19 - The Fröhlich effect: past and present  pp. 321-337

The Fröhlich effect: past and present

By Dirk Kerzel

Image View Previous Chapter Next Chapter



Summary

When observers are asked to localize the initial position of a moving target, they often indicate a position displaced in the direction of motion relative to the true onset position. In this review, the debate between Fröhlich, who discovered this phenomenon, and his contemporaries in the 1920s and 1930s is summarized. Striking misinterpretations of Fröhlich's findings and the anticipation of recent research on the flash-lag effect will be presented. In the second part, current accounts of the Fröhlich effect in terms of attention and metacontrast are evaluated. In the final section, reconciliation between research on the Fröhlich effect and recent reports of an error opposite the direction of motion (the onset repulsion effect) is offered.

Introduction

When asked to localize a moving target entering a window, observers often indicate a position not adjacent to the edge of the window but a position displaced in the direction of motion (see Fig. 19.1(a)). The gap between the edge of a window and the initial perception of the moving target was first discovered by the Norwegian astronomer O. Pihl in 1894, but Fröhlich (1923) was the first to study the effect systematically. Therefore, the illusion has been named the “Fröhlich effect.” Fröhlich's explanation of the illusion in terms of “sensation time” was amply discussed in the 1930s (Fröhlich 1930, 1932; Rubin 1930; G. E. Müller 1931; Metzger 1932; Piéron 1935) but forgotten for the 60 years that followed.

19

Reference Title: References

Reference Type: bibliography

AhoA. C., DonnerK., HeleniusS., LarsenL. O., & ReuterT. (1993). Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy. J Comp Physiol [A] 172(6): 671–682.
MachE. (1890/1897). Contributions to the Analysis of the Sensations. Illinois: Open Court.
MinkowskiH. (1908). Space and time. In J. J. C.Smart (ed.), Problems of Space and Time (297–312). New York: Macmillan Co.
RizzolattiG., FadigaL., FogassiL., & GalleseV. (1997). The space around us. Science 277: 190–191.
RoseG., & HeiligenbergW. (1985). Temporal hyperacuity in the electric sense of fish. Nature 318(6042): 178–180.
SchlagJ., & Schlag-ReyM. (2002). Through the eye slowly: Delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–200.
SperryR. W. (1952). Neurology and the mind-brain problem. American Scientist 40: 291–312.
WarrenR. M., & WarrenR. P. (1968). Helmholtz on Perception: Its Physiology and Development. New York: John Wiley and Sons.
WestheimerG. (1979). The spatial sense of the eye. Proctor lecture. Invest Ophthalmol Vis Sci 18(9): 893–912.

Reference Title: References

Reference Type: bibliography

BischofN., & KramerE. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegung. Psychologische Forschung 32: 185–218.
BockischC., & MillerJ. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Res 39: 1025–1038.
BoucherL., GrohJ. M., & HughesH. C. (2001). Afferent delays and the localization of perisaccadic stimuli. Vision Res 41: 2631–2644.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1992a). Oculomotor localization relies on a damp representation of saccadic eye displacement in human and nonhuman primates. Visual Neuroscience 9: 261–269.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1992b). The frontal eye field provides the goal of saccadic eye movement. Exp Brain Res 89: 300–310.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1995). The use of exocentric and egocentric location cues in saccadic programming. Vision Res 35: 2191–2199.
DeubelH., BridgemanB., & SchneiderW. X. (2004). Different effects of eye blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics 66: 772–778.
DiamondM. R., RossJ., & MorroneM. C. (2000). Extraretinal control of saccadic suppression. J Neurosci 20: 3449–3455.
DodgeR. (1900). Visual perception during eye movement. Physiol Rev 7: 454–465.
DomineyP. F., SchlagJ., Schlag-ReyM., & ArbibM. A. (1997). Colliding saccades evoked by frontal eye field stimulaton: artifact or evidence for a compensatory mechanism underlying double-step saccades? Biol Cybern 76: 41–52.
DuhamelJ.-R., ColbyC. L., & GoldbergM. E. (1992). The updating of the visual representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.
GrüsserO.-J., KrizicA., & WeissL.-R. (1987). After-image movement during saccades in the dark. Vision Res 27: 215–226.
HallettP. E., & LightstoneA. D. (1976). Saccadic eye movements due to stimuli triggered during prior saccades. Vision Res 16: 99–106.
HansenR. M., & SkavenskiA. A. (1985). Accuracy of spatial localization near the time of saccadic eye movements. Vision Res 25: 1077–1082.
HondaH. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics 45: 162–174.
HondaH. (1990). Eye movements to a visual stimulus flashed before, during, or after a saccade. In M.Jeannerod (ed.), Attention and Performance XIII: Motor Representation and Control (567–582). Hillsdale, NJ: Erlbaum.
JeffriesS. M., KusunokiM., CohenI. S., & GoldbergM. E. (2003). Localization errors in double-step saccade task are qualitatively explained by peri-saccadic response patterns in lip. Soc Neurosci Abstr 386: 13.
KanaiR., ShethB. R., & ShimojoS. (2004). Stopping the motion and sleughting the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44: 2605–2619.
KrekelbergB., KubischikM., HoffmanK.-P., & BremmerF. (2003). Neural correlates of visual localization and perisaccadic mislocalization. Neuron 37: 537–545.
KusonokiM., & GoldbergM. E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89: 1519–1527.
LewisR. F., GaymardB. M., & TamargoR. J. (1998). Efference copy provides the eye position required for visually guided reaching. J Neurophysiol 80: 1605–1608.
MateeffS. (1978). Saccadic eye movements and localization of visual stimuli. Perception & Psychophysics 24: 215–224.
MatinL., & PearceD. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movement. Science 148: 1485–1488.
OstendorfF., FischerC., GaymardB., & PlonerC. J. (2006). Perisaccadic mislocalization without saccadic eye movements. Neuroscience 137: 737–745.
ParkJ., Schlag-ReyM., & SchlagJ. (2006). Frames of reference for saccadic command, tested by saccade collision in supplementary eye field. J Neurophysiol 95: 159–170.
PolaJ. (1976). Voluntary saccades, eye position, and perceptive visual direction. In R. A.Monty & J. H.Senders (eds.), Eye Movements and Psychological Processes (245–254). Hillsdale, NJ: Erlbaum.
PolaJ. (2004). Models of the mechanism underlying perceived location of perisaccadic flash. Vision Res 44: 2799–2813.
RobinsonD. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 12: 1795–1808.
RossJ., MorroneM. C., & BurrD. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. Nature 386: 598–601.
SchillerP. H., TrueS. D., & ConwayJ. L. (1979). Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179: 162–164.
SchlagJ., & Schlag-ReyM. (1987). Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp Brain Res 68: 442–444.
SchlagJ., & Schlag-ReyM. (1991). Spatial programming of eye movements. In J.Paillard (ed.), Brain and Space (70–78). Oxford, New York, Tokyo: Oxford University Press.
SperlingG. (1990). Comparison of perception in the moving and stationary eye. In E.Kowler (ed.), Eye Movements and Their Role in Visual and Cognitive Processes (307–351). Amsterdam: Elsevier.
StanfordT. R., CarneyL. H., & SparksD. L. (1990). The amplitude of visually guided saccades is specified gradually in humans. Soc Neurosci Abstr 16: 372–419.
VliegenJ., van GroetelT. J., & van OpstalJ. (2005). Gaze orienting in dynamic visual double steps. J Neurophysiol. 94: 4300–4313.

Reference Title: References

Reference Type: bibliography

AwaterH., & LappeM. (2004). Perception of visual space at the time of pro- and anti-saccades. J Neurophysiol 91: 2457–2464.
BischofN., & KramerE. (1968). Untersuchungen und Uberlegungen zur Richtungswarnehmung bei willkurlichen sakkadischen Augenbewegungen. Psychologische Forschung 32: 185–218.
BockischC. J., & MillerJ. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Res 39: 1025–1038.
BoucherL., GrohJ. M., & HughesH. C. (2001). Afferent delays and the mislocalization of perisaccadic stimuli. Vision Res 41: 2631–2644.
BrennerE., MeijerW. J., & CornelissenF. W. (2005). Judging relative positions across saccades. Vision Res 45: 1587–1602.
BurrD. C., MorroneC., & RossJ. (2001). Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11: 798–802.
CaiR. H., PougetA., Schlag-ReyM., & SchlagJ. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.
ChoS., & LeeC. (2003). Expansion of visual space after saccadic eye movements. J Vis 3: 906–918.
CurrieB., McConkieG., Carlson-RadvanskyL., & IrwinD. (2000). The role of the saccade target objects in the perception of a visually stable world. Atten Percep Psychophys 62: 673–683.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1992). Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Vis Neurosci 9: 261–269.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1995). The use of egocentric and exocentric location cues in saccadic programming. Vision Res 35: 2129–2199.
DeubelH., BridgemanB., & SchneiderW. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Res 38: 3147–3159.
DuhamelJ. R., ColbyC. L., & GoldbergM. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.
GrusserO.-J., KrizicA., & WeissL. (1987). Afterimage movement during saccades in the dark. Vision Res 27: 215–226.
HallettP. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Res 18: 1279–1296.
HallettP. E., & LightstoneA. D. (1976a). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res 16: 99–106.
HallettP. E., & LightstoneA. D. (1976b). Saccadic eye movements to flashed targets. Vision Res 16: 107–114.
HansenR. M., & SkavenskiA. A. (1977). Accuracy of eye position information for motor control. Vision Res 17: 919–926.
HansenR. M., & SkavenskiA. A. (1985). Accuracy of spatial localization near the time of saccadic eye movements. Vision Res 25: 1077–1082.
von HelmholtzH. (1866). Handbuch der Physiologischen Optik. Leipzig: Voss.
HershbergerW. (1987). Saccadic eye movements and the perception of visual direction. Perception & Psychophysics 41: 34.
HondaH. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics 45: 162–174.
HondaH. (1990). Eye movements to a visual stimulus flashed before, during, or after a saccade. In M.Jeannerod (ed.), Attention and Performance XIII: Motor Representation and Control (567–582). Hillsdale, NJ: Erlbaum.
HondaH. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31: 1915–1921.
HondaH. (1993). Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res 33: 709–716.
HondaH. (1995). Visual mislocalization produced by a rapid image displacement on the retina: Examination by means of dichoptic presentation of a target and its background scene. Vision Res 35: 3021–3028.
HondaH. (1997). Interaction of extraretinal eye position signals in a double-step saccade task: psychophysical estimation. Exp Brain Res 113: 327–336.
HondaH. (1999). Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference. Vision Res 39: 51–57.
HondaH. (2006). Achievement of transsaccadic visual stability using presaccadic and postsaccadic visual information. Vision Res 46: 3483–3493.
JordanJ. S., & HershbergerW. A. (1994). Timing the shift in retinal local signs that accompanies a saccadic eye movement. Perception & Psychophysics 55: 657–666.
KaiserM., & LappeM. (2004). Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41: 293–300.
KennardD. W., HartmannR. W., KraftD. P., & GlaserG. H. (1971). Brief conceptual (nonreal) events during eye movements. Biol Psychiatry 3: 205–215.
KrekelbergB., KubischikM., HoffmannK.-P., & BremmerF. (2003). Neural correlates of visual localization and perisaccadic mislocalization. Neuron 37: 537–545.
LappeM., AwaterH., & KrekelbergB. (2000). Postsaccadic visual references generated presaccadic compression of space. Nature 403: 892–894.
MateeffS. (1978). Saccadic eye movements and localization of visual stimuli. Perception & Psychophysics 24: 215–224.
MatinL., MatinE., & PearceD. G. (1969). Visual perception of direction when voluntary saccades occur: I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perception & Psychophysics 5: 65–80.
MatinL., MatinE., & PolaJ. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception & Psychophysics 8: 9–14.
MatinL., & PearceD. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1488.
MatsumiyaK., & UchikawaK. (2001). Apparent size of an object remains uncompressed during presaccadic compression of visual space. Vision Res 41: 3039–3050.
MillerJ. M. (1996). Egocentric localization of a perisaccadic flash by manual pointing. Vision Res 36: 837–851.
MilnerA. D., & GoodaleM. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.
O'ReganK. (1984). Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background. Perception & Psychophysics 36: 1–14.
RossJ., MorroneM. C., & BurrD. C. (1997). Compression of visual space before saccades. Nature 386: 598–601.
SchlagJ., & Schlag-ReyM. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Res 35: 2347–2357.
SogoH., & OsakaN. (2001). Perception of relation of stimuli locations successively flashed before saccade. Vision Res 41: 935–942.
SommerM. A., & WurtzR. H. (2002). A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.
SperryR. W. (1950). Neural basis of the spontaneous optokinetic responses produced by visual inversion. J Comp Physiol Psychol 43: 482–489.
StevensJ. K., EmersonR. C., GersteinG. L., KallosT., NeufeldG. R., NicholsC. W., et al. (1976). Paralysis of the awake human: visual perceptions. Vision Res 15: 93–98.
ToliasA. S., MooreT., SmirnakisS. M., TehovnikE. J., SiapasA. G., & SchillerP. H. (2001). Eye movements modulate visual receptive fields of V4 neurons. Neuron 29: 757–767.
UmenoM. M., & GoldbergM. E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78: 1373–1383.
Von HolstE., & MittelstaedtH. (1954). Das Reafferenzprinzip. Naturewissenschafften 37: 464–476.
WalkerM. F., FitzgibbonE. J., & GoldbergM. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73: 1988–2003.
WatanabeJ., NoritakeA., MaedaT., TachiA., & NishidaS. (2005). Perisaccadic perception of continuous flickers. Vision Res 45: 413–430.

Reference Title: References

Reference Type: bibliography

AwaterH., BurrD., LappeM., MorroneM. C., & GoldbergM. E. (2004). The effect of saccadic adaptation on the localization of visual targets. J Neurophysiol 93: 3605–3614.
AwaterH., & LappeM. (2004). Perception of visual space at the time of pro- and anti-saccades. J Neurophysiol 91: 2457–2464.
AwaterH., & LappeM. (2006). Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. J Neurosci 26: 12–20.
BischofN., & KramerE. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychologische Forschung 32: 185–218.
BridgemanB., van der HeijdenA. H. C., & VelichkovskyB. M. (1994). A theory of visual stability across saccadic eye movements. Behav Brain Sci 17: 247–292.
BurrD. C., MorroneM. C., & RossJ. (2001). Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11: 798–802.
CaiR. H., PougetA., Schlag-ReyM., & SchlagJ. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.
CurrieC. B., & McConkieG. W. (2000). The role of the saccade target object in the perception of a visually stable world. Perc Psychophys 62: 673–683.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1995). The use of egocentric and exocentric location cues in saccadic programming. Vision Res 35: 2191–2199.
DeubelH., BridgemanB., & SchneiderW. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Res 38: 3147–3159.
DeubelH., SchneiderW. X., & BridgemanB. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Res 36: 985–996.
HamkerF. H. (2005a). A computational model of visual stability and change detection during eye movements in real world scenes. Vis Cogn 12: 1161–1176.
HamkerF. H. (2005b). The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex 15: 431–447.
HamkerF. H., ZirnsakM., CalowD., & LappeM. (2008). The peri-saccadic perception of objects and space. PLoS Comp Biol 4(2): e31, 1–15.
HondaH. (1989). Perceptual localization of visual stimuli flashed during saccades. Percep Psychophys 45: 162–174.
HondaH. (1991). The time course of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31: 1915–1921.
HondaH. (1993). Saccade-contingent displacement of apparent position of visual stimuli flashed on a dimly illuminated structure background. Vision Res 33: 709–716.
HondaH. (1997). Interaction of extraretinal eye position signals in a double-step saccade task: psychophysical estimation. Exp Brain Res 113: 327–336.
KaiserM., & LappeM. (2004). Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41: 293–300.
LappeM., AwaterH., & KrekelbergB. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature 403: 892–895.
MatinL. (1972). Eye movements and perceived visual direction. In D.Jameson & L.Hurvich (eds.), Handbook of Sensory Physiology (vol. VII/4) Visual Psychophysics (331–380). Berlin: Springer-Verlag.
MatinL., & PearceD. G. (1965). Visual perception of direction for stimuli during voluntary saccadic eye movements. Science 148: 1485–1488.
MatinL., PearceE., & PearceD. G. (1969). Visual perception of direction when voluntary saccades occur: I. Relation of visual directions of a fixation target extinguished before a saccade to a subsequent test flash presented during the saccade. Percep Psychophys 5: 65–80.
MatinL., PearceE., & PolaJ. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before saccade to a subsequent test flash presented before the saccade. Percep Psychophys 8: 9–14.
McConkieG. W., & CurrieC. B. (1996). Visual stability across saccades while viewing complex pictures. J Exp Psychol: Hum Percept Perform 22: 563–581.
MichelsL., & LappeM. (2004). Dependence of saccadic compression and suppression on contrast. Vision Res 44: 2327–2336.
MooreT., & ArmstrongK. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature 42: 370–373.
MorroneM. C., RossJ., & BurrD. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17: 7941–7953.
OstendorfF., FischerC., GaymardB., & PlonerC. J. (2006). Perisaccadic mislocalization without saccadic eye movements. Neurosci 137(3): 737–745.
PolaJ. (2004). Models of the mechanism underlying perceived location of a perisaccadic flash. Vision Res 44(24): 2799–2813.
RossJ., MorroneM. C., & BurrD. C. (1997). Compression of visual space before saccades. Nature 386: 598–601.
SchlagJ., & Schlag-ReyM. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nature Rev Neurosci 3: 191–200.
SommerM. A., & WurtzR. H. (2002). A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.
SperryR. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43: 482–489.
VanRullenR. (2004). A simple translation in cortical log-coordinates may account for the pattern of saccadic localization errors. Biol Cybern 91: 131–137.
von HelmholtzH. (1896). Handbuch der Physiologischen Optik. Hamburg: Leopold Voss.
von HolstE., & MittelstaedtH. (1950). Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37: 464–476.

