2000). Modeling the fission yeast cell cycle: quantized cycle times in wee1– cdc25Delta mutant cells. Proc. Nat. Acad. Sci. USA 97, 7865–70.
Szebenyi, G., Savage, M. P., Olwin, B. B., and Fallon, J. F. (1995). Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev. Dyn. 204, 446–56.
Takahashi, Y., and Nogawa, H. (1991). Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter. Development 111, 327–35.
Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–5.
Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–27.
Takeichi, T., and Kubota, H. Y. (1984). Structural basis of the activation wave in the egg of Xenopus laevis. J. Embryol. Exp. Morphol. 81, 1–16.
Takke, C., and Campos-Ortega, J. A. (1999). her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development 126, 3005–14.
Tanaka, M., and Tickle, C. (2004). Tbx18 and boundary formation in chick somite and wing development. Dev. Biol. 268, 470–80.
Taunton, J., Rowning, B. A., Coughlin, M. L., et al. (2000). Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–30.
Tautz, D. (1992). Redundancies, development and the flow of information. Bioessays 14, 263–6.
Technau, U., and Holstein, T. W. (1992). Cell sorting during the regeneration of Hydra from reaggregated cells. Dev. Biol. 151, 117–27.
Teleman, A. A., and Cohen, S. M. (2000). Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–80.
Teleman, A. A., Strigini, M., and Cohen, S. M. (2001). Shaping morphogen gradients. Cell 105, 559–62.
Terasaki, M. (1996). Actin filament translocations in sea urchin eggs. Cell Motil. Cytoskeleton 34, 48–56.
Thiebaud, C. H. (1979). Quantitative determination of amplified rDNA and its distribution during oogenesis in Xenopus laevis. Chromosoma 73, 37–44.
Thompson, D. W. (1917). On Growth and Form. Cambridge University Press, Cambridge.
Tickle, C. (2003). Patterning systems – from one end of the limb to the other. Dev. Cell 4, 449–58.
Tiedemann, H., Asashima, M., Grunz, H., and Knochel, W. (1998). Neural induction in embryos. Dev. Growth Differ. 40, 363–76.
Tomasek, J. J., Mazurkiewicz, J. E., and Newman, S. A. (1982). Nonuniform distribution of fibronectin during avian limb development. Dev. Biol. 90, 118–126.
Torza, S., and Mason, S. G. (1969). Coalescence of two immiscible liquid drops. Science 163, 813–14.
Townes, P. L., and Holtfreter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120.
Tritton, D. J. (1988). Physical Fluid Dynamics. Clarendon Press, Oxford.
Tsai, M. A., Frank, R. S., and Waugh, R. E. (1994). Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys. J. 66, 2166–72.
Tsai, M. A., Waugh, R. E., and Keng, P. C. (1998). Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys. J. 74, 3282–91.
Tsarfaty, I., Resau, J. H., Rulong, S., et al. (1992). The met proto-oncogene receptor and lumen formation. Science 257, 1258–61.
Tsarfaty, I., Rong, S., Resau, J. H., et al. (1994). The Met proto-oncogene mesenchymal to epithelial cell conversion. Science 263, 98–101.
Tseng, Y., Kole, T. P., and Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83, 3162–76.
Tsonis, P. A., Del Rio-Tsonis, K., Millan, J. L., and Wheelock, M. J. (1994). Expression of N-cadherin and alkaline phosphatase in chick limb bud mesenchymal cells: regulation by 1, 25-dihydroxyvitamin D3 or TGF-beta 1. Exp. Cell. Res. 213, 433–7.
Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37–72.
Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Nat. Acad. Sci. USA 88, 7328–32.
Tyson, J. J., and Novak, B. (2001). Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–63.
Umbhauer, M., Boucaut, J. C., and Shi, D. L. (2001). Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo. Mech. Dev. 109, 61–8.
Ushiki, T. (2002). Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol. Cytol. 65, 109–26.
Uyttendaele, H., Ho, J., Rossant, J., and Kitajewski, J. (2001). Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc. Nat. Acad. Sci. USA 98, 5643–8.
Valberg, P. A., and Feldman, H. A. (1987). Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 52, 551–61.
Valentine, J. W. (2004). On the Origin of Phyla. University of Chicago Press, Chicago.
Valinsky, J. E., and Le Douarin, N. M. (1985). Production of plasminogen activator by migrating cephalic neural crest cells. EMBO J. 4, 1403–6.