Reference Title: References

Reference Type: bibliography

AlhazenI. (1083). Book of optics. In A. I.Sabra (ed.), The Optics of Ibn al-Haytham. London: Warburg Institute.
AndersenR. A., EssickG. K., & SiegelR. M. (1985). Encoding of spatial location by posterior parietal neurons. Science 230(4724): 456–458.
BischofN., & KramerE. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei wilkuerlichen sakkadischen Augenbewegungen. Psychol Forsch 32: 185–218.
CaiR. H., PougetA., Schlag-ReyM., & SchlagJ. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.
DiamondM. R., RossJ., & MorroneM. C. (2000). Extraretinal control of saccadic suppression. J Neurosci 20: 3442–3448.
DuhamelJ., BremmerF., BenHamedS., & GrafW. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389: 845–848.
DuhamelJ. R., ColbyC. L., & GoldbergM. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040): 90–92.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287(5460): 2036–2038.
EinsteinA. (1920). Relativity: The Special and General Theory. New York: Henry Holt.
FogassiL., GalleseV., di PellegrinoG., FadigaL., GentilucciM., LuppinoG., et al. (1992). Space coding by premotor cortex. Exp Brain Res 89(3): 686–690.
GallettiC., BattagliniP. P., & FattoriP. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European J Neurosci 7: 2486–2501.
GibbonJ. (1977). Scalar expectancy theory and Weber's Law in animal timing. Psychol Rev 84: 279–325.
GirardP., HupeJ. M., & BullierJ. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85(3): 1328–1331.
HowardI. P. (1996). Alhazen's neglected discoveries of visual phenomena. Perception 25(10): 1203–1217.
JanssenP., & ShadlenM. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8(2): 234–241.
KaiserM., & LappeM. (2004). Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41(2): 293–300.
KusunokiM., & GoldbergM. E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89(3): 1519–1527.
LappeM., AwaterH., & KrekelbergB. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature 403: 892–895.
LeonM. I., & ShadlenM. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2): 317–327.
LibetB., WrightE. W., Jr., FeinsteinB., & PearlD. K. (1979). Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102(1): 193–224.
MatinL. (1972). Eye movements and perceived visual direction. In D.Jameson & L. M.Hurvich (eds.), Handbook of Sensory Physiology vol. VII/Visual Psychophysics (331–380). Berlin: Springer-Verlag.
MatinL., MatinE., & PearceD. G. (1969). Visual perception of direction when voluntary saccades occur: I. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented during the saccade. Perception and Psychophysics 5: 65–68.
MatinL., & PearceD. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1487.
MorganM. J. (2003). The Space between Your Ears: How the Brain Represents Visual Space. London: Weidenfeld & Nicolson.
MorroneM. C., RossJ., & BurrD. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17: 7941–7953.
MorroneM. C., RossJ., & BurrD. (2005). Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8(7): 950–954.
NakamuraK., & ColbyC. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc Natl Acad Sci U S A 99(6): 4026–4031.
PougetA., DeneveS., & DuhamelJ. R. (2002). A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3(9): 741–747.
RidderW. H. III, & TomlinsonA. (1993). Suppression of contrast sensitivity during eyelid blinks. Vision Res 33(13): 1795–1802.
RossJ., MorroneM. C., & BurrD. C. (1997). Compression of visual space before saccades. Nature 384: 598–601.
RossJ., MorroneM. C., GoldbergM. E., & BurrD. C. (2001). Changes in visual perception at the time of saccades. Trends Neurosci 24: 113–121.
SperryR. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiological Psych 43: 482–489.
StevensonS. B., VolkmannF. C., KellyJ. P., & RiggsL. A. (1986). Dependence of visual suppression on the amplitudes of saccades and blinks. Vision Res 26(11): 1815–1824.
TuckerT. R., & KatzL. C. (2003). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 89(1): 488–500.
UmenoM., & GoldbergM. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78: 1373–1383.
von HelmholtzH. (1866). Handbuch der physiologischen optik. In J. P. C.Southall (ed.), A Treatise on Physiological Optics. New York: Dover.
von HolstE., & MittelstädtH. (1954). Das reafferenzprinzip. Naturwissenschaften 37: 464–476.
WalkerM. F., FitzgibbonJ., & GoldbergM. E. (1995). Neurons of the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73: 1988–2003.
WestheimerG. (1999). Discrimination of short time intervals by the human observer. Exp Brain Res 129(1): 121–126.
XingJ., & AndersenR. A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. J Cogn Neurosci 12: 601–614.

Reference Title: References

Reference Type: bibliography

AgliotiS., DeSouzaJ. F. X., & GoodaleM. A. (1995). Size-contrast illusions deceive the eye but not the hand. Curr Biol 5: 679–685.
AlpernM. (1952). Metacontrast: historical introduction. Am J Optometry 29: 631–646.
AlpernM. (1953). Metacontrast. J Opt Soc Am 43: 648–657.
AndersenR. A., SnyderL. H., BradleyD. C., & XingJ. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann Rev Neurosci 20: 303–330.
AschS. E., & WitkinH. A. (1948a). Studies in space orientation. I. Perception of the upright with displaced visual fields. J Exp Psychol 38: 325–337.
AschS. E., & WitkinH. A. (1948b). Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol 38: 455–477.
AwaterH., & LappeM. (2004). Perception of visual space at the time of pro- and anti-saccades. J Neurophysiol 91: 2457–2464.
BockischC. J., & MillerJ. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Res 39: 1025–1038.
BoucherL., GrohJ. M., & HughesH. C. (2001). Afferent delays and the mislocalization of perisaccadic stimuli. Vision Res 41: 2631–2644.
BowenR. (1981). Latencies for chromatic and achromatic visual mechanisms. Vision Res 21: 1483–1499.
BowenR., PolaJ., & MatinL. (1974). Visual persistence: effects of flash luminance, duration, and energy. Vision Res 14: 295–303.
BreitmeyerB. G., & GanzL. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing. Psychol Rev 83: 1–36.
BridgemanB., HendryD., & StarkL. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15: 719–722.
BridgemanB., & StarkL. (1991). Ocular proprioception and efference copy in registering visual direction. Vision Res 31: 1903–1913.
BrownJ. L. (1965). Flicker and intermittant stimulation. In C. H.Graham (ed.), Vision and Visual Perception (251–320). New York: Wiley & Sons.
CaiR. H., PougetA., Schlag-ReyM., & SchlagJ. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.
CampbellF. W., & WurtzR. H. (1978). Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision Res 18: 1297–1303.
CheletteT., LiW., EskenR., & MatinL. (1995). Visual perception of eye level (VPEL) under high g while viewing a pitched visual field. Annual Meeting of Aerospace Medical Association: A55.
CohenM. M., EbenholtzS. M., & LinderB. J. (1995). Effects of optical pitch on oculomotor control and the perception of target elevation. Perception & Psychophysics 57: 433–440.
ColbyC. L., & GoldbergM. E. (1999). Space and attention in parietal cortex. Ann Rev Neurosci 22: 319–349.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1992). Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Vis Neurosci 9: 261–269.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1993). Direction constancy in the oculomotor system. Curr Dir Psychol Sci 2: 143–147.
DassonvilleP., SchlagJ., & Schlag-ReyM. (1995). The use of egocentric and exocentric location cues in saccadic programming. Vision Res 35: 2191–2199.
de LangeH. (1954). Relationship between critical flicker frequency and a set of low-frequency characteristics of the eye. J Opt Soc Amer 44: 380–389.
de LangeH. (1958). Research into the dynamic nature of the human fovea-cortex systems with intermittant and modulated light. I. Attenuation characteristics with white and coloured light. J Opt Soc Amer 48: 777–784.
DonaldsonI. M. L. (2000). The functions of the proprioceptors of the eye muscles. Philos Trans R Soc Lond B 355: 1685–1754.
EfronR. (1970). Effect of stimulus duration on perceptual onset and offset latencies. Perception & Psychophysics 8: 231–234.
GibsonJ. J., & MowrerO. H. (1938). Determinants of the perceived vertical and horizontal. Psychol Rev 45: 300–323.
GrahamC. H., & KempE. H. (1938). Brightness discrimination as a function of the duration of the increment in intensity. J Gen Physiol 21: 635–650.
GreenhouseD. S., & CohnT. E. (1991). Saccadic suppression and stimulus uncertainty. J Opt Soc Amer 8: 587–595.
HaffendenA. M., & GoodaleM. A. (2000). Independent effects of pictorial displays on perception and action. Vision Res 40: 1597–1607.
HallettP. E., & LightstoneA. D. (1976a). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res 16: 99–106.
HallettP. E., & LightstoneA. D. (1976b). Saccadic eye movements to flashed targets. Vision Res 16: 107–114.
HansenR. M., & SkavenskiA. A. (1985). Accuracy of spatial localization near the time of saccadic eye movements. Vision Res 25: 1077–1082.
HondaH. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics 45: 162–174.
HondaH. (1990). Eye movements to a visual stimulus flashed before, during, or after a saccade. In M.Jeannerod (ed.), Attention and Performance, vol. 13. Hillsdale, NJ: Erlbaum.
HondaH. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31: 1915–1921.
HondaH. (1993). Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res 33: 709–716.
HondaH. (1999). Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference. Vision Res 39: 51–57.
HoodD. C., & FinkelsteinM. A. (1986). Sensitivity to light. In K.Boff, L.Kaufman, & J.Thomas (eds.), Handbook of Perception and Human Performance (vol. I, ch. 5, 5–1–5-66). New York: Wiley.
KahnemanD. (1968). Methods, findings, and theory in studies of visual backward masking. Psychol Bull 70: 404–425.
KoffkaK. (1935). Principles of Gestalt Psychology. New York: Harcourt Brace.
KolersP. A. (1962). Intensity and contour effects in visual masking. Vision Res 2: 277–294.
KolersP. A., & RosnerB. (1960). On visual masking (metacontrast): dichoptic observation. Am J Psychol 73: 2–21.
LiW. (1989). A quantitative study of the accuracy and the precision of the visual perception of direction immediately after voluntary saccades. Ph.D. dissertation, Columbia University.
LiW., DallalN., & MatinL. (2001). Influences of visual pitch and yaw on visually perceived eye level (VPEL) and straight ahead (VPSA) for erect and rolled-to-horizontal observers. Vision Res 41: 2873–2894.
LiW., & MatinL. (1992a). Visual direction is corrected by a hybrid extraretinal eye position signal. Ann New York Acad Sci 656: 865–867.
LiW., & MatinL. (1992b). Rotation in depth of linear arrays of points systematically influences egocentric localization. Bull of the Psychonomic Soc 30: 453.
LiW., & MatinL. (1993). Eye and head position, visual pitch, and perceived eye level. Inv Ophth & Vis Sci 34: 1311.
LiW., & MatinL. (1996). Visually perceived eye level is influenced identically by lines from erect and pitched planes. Perception 25: 831–852.
LiW., & MatinL. (1997). Saccadic suppression of displacement: separate influences of saccade size and of target retinal eccentricity. Vision Res 37: 1779–1797.
LiW., & MatinL. (2005a). Two wrongs make a right: linear increase of accuracy of visually-guided manual pointing, reaching, and height-matching with increase in hand-to-body distance. Vision Res 45: 533–550.
LiW., & MatinL. (2005b). Visual induction of visually perceived vertical (VPV) by 1-line and 2-line roll-tilted and pitched visual fields. Vision Res 45: 2037–2057.
LiW., & MatinL. (2005c). The rod-and-frame effect: the whole is less than the sum of its parts. Perception 34: 699–716.
LiW., MatinE., BertzJ., & MatinL. (2008). A tilted frame deceives the eye and the hand. J Vision 8(16): 18, 1–16.
LotzeH. (1886). Outline of Psychology. Translated and edited by LaddG. T. Boston: Ginn.
MatinE. (1974). Saccadic suppression: a review and an analysis. Psychol Bull 81: 899–917.
MatinE. (1976). Saccadic suppression and the stable world. In R. A.Monty & J. W.Senders (eds.), Eye Movements and Psychological Processes (113–119). New York: Erlbaum.
MatinE. (1982). Saccadic suppression and the dual mechanism theory of direction constancy. Vision Res 22: 335–336.
MatinE., ClymerA., & MatinL. (1972). Metacontrast and saccadic suppression. Science 178: 179–182.
MatinE., MatinL., & PolaJ. (1969). The intermittant light illusion and constancy of visual direction during voluntary saccadic eye movements. Psychonomic Society (Abstract).
MatinL. (1962). Fourier treatment of some experiments in visual flicker. Science 136: 983–985.
MatinL. (1964). Measurement of eye movements by contact lens techniques: analysis of measuring systems and some new methodology for three-dimensional recording. J Opt Soc Am 54: 1008–1018.
MatinL. (1968). Critical duration, the differential luminance threshold, critical flicker frequency, and visual adaptation: a theoretical treatment. J Opt Soc Am 58: 404–415.
MatinL. (1972). Eye movements and perceived visual direction. In D.Jameson & L.Hurvich (eds.), Handbook of Sensory Physiology (331–380). Heidelberg: Springer.
MatinL. (1976a). A possible hybrid mechanism for modification of visual direction associated with eye movements – the paralyzed-eye experiment reconsidered. Perception 5: 233–239.
MatinL. (1976b). Saccades and extraretinal signal for visual direction. In R. A.Monty & J. W.Senders (eds.), Eye Movements and Psychological Processes (203–204). New York: Erlbaum.
MatinL. (1982). Visual localization and eye movements. In A.Wertheim, W. A.Wagenaar, & H.Leibowitz (eds.), Tutorials on Motion Perception (101–156). New York: Plenum.
MatinL. (1986). Visual localization & eye movements. In K.Boff, L.Kaufman, & J.Thomas (eds.), Handbook of Perception and Human Performance (vol. I, ch. 20, 20-1–20-45). New York: Wiley.
MatinL., & BowenR. W. (1976). Measuring the duration of perception. Perception & Psychophysics 20: 66–76.
MatinL., & FoxC. R. (1986). Perceived eye level: elevation jointly determined by visual pitch, EEPI, and gravity. Invest Ophthalmol Vis Sci (Suppl.) 27: 333.
MatinL., & FoxC. R. (1989). Visually perceived eye level and perceived elevation of objects: linearly additive influences from visual field pitch and from gravity. Vision Res 29: 315–324.
MatinL., & FoxC. R. (1990). Erratum: Visually perceived eye level and perceived elevation of objects: linearly additive influences from visual field pitch and from gravity. Vision Res 30: I.
MatinL., & KiblerG. (1966). Acuity of visual perception of direction in the dark for various positions of the eye in the orbit. Percept Mot Skills 22: 407–420.
MatinL., & LiW. (1992). Visually perceived eye level: changes induced by a pitched-from-vertical 2-line visual field. J Exp Psychol Hum Percept Perform 18: 257–289.
MatinL., & LiW. (1994a). The influence of the orientation of a stationary single line in darkness on the visual perception of eye level. Vision Res 34: 311–330.
MatinL., & LiW. (1994b). Spatial summation among parallel lines across wide separations (50°): spatial localization and the great circle model. Vision Res 34: 2577–2598.
MatinL., & LiW. (1994c). Mirror symmetry and parallelism: two opposite rules for the identity transform in space perception and their unified treatment by the Great Circle Model. Spat Vis 8: 469–489.
MatinL., & LiW. (1995). Multimodal basis for egocentric spatial localization and orientation. J Vestib Res 5: 499–518.
MatinL., & LiW. (1996). Similarities between 3D color and egocentric orientation spaces. Inv Ophth & Vis Sci 37/3: S519.
MatinL., & LiW. (2001). Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL). Vision Res 41: 2845–2872.
MatinL., LiW., & BertzJ. W. (2004). Distance-contingent accuracy of manual matches to line orientations misperceived under the 2-line rod-and-frame illusion. J Vis 4(8): 380a.
MatinL., LiW., LiL., & ShavitA. Y. (2006). Influence of roll-tilt, interpoint separation, and length of linear points-arrays on a frontoparallel plane on visually perceived eye level (VPEL) [Abstract]. J Vis 6: 972.
MatinL., & MatinE. (1972). Visual perception of direction and voluntary saccadic eye movements. In J.Dichgans & H.Bizzi (eds.), Cerebral Control of Eye Movements and Motion Perception (358–368). Basel, Switzerland: Karger.
MatinL., MatinE., & PearceD. G. (1969). Visual perception of direction when voluntary saccades occur. I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perception & Psychophysics 5: 65–80.
MatinL., MatinE., & PolaJ. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception & Psychophysics 8: 9–14.
MatinL., MatinE., PolaJ., & BowenR. (1971). Relative visual direction of two flashes presented at different times or intensities during a voluntary saccade – retinal constraints in the operation of extraretinal signals. Presented at EPA.
MatinL., & PearceD. G. (1964). Three-dimensional recording of rotational eye movements by a new contact-lens technique. In W. E.Murry & P. F.Salisbury (eds.), Biomedical Sciences Instrumentation (79–95). New York: Plenum Press.
MatinL., & PearceD. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1488.
MatinL., PearceD. G., MatinE., & KiblerG. (1966). Visual perception of direction in the dark: roles of local sign, eye movements and ocular proprioception. Vision Res 6: 453–469.
MatinL., PicoultE., StevensJ. K., EdwardsM. W. Jr., YoungD., & MacArthurR. (1982). Oculoparalytic illusion: visual-field dependent mislocalizations by humans partially paralyzed with curare. Science 216: 198–201.
MatinL., StevensJ. K., & PicoultE. (1983). Perceptual consequences of experimental extraocular muscle paralysis. In A.Hein & M.Jeannerod (eds.), Spatially Oriented Behavior (243–262). New York: Springer.
MillerJ. M. (1996). Egocentric localization of a perisaccadic flash by manual pointing. Vision Res 36: 837–851.
MillerJ. M., & BockischC. J. (1997). Where are the things we see? Nature 386: 550–551.
MilnerA. D., & GoodaleM. A. (1995). The Visual Brain in Action. New York: Oxford University Press.
MorroneM. C., RossJ., & BurrD. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17(20): 7941–7953.
PolaJ. (1973). The relation of the perception of visual direction to eye position during and following a voluntary saccade. Ph.D. dissertation, Columbia University.
PolaJ. (1976). Voluntary saccades, eye position, and perceived visual direction. In R. A.Monty & J. W.Senders (eds.), Eye Movements and Psychological Processes (245–254). New York: Erlbaum.
PolaJ. (2004). Models of the mechanism underlying perceived location of a perisaccadic flash. Vision Res 44: 2799–2813.
PolaJ. (2007). A model of the mechanism for the perceived location of a single flash and two successive flashes presented around the time of the saccade. Vision Res 47: 2798–2813.
RaabD. H. (1963). Backward masking. Psychol Bull 60: 118–129.
RatliffF. (1965). MACK BANDS: Quantitative studies on neural networks in the retina. San Francisco, CA: Holden-Day, Inc.
RatliffF., MillerW. H., & HartlineH. K. (1958). Neural interaction in the eye and the integration of receptor activity. Ann NY Acad Sci 74: 210–222.
RiggsL. A., VolkmannF. C., MooreR. K., & EllicottA. G. (1982). Perception of suprathreshold stimuli during saccadic eye movement. Vision Res 22: 423–428.
RossL., MorroneM. C., & BurrD. C. (1997). Compression of visual space before saccades. Nature 386: 598–601.
SchlagJ., & Schlag-ReyM. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–215.
ShavitA. Y., LiW., & MatinL. (2004). Influences of global and local orientations of line segments on perceived eye level. 45th Annual Meeting of the Psychonomic Society, 9: 112.
ShavitA. Y., LiW., & MatinL. (2005). Spatial induction of changes in perceived elevation and verticality by global and local orientations of sets of lines. 5th Annual Meeting of Vision Sciences Society, 275.
ShebilskeW. L. (1977). Visuomotor coordination in visual direction and position constancies. In W.Epstein (ed.), Stability and Constancy in Visual Perception. New York: Wiley.
SherringtonC. S. (1898). Decerebrate rigidity, and reflex coordination of movements. J Physiol (Lond.) 22: 319–332.
SherringtonC. S. (1918). Observation on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles. Brain 41: 332–343.
SogoH., & OsakaN. (2001). Perception of relation of stimuli locations successively flashed before saccade. Vision Res 41: 935–942.
SogoH., & OsakaN. (2002). Effects of inter-stimulus interval on perceived locations of successively flashed perisaccadic stimuli. Vision Res 42: 899–908.
SperryR. (1950). Neural basis of the spontaneous optokinetic response produced by vision inversion. J Comp Physiol Psychol 43: 482–489.
StarkL., & BridgemanB. (1983). Role of corollary discharge in space constancy. Perception & Psychophysics 34: 371–380.
SteinbachM. J. (1987). Proprioceptive knowledge of eye position. Vision Res 27: 1737–1744.
StoperA., & CohenM. M. (1989). Effect of structured visual environments on apparent eye level. Perception & Psychophysics 46: 469–475.
von BékésyG. (1967). Sensory Inhibition. Princeton, NJ: Princeton University Press.
von BékésyG. (1968). Mach- and Hering-type lateral inhibition in vision. Vision Res 8: 1457–1466.
von HelmholtzH. (1866). Handbuch der Physiologischen Optik, Leipzig: Voss. (English translation from 3rd edition 1925). In J. P. C.Southall (ed.), A Treatise on Physiological Optics (vol. 3). New York: Dover.
von HolstE. (1954). Relation between the central nervous system and the peripheral organs. British Journal of Animal Behavior 2: 89–94.
von HolstE., & MittelstaedtH. (1950). Das reafferenz-prinzip: Wechselwirkungen zwischen zentralnervensystem und peripherie (The principle of reafference: interactions between the central nervous system and the peripheral organs). Naturwissenscaften 37: 464–477.
WeissteinN. (1972). Metacontrast. In D.Jameson & L.Hurvich. (eds.), Handbook of Sensory Physiology (vol. 7, no. 4, Visual Psychophysics). Berlin: Springer-Verlag.
WertheimerM. (1912). Experimentelle studien ü ber das sehen von bewegung, Zeitschrift fur Psychologie und Physiologie der Sinnesorgane 61: 161–265.
WitkinH. A. (1949). Perception of body position and of the position of the visual field. Psychol Monograph 63(7): 1–46.
WitkinH. A., & AschS. E. (1948a). Studies in space perception. III. Perception of the upright in the absence of a visual field. J Exp Psychol 38: 603–614.
WitkinH. A., & AschS. E. (1948b). Studies in space perception. IV. Further experiments on perception of the upright with displaced visual fields. J Exp Psychol 38: 762–782.

Reference Title: References

Reference Type: bibliography

BellC. (1823/1974). Idea of a new anatomy of the brain. In P.Cranefield (ed.), Francois Magendie, Charles Bell and the Course of the Spinal Nerves. Mt. Kisco, NY: Futura.
BridgemanB. (1981). Cognitive factors in subjective stabilization of the visual world. Acta Psychol 48: 111–121.
BridgemanB. (1995). Extraretinal signals in visual orientation. In W.Prinz & B.Bridgeman (eds.), Handbook of Perception and Action Vol. 1: Perception. London: Academic Press.
BridgemanB., HendryD., & StarkL. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15: 719–722.
BridgemanB., & StarkL. (1991). Ocular proprioception and efference copy in registering visual direction. Vision Res 31: 1903–1913.
BridgemanB., van der HeijdenA. H. C., & VelichkovskyB. (1994a). Visual stability and saccadic eye movements. Behav Brain Sci 17: 247–258.
BridgemanB., van der HeijdenA. H. C., & VelichkovskyB. (1994b). How our world remains stable despite disturbing influences. Behav Brain Sci 17: 282–292.
BruneF., & LückingC. (1969). Okulomotorik, Bewegungs wahrnehmung und Raumkonstanz der Sehdinge. Der Nerverarzt 240: 692–700.
DeubelH., BridgemanB., & SchneiderW. X. (2004). Different effects of eyelid blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics 66: 772–778.
GrüsserO.-J., KrizicA., & WeissL.-R. (1984). Afterimage movement during saccades in the dark. Vision Res 27: 215–226.
IlgU., BridgemanB., & HoffmanK.-P. (1989). Influence of mechanical disturbance on oculomotor behavior. Vision Res 29: 545–551.
LeibowitzH. W., ShupertC. L., PostR. B., & DichgansJ. (1983). Autokinetic drifts and gaze deviation. Perception & Psychophysics 33: 455–459.
MachE. (1906). Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen (5th ed.).
MackA. (1970). An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception & Psychophysics 8: 291–298.
MatinE. (1974). Saccadic suppression: a review and an analysis. Psychol Bull 81: 899–917.
MatinL. (1972). Eye movements and perceived visual direction. In D.Jameson & L.Hurvich (eds.), Handbook of Sensory Physiology (331–380, vol. 7, part 3). New York: Springer.
MorganC. L. (1978). Constancy of egocentric visual direction. Perception & Psychophysics 23: 61–68.
NagleM., BridgemanB., & StarkL. (1980). Voluntary nystagmus, saccadic suppression, and stabilization of the visual world. Vision Res 20: 1195–1198.
O'ReganJ. K., RensinkR. A., & ClarkJ. J. (1999). Change-blindness as a result of “mud-splashes.” Nature 398: 34.
PurkinjeJ. (1825). Über die Scheinbewegungen, welche im subjectiven Umfang des Gesichtsinnes vorkommen. Bulletin der naturwessenschaftlichen Sektion der Schlesischen Gesellschaft 4: 9–10.
RensinkR. A., O'ReganJ. K., & ClarkJ. J. (1997). To see or not see: the need for attention to perceive changes in scene. Psychol Sci 8: 368–373.
SimonsD. J. (1996). In sight, out of mind: when object representation fails. Psychol Sci 7: 301–305.
SperryR. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43: 482–489.
StarkL., & BridgemanB. (1983). Role of corollary discharge in space constancy. Perception & Psychophysics 34: 371–380.
TeuberH.-L. (1960). Perception. In J.Field & H.Magoun (eds.), Handbook of Physiology, sect. 1; Neurophysiology, vol. 3 (1595–1668). Washington, DC: American Physiological Society.
TurattoM., BetellaS., Umilta'C., & BridgemanB. (2003). Perceptual conditions necessary to induce change blindness. Visual Cognition 10: 233–255.
von HelmholtzH. (1866). Handbuch der physiologischen Optik. Leipzig: Voss.
von HolstE., & MittelstaedtH. (1950). Das Reafferenzprinzip. Wechselwirkungen zwischen Zerntalnervensystem und Peripherie. Naturwissenschaften 27: 464–476.
WallachH., & LewisC. (1965). The effect of abnormal displacement of the retinal image during eye movements. Perception & Psychophysics 81: 25–29.

Reference Title: References

Reference Type: bibliography

BrennerE., & CornelissenF. W. (2000). Separate simultaneous processing of egocentric and relative positions. Vision Res 40: 2557–2563.
BrennerE., & SmeetsJ. B. J. (1996). Hitting moving targets: co-operative control of ‘when’ and ‘where.’ Hum Mov Sci 15: 39–53.
BrennerE., & SmeetsJ. B. J. (2005). Intercepting moving targets: why the hand's path depends on the target's velocity. In B. E.Rogowitz, T. N.Pappas, & S. J.Daly (eds.), Human Vision and Electronic Imaging X, Proc. SPIE-IS&T Electronic Imaging (374–384). SPIE Vol. 5666.
BrennerE., SmeetsJ. B. J., & van den BergA. V. (2001). Smooth eye movements and spatial localisation. Vision Res 41: 2253–2259.
BrennerE., van BeersR. J., RotmanG., & SmeetsJ. B. J. (2006). The role of uncertainty in the systematic spatial mislocalization of moving objects. J Exp Psychol Hum Percept Perform 32: 811–825.
BrouwerA., BrennerE., & SmeetsJ. B. J. (2002). Hitting moving objects: is target speed used in guiding the hand? Experimental Brain Research 143: 198–211.
DichgansJ., WistE., DienerH. C., & BrandtT. (1975). The Aubert-Fleischl phenomenon: a temporal frequency effect on perceived velocity in afferent motion perception. Experimental Brain Research 23: 529–533.
HazelhoffF. F., & WiersmaH. (1924). Die Wahrnehmungszeit. Zeitschrift für Psychology 96: 171–188.
HorstmannA., & HoffmannK. P. (2005). Target selection in eye-hand coordination: do we reach to where we look or do we look to where we reach? Experimental Brain Research 167: 187–195.
KerzelD., AivarM. P., ZieglerN. E., & BrennerE. (2005). Mislocalization of flashes during smooth pursuit hardly depends on the lighting conditions. Vision Res 46: 1145–1154.
KhuranaB., & KowlerE. (1987). Shared attentional control of smooth eye movement and perception. Vision Res 27: 1603–1618.
LunenburgerL., KutzD. F., & HoffmannK. P. (2000). Influence of arm movements on saccades in humans. Eur J Neurosci 12: 4107–4116.
MateeffS., YakimoffN., & DimitrovG. (1981). Localization of brief visual stimuli during pursuit eye movements. Acta Psychologica 48: 133–140.
MatinL. (1986). Visual localization and eye movements. In K. R.Boff L.Kaufman, & J. P.Thomas (eds.), Handbook of Perception and Human Performance; Volume 1; Sensory Processes and Perception (1–40). New York: Wiley-Interscience.
MatinL., MatinE., & PolaJ. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception & Psychophysics 8: 9–14.
MitaT., HironakaK., & KoikeI. (1950). The influence of retinal adaptation and location on the “Empfindungszeit.” The Tohoku Journal of Experimental Medicine 52: 397–405.
MitraniL., DimitrovG., YakimoffN., & MateeffS. (1979). Oculomotor and perceptual localization during smooth eye movements. Vision Res 19: 609–612.
NeggersS. F., & BekkeringH. (2001). Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86: 961–970.
NeggersS. F., & BekkeringH. (2002). Coordinated control of eye and hand movements in dynamic reaching. Hum Mov Sci 21: 349–376.
NijhawanR. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.
RotmanG., BrennerE., & SmeetsJ. B. J. (2004a). Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. J Vision 4: 564–574.
RotmanG., BrennerE., & SmeetsJ. B. J. (2004b). Quickly tapping targets that are flashed during smooth pursuit reveals perceptual mislocalisations. Experimental Brain Research 156: 409–414.
RotmanG., BrennerE., & SmeetsJ. B. J. (2005). Flashes are localised as if they were moving with the eyes. Vision Res 45: 355–364.
SchlagJ., & Schlag-ReyM. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Reviews Neurosci 3: 191–200.
SchmoleskyM. T., WangY., HanesD. P., ThompsonK. G., LeutgebS., SchallJ. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79: 3272–3278.
SumnallJ. H., FreemanT. C., & SnowdenR. J. (2003). Optokinetic potential and the perception of head-centred speed. Vision Res 43: 1709–1718.

Reference Title: References

Reference Type: bibliography

AdelsonE. H., & BergenJ. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am [A] 2(2): 284–299.
AnstisS. M. (1970). Phi movement as a subtraction process. Vision Res 10(12): 1411–1430.
AnstisS. M. (1980). The perception of apparent movement. Philos Trans R Soc Lond B Biol Sci 290(1038): 153–168.
AnstisS. M., & CavanaghP. (1983). A minimum motion technique for judging equiluminance. In J.Mollon & R. T.Sharpe (eds.), Color Vision: Physiology and Psychophysics (155–166). London: Academic Press.
AriffG., DonchinO., NanayakkaraT., & ShadmehrR. (2002). A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements. J Neurosci 22(17): 7721–7729.
AshidaH. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42(11): 1515–1524.
AssadJ. A., & MaunsellJ. H. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373(6514): 518–521.
BallardD. H., HayhoeM. M., LiF., & WhiteheadS. D. (1992). Hand-eye coordination during sequential tasks. Philos Trans R Soc Lond B Biol Sci 337(1281): 331–338; discussion 338–339.
BiguerB., JeannerodM., & PrablancC. (1982). The coordination of eye, head, and arm movements during reaching at a single visual target. Exp Brain Res 46(2): 301–304.
BinstedG., ChuaR., HelsenW., & ElliottD. (2001). Eye-hand coordination in goal-directed aiming. Hum Mov Sci 20(4–5): 563–585.
BockO., & JunglingS. (1999). Reprogramming of grip aperture in a double-step virtual grasping paradigm. Exp Brain Res 125(1): 61–66.
BrennerE., & SmeetsJ. B. (1994). Different frames of reference for position and motion. Naturwissenschaften 81(1): 30–32.
BrennerE., & SmeetsJ. B. (1997). Fast responses of the human hand to changes in target position. J Mot Behav 29(4): 297–310.
BrennerE., & SmeetsJ. B. (2003). Fast corrections of movements with a computer mouse. Spat Vis 16(3–4): 365–376.
BrennerE., & SmeetsJ. B. (2004). Colour vision can contribute to fast corrections of arm movements. Exp Brain Res 158(3): 302–307.
BrennerE., SmeetsJ. B., & de LussanetM. H. (1998). Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target's velocity. Exp Brain Res 122(4): 467–474.
BridgemanB. (1995). A review of the role of efference copy in sensory and oculomotor control systems. Ann Biomed Eng 23(4): 409–422.
BridgemanB., KirchM., & SperlingA. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29(4): 336–342.
BridgemanB., LewisS., HeitG., & NagleM. (1979). Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5(4): 692–700.
BridgemanB., PeeryS., & AnandS. (1997). Interaction of cognitive and sensorimotor maps of visual space. Percept Psychophys 59(3): 456–469.
BrittenK. H., & van WezelR. J. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1): 59–63.
BuneoC. A., JarvisM. R., BatistaA. P., & AndersenR. A. (2002). Direct visuomotor transformations for reaching. Nature 416(6881): 632–636.
BurrD. C., & RossJ. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22(19): 8661–8664.
BurrD. C., RossJ., & MorroneM. C. (1986). Seeing objects in motion. Proc R Soc Lond B Biol Sci 227(1247): 249–265.
CastielloU., PaulignanY., & JeannerodM. (1991). Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114(Pt 6): 2639–2655.
CavanaghP. (1992). Attention-based motion perception. Science 257(5076): 1563–1565.
CavanaghP., & MatherG. (1989). Motion: the long and short of it. Spat Vis 4(2–3): 103–129.
CavanaghP., TylerC. W., & FavreauO. E. (1984). Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1: 893–899.
CollewijnH., & TammingaE. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol 351: 217–250.
CoweyA., & StoerigP. (1991). The neurobiology of blindsight. Trends Neurosci 14(4): 140–145.
CrawfordJ. D., MedendorpW. P., & MarottaJ. J. (2004). Spatial transformations for eye-hand coordination. J Neurophysiol 92(1): 10–19.
CropperS. J., & DerringtonA. M. (1994). Motion of chromatic stimuli: first-order or second-order? Vision Res 34(1): 49–58.
CropperS. J., & DerringtonA. M. (1996). Rapid colour-specific detection of motion in human vision. Nature 379(6560): 72–74.
CulhamJ., HeS., DukelowS., & VerstratenF. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychol (Amst) 107(1–3): 69–94.
DassonvilleP., BridgemanB., Kaur BalaJ., ThiemP., & SampanesA. (2004). The induced Roelofs effect: two visual systems or the shift of a single reference frame? Vision Res 44(6): 603–611.
DayB. L., & LyonI. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130(2): 159–168.
De ValoisR. L., & De ValoisK. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31(9): 1619–1626.
Del VivaM. M., & MorroneM. C. (1998). Motion analysis by feature tracking. Vision Res 38(22): 3633–3653.
DerringtonA. M. (2000). Vision: can colour contribute to motion? Curr Biol 10(7): R268–270.
DerringtonA. M., AllenH. A., & DelicatoL. S. (2004). Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol 55: 181–205.
DesmurgetM., & GraftonS. (2000). Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11): 423–431.
DiedrichsenJ., NambisanR., KennerleyS. W., & IvryR. B. (2004). Independent on-line control of the two hands during bimanual reaching. Eur J Neurosci 19(6): 1643–1652.
DuffyC. J., & WurtzR. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6): 1329–1345.
DuffyC. J., & WurtzR. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6): 1346–1359.
DukelowS. P., DeSouzaJ. F., CulhamJ. C., Van Den BergA. V., MenonR. S., & VilisT. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4): 1991–2000.
EngelK. C., AndersonJ. H., & SoechtingJ. F. (2000). Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J Neurophysiol 84(3): 1149–1156.
FischerB., & RogalL. (1986). Eye-hand-coordination in man: a reaction time study. Biol Cybern 55(4): 253–261.
FreemanT. C. (2001). Transducer models of head-centred motion perception. Vision Res 41(21): 2741–2755.
GeislerW. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400(6739): 65–69.
GibsonJ. J. (1986). The Ecological Approach to Visual Perception. Hillsdale, NJ: Erlbaum.
GoltzH. C., & WhitneyD. (2004). The influence of background motion on smooth pursuit: separation matters. Journal of Vision 4: 649.
GomiH., AbekawaN., & NishidaS. (2005). Implicit sensorimotor control: rapid motor responses of arm and eye share the visual motion encoding [Abstract]. Journal of Vision 5(8): 363a; http://journalofvision.org/5/8/363/, doi:10.1167/5.8.363
GomiH., AbekawaN., & NishidaS. (2006). Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. J Neurosci 26(20): 5301–5308.
GoodaleM. A., & MilnerA. D. (1992). Separate visual pathways for perception and action. Trends Neurosci 15(1): 20–25.
GoodaleM. A., PelissonD., & PrablancC. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320(6064): 748–750.
GrayR. (2002). Behavior of college baseball players in a virtual batting task. J Exp Psychol Hum Percept Perform 28(5): 1131–1148.
GreenleeM. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol 44: 269–292.
HayesA. (2000). Apparent position governs contour-element binding by the visual system. Proc R Soc Lond B Biol Sci 267(1450): 1341–1345.
HenriquesD. Y., KlierE. M., SmithM. A., LowyD., & CrawfordJ. D. (1998a). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.
HenriquesD. Y., KlierE. M., SmithM. A., LowyD., & CrawfordJ. D. (1998b). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.
HenriquesD. Y., MedendorpW. P., GielenC. C., & CrawfordJ. D. (2003). Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Exp Brain Res 152(1): 70–78.
HermanR., & MaulucciR. (1981). Visually triggered eye-arm movements in man. Exp Brain Res 42(3–4): 392–398.
HikosakaK., IwaiE., SaitoH., & TanakaK. (1988). Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60(5): 1615–1637.
HikosakaO., MiyauchiS., & ShimojoS. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Res 33(9): 1219–1240.
HowardI. P., & MartonC. (1992). Visual pursuit over textured backgrounds in different depth planes. Exp Brain Res 90(3): 625–629.
HukA. C., DoughertyR. F., & HeegerD. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16): 7195–7205.
IngleD. (1973). Two visual systems in the frog. Science 181(104): 1053–1055.
JacobP., & JeannerodM. (2003). Ways of Seeing. Oxford: Oxford University Press.
KawanoK., & MilesF. A. (1986). Short-latency ocular following responses of monkey. II. Dependence on a prior saccadic eye movement. J Neurophysiol 56(5): 1355–1380.
KawanoK., ShidaraM., WatanabeY., & YamaneS. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71(6): 2305–2324.
KellerE. L., & KhanN. S. (1986). Smooth-pursuit initiation in the presence of a textured background in monkey. Vision Res 26(6): 943–955.
KerzelD., & GegenfurtnerK. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13(22): 1975–1978.
KerzelD., & GegenfurtnerK. R. (2005). Motion-induced illusory displacement reexamined: differences between perception and action? Exp Brain Res 162(2): 191–201.
KowlerE., van der SteenJ., TammingaE. P., & CollewijnH. (1984). Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli. Vision Res 24(12): 1789–1798.
LandM. F., & McLeodP. (2000). From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3(12): 1340–1345.
LeeD. N. (1980). The optic flow field: the foundation of vision. Philos Trans R Soc Lond B Biol Sci 290(1038): 169–179.
LeeD. N., & AronsonE. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics 15: 529–532.
LeeD. N., & ReddishP. E. (1981). Plummeting gannets: a paradigm of ecological optics. Nature 293(5830): 293–294.
LindnerA., SchwarzU., & IlgU. J. (2001). Cancellation of self-induced retinal image motion during smooth pursuit eye movements. Vision Res 41(13): 1685–1694.
LivingstoneM., & HubelD. (1988). Segregation of form, colour, movement, and depth: anatomy, physiology, and perception. Science 240(4853): 740–749.
LuZ. L., LesmesL. A., & SperlingG. (1999). Perceptual motion standstill in rapidly moving chromatic displays. Proc Natl Acad Sci U S A 96(26): 15374–15379.
LuZ. L., & SperlingG. (1995). Attention-generated apparent motion. Nature 377(6546): 237–239.
LuZ. L., & SperlingG. (2001a). Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis 18(9): 2331–2370.
LuZ. L., & SperlingG. (2001b). Sensitive calibration and measurement procedures based on the amplification principle in motion perception. Vision Res 41(18): 2355–2374.
MackA., & HermanE. (1973). Position constancy during pursuit eye movement: an investigation of the Filehne illusion. Q J Exp Psychol 25(1): 71–84.
MassonG., ProteauL., & MestreD. R. (1995). Effects of stationary and moving textured backgrounds on the visuo- oculo-manual tracking in humans. Vision Res 35(6): 837–852.
MassonG. S., BusettiniC., YangD. S., & MilesF. A. (2001). Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res 41(25–26): 3371–3387.
MassonG. S., YangD. S., & MilesF. A. (2002). Reversed short-latency ocular following. Vision Res 42(17): 2081–2087.
McGrawP. V., WhitakerD., SkillenJ., & ChungS. T. (2002). Motion adaptation distorts perceived visual position. Curr Biol 12(23): 2042–2047.
MilesF. A., KawanoK., & OpticanL. M. (1986). Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56(5): 1321–1354.
MohrmannH., & ThierP. (1995). The influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and smooth-pursuit termination. Biol Cybern 73(1): 83–93.
Mohrmann-LendlaH., & FleischerA. G. (1991). The effect of a moving background on aimed hand movements. Ergonomics 34(3): 353–364.
NakayamaK., & TylerC. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Res 21(4): 427–433.
NeggersS. F., & BekkeringH. (2001). Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86(2): 961–970.
NewsomeW. T., & PareE. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8(6): 2201–2211.
NiemannT., & HoffmannK. P. (1997). The influence of stationary and moving textured backgrounds on smooth-pursuit initiation and steady state pursuit in humans. Exp Brain Res 115(3): 531–540.
NishidaS. (2004). Motion-based analysis of spatial patterns by the human visual system. Curr Biol 14(10): 830–839.
NishidaS., & JohnstonA. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature 397(6720): 610–612.
PaillardJ. (1982). The contribution of peripheral and central vision to visually guided reaching. In D. J.Ingle, M. A.Goodale, & D. J. W.Mansfield (eds.), Analysis of Visual Behaviour (367–385). Cambridge, MA: MIT Press.
PaillardJ. (1996). Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: A reappraisal. Can J Physiol Pharmacol 74(4): 401–417.
PaulignanY., JeannerodM., MacKenzieC., & MarteniukR. (1991a). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87(2): 407–420.
PaulignanY., MacKenzieC., MarteniukR., & JeannerodM. (1991b). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83(3): 502–512.
PelissonD., PrablancC., GoodaleM. A., & JeannerodM. (1986). Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62(2): 303–311.
PelzJ., HayhoeM., & LoeberR. (2001). The coordination of eye, head, and hand movements in a natural task. Exp Brain Res 139(3): 266–277.
PisellaL., GreaH., TiliketeC., VighettoA., DesmurgetM., RodeG., et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3(7): 729–736.
PostR. B., & WelchR. B. (2004). Studies of open-loop pointing in the presence of induced motion. Percept Psychophys 66(6): 1045–1055.
PrablancC., EchallierJ. F., KomilisE., & JeannerodM. (1979). Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35(2): 113–124.
PrablancC., & MartinO. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67(2): 455–469.
PrevicF. H. (1992). The effects of dynamic visual stimulation on perception and motor control. J Vestib Res 2(4): 285–295.
ProteauL., & MassonG. (1997). Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. Q J Exp Psychol A 50(4): 726–741.
RamachandranV. S., & AnstisS. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception 19(5): 611–616.
ReganD. (1997). Visual factors in hitting and catching. J Sports Sci 15(6): 533–558.
SaijoN., MurakamiI., NishidaS., & GomiH. (2005). Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20): 4941–4951.
SaitoH., YukieM., TanakaK., HikosakaK., FukadaY., & IwaiE. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1): 145–157.
SavelsberghG. J., WhitingH. T., & BootsmaR. J. (1991). Grasping tau. J Exp Psychol Hum Percept Perform 17(2): 315–322.
SchenkT., EllisonA., RiceN., & MilnerA. D. (2005). The role of v5/MT+ in the control of catching movements: an RTMS study. Neuropsychologia 43(2): 189–198.
SchenkT., MaiN., DitterichJ., & ZihlJ. (2000). Can a motion-blind patient reach for moving objects? Eur J Neurosci 12(9): 3351–3360.
SchenkT., MairB., & ZihlJ. (2004). The use of visual feedback and on-line target information in catching and grasping. Exp Brain Res 154(1): 85–96.
SchmoleskyM. T., WangY., HanesD. P., ThompsonK. G., LeutgebS., SchallJ. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79(6): 3272–3278.
SchneiderG. E. (1969). Two visual systems. Science 163(870): 895–902.
SchwarzU., & IlgU. J. (1999). Asymmetry in visual motion processing. Neuroreport 10(12): 2477–2480.
SeiffertA. E., & CavanaghP. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res 38(22): 3569–3582.
ShethB. R., & ShimojoS. (2000). In space, the past can be recast but not the present. Perception 29(11): 1279–1290.
ShidaraM., & KawanoK. (1993). Role of Purkinje cells in the ventral paraflocculus in short-latency ocular following responses. Exp Brain Res 93: 185–195.
ShioiriS., & CavanaghP. (1990). Isi produces reverse apparent motion. Vision Res 30(5): 757–768.
SmeetsJ. B., & BrennerE. (1995a and b). Perception and action are based on the same visual information: distinction between position and velocity. J Exp Psychol Hum Percept Perform 21(1): 19–31.
SoechtingJ. F., EngelK. C., & FlandersM. (2001). The Duncker illusion and eye-hand coordination. J Neurophysiol 85(2): 843–854.
TanakaK., & SaitoH. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3): 626–641.
TresilianJ. R. (1993). Four questions of time to contact: a critical examination of research on interceptive timing. Perception 22(6): 653–680.
TrevarthenC. B. (1968). Two mechanisms of vision in primates. Psychol Forsch 31(4): 299–348.
TseP. U., & LogothetisN. K. (2002). The duration of 3-d form analysis in transformational apparent motion. Percept Psychophys 64(2): 244–265.
TurrellY., BardC., FleuryM., TeasdaleN., & MartinO. (1998). Corrective loops involved in fast aiming movements: effect of task and environment. Exp Brain Res 120(1): 41–51.
UllmanS. (1979). The Interpretation of Visual Motion. Cambridge, MA: MIT Press.
van AstenW. N., GielenC. C., & van der GonJ. J. (1988). Postural movements induced by rotations of visual scenes. J Opt Soc Am A 5(10): 1781–1789.
van SantenJ. P. H., & SperlingG. (1985). Elaborated Reichard detectors. J Opt Soc Am A 2(2): 300–321.
van SonderenJ. F., Denier van der GonJ. J., & GielenC. C. (1988). Conditions determining early modification of motor programmes in response to changes in target location. Exp Brain Res 71(2): 320–328.
van SonderenJ. F., GielenC. C., & Denier van der GonJ. J. (1989). Motor programmes for goal-directed movements are continuously adjusted according to changes in target location. Exp Brain Res 78(1): 139–146.
WangY., & FrostB. J. (1992). Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356(6366): 236–238.
WarrenW. H., Jr., KayB. A., ZoshW. D., DuchonA. P., & SahucS. (2001). Optic flow is used to control human walking. Nat Neurosci 4(2): 213–216.
WatamaniukS. N. (2005). The predictive power of trajectory motion. Vision Res 45(24): 2993–3003.
WatamaniukS. N., & McKeeS. P. (1995). Seeing motion behind occluders. Nature 377(6551): 729–730.
WatsonA. B., & AhumadaA. J., Jr. (1985). Model of human visual-motion sensing. J Opt Soc Am A 2(2): 322–341.
WertheimA. H. (1981). On the relativity of perceived motion. Acta Psychol (Amst) 48(1–3): 97–110.
WhitakerD., McGrawP. V., & PearsonS. (1999). Non-veridical size perception of expanding and contracting objects. Vision Res 39(18): 2999–3009.
WhitneyD. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6(5): 211–216.
WhitneyD., & CavanaghP. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3(9): 954–959.
WhitneyD., EllisonA., RiceN. J., ArnoldD., GoodaleM., WalshV., et al. (2007). Visually guided reaching depends on motion area MT+. Cereb Cortex 17(11): 2644–2649.
WhitneyD., & GoodaleM. A. (2005). Visual motion due to eye movements helps guide the hand. Exp Brain Res 162(3): 394–400. Epub 2005 Jan 2015.
WhitneyD., WestwoodD. A., & GoodaleM. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature 423(6942): 869–873.
YamagishiN., AndersonS. J., & AshidaH. (2001). Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268(1470): 973–977.
YeeR. D., DanielsS. A., JonesO. W., BalohR. W., & HonrubiaV. (1983). Effects of an optokinetic background on pursuit eye movements. Invest Ophthalmol Vis Sci 24(8): 1115–1122.
ZihlJ., von CramonD., & MaiN. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106(Pt 2): 313–340.
ZivotofskyA. Z., Averbuch-HellerL., ThomasC. W., DasV. E., DiscennaA. O., & LeighR. J. (1995). Tracking of illusory target motion: differences between gaze and head responses. Vision Res 35(21): 3029–3035.

Reference Title: References

Reference Type: bibliography

AlexanderI., ThiloK. V., CoweyA., & WalshV. (2005). Chronostasis without voluntary action. Experimental Brain Research 161: 125–132.
AllanL. G. (1979). The perception of time. Percept Psychophys 26: 340–354.
BrownP., & RothwellJ. C. E. (1997). Illusions of time. Society for Neuroscience Abstracts, 27th Annual Meeting 23: 1119.
CampbellF. W., & WurtzR. H. (1978). Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision Res 18: 1297–1303.
DiamondM. R., RossJ., & MorroneM. C. (2000). Extraretinal control of saccadic suppression. J Neurosci 20: 3449–3455.
DuhamelJ. R., ColbyC. L., & GoldbergM. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.
FischerB., & RamspergerE. (1984). Human express saccades: extremely short reaction times of goal directed eye movements. Experimental Brain Research 57: 191–195.
GrondinS. (1998). Judgments of the duration of visually marked empty time intervals: linking perceived duration and sensitivity. Percept Psychophys 60: 319–330.
GrondinS., & RousseauR. (1991). Judging the relative duration of multimodal short empty time intervals. Percept Psychophys 49: 245–256.
HaggardP., ClarkS., & KalogerasJ. (2002). Voluntary action and conscious awareness. Nat Neurosci 5: 382–385.
HellstroemA. (1985). The time-order error and its relatives: mirrors of cognitive processes in comparing. Psychol Bull 97: 35–61.
Hodinott-HillI., ThiloK. V., CoweyA., & WalshV. (2002). Auditory chronostasis: hanging on the telephone. Curr Biol 12: 1779–1781.
HoppJ. J., & FuchsA. F. (2002). Investigating the site of human saccadic adaptation with express and targeting saccades. Experimental Brain Research 144: 538–548.
HuntA. R., ChapmanC. S., & KingstoneA. (2008). Taking a long look at action and time perception. J Exp Psychol Hum Percept Perform 34: 125–136.
JacksonS. R., NewportR., OsborneF., WakelyR., SmithD., & WalshV. (2005). Saccade-contingent spatial and temporal errors are absent for saccadic head movements. Cortex 41: 205–212.
NakamuraK., & ColbyC. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc Natl Acad Sci USA 99: 4026–4031.
ParkJ., Schlag-ReyM., & SchlagJ. (2003). Voluntary action expands perceived duration of its sensory consequence. Experimental Brain Research 149: 527–529.
RoseD., & SummersJ. (1995). Duration illusions in a train of visual stimuli. Perception 24: 1177–1187.
RossJ., MorroneM. C., GoldbergM. E., & BurrD. C. (2001). Changes in visual perception at the time of saccades. Trends Neurosci 24: 113–121.
SasakiT., SuetomiD., NakajimaY., & ten HoopenG. (2002). Time-shrinking, its propagation, and Gestalt principles. Perception and Psychophysics 64: 919–931.
SommerM. A., & WurtzR. H. (2002). A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.
TreismanM., FaulknerA., NaishP. L., & BroganD. (1990). The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception 19: 705–743.
UmenoM. M., & GoldbergM. E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78: 1373–1383.
WalkerM. F., FitzgibbonE. J., & GoldbergM. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73: 1988–2003.
WeardenJ. H., EdwardsH., FakhriM., & PercivalA. (1998). Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol B: Comparative and Physiological Psychology 51: 97–120.
YangZ., & PurvesD. (2003). A statistical explanation of visual space. Nat Neurosci 6: 632–640.
YarrowK., HaggardP., HealR., BrownP., & RothwellJ. C. E. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414: 302–305.
YarrowK., HaggardP., & RothwellJ. C. (2004a). Action, arousal, and subjective time. Conscious Cogn 13: 373–390.
YarrowK., JohnsonH., HaggardP., & RothwellJ. C. E. (2004b). Consistent chronostasis effects across saccade categories imply a subcortical efferent trigger. J Cogn Neurosci 16: 839–847.
YarrowK., & RothwellJ. C. E. (2003). Manual chronostasis: tactile perception precedes physical contact. Curr Biol 13: 1134–1139.
YarrowK., WhiteleyL., HaggardP., & RothwellJ. C. (2006a). Biases in the perceived timing of perisaccadic visual and motor events. Perception and Psychophysics 68: 1217–1226.
YarrowK., WhiteleyL., RothwellJ. C., & HaggardP. (2006b). Spatial consequences of bridging the saccadic gap. Vision Res 46: 545–555.

Reference Title: References

Reference Type: bibliography

BlakemoreS. J., FrithC. D., & WolpertD. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci 11(5): 551–559.
BlakemoreS. J., FrithC. D., & WolpertD. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12(9): 1879–1884.
BlomdellA., BolmsjöG., BrogårdhT., CederbergP., IsakssonM., JohanssonR., et al. (2005). Extending an industrial root controller – implementation and applications of a fast open sensor interface. IEEE Robotics & Automation Magazine 12(3): 85–94.
CharpentierA. (1891). Analyse experimentale de quelques elements de la sensation de poids. Archives de Physiologie Normales et Pathologiques 3: 122–135.
DiedrichsenJ., VerstynenT., HonA., LehmanS. L., & IvryR. B. (2003). Anticipatory adjustments in the unloading task: is an efference copy necessary for learning? Exp Brain Res 148(2): 272–276.
DiedrichsenJ., VerstynenT., HonA., ZhangY., & IvryR. B. (2007). Illusions of force perception: the role of sensori-motor predictions, visual information, and motor errors. J Neurophysiol 97: 3305–3313.
DiedrichsenJ., VerstynenT., LehmanS. L., & IvryR. B. (2005). Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 93(2): 801–812.
DufossaeM., HugonM., & MassionJ. (1985). Postural forearm changes induced by predictable in time or voluntary triggered unloading in man. Exp Brain Res 60: 330–334.
ErnstM. O., & BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870): 429–433.
HaggardP., ClarkS., & KalogerasJ. (2002). Voluntary action and conscious awareness. Nat Neurosci 5(4): 382–385.
Hodinott-HillI., ThiloK. V., CoweyA., & WalshV. (2002). Auditory chronostasis: hanging on the telephone. Curr Biol 12(20): 1779–1781.
HugonM., MassionJ., & WiesendangerM. (1982). Anticipatory postural changes induced by active unloading and comparison with passive unloading in man. Pflugers Arch 393(4): 292–296.
JordanM., & RumelhartD. (1992). Forward models: supervised learning with a distal teacher. Cog Sci 16: 307–354.
KordingK. P., & WolpertD. M. (2004). Bayesian integration in sensorimotor learning. Nature 427(6971): 244–247.
LacquanitiF., SoechtingJ. F., & TerzuoloC. A. (1982). Some factors pertinent to the organization and control of arm movements. Brain Res 252(2): 394–397.
LumP. S., ReinkensmeyerD. J., LehmanS. L., LiP. Y., & StarkL. W. (1992). Feedforward stabilization in a bimanual unloading task. Exp Brain Res 89: 172–180.
MassonJ., IoffeM., SchmitzC., VialletF., & GantchevaR. (1999). Acquisition of anticipatory postural adjustments in a bimanual load-lifting task: normal and pathological aspects. Exp Brain Res 128(1–2): 229–235.
MatinL., PicoultE., StevensJ. K., EdwardsM. W. Jr., YoungD., & MacArthurR. (1982). Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216(4542): 198–201.
NelsonR. (1996). Interactions between motor commands and the somatic perception in sensorimotor cortex. Curr Opin Neurobiol 6: 801–810.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370(6487): 256–257.
OliverM., VerstynenT., & IvryR. B. (2003). Did I Do That? – Modulating the Somatosensory Percept through Self Production. Poster presented at the Cognitive Neuroscience Society meeting, 2003.
ParkJ., Schlag-ReyM., & SchlagJ. (2003). Voluntary action expands perceived duration of its sensory consequence. Exp Brain Res 149(4): 527–529.
SchmidtW. C. (2000). Endogenous attention and illusory line motion reexamined. J Exp Psych: Hum Percept Perform 26: 980–996.
SharmaJ., DragoiV., TenenbaumJ. B., MillerE., & SurM. (2003). V1 neurons signal acquisition of an internal representation of stimulus location. Science 300: 1758–1763.
SoechtingJ. F., LacquanitiF., & TerzuoloC. A. (1986). Coordination of arm movements in three-dimensional space. Sensorimotor mapping during drawing movement. Neuroscience 17: 295–311.
ToyamaK., KomatsuY., & ShibukiK. (1984). Integration of retinal and motor signals of eye movements in striate cortex cells of the alert cat. J Neurophysiol 51: 649–665.
van BeersR. J., SittigA. C., & Denier van der GonJ. J. (1999). Localization of a seen finger is based exclusively on proprioception and on vision of the finger. Exp Brain Res 125(1): 43–49.
WeiskrantzL., ElliottJ., & DarlingtonC. (1971). Preliminary observations on tickling oneself. Nature 230(5296): 598–599.
WeissY., SimoncelliE. P., & AdelsonE. H. (2002). Motion illusions as optimal percepts. Nat Neurosci 5(6): 598–604.
WelchR. B., & WarrenD. H. (1986). Intersensory interactions. In K. R.Boff, L.Kaufman, & J. P.Thomas (eds.), Handbook of Perception and Human Performance. New York: Wiley.
YarrowK., HaggardP., HealR., BrownP., & RothwellJ. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414(6861): 302–305.
YarrowK., HaggardP., & RothwellJ. C. (2004). Action, arousal, and subjective time. Conscious Cogn 13(2): 373–390.
YarrowK., & RothwellJ. C. (2003). Manual chronostasis: tactile perception precedes physical contact. Curr Biol 13(13): 1134–1139.

Reference Title: References

Reference Type: bibliography

AnsbacherH. L. (1944). Distortion in the perception of real movement. J Exp Psychol 34: 1–23.
AscherslebenG. (1999). Aufgabenabhängige Datierung von Ereignissen [Task-dependent Dating of Events]. Aachen: Shaker.
AscherslebenG., & BachmannT. (2007). Synchronization and Metacontrast Stimulation: Evidence for the Dual-Process Attentional Theory. Unpublished manuscript submitted for publication.
BachmannT. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica 70: 3–17.
BenussiV. (1913). Versuche zur Analyse taktil erweckter Scheinbewegungen [Experiments on the analysis of tactile apparent motions]. Archiv für die gesamte Psychologie 36: 58–135.
BerryM. J., BrivanlouI. H., JordanT. A., & MeisterM. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
BillJ. C., & TeftL. W. (1969). Space-time relations: effects of time on perceived visual extent. J Exp Psychol 81(1): 196–199.
BillJ. C., & TeftL. W. (1972). Space-time relations: the effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica 36(5): 358–369.
CaelliT. M., PrestonG. A., & HowellE. R. (1978). Implications of spatial summation models for processes of contour perception: a geometric perspective. Vision Res 18(6): 723–734.
CohenJ., HanselC. E. M., & SylvesterJ. D. (1953). A new phenomenon in time judgment. Nature 172: 901.
CohenJ., HanselC. E. M., & SylvesterJ. D. (1954). Interdependence of temporal and auditory judgments. Nature 174: 642–644.
CohenJ. M. A. (1969). Relativity of psychological time. In J. M. A.Cohen (ed.), Psychological Time in Health and Disease (40–57). Springfield.
CollyerC. E. (1977). Discrimination of spatial and temporal intervals defined by three light flashes: effects of spacing on temporal judgments and of timing on spatial judgments. Perception & Psychophysics 21(4): 357–364.
DowningC. J. (1988). Expectancy and visual-spatial attention: effects on perceptual quality. J Exp Psychol Hum Percept Perform 14: 188–202.
DröslerJ. (1979). Relativistic effects in visual perception of real and apparent motion. Archiv fur Psychologie 131(3): 249–266.
ErlhagenW., & JanckeD. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modelling study. Vis Cogn 11(2–3): 315–340.
HelsonH. (1930). The Tau Effect – an example of psychological relativity. Science 1847: 536–537.
HelsonH., & KingS. M. (1931). The Tau effect: An example of psychological relativity. J Exp Psychol 14: 202–217.
HuangY. L., & JonesB. (1982). On the interdependence of temporal and spatial judgments. Perception & Psychophysics 32(1): 7–14.
JanckeD. (2000). Orientation formed by a spot's trajectory: a two-dimensional population approach in primary visual cortex. J Neurosci 20(14): RC86.
JanckeD., ChavaneF., NaamanS., & GrinvaldA. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature 428: 423–426.
JonesB., & HuangY. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: algebraic models of the Tau and Kappa effects. Psychol Bull 91(1): 128–142.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.
MüsselerJ. (1999). Perceiving and measuring of spatiotemporal events. In S.Jordan (ed.), Modeling Consciousness across the Disciplines (95–112). Lanham, MD: University Press of America, Inc.
MüsselerJ., & NeumannO. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): evidence for an attention-shifting model. Psychol Res 54: 246–266.
MüsselerJ., StorkS., & KerzelD. (2002). Comparing mislocalizations with moving stimuli: the Fröhlich effect, the flash-lag effect, and representational momentum. Vis Cogn 9: 120–138.
NeumannO., EsselmannU., & KlotzW. (1993). Different effects of visual-spatial attention on response latency and temporal-order judgment. Psychological Research/Psychologische Forschung 56: 26–34.
ParksT. E. (1965). Post-retinal visual storage. Am J Psychol 78: 145–147.
PosnerM. I. (1978). Chronometric Explorations of Mind. Oxford, England: Erlbaum.
PosnerM. I. (1980). Orienting of attention. Q J Exp Psychol 32: 3–25.
Price-WilliamsD. R. (1954a). A further study of space-time perception. Tohoku Journal of Experimental Psychology 1: 39–44.
Price-WilliamsD. R. (1954b). The kappa effect. Nature 4399: 363–364.
SarrazinJ. C., GiraudoM. D., PailhousJ., & BootsmaR. J. (2004). Dynamics of balancing space and time in memory: Tau and Kappa effects revisited. J Exp Psychol: Hum Percept Perform 30(3): 411–430.
ScharlauI. (2004). The spatial distribution of attention in perceptual latency priming. Q J Exp Psychol: Hum Exp Psychol 57A: 1411–1436.
ScharlauI., & NeumannO. (2003). Perceptual latency priming by masked and unmasked stimuli: evidence for an attentional interpretation. Psychological Research/Psychologische Forschung 67: 184–196.
ShulmanG. L., WilsonJ., & SheehyJ. B. (1985). Spatial determinants of the distribution of attention. Perception & Psychophysics 37: 59–65.
SteglichC., & NeumannO. (2000). Temporal, but not spatial, context modulates a masked prime's effect on temporal order judgement, but not on response latency. Psychol Res 63: 36–47.
SteinmanB. A., SteinmanS. B., & LehmkuhleS. (1995). Visual attention mechanisms show a center-surround organization. Vision Res 35: 1859–1869.
VierordtK. (1868). Der Zeitsinn nach Versuchen [The sense of time in experiments]. Tübingen (Germany): Laupp.
ZöllnerF. (1862). Ueber eine neue Art anorthoskopischer Zerrbilder [About a new kind of anorthoscopic distorted figures]. Annalen der Physik. Poggendorfs Annalen 117: 477–484.

Reference Title: References

Reference Type: bibliography

AlbrightT. D., & DesimoneR. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65: 582–592.
ArnoldD. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.
ArnoldD. H., & CliffordC. W. G. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B 269: 579–583.
ArnoldD. H., CliffordC. W. G., & WenderothP. (2001). Asynchronous processing in vision: colour leads motion. Curr Biol 11: 596–600.
BarburJ. L., WolfJ., & LennieP. (1998). Visual processing levels revealed by response latencies to changes in different visual attributes. Proc R Soc Lond B 265: 2321–2325.
BartelsA., & ZekiS. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B 265: 2332–2337.
BedellH. E., ChangS. T. L., OgmenH., & PatelS. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.
BlakeR., & HeS. (2005). Adaptation as a tool for probing the neural correlates of visual awareness: progress and precautions. In: C. W. G.Clifford & G.Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (281–307). Oxford: Oxford University Press.
BlaserE., PapathomasT., & VidnyanszkyZ. (2005). Binding of motion and colour is early and automatic. Eur J Neurosci 21: 2040–2044.
CliffordC. W. G. (2005). Functional ideas about adaptation applied to spatial and motion vision. In: C. W. G.Clifford & G.Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (47–82). Oxford: Oxford University Press.
CliffordC. W. G., ArnoldD. H., & PearsonJ. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.
CliffordC. W. G., HolcombeA. O., & PearsonJ. (2004). Rapid global form binding with loss of associated colors. J Vis 4: 1090–1101.
CliffordC. W. G., SpeharB., & PearsonJ. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.
DennettD. C., & KinsbourneM. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.
EaglemanD., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EnnsJ. T., & OrietC. (2004). Perceptual modularity: modularity of consciousness or object updating? J Vis 4: 27a.
FavreauO. E., EmersonV. F., & CorballisM. C. (1972). Motion perception: a color-contingent aftereffect. Science 176: 78–79.
ForteJ., & CliffordC. W. G. (2005). Interocular transfer of the tilt illusion shows that monocular orientation mechanisms are colour selective. Vision Res 45: 2715–2721.
FrisbyJ. P. (1980). Seeing: Illusion, Brain and Mind. Oxford: Oxford University Press.
HeS., CavanaghP., & IntriligatorJ. (1996). Attentional resolution and the locus of visual awareness. Nature 383: 334–337.
HeS., & MacLeodD. I. (2001). Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411: 473–476.
HochsteinS., & AhissarM. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.
HolcombeA. O. (2001). A purely temporal transparency mechanism in the visual system. Perception 30: 1311–1320.
HolcombeA. O., & CavanaghP. (2001). Early binding of feature pairs for visual perception. Nat Neurosci 4: 127–128.
HorwitzG. D., & AlbrightT. D. (2005). Paucity of chromatic linear motion detectors in macaque V1. J Vis 5: 525–533.
HumphreyG. K., & GoodaleM. A. (1998). Probing unconscious visual processing with the McCollough effect. Conscious Cogn 7: 494–519.
JamesW. (1890). The Principles of Psychology, Vol. 1. New York: Henry Holt.
JeannerodM. (1992). The where in the brain determines the when in the mind. Behav Brain Sci 15: 212–213.
JohnstonA., & NishidaS. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.
JohnsonE. N., HawkenM. J., & ShapleyR. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4: 409–416.
KanaiR., PaffenC. L. E., GerbinoW., & VerstratenF. A. J. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.
MatherG., VerstratenF., & AnstisS. (eds.). (1998). The Motion Aftereffect: A Modern Perspective. Cambridge, MA: MIT Press.
MayhewJ. E. W., & AnstisS. M. (1972). Movement aftereffects contingent on colour, intensity and pattern. Perception & Psychophysics 12: 77–85.
MoradiF., & ShimojoS. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B 264: 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B 264: 1407–1414.
MunkM. H. J., NowakL. G., GirardP., ChounlamountriN., & BullierJ. (1995). Visual latencies in cytochrome oxidase bands of macaque area V2. Proc Natl Acad Sci USA 92: 988–992.
NishidaS., & JohnstonA. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.
Pascual-LeoneA., & WalshV. (2001). Fast back projections from the motion to the primary visual area necessary for visual awareness. Science 292: 510–512.
QianN., & AndersenR. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367–7380.
QianN., AndersenR. A., & AdelsonE. H. (1994a). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14: 7357–7366.
QianN., AndersenR. A., & AdelsonE. H. (1994b). Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci 14: 7381–7392.
RajimehrR. (2004). Unconscious orientation processing. Neuron 41: 663–673.
SchillerP. H., & MalpeliJ. G. (1978). Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 41: 788–797.
SeidemannE., PoirsonA. B., WandellB. A., & NewsomeW. T. (1999). Color signals in area MT of the macaque monkey. Neuron 24: 911–917.
ShadlenM. N., & NewsomeW. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896.
ShadyS., MacLeodD. I., & FisherH. S. (2004). Adaptation from invisible flicker. Proc Natl Acad Sci USA 101: 5170–5173.
ShippS., & ZekiS. (1989). The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1: 309–332.
SnowdenR. J., TreueS., EricksonR. G., & AndersenR. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785.
van DoornA. J., & KoenderinkJ. J. (1982). Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188.
VivianiP., & AymozC. (2001). Colour, form, and movement are not perceived simultaneously. Vision Res 41: 2909–2918.
WuD. A., KanaiR., & ShimojoS. (2004). Vision: steady-state misbinding of colour and motion. Nature 429: 262.
ZekiS. (1993). A Vision of the Brain. Oxford: Blackwell.
ZekiS. (2003). The disunity of consciousness. Trends Cogn Sci 7: 214–218.
ZekiS., & BartelsA. (1998). The asynchrony of consciousness. Proc R Soc Lond B 265: 1583–1585.
ZekiS., & BartelsA. (1999). Toward a theory of visual consciousness. Conscious Cogn 8: 225–229.