Van Obberghen-Schilling, E., Roche, N. S., Flanders, K. C., Sporn, M. B., and Roberts, A. (1988). Transforming growth factor β1 positively regulates its own expression in normal and transformed cells. J. Biol. Chem. 263, 7741–6.
Van Oss, C. J., Gillman, C. F., and Neumann, A. W. (1975). Phagocytic Engulfment and Cell Adhesiveness. Marcel Dekker, New York.
Veis, A., and George, A. (1994). Fundamentals of interstitial collagen self-assembly. In Extracellular Matrix Assembly and Function (P. D. Yurchenco, D. E. Birk, and R. P. Mecham, eds.), pp. 15–45. Academic Press, San Diego.
Verheul, H. M., Voest, E. E., and Schlingemann, R. O. (2004). Are tumours angiogenesis-dependent? J. Pathol. 202, 5–13.
Vermot, J., and Pourquié, O. (2005). Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature 435, 215–20.
Vermot, J., Llamas, J. G., Fraulob, V., Niederreither, K., Chambon, P., and Dolle, P. (2005). Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308, 563–6.
Vernon, G. G., and Woolley, D. M. (1995). The propagation of a zone of activation along groups of flagellar doublet microtubules. Exp. Cell Res. 220, 482–94.
Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F., and Sage, E. H. (1992). Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–47.
Vernon, R. B., Lara, S. L., Drake, C. J., et al. (1995). Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev. Biol. Anim. 31, 120–31.
Vilar, J. M., Kueh, H. Y., Barkai, N., and Leibler, S. (2002). Mechanisms of noise resistance in genetic oscillators. Proc. Nat. Acad. Sci. USA 99, 5988–92.
von Dassow, G., and Munro, E. (1999). Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J. Exp. Zool. (Mol. Dev. Evol.) 285, 307–25.
von Dassow, G., Meir, E., Munro, E. M., and Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature 406, 188–92.
von Hippel, P. H., and Berg, O. G. (1989). Facilitated target location in biological systems. J. Biol. Chem. 264, 675–8.
Voronov, D. A., Alford, P. W., Xu, G., and Taber, L. A. (2004). The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Dev. Biol. 272, 339–50.
Voronov, D. A., and Taber, L. A. (2002). Cardiac looping in experimental conditions: effects of extraembryonic forces. Dev. Dyn. 224, 413–21.
Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature 150, 563–5.
Wagner, G. P., and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution 50, 967–6.
Wakamatsu, Y., Maynard, T. M., and Weston, J. A. (2000). Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127, 2811–21.
Wakely, J., and England, M. A. (1977). Scanning electron microscopy (SEM) of the chick embryo primitive streak. Differentiation 7, 181–6.
Wallingford, J. B., and Harland, R. M. (2002). Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129, 5815–25.
Wang, N., and Stamenovic, D. (2000). Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279, C188–94.
Wang, N., Butler, J. P., and Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–7.
Wassarman, P. M. (1999). Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96, 175–83.
Wassarman, P., Chen, J., Cohen, N., Litscher, E., Liu, C., Qi, H., and Williams, Z. (1999). Structure and function of the mammalian egg zona pellucida. J. Exp. Zool. 285, 251–8.
Waters, C. M., Oberg, K. C., Carpenter, G., and Overholser, K. A. (1990). Rate constants for binding, dissociation, and internalization of EGF: effect of receptor occupancy and ligand concentration. Biochemistry 29, 3563–9.
Wearing, H. J., Owen, M. R., and Sherratt, J. A. (2000). Mathematical modelling of juxtacrine patterning. Bull. Math. Biol. 62, 293–320.
Webb, S. D., and Owen, M. R. (2004). Oscillations and patterns in spatially discrete models for developmental intercellular signalling. J. Math. Biol. 48, 444–76.
Weidinger, G., Wolke, U., Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2002). Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 129, 25–36.
Weng, W., and Stemple, D. L. (2003). Nodal signaling and vertebrate germ layer formation. Birth Defects Res. Part C Embryo Today 69, 325–32.
Wessel, G. M., and McClay, D. R. (1987). Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Dev. Biol. 121, 149–65.
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford University Press, Oxford, New York.
Wheelock, M. J., and Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Ann. Rev. Cell Dev. Biol. 19, 207–35.
White, J. G., and Borisy, G. G. (1983). On the mechanisms of cytokinesis in animal cells. J. Theor. Biol. 101, 289–316.