Reference Title: References

Reference Type: bibliography

BachmannT. (1994). Psychophysiology of Visual Masking. Commack, NY: Nova Science.
BlakeR., & LeeS. H. (2005). The role of temporal structure in human vision. Behav Cogn Neurosci Rev 4(1): 21–42.
BurrD. C., & MorganM. J. (1997). Motion deblurring in human vision. Proc Biol Sci 264(1380): 431–436.
CallawayE. M. (1998). Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21: 47–74.
CrickF., & KochC. (1990). Some reflections on visual awareness. Cold Spring Harb Symp Quant Biol 55: 953–962.
DennettD. C. (1991). Consciousness Explained. Boston: Little, Brown & Co.
Di LolloV. (1980). Temporal integration in visual memory. J Exp Psychol Gen 109(1): 75–97.
EaglemanD. M. (2001). Visual illusions and neurobiology. Nat Rev Neurosci 2: 920–926.
EaglemanD. M. (2008). Human time perception and its illusions. Curr Opin Neurobiol. In press.
EaglemanD. M., & DennettD. (In preparation). Computation on a need-to-know basis.
EaglemanD. M., & SejnowskiT. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EaglemanD. M., & SejnowskiT. J. (2000b). Latency difference versus postdiction: response to Patel et al. Science 290(5494): 1051a.
EaglemanD. M., & SejnowskiT. J. (2000c). The position of moving objects: response to Krekelberg et al. Science 289: 1107a.
EaglemanD. M., & SejnowskiT. J. (2003). The line-motion illusion can be reversed by motion signals after the line disappears. Perception 32: 963–968.
EaglemanD. M., & SejnowskiT. J. (2007). Motion signals bias position judgments: a unified explanation for the flash-lag, flash-drag, flash-jump and Frohlich effects. J Vision 7(4): 1–12.
EngelA. K., KonigP., et al. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15(6): 218–226.
GawneT. J., KjaerT. W., et al. (1996). Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76(2): 1356–1360.
GoodaleM. A., & MilnerA. (1992). Separate visual pathways for perception and action. Trends Neurosci 15: 20–25.
GoodaleM. A., & MilnerA. D. (2004). Sight Unseen. Oxford: Oxford University Press.
HirshI. J., & SherrickC. E. (1961). Perceived order in different sense modalities. J Exp Psychol 62: 423–432.
IntraubH. (1985). Visual dissociation: an illusory conjunction of pictures and forms. J Exp Psychol: Hum Percept Perform 11: 431–442.
JuleszB., & WhiteB. (1969). Short term visual memory and the Pulfrich phenomenon. Nature 222(194): 639–641.
KinsbourneM. (1993). Integrated cortical field model of consciousness. Ciba Found Symp 174: 43–50.
KlineK. A., & EaglemanD. M. (2008). Evidence against the snapshot hypothesis of illusory motion reversal. J Vis 8(4): 13, 1–5.
KlineK. A., HolcombeA. O., et al. (2004). Illusory reversal of motion is caused by rivalry, not by perceptual snapshots of the visual scene. Vision Res 44(23): 2653–2658.
KolersP., & von GrunauM. (1976). Shape and color in apparent motion. Vision Res 16: 329–335.
KopinskaA., & HarrisL. R. (2004). Simultaneity constancy. Perception 33: 1049–1060.
KopinskaA., HarrisL. R., & LeeI. (2003). Comparing central and peripheral events: compensating for neural processing delays. J Vis 3: 751a.
LammeV. A. (2003). Why visual attention and awareness are different, Trends Cogn Sci 7: 12–18.
LammeV. A., & RoelfsemaP. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing, Trends Neurosci 23: 571–579.
LibetB., AlbertsW. W., WrightE. W., & FeinsteinB. (1967). Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158: 1597–1600.
MacknikS. L., & LivingstoneM. S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system. Nat Neurosci 1(2): 144–149.
MaunsellJ. H., GhoseG. M., et al. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16(1): 1–14.
MumfordD. (1994). Neuronal architectures for pattern-theoretic problems. In: C.Koch & J. L.Davis (eds.), Large-Scale Neuronal Theories of the Brain (125–152). Cambridge, MA: MIT Press.
NowakL. G., & BullierJ. (1997). The timing of information transfer in the visual system. In: J.Kass, K.Rockland, & A.Peters (eds.), ‘Extrastriate Cortex’ Cerebral Cortex, Vol. 12 (205–241). New York: Plenum Press.
OramM. W., XiaoD., et al. (2002). The temporal resolution of neural codes: does response latency have a unique role? Philos Trans R Soc Lond B Biol Sci 357(1424): 987–1001.
PatelS. S., OgmenH., et al. (2000). Flash-lag effect: differential latency, not postdiction. Science 290(5494): 1051.
PessoaL., ThompsonE., et al. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav Brain Sci 21(6): 723–748; discussion 748–802.
PulfrichC. (1922). Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. Die Naturwissenschafte 10.
PurpuraK., TranchinaD., et al. (1990). Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4(1): 75–93.
PurushothamanG., PatelS. S., et al. (1998). Moving ahead through differential visual latency. Nature 396(6710): 424.
RossJ., & HogbenJ. H. (1974). Short-term memory in stereopsis. Vision Res 14(11): 1195–1201.
SchmoleskyM. T., WangY., HanesD. P., ThompsonK. G., LeutgebS., SchallJ. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79(6): 3272–3278.
SteinmetzR., & EnglerC. (1993). Human perception of Media Synchronization. IBM ENB Tech Rep 43(9310). Heidelberg.
ThorpeS., DelormeA., et al. (2001). Spike-based strategies for rapid processing. Neural Network 14(6–7): 715–725.
UttalW. R. (1979). Do central nonlinearities exist? Behav Brain Sci 2: 286.
VanRullenR., & KochC. (2003). Is perception discrete or continuous? Trends Cogn Sci 7(5): 207–213.
VarelaF. J., ToroA., et al. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5): 675–686.
WhitneyD., & CavanaghP. (2000). Latency difference, not postdiction. Science.
WhitneyD., & MurakamiI. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1(8): 656–657.
WilsonJ. A., & AnstisS. M. (1969). Visual delay as a function of luminance. Am J Psychol 82(3): 350–358.
ZekiS., & BartelsA. (1998a). The asynchrony of consciousness. Proc R Soc Lond B Biol Sci 265(1405): 1583–1585.
ZekiS., & BartelsA. (1998b). The autonomy of the visual systems and the modularity of conscious vision. Philos Trans R Soc Lond B Biol Sci 353(1377): 1911–1914.

Reference Title: References

Reference Type: bibliography

AlaisD., & CarlileS. (2005). Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proc Natl Acad Sci U S A 102: 2244–2247.
AllanL. G. (1975). The relationship between judgments of successiveness and judgments of order. Perception & Psychophysics 18: 29–36.
ArnoldD. H., JohnstonA., & NishidaS. (2005). Timing sight and sound. Vision Res 45: 1275–1284.
AscherslebenG. (1999). Task-dependent timing of perceptual events. In G.Aschersleben, T.Bachmann, & J.Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events (293–318). North Holland: Elsevier.
AscherslebenG., & BertelsonP. (2003). Temporal ventriloquism: cross-modal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. Int J Psychophysiol 50: 157–163.
BergenheimM., JohanssonH., GranlundB., & PedersenJ. (1996). Experimental evidence for a sensory synchronization of sensory information to conscious experience. In S. R.Hameroff, A. W.Kaszniak, & A. C.Scott (eds.), Towards a Science of Consciousness: The First Tucson Discussions and Debates (301–310). Cambridge, MA: MIT Press.
BertelsonP., & AscherslebenG. (2003). Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. Int J Psychophysiol 50: 147–155.
CelesiaG. G. (1976). Organization of auditory cortical areas in man. Brain 99: 403–414.
CraigJ. C., & BaihuaX. (1990). Temporal order and tactile patterns. Perception & Psychophysics 47: 22–34.
DennettD. C. (1991). Consciousness Explained. Boston: Little, Brown and Company.
DennettD. C., & KinsbourneM. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–201.
DixonN. F., & SpitzL. (1980). The detection of auditory visual desynchrony. Perception 9: 719–721.
EngelG. R., & DoughertyW. G. (1971). Visual-auditory distance constancy. Nature 234: 308.
FujisakiW., ShimojoS., KashinoM., & NishidaS. (2004). Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778.
GregoryR. L. (1963). Distortion of visual space as inappropriate constancy scaling. Nature 199: 678–680.
HarrarV., & HarrisL. R. (2005). Simultaneity constancy: detecting events with touch and vision. Exp Brain Res 166: 465–473.
HarrarV., & HarrisL. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res 186: 517–524.
JaeklP. M., & HarrisL. R. (2007). Auditory-visual temporal integration measured by shifts in perceived temporal location. Neurosci Lett 417: 219–224.
JaśkowskiP. (1999). Reaction time and temporal-order judgement as measures of perceptual latency: the problem of dissociations. In G.Aschersleben, T.Bachmann, & J.Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events (265–282). North Holland: Elsevier.
JaśkowskiP., & VerlegerR. (2000). Attentional bias toward low-intensity stimuli: an explanation for the intensity dissociation between reaction time and temporal order judgment? Conscious Cogn 9: 435–456.
JeffreysD. A., & AxfordJ. G. (1972). Source locations of pattern-specific components of human VEPs. Exp Brain Res 16: 1–21.
KingA. J., & PalmerA. R. (1985). Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60: 492–500.
KopinskaA., & HarrisL. R. (2004). Simultaneity constancy. Perception 33: 1049–1060.
LesevreN. (1982). Chronotopographical analysis of the human evoked potential in relation to the visual field. Ann NY Acad Sci 388: 156–182.
LewaldJ., & GuskiR. (2004). Auditory-visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception. Neurosci Lett 357: 119–122.
LibetB. (2004). Mind Time: The Temporal Factor in Consciousness. Cambridge, MA: Harvard University Press.
Liegeois-ChauvelC., MusolinoA., & ChauvelP. (1991). Localization of the primary auditory area in man. Brain 114: 139–153.
LuceR. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford University Press.
MacefieldG., GandeviaS. C., & BurkeD. (1989). Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain 112: 1519–1532.
McKeeS. P., & SmallmanH. S. (1998). Size and speed constancy. In V.Walsh & J. J.Kulikowski (eds.), Perceptual Constancy (373–408). Cambridge: Cambridge University Press.
MiyazakiM., YamamotoS., UchidaS., & KitazawaS. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment. Nat Neurosci 9: 875–877.
Morein-ZamirS., Soto-FaracoS., & KingstoneA. (2003). Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17: 154–163.
NavarraJ., Soto-FaracoS., & SpenceC. (2007). Adaptation to audiotactile asynchrony. Neurosci Lett 413: 72–76.
NavarraJ., VatakisA., ZampiniM., Soto-FaracoS., HumphreysW., & SpenceC. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25: 499–507.
NickallsR. W. D. (1996). The influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect. Vision Res 36: 2865–2872.
PöppelE. (1988). Mindworks. Boston: Harcourt Brace Jovanovich.
PöppelE., SchillK., & von SteinbuchelN. (1990). Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77: 89–91.
SchneiderK. A., & BavelierD. (2003). Components of visual prior entry. Cogn Psychol 47: 333–366.
ShoreD. I., SpryE., & SpenceC. (2002). Confusing the mind by crossing the hands. Brain research. Cogn Brain Res 14: 153–163.
Soto-FaracoS., RonaldA., & SpenceC. (2004). Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception. Percept Psychophys 66: 1077–1094.
SpenceC., BaddeleyR., ZampiniM., JamesR., & ShoreD. I. (2003). Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65: 318–328.
SpenceC., ShoreD. I., & KleinR. M. (2001). Multisensory prior entry. J Exp Psychol General 130: 799–832.
SpenceC., & SquireS. (2003). Multisensory integration: maintaining the perception of synchrony. Curr Biol 13: R519–521.
SternbergS., & KnollR. L. (1973). The perception of temporal order: fundamental issues and a general model. In S.Kornblum (ed.), Attention and Performance IV (629–685). New York: Academic Press.
StoneR. V., HunkinN. M., PorrillJ., WoodR., KeelerV., & BeanlandM., et al. (2001). When is now? Perception and simultaneity. Proc Roy Soc Lond B 268: 31–38.
SugitaY., & SuzukiY. (2003). Audiovisual perception: implicit estimation of sound-arrival time. Nature 421: 911.
VatakisA., & SpenceC. (2006). Audiovisual synchrony perception for speech and music assessed using a temporal order judgment task. Neurosci Lett 393: 40–44.
von BékésyG. (1963). Interaction of paired sensory stimuli and conduction in peripheral nerves. J Applied Physiol 18: 1276–1284.
von BékésyG. (1967). Sensory Inhibition. Princeton, NJ: Princeton University Press.
VroomenJ., KeetelsM., de GelderB., & BertelsonP. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22: 32–35.
WalshV., & KulikowskiJ. (1998). Perceptual Constancy: Why Things Look as They Do. Cambridge: Cambridge University Press.
WilsonJ. A., & AnstisS. M. (1969). Visual delay as a function of luminance. Am J Psychol 82: 350–358.
ZampiniM., BrownT., ShoreD. I., MaravitaA., RoderB., & SpenceC. (2005). Audiotactile temporal order judgments. Acta Psychol (Amst) 118: 277–291.
ZampiniM., GuestS., ShoreD. I., & SpenceC. (2005). Audio-visual simultaneity judgments. Percept Psychophys 67: 531–544.
ZampiniM., ShoreD. I., & SpenceC. (2005). Audiovisual prior entry. Neurosci Lett 381: 217–222.

Reference Title: References

Reference Type: bibliography

AdamsW. J., & MamassianP. (2004). The effects of task and saliency on latencies for colour and motion processing. Proc R Soc Lond B Biol Sci 271: 139–146.
AgliotiS. M., FiorioM., ForsterB., & TinazziM. (2003). Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology 60: 782–785.
AlaisD., & BurrD. (2004). The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14: 257–262.
ArdenG. B., & WealeR. A. (1954). Variations of the latent period of vision. Proc R Soc Lond B 142: 258–267.
ArnoldD. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.
ArnoldD. H., & CliffordC. W. G. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B Biol Sci 269: 579–583.
ArnoldD. H., CliffordC. W. G., & WenderothP. (2001). Asynchronous processing in vision: colour leads motion. Curr Biol 11: 594–600.
ArnoldD. H., JohnstonA., & NishidaS. (2005). Timing sight and sound. Vision Res 45: 1275–1284.
AymozC., & VivianiP. (2004). Perceptual asynchronies for biological and non-biological visual events. Vision Res 44: 1547–1563.
BairW., CavanaughJ. R., SmithM. A., & MovshonJ. A. (2002). The timing of response onset and offset in macaque visual neurons. J Neurosci 22: 3189–3205.
BarlowH. B., BlakemoreC., & PettigrewJ. D. (1967). The neural mechanism of binocular depth discrimination. J Physiol 193: 327–342.
BarlowH. B., & LevickW. R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178: 477–504.
BartelsA., & ZekiS. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B Biol Sci 265: 2327–2332.
BedellH. E., ChungS. T. L., OgmenH., & PatelS. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.
BedellH. E., PatelS. S., ChungS. T. L., & OgmenH. (2006). Perceptual consequences of timing differences within parallel feature-processing systems in human vision. In H.Ogmen & B. G.Breitmeyer (eds.), The First Half Second: The Microgenesis and Temporal Dynamics of Unconscious and Conscious Visual Processes (245–258). Cambridge, MA: MIT Press.
BorstA., & EgelhaafM. (1989). Principles of visual motion detection. Trends Neurosci 12: 297–306.
BuonomanoD. V., & KarmarkarU. R. (2002). How do we tell time? Neuroscientist 8: 42–51.
CliffordC. W. G., ArnoldD. H., & PearsonJ. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.
CliffordC. W. G., SpeharB., & PearsonJ. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.
CoullJ. T. (2004). fMRI studies of temporal attention: allocating attention within, or towards, time. Cognitive Brain Research 21: 216–226.
CoweyA., & HeywoodC. A. (1997). Cerebral achromatopsia: colour blindness despite wavelength processing. Trends Cogn Sci 1: 133–139.
DennettD. C., & KinsbourneM. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.
DzhafarovE. N., SekulerR., & AllikJ. (1993). Detection of changes in speed and direction of motion: reaction time analysis. Perception Psychophys 54: 733–750.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EnnsJ. T., & OrietC. (2004). Perceptual asynchrony: modularity of consciousness or object updating? Vision Sciences Society Abstracts.
ErnstM. O., & BulthoffH. H. (2004). Merging the senses into a robust percept. Trends Cogn Neurosci 4: 162–169.
FujisakiW., KoeneA., ArnoldD. H., JohnstonA., & NishidaS. (2006). Visual search for a target changing in synchrony with an auditory signal. Proc R Soc Lond B Biol Sci 273: 865–874.
FujisakiW., ShimojoS., KashinoM., & NishidaS. (2004). Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778.
GawneT. J., KjaerT. W., & RichmondB. J. (1996). Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76: 1356–1360.
HillisJ. M., ErnstM. O., BanksM. S., & LandyM. S. (2002). Combining sensory information: mandatory fusion within, but not between, senses. Science 298: 1627–1630.
JohnstonA., & NishidaS. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.
KanaiR., PaffenC. L. E., GerbinoW., & VerstratenF. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.
LibetB. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci 8: 529–566.
LibetB., GleasonC. A., WrightE. W., & PearlD. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (Readiness-Potential): the unconscious initiation of a freely voluntary act. Brain 106: 623–642.
LibetB., WrightE. W., FeinsteinB., & PearlD. K. (1979). Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102: 193–224.
LennieP. (1998). Single units and visual cortical organization. Perception 27: 1–47.
LivingstoneM. S., & HubelD. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240: 740–749.
LlinasR. R., LeznikE., & UrbanoF. J. (2002). Temporal binding via cortical coincidence detection of specific and non-specific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99: 445–449.
MateeffS., DimitrovG., & HohnsbeinJ. (1995). Temporal thresholds and reaction time to changes in velocity of visual motion. Vision Res 35: 355–363.
MoradiF., & ShimojoS. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264: 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264: 1407–1414.
MunkM. H. J., NowakL. G., GirardP., ChounlamountriN., & BullierJ. (1995). Visual latencies in cytochrome oxidase bands of macaque area V2. Proc Nat Acad Sci USA 92: 988–992.
NishidaS., & JohnstonA. (2002). Marker location not processing latency determines temporal binding of visual attributes. Curr Biol 12: 359–368.
OgmenH., PatelS. S., BedellH. E., & CamuzK. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.
OhzawaI., DeAngelisG. C., & FreemanR. D. (1990). Stereoscoptic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249: 1037–1041.
PaulL., & SchynsP. G. (2003). Attention enhances feature integration. Vision Res 43: 1793–1798.
QianN., & AndersenR. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367–7380.
QianN., AndersenR. A., & AdelsonE. H. (1994a). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14: 7357–7366.
QianN., AndersenR. A., & AdelsonE. H. (1994b). Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci 14: 7381–7392.
RaoR. P. N., EaglemanD. M., & SejnowskiT. J. (2001). Optimal smoothing in visual motion perception. Neural Comput 13: 1243–1253.
ReevesA., & SperlingG. (1986). Attention gating in short-term visual memory. Psychol Rev 93: 180–206.
ReichardtW. (1961). Autocorrelation, a principle for the evaluation of sensory information by the nervous system. In W. A.Rosenblith (ed.), Sensory Communication (303–317). Cambridge, MA: MIT Press.
RivestJ., & CavanaghP. (1996). Localizing contours defined by more than one attribute. Vision Res 36: 53–66.
RoufsJ. A. (1963). Perception lag as a function of stimulus luminance. Vision Res 3: 81–91.
SchillerP. H., & MalpeliJ. G. (1978). Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 41: 788–797.
SnowdenR. J., TreueS., EriksonR. G., & AndersenR. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785.
SternbergS., & KnollR. L. (1973). The perception of temporal order: fundamental issues and a general model. In S.Kornblum (ed.), Attention and Performance IV (629–685). New York: Academic Press.
TreismanA. M. (1984). Temporal rhythms and cerebral rhythms. Ann N Y Acad Sci 423: 542–565.
TreismanA. M., & GeladeG. (1980). A feature-integration theory of attention. Cogn Psychol 12(1): 97–136.
van de GrindW. (2002). Physical, neural and mental timing. Conscious Cogn 11: 241–264.
VivianiP., & AymozC. (2001). Colour, form and movement are not perceived simultaneously. Vision Res 41: 2909–2918.
VogelsI. M. (2004). Detection of temporal delays in visual-haptic interfaces. Human Factors 46: 118–134.
WilliamsJ. M., & LitA. (1983). Luminance-dependent visual latency for the Hess effect, the Pulfrich effect, and simple reaction time. Vision Res 23: 171–179.
ZekiS. (1978). Functional specialization in the visual cortex of the monkey. Nature 274: 423–428.
ZekiS. (2002). The disunity of consciousness. Trends Cogn Sci 13: 173–196.
ZekiS., & BartelsA. (1998). The asynchrony of consciousness. Proc R Soc London B Biol Sci 265: 1583–1585.
ZihlJ., von CramonD., MaiN., & SchmidC. H. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106: 313–340.

Reference Title: References

Reference Type: bibliography

AdamsW. J., & MamassianP. (2004). The effects of task and saliency on latencies for colour and motion processing. Proc R Soc Lond B Biol Sci 271: 139–146.
AdelsonE. H., & BergenJ. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299.
AmanoK., GodaN., NishidaS., EjimaY., TakedaT., & OhtaniY. (2006). Estimation of the timing of human visual perception from magnetoencephalography. J Neurosci 26: 3981–3991.
AmanoK., JohnstonA., & NishidaS. (2007). Two mechanisms underlying the effect of angle of motion direction change on colour-motion asynchrony. Vision Res 47: 687–705.
AmanoK., NishidaS., & TakedaT. (2004a). Enhanced neural responses correlated with perceptual binding of color and motion. Neurol Clin Neurophysiol 2004: 48.
AmanoK., NishidaS., & TakedaT. (2004b). MEG responses for color-motion asynchrony [Abstract]. J Vis 4: 554a.
ArnoldD. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.
ArnoldD. H., & CliffordC. W. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B Biol Sci 269: 579–583.
ArnoldD. H., CliffordC. W., & WenderothP. (2001). Asynchronous processing in vision: color leads motion. Curr Biol 11: 596–600.
ArrighiR., AlaisD., & BurrD. (2005). Perceived timing of first- and second-order changes in vision and hearing. Exp Brain Res 166: 445–454.
AshidaH., SeiffertA. E., & OsakaN. (2001). Inefficient visual search for second-order motion. J Opt Soc Am A Opt Image Sci Vis 18: 2255–2266.
AymozC., & VivianiP. (2004). Perceptual asynchronies for biological and non-biological visual events. Vision Res 44: 1547–1563.
BachmannT., PoderE., & LuigaI. (2004). Illusory reversal of temporal order: the bias to report a dimmer stimulus as the first. Vision Res 44: 241–246.
BartelsA., & ZekiS. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B Biol Sci 265: 2327–2332.
BedellH. E., ChungS. T., OgmenH., & PatelS. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.
BraddickO. (1974). A short-range process in apparent motion. Vision Res 14: 519–527.
BullierJ. (2001). Integrated model of visual processing. Brain Res Brain Res Rev 36: 96–107.
BurrD. C., & RossJ. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22: 8661–8664.
Castelo-BrancoM., GoebelR., NeuenschwanderS., & SingerW. (2000). Neural synchrony correlates with surface segregation rules. Nature 405: 685–689.
CavanaghP., ArguinM., & von GrünauM. (1989). Interattribute apparent motion. Vision Res 29: 1197–1204.
CavanaghP., HolcombeA. O., & ChouW. (2008). Mobile computation: spatiotemporal integration of the properties of objects in motion. J Vis 8(12): 1, 1–23.
ChurchlandP. S. (1981). On the alleged backwards referral of experiences and its relevance to the mind-body problem. Philos Sci 48: 165–181.
CliffordC. W., ArnoldD. H., & PearsonJ. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.
CliffordC. W., SpeharB., & PearsonJ. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.
CookE. P., & MaunsellJ. H. (2002). Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci 5: 985–994.
DennettD. C. (1991). Consciousness Explained. Boston: Little Brown & Co.
DennettD. C., & KinsbourneM. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EngelA. K., FriesP., & SingerW. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.
FujisakiW., KoeneA., ArnoldD., JohnstonA., & NishidaS. (2006). Visual search for a target changing in synchrony with an auditory signal. Proc R Soc Lond B Biol Sci 273: 865–874.
FujisakiW., & NishidaS. (2005). Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Exp Brain Res 166: 455–464.
FujisakiW., & NishidaS. (2007). Feature-based processing of audio-visual synchrony perception revealed by random pulse trains. Vision Res 47: 1075–1093.
FujisakiW., & NishidaS. (2008). Top-down feature-based selection of matching features for audio-visual synchrony discrimination. Neurosci Lett 433: 225–230.
FujisakiW., & NishidaS. (2009). Audio–tactile superiority over visuo–tactile and audio–visual combinations in the temporal resolution of synchrony perception. Exp Brain Res 198: 245–259.
FujisakiW., ShimojoS., KashinoM., & NishidaS. (2004). Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778.
GeislerW. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400: 65–69.
GottsdankerR. (1956). The ability of human operators to detect acceleration of target motion. Psychol Bull 53: 477–487.
HeS., CavanaghP., & IntriligatorJ. (1996). Attentional resolution and the locus of visual awareness. Nature 383: 334–337.
HolcombeA. O., & CavanaghP. (2001). Early binding of feature pairs for visual perception. Nat Neurosci 4: 127–128.
IttiL., & KochC. (2001). Computational modelling of visual attention. Nat Rev Neurosci 2: 194–203.
JaskowskiP. (1996). Simple reaction time and perception of temporal order: dissociations and hypotheses. Percept Mot Skills 82: 707–730.
JohnstonA., McCowanP. W., & BuxtonH. (1992). A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proc R Soc Lond B Biol Sci 250: 297–306.
JohnstonA., & NishidaS. (2001). Time perception: brain time or event time? Curr Biol 11: R427–430.
KanaiR., PaffenC. L., GerbinoW., & VerstratenF. A. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.
KawanoK., ShidaraM., WatanabeY., & YamaneS. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71: 2305–2324.
KeebleD. R., & NishidaS. (2001). Micropattern orientation and spatial localization. Vision Res 41: 3719–3733.
KolersP. A. (1972). Aspects of Motion Perception. New York: Pergamon Press.
KopinskaA., & HarrisL. R. (2004). Simultaneity constancy. Perception 33: 1049–1060.
LibetB. (1981). The experimental evidence for subjective referral of a sensory experience backwards in time: Reply to P.S. Churchland. Philos Sci 48: 182–197.
LibetB., WrightE. W., Jr., FeinsteinB., & PearlD. K. (1979). Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102: 193–224.
LinaresD., & Lopez-MolinerJ. (2006). Perceptual asynchrony between color and motion with a single direction change. J Vis 6: 974–981.
LuZ. L., & SperlingG. (1995). Attention-generated apparent motion. Nature 377: 237–239.
LuZ. L., & SperlingG. (2001). Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis 18: 2331–2370.
MarrD. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: Freeman.
McDonaldJ. J., Teder-SalejarviW. A., RussoF. D., & HillyardS. A. (2005). Neural basis of auditory-induced shifts in visual time-order perception. Nat Neurosci 8: 1197–1202.
MoradiF., & ShimojoS. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.
MorroneM. C., RossJ., & BurrD. (2005). Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8: 950–954.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264: 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264: 1407–1414.
NeumannO., EsselmannU., & KlotzW. (1993). Differential effects of visual-spatial attention on response latency and temporal-order judgment. Psychol Res 56: 26–34.
NishidaS., & JohnstonA. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.
PaulL., & SchynsP. G. (2003). Attention enhances feature integration. Vision Res 43: 1793–1798.
PelliD. G., PalomaresM., & MajajN. J. (2004). Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis 4: 1136–1169.
PöppelE. (1997). A hierarchical model of temporal perception. Trends Cogn Sci 1: 56–61.
RaymondJ. E., ShapiroK. L., & ArnellK. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18: 849–860.
ReevesA., & SperlingG. (1986). Attention gating in short-term visual memory. Psychol Rev 93: 180–206.
ReichardtW. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A.Rosenblith (ed.), Sensory Communication. Cambridge, MA: MIT Press.
RoufsJ. A. (1963). Perception lag as a function of stimulus luminance. Vision Res 3: 81–91.
SimpsonW. A. (1994). Temporal summation of visual motion. Vision Res 34: 2547–2559.
StelmachL. B., & HerdmanC. M. (1991). Directed attention and perception of temporal order. J Exp Psychol Hum Percept Perform 17: 539–550.
Tallon-BaudryC., BertrandO., DelpuechC., & PernierJ. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16: 4240–4249.
TappeT., NiepelM., & NeumannO. (1994). A dissociation between reaction time to sinusoidal gratings and temporal-order judgment. Perception 23: 335–347.
TreismanA. M. (1999). Solutions to the binding problem: progress through controversy and convergence. Neuron 24: 105–110, 111–125.
TreismanA. M., & GeladeG. (1980). A feature-integration theory of attention. Cognit Psychol 12: 97–136.
UllmanS. (1984). Visual routines. Cognition 18: 97–159.
VictorJ. D., & ConteM. M. (2002). Temporal phase discrimination depends critically on separation. Vision Res 42: 2063–2071.
VivianiP., & AymozC. (2001). Colour, form, and movement are not perceived simultaneously. Vision Res 41: 2909–2918.
VroomenJ., KeetelsM., de GelderB., & BertelsonP. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22: 32–35.
WerkhovenP., SnippeH. P., & ToetA. (1992). Visual processing of optic acceleration. Vision Res 32: 2313–2329.
WhitneyD., & MurakamiI. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1: 656–657.
YamamotoS., & KitazawaS. (2001). Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4: 759–765.
ZekiS. (2003). The disunity of consciousness. Trends Cogn Sci 7: 214–218.

Reference Title: References

Reference Type: bibliography

BairW., & KochC. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8: 1185–1202.
BartelsA., & ZekiS. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B 265: 2327–2332.
BorghuisB. G., PergeJ. A., VajdaI., van WezelR. J., van de GrindW. A., & LankheetM. J. (2003). The motion reverse correlation (MRC) method: a linear systems approach in the motion domain. J Neurosci Methods 123(2): 153–166.
DennettD. C., & KinsbourneM. (1992). Time and the observer. The where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.
DondersF. C. (1868). On the speed of mental processes. Reproduced in Acta Psychologica 30: 412–431.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
HazelhoffF. F., & WiersmaH. (1925). Die Wahrnehmingszeit. Zeitschrift für Psychologie 96: 171–188, and 97: 174–190.
JohnstonA., & NishidaS. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.
KoenderinkJ. J., van DoornA. J., & van de GrindW. A. (1985). Spatial and temporal parameters of motion detection in the peripheral visual field. J Opt Soc Am A 2: 252–259.
KrekelbergB., & LappeM. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Res 39: 2669–2679.
MetzgerW. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264(1380): 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264(1387): 1407–1414.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (1997). Visual decomposition of colour through motion extrapolation. Nature 386: 66–69.
NijhawanR. (2001). The flash-lag phenomenon: object and eye movements. Perception 30: 263–282.
NishidaS., & JohnstonA. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.
PergeJ. A., BorghuisB. G., BoursR. J., LankheetM. J., & van WezelR. J. (2005). Temporal dynamics of direction tuning in motion sensitive macaque area MT. J Neurophysiol 93: 2104–2116.
PöppelE. (2000). Grenzen des Bewusstseins (Limits of Consciousness). Frankfurt|a.M. & Leipzig: Insel Verlag.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential visual latency. Nature 396: 424.
SteinB. E., & MeredithM. A. (1993). The Merging of the Senses. Cambridge, MA: Bradford Book, MIT Press.
VajdaI., LankheetM. J., BorghuisB. G., & van de GrindW. A. (2004). Dynamics of directional selectivity in area 18 and PMLS of the cat. Cereb Cortex 14(7): 759–767.
van de GrindW. A. (2002). Physical, neural, and mental timing. Conscious Cogn 11: 241–264.
van de GrindW. A., KoenderinkJ. J., & van DoornA. J. (1986). The distribution of human motion detector properties in the monocular visual field. Vision Res 26: 797–810.
van den BergA. V., & van de GrindW. A. (1989). Reaction times to motion onset and motion detection thresholds reflect the properties of bilocal motion detectors. Vision Res 29(9): 1261–1266.
van DoornA. J., & KoenderinkJ. J. (1982). Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188.
WichmannF. A., & HillN. J. (2001a). The psychometric function I: fitting, sampling and goodness-of-fit. Percept Psychophys 63(8): 1293–1313.
WichmannF. A., & HillN. J. (2001b). The psychometric function II: bootstrap based confidence intervals and sampling. Percept Psychophys 63(8): 1314–1329.
ZekiS. (2003). The disunity of consciousness. Trends Cogn Sci 7(5): 214–218.
ZekiS., & BartelsA. (1998a). The asynchrony of consciousness. Proc R Soc Lond B 265: 1583–1585.
ZekiS., & BartelsA. (1998b). The autonomy of the visual systems and the modularity of conscious vision. Philos Trans R Soc Lond B Biol Sci 353: 1911–1914.
ZekiS., & BartelsA. (1999). Toward a theory of visual consciousness. Conscious Cogn 8: 225–259.
ZekiS., & MoutoussisK. (1997). Temporal hierarchy of the visual perceptive systems in the mondrian world. Proc R Soc Lond B Biol Sci 264(1387): 1415–1419.

Reference Title: References

Reference Type: bibliography

Actis-GrossoR., & StucchiN. (2003). Shifting the start: backward mislocation of the initial position of a motion. J Exp Psychol Hum Percept Perform 29(3): 675–691.
AlpernM. (1953). Metacontrast. J Opt Soc Am 43(8): 648–657.
BaldoM. V., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378(6557): 565–566.
BreitmeyerB., & ÖğmenH. (2006). Visual Masking: Time Slices Through Conscious and Unconscious Vision. Oxford, UK: Oxford University Press.
BurrD. (1980). Motion smear. Nature 284(5752): 164–165.
CaiR. (2003). The Fröhlich effect is not due to a failure to perceive the beginning portion of motion trajectory. J Vis 3(9): 485.
ColtheartM. (1980). Iconic memory and visible persistence. Perception & Psychophysics 27(3): 183–228.
Di LolloV., EnnsJ. T., & RensinkR. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J Exp Psychol Gen 129(4): 481–507.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287(5460): 2036–2038.
EriksenC. W., & MurphyT. D. (1987). Movement of attentional focus across the visual field: a critical look at the evidence. Perception & Psychophysics 42(3): 299–305.
FrancisG., & HermensF. (2002). Comment on “Competition for consciousness among visual events: the psychophysics of reentrant visual processes” (Di Lollo, Enns, & Rensink, 2000). J Exp Psychol Gen 131(4): 590–593; discussion 594–596.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit. [On the measurement of sensation time]. Zeitschrift für Sinnesphysiologie 54: 58–78.
FröhlichF. W. (1930). Über die Messung der Empfindungszeit. Eine Erwiderung auf experimenteller Grundlage [On the measurement of sensation time. An answer on an experimental basis]. Psychologische Forschung 13: 285–288.
FröhlichF. W. (1932). Bemerkungen zu G.E. Müllers Kritik der Empfindungszeitmessung [Remarks on the criticism of G. E. Müller of the measurement of sensation time]. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 62: 246–249.
GeerM., & SchmidtW. C. (2006). Perception of initial moving target signals: support for a cumulative lateral inhibition theory. J Exp Psychol Hum Percept Perform 32(5): 1185–1196.
HubbardT. L., & MotesM. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition 82(3): B89–99.
HubbardT. L., & MotesM. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich Effect or an Onset Repulsion Effect. Q J Exp Psychol 58A(6): 961–979.
KerzelD. (2002). Different localization of motion onset with pointing and relative judgements. Exp Brain Res 145(3): 340–350.
KerzelD. (2004). Attentional load modulates mislocalization of moving stimuli, but does not eliminate the error. Psychon Bull Rev 11(5): 848–853.
KerzelD., & GegenfurtnerK. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Res 44(6): 577–590.
KerzelD., & MüsselerJ. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Res 42(2): 181–189.
KhuranaB., & NijhawanR. (1995). Extrapolation or attention shift. Nature 378(6557): 566.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29(6): 675–692.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.
KreegipuuK., & AllikJ. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43(15): 1625–1635.
MacKayD. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181(4607): 507–508.
MetzgerW. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit [An attempt at a common theory of Fröhlich's and Hazelhoff's phenomena and a critique of their procedure for measuring sensation time]. Psychologische Forschung 16: 176–200.
MüllerG. E. (1931). Erklärung der Erscheinungen eines mit konstanter Geschwindigkeit beewegten Lichtstreifens, insbesondere auch des Pihl-Fröhlichschen Phänomens [Explanation of the appearances of a lit bar moving at constant velocity, in particular the phenomenon of Pihl-Fröhlich]. Zeitschrift für Sinnesphysiologie 62: 167–202.
MüllerH. J., & RabbittP. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15(2): 315–330.
MüsselerJ., & AscherslebenG. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics 60(4): 683–695.
MüsselerJ., & KerzelD. (2004). The trial context determines adjusted localization of stimuli: reconciling the Fröhlich and Onset Repulsion Effects. Vision Res 44(19): 2201–2206.
MüsselerJ., & NeumannO. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): evidence for an attention-shifting model. Psychol Res 54(4): 246–266.
MüsselerJ., StorkS., & KerzelD. (2002). Comparing mislocalizations with moving stimuli. The Fröhlich effect, the flash-lag effect and representational momentum. Vis Cogn 9(1/2): 120–138.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370(6487): 256–257.
NijhawanR., WatanabeK., KhuranaB., & ShimojoS. (2004). Compensation of neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cogn 11(2/3): 275–298.
PiéronH. (1935). Le processus du métacontraste. Journal de Psychologie Normale et Pathologique 32: 1–24.
PosnerM. I. (1980). Orienting of attention. Q J Exp Psychol 32(1): 3–25.
PosnerM. I., & CohenY. (1984). Components of visual orienting. In H.Bouma & D. G.Bouwhuis (eds.), Attention and Performance X. Hillsdale, NJ: Erlbaum.
PosnerM. I., SnyderC. R., & DavidsonB. J. (1980). Attention and the detection of signals. J Exp Psychol 109(2): 160–174.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential visual latency. Nature 396(6710): 424.
RemingtonR., & PierceL. (1984). Moving attention: evidence for time-invariant shifts of visual selective attention. Perception & Psychophysics 35(4): 393–399.
RubinE. (1930). Kritisches und Experimentelles zur “Empfindungszeit” Fröhlichs [Critical and experimental remarks on Fröhlich's “Sensation Time]. Psychologische Forschung 13(101–112).
RunesonS. (1974). Constant velocity: not perceived as such. Psychol Res 37(1): 3–23.
SimonsD. J., & RensinkR. A. (2005). Change blindness: past, present, and future. Trends Cogn Sci 9(1): 16–20.
StiglerR. (1910). Chronophotische Studien über den Umgebungskontrast. Pflügers Archiv für die gesamte Physiologie 134: 365–435.
ThorntonI. M. (2002). The onset repulsion effect. Spat Vis 15(2): 219–244.
WhitneyD., & CavanaghP. (2000). The position of moving objects. Science 289(5482): 1107a.
WhitneyD., & CavanaghP. (2002). Surrounding motion affects the perceived locations of moving stimuli. Vis Cogn 9(1/2): 139–152.
WhitneyD., & MurakamiI. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1(8): 656–657.

Reference Title: References

Reference Type: bibliography

BertaminiM. (2002). Representational momentum, internalized dynamics, and perceptual adaptation. Vis Cogn 9: 195–216.
BonnetC., Le GallM., & LorenceauJ. (1984). Visual motion aftereffects: adaptation and conditioned processes. In L.Spillman & B. R.Wooten (eds.), Sensory Experience, Adaptation, and Perception. Hillsdale, NJ: Erlbaum.
BrehautJ. C., & TipperS. P. (1996). Representational momentum and memory for luminance. J Exp Psychol Hum Percept Perform 22: 480–501.
BrouwerA. M., FranzV. H., & ThorntonI. M. (2004). Representational momentum in perception and grasping: translating versus transforming object. J Vis 4: 575–584.
ConnersF. A., WyattB. S., & DulaneyC. L. (1998). Cognitive representation of motion in individuals with mental retardation. Am J Ment Retard 102: 438–450.
CooperL. A., & MungerM. P. (1993). Extrapolations and remembering positions along cognitive trajectories: uses and limitations of analogies to physical momentum. In N.Eilen, R.McCarthy, & B.Brewer (eds.), Spatial Representation: Problems in Philosophy and Psychology (112–131). Cambridge, MA: Blackwell.
CourtneyJ. R., & HubbardT. L. (2008). Spatial memory and explicit knowledge: an effect of instruction on representational momentum. Q J Exp Psychol 61: 1778–1784.
DawsonM. R. W. (1998). Understanding Cognitive Science. Cambridge, MA: Blackwell.
DesmurgetM., & GraftonS. (2003). Feedback or feedforward control: end of a dichotomy. In S. H.Johnson-Frey (ed.), Taking Action: Cognitive Neuroscience Perspectives on Intentional Acts (289–338). Cambridge, MA: MIT Press.
ErlhagenW. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
ErlhagenW., & JanckeD. (1999). Motion waves in primary visual cortex as a neural correlate for the perception of moving objects. Abstracts of the Society Neuroscience 25: 679.
ErlhagenW., & JanckeD. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modeling study. Vis Cogn 11: 315–340.
FaustM. (1990). Representational Momentum: A Dual Process Perspective. Unpublished doctoral dissertation, University of Oregon, Eugene, OR.
FinkeR. A., & FreydJ. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. J Exp Psychol Learn Mem Cogn 11: 780–794.
FinkeR. A., & FreydJ. J. (1989). Mental extrapolation and cognitive penetrability: reply to Ranney and proposals for evaluative criteria. J Exp Psychol Gen 118: 403–408.
FinkeR. A., FreydJ. J., & ShyiG. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. J Exp Psychol Gen 115: 175–188.
FinkeR. A., & ShyiG. C. W. (1988). Mental extrapolation and representational momentum for complex implied motions. J Exp Psychol Learn Mem Cogn 14: 112–120.
FreydJ. J. (1983). The mental representation of movement when static stimuli are viewed. Percept Psychophys 33: 575–581.
FreydJ. J. (1987). Dynamic mental representations. Psychol Rev 94: 427–438.
FreydJ. J. (1992). Dynamic representations guiding adaptive behavior. In F.Macar, V.Pouthas, & W. J.Friedman (eds.), Time, Action, and Cognition: Towards Bridging the Gap (309–323). Dordrecht: Kluwer Academic Publishers.
FreydJ. J. (1993). Five hunches about perceptual processes and dynamic representations. In D.Meyer & S.Kornblum (eds.), Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (99–119). Cambridge, MA: MIT Press.
FreydJ. J., & FinkeR. A. (1984). Representational momentum. J Exp Psychol Learn Mem Cogn 10: 126–132.
FreydJ. J., & FinkeR. A. (1985). A velocity effect for representational momentum. Bull Psychon Soc 23: 443–446.
FreydJ. J., & JohnsonJ. Q. (1987). Probing the time course of representational momentum. J Exp Psychol Learn Mem Cogn 13: 259–269.
FreydJ. J., & JonesK. T. (1994). Representational momentum for a spiral path. J Exp Psychol Learn Mem Cogn 20: 968–976.
FreydJ. J., KellyM. H., & DeKayM. L. (1990). Representational momentum in memory for pitch. J Exp Psychol Learn Mem Cogn 16: 1107–1117.
FreydJ. J., PantzerT. M., & ChengJ. L. (1988). Representing statics as forces in equilibrium. J Exp Psychol Gen 117: 395–407.
FutterweitL. R., & BeilinH. (1994). Recognition memory for movement in photographs: a developmental study. J Exp Child Psychol 57: 163–179.
GetzmannS., LewaldJ., & GuskiR. (2004). Representational momentum in spatial hearing. Perception 33: 591–599.
HalpernA. R., & KellyM. H. (1993). Memory biases in left versus right implied motion. J Exp Psychol Learn Mem Cogn 19: 471–484.
HayesA. E., & FreydJ. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.
HubbardT. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18: 299–309.
HubbardT. L. (1993a). Auditory representational momentum: musical schemata and modularity. Bull Psychon Soc 31: 201–204.
HubbardT. L. (1993b). The effects of context on visual representational momentum. Memory & Cognition 21: 103–114.
HubbardT. L. (1994). Judged displacement: a modular process? Am J Psychol 107: 359–373.
HubbardT. L. (1995a). Cognitive representation of motion: evidence for representational friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21: 241–254.
HubbardT. L. (1995b). Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychon Bull Rev 2: 322–338.
HubbardT. L. (1996). Representational momentum, centripetal force, and curvilinear impetus. J Exp Psychol Learn Mem Cogn 22: 1049–1060.
HubbardT. L. (1997). Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. J Exp Psychol Learn Mem Cogn 23: 1484–1493.
HubbardT. L. (1998a). Representational momentum and other displacements in memory as evidence for nonconscious knowledge of physical principles. In S.Hameroff, A.Kaszniak, & A.Scott (eds.), Towards a Science of Consciousness II: The Second Tucson Discussions and Debates (505–512). Cambridge, MA: MIT Press.
HubbardT. L. (1998b). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Can J Exp Psychol 52: 44–49.
HubbardT. L. (1999). How consequences of physical principles influence mental representation: the environmental invariants hypothesis. In P. R.Killeen & W. R.Uttal (eds.), Fechner Day 99: The End of 20th Century Psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (274–279). Tempe, AZ: The International Society for Psychophysics.
HubbardT. L. (2004). The perception of causality: insights from Michotte's launching effect, naive impetus theory, and representational momentum. In A. M.Oliveira, M.P.Teixeira, G. F.Borges, & M. J.Ferro (eds.), Fechner Day 2004 (116–121). Coimbra, Portugal: The International Society for Psychophysics.
HubbardT. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychon Bull Rev 12: 822–851.
HubbardT. L. (2006a). Bridging the gap: possible roles and contributions of representational momentum. Psicologica 27: 1–34.
HubbardT. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: a reply to Kerzel. Psychon Bull Rev 13: 174–177.
HubbardT. L., & BharuchaJ. J. (1988). Judged displacement in apparent vertical and horizontal motion. Percept Psychophys 44: 211–221.
HubbardT. L., BlessumJ. A., & RuppelS. E. (2001). Representational momentum and Michotte's (1946/1963) “Launching Effect” paradigm. J Exp Psychol Learn Mem Cogn 27: 294–301.
HubbardT. L., & CourtneyJ. R. (2006). Evidence for a separation of perceptual and cognitive dynamics. In L.Albertazzi (ed.), Visual Depictive Thought (71–97). New York: Benjamins Publishing Company.
HubbardT. L., & FavrettoA. (2003). Explorations of Michotte's “Tool Effect”: evidence from representational momentum. Psychol Res 67: 134–152.
HubbardT. L., KumarA. M., & CarpC. L. (2009). Effects of spatial cueing on representational momentum. J Exp Psychol Learn Mem Cogn. 35: 666–677.
HubbardT. L., MatzenbacherD. L., & DavisS. E. (1999). Representational momentum in children: dynamic information and analogue representation. Percept Mot Skills 88: 910–916.
HubbardT. L., & RuppelS. E. (1999). Representational momentum and landmark attraction effects. Can J Exp Psychol 53: 242–256.
HubbardT. L., & RuppelS. E. (2002). A possible role of naive impetus in Michotte's “Launching Effect:” evidence from representational momentum. Vis Cogn 9: 153–176.
JarrettC. B., PhillipsM., ParkerA., & SeniorC. (2002). Implicit motion perception in schizotypy and schizophrenia: a representational momentum study. Cogn Neuropsychiatry 7: 1–14.
JohnstonH., & JonesM. R. (2006). Higher-order pattern structure influences auditory representational momentum. J Exp Psychol Hum Percept Perform 32: 2–17.
JoordensS., SpalekT. M., RazmyS., & van DuijnM. (2004). A clockwork orange: compensation opposing momentum in memory for location. Memory & Cognition 32: 39–50.
JordanJ. S. (1998). Recasting Dewey's critique of the reflex-arc concept via a theory of anticipatory consciousness: implications for theories of perception. New Ideas Psychol 16: 165–187.
JordanJ. S., & HunsingerM. (2008). Learned patterns of action-effect extrapolation contribute to the spatial displacement of continuously moving stimuli. J Exp Psychol Hum Percept Perform 34(1): 113–124.
JordanJ. S., & KnoblichG. (2004). Spatial perception and control. Psychon Bull Rev 11: 54–59.
JordanJ. S., StorkS., KnufL., KerzelD., & MüsselerJ. (2002). Action planning affects spatial localization. In W.Prinz & B.Hommel (eds.), Attention and Performance XIX: Common Mechanisms in Perception and Action. (158–176). New York: Oxford University Press.
KaiserM. K., ProffittD. R., & AndersonK. (1985). Judgments of natural and anomalous trajectories in the presence and absence of motion. J Exp Psychol Learn Mem Cognition 11: 795–803.
KaiserM. K., ProffittD. R., WhelanS. M., & HechtH. (1992). Influence of animation on dynamical judgments. J Exp Psychol Hum Percept Perform 18: 669–690.
KellyM. H., & FreydJ. J. (1987). Explorations of representational momentum. Cogn Psychol 19: 369–401.
KerzelD. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40: 3703–3715.
KerzelD. (2002a). A matter of design: no representational momentum without predictability. Vis Cogn 9: 66–80.
KerzelD. (2002b). Attention shifts and memory averaging. Q J Exp Psychol 55(A): 425–443.
KerzelD. (2002c). The locus of “memory displacement” is at least partially perceptual: effects of velocity, expectation, friction, memory averaging, and weight. Percept Psychophys 64: 680–692.
KerzelD. (2003a). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
KerzelD. (2003b). Centripetal force draws the eyes, not memory of the target, toward the center. J Exp Psychol Learn Mem Cogn 29: 458–466.
KerzelD. (2003c). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Res 43: 2623–2635.
KerzelD. (2005). Representational momentum beyond internalized physics. Curr Dir Psychol Sci 14: 180–184.
KerzelD. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum.” Psychon Bull Rev 13: 166–173.
KerzelD., & GegenfurtnerK. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13: 1975–1978.
KerzelD., JordanJ. S., & MüsselerJ. (2001). The role of perception in the mislocalization of the final position of a moving target. J Exp Psychol Hum Percept Perform 27: 829–840.
KozhevnikovM., & HegartyM. (2001). Impetus beliefs as default heuristics: dissociation between explicit and implicit knowledge about motion. Psychon Bull Rev 8: 439–453.
MarrD. (1982). Vision. New York: W. H. Freeman and Company.
McCloskeyM. (1983). Naive theories of motion. In D.Gentner & A. L.Stevens (eds.), Mental Models (299–324). Hillsdale, NJ: Erlbaum.
McCloskeyM., & KohlD. (1983). Naive physics: the curvilinear impetus principle and its role in interactions with moving objects. J Exp Psychol Learn Mem Cogn 9: 146–156.
MichotteA. (1963). The Perception of Causality (T. R.Miles & E.Miles, Trans.). New York: Basic Books (original work published 1946).
MotesM. A., HubbardT. L., CourtneyJ. R., & RypmaB. (2008). A principal components analysis of dynamic spatial memory biases. J Exp Psychol Learn Mem Cogn 34: 1076–1083.
MungerM. P., & MinchewJ. H. (2002). Parallels between remembering and predicting an object's location. Vis Cogn 9: 177–194.
MungerM. P., & OwensT. R. (2004). Representational momentum and the flash-lag effect. Vis Cogn 11: 81–103.
MungerM. P., SolbergJ. L., & HorrocksK. K. (1999). On the relation between mental rotation and representational momentum. J Exp Psychol Learn Mem Cogn 25: 1557–1568.
MungerM. P., SolbergJ. L., HorrocksK. K., & PrestonA. S. (1999). Representational momentum for rotations in depth: effects of shading and axis. J Exp Psychol Learn Mem Cogn 25: 157–171.
MüsselerJ., & AscherslebenG. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation, Percept Psychophys 60: 683–695.
MüsselerJ., StorkS., & KerzelD. (2002). Comparing mislocalizations with moving stimuli: the Fröhlich effect, the flash-lag, and representational momentum. Vis Cogn 9: 120–138.
MüsselerJ., van der HeijdenA. H. C., MahmudS. H., DeubelH., & ErtseyS. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Percept Psychophys 61: 1646–1661.
NijhawanR. (2002). Neural delays, visual motion and flash-lag effect. Trends Cogn Sci 6: 387–393.
PoljansekA. (2002). The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane. Psiholoska obzorja/Horizons of Psychology 11: 7–21.
RaymondJ. E., O'DonnellH. L., & TipperS. P. (1998). Successive episodes produce direction contrast effects in motion perception. Vision Res 38: 579–590.
ReedC. L., & VinsonN. G. (1996). Conceptual effects on representational momentum. J Exp Psychol Hum Percept Perform 22: 839–850.
RoschE., MervisC. B., GrayW. D., JohnsonD. M., & Boyes-BraemP. (1976). Basic objects in natural categories. Cogn Psychol 8: 382–439.
RosenbaumD. A., KennyS., & DerrM. A. (1983). Hierarchical control of rapid motor sequences. J Exp Psychol Hum Percept Perform 9: 86–102.
RuppelS. E., FlemingC. N., & HubbardT. L. (2009). Representational momentum is not (totally) impervious to error feedback. Can J Exp Psychol 63: 49–58.
SeniorC., BarnesJ., & DavidA. S. (2001). Mental imagery increases representational momentum: preliminary findings. J Ment Imagery 25: 177–184.
ShepardR. N. (1975). Form, formation, and transformation of internal representations. In R. L.Solso (ed.), Information Processing and Cognition: The Loyola Symposium (87–122). Hillsdale, NJ: Erlbaum.
ShepardR. N. (1981). Psychophysical complementarity. In M.Kubovy & J. R.Pomerantz (eds.), Perceptual Organization (279–341). Hillsdale, NJ: Erlbaum.
ShepardR. N., & ChipmanS. (1970). Second-order isomorphism of internal representations: shapes of states. Cogn Psychol 1: 1–17.
ThorntonI. M., & HayesA. E. (2004). Anticipating action in complex scenes. Vis Cogn 11: 341–370.
TreismanA. M., & GeladeG. (1980). A feature-integration theory of attention. Cogn Psychol 12: 97–136.
VerfaillieK., & d'YdewalleG. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. J Exp Psychol Learn Mem Cogn 17: 302–313.
VinsonN. G., & ReedC. R. (2002). Sources of object-specific effect in representational momentum. Vis Cogn 9: 41–65.
WhitneyD., & CavanaghP. (2002). Surrounding motion affects the perceived locations of moving stimuli. Vis Cogn 9: 139–152.

Reference Title: References

Reference Type: bibliography

AnstisS. (2007). The flash-lag effect during illusory chopstick rotation. Perception 36: 1043–1048.
BaldoM. V. C., KiharaA. H., NambaJ., & KleinS. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
BaldoM. V., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
BrennerE., & SmeetsJ. B. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.
EaglemanD. M., & SejnowskiT. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EaglemanD. M., & SejnowskiT. J. (2000b). The position of moving objects. Response. Science 289: 1107a.
FinkeR. A., & FreydJ. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. J Exp Psychol Learn Mem Cogn 11: 780–794.
FinkeR. A., FreydJ. J., & ShyiG. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. J Exp Psychol Gen 115: 175–188.
FinkeR. A., & ShyiG. C. W. (1988). Mental extrapolation and representational momentum for complex implied motion. J Exp Psychol Learn Mem Cogn 14: 112–120.
FreydJ. J. (1987). Dynamic mental representations. Psychol Rev 94: 427–438.
FreydJ. J., & FinkeR. A. (1984). Representational momentum. J Exp Psychol Learn Mem Cogn 10: 126–132.
FreydJ. J., & FinkeR. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society 23: 443–446.
FreydJ. J., & JohnsonJ. Q. (1987). Probing the time course of representational momentum. Exp Psychol Learn Mem Cogn 13: 259–268.
FreydJ. J., & MillerG. F. (1992, November). Creature Motion. Paper presented at the 33rd Annual Meeting of the Psychonomic Society, St. Louis, Mo.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit [Measuring the time of sensation]. Zeitschrift für Sinnesphysiologie 54: 58–78.
HalpernA. R., & KellyM. H. (1993). Memory biases in left versus right implied motion. J Exp Psychol Learn Mem Cogn 19: 471–484.
HayesA. E., & FreydJ. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.
HubbardT. L. (1995a). Cognitive representation of motion: Evidence for representational friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21: 241–254.
HubbardT. L. (1995b). Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonom Bull Rev 2: 322–338.
HubbardT. L. (1997). Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. J Exp Psychol Learn Mem Cogn 23: 1484–1493.
HubbardT. L., & BharuchaJ. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics 44: 211–221.
HubbardT. L., & RuppelS. E. (1999). Representational momentum and the landmark attraction effect. Can J Exp Psychol 53: 242–255.
KerzelD. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40: 3703–3715.
KhuranaB., & NijhawanR. (1995). Extrapolation or attentional shift? Reply. Nature 378: 566.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects ‘corrected’ or flashed objects attentionally delayed? Perception 29: 675–692.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.
MackayD. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.
MetzgerW. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit [An attempt toward a common theory of the phenomena of Fröhlich and Hazelhoff and a criticism of their methods to measure