Wikramanayake, A. H., Huang, L., and Klein, W. H. (1998). beta-Catenin is essential for patterning the maternally specified animal–vegetal axis in the sea urchin embryo. Proc. Nat. Acad. Sci. USA 95, 9343–8.
Wilkins, A. S. (1992). Genetic analysis of animal development. Wiley-Liss, New York.
Wilkins, A. S. (1997). Canalization: a molecular genetic perspective. BioEssays 19, 257–62.
Wilkins, A. S. (2002). The Evolution of Developmental Pathways. Sinauer Associates, Sunderland, MA.
Williams, A. F., and Barclay, A. N. (1988). The immunoglobulin superfamily – domains for cell surface recognition. Ann. Rev. Immunol. 6, 381–405.
Wilson, P. D. (2004). Polycystic kidney disease: new understanding in the pathogenesis. Int. J. Biochem. Cell Biol. 36, 1868–73.
Wimmer, E. A., Carleton, A., Harjes, P., Turner, T., and Desplan, C. (2000). Bicoid-independent formation of thoracic segments in Drosophila. Science 287, 2476–9.
Winther, R. G. (2001). Varieties of modules: kinds, levels, origins, and behaviors. J. Exp. Zool. 291, 116–29.
Wolf, D. M., and Eeckman, F. H. (1998). On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 195, 167–86.
Wolf, J., and Heinrich, R. (1997). Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems 43, 1–24.
Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Champaign, IL.
Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.
Wolpert, L. (2002). Principles of Development. Oxford University Press, Oxford, New York.
Wong, G. K., Allen, P. G., and Begg, D. A. (1997). Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis. Cell Motil. Cytoskeleton 36, 30–42.
Woolley, D. M., and Vernon, G. G. (2002). Functional state of the axonemal dyneins during flagellar bend propagation. Biophys. J. 83, 2162–9.
Wylie, C. C., and Heasman, J. (1993). Migration, proliferation, and potency of primordial germ cells. Seminars in Dev. Biol. 4, 161–170.
Xiao, S., and Knoll, A. H. (2000). Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation in Weng'an, Guizhou, South China. Paleontology 74, 767–88.
Xiao, S., Yuan, X., and Knoll, A. H. (2000). Eumetazoan fossils in terminal Proterozoic phosphorites? Proc. Nat. Acad. Sci. USA 97, 13684–9.
Xu, Z., and Tung, V. W. (2001). Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons. Neuroscience 102, 193–200.
Yamada, S., Wirtz, D., and Kuo, S. C. (2000). Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–47.
Yamamoto, K., and Yoneda, M. (1983). Cytoplasmic cycle in meiotic division of starfish oocytes. Dev. Biol. 96, 166–72.
Yamamoto, M., Saijoh, Y., Perea-Gomez, A., et al. (2004). Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–92.
Yanagimachi, R., and Noda, Y. D. (1970). Electron microscope studies of sperm incorporation into the golden hamster egg. Am. J. Anat. 128, 429–62.
Yoneda, M. (1973). Tension at the surface of sea urchin eggs on the basis of “liquid-drop” concept. Adv. Biophys. 4, 153–90.
Yoshida, M., Inaba, K., and Morisawa, M. (1993). Sperm chemotaxis during the process of fertilization in the ascidians Ciona savignyi and Ciona intestinalis. Dev. Biol. 157, 497–506.
Yurchenco, P. D., and O'Rear, J. J. (1994). Basal lamina assembly. Curr. Opin. Cell. Biol. 6, 674–681.
Zachariae, W., and Nasmyth, K. (1999). Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–58.
Zahalak, G. I., Wagenseil, J. E., Wakatsuki, T., and Elson, E. L. (2000). A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79, 2369–81.
Zajac, M., Jones, G. L., and Glazier, J. A. (2000). Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–5.
Zajac, M., Jones, G. L., and Glazier, J. A. (2003). Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–59.
Zeng, W., Thomas, G. L., Newman, S. A., and Glazier, J. A. (2003). A novel mechanism for mesenchymal condensation during limb chondrogenesis in vitro. In Mathematical Modelling and Computing in Biology and Medicine, Proc. Fifth ESMTB Conf 2002 (V. Capasso, ed.), pp. 80–6. Società Editrice Esculapio, Bologna, Italy.
Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C., and Heasman, J. (1998). The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515–24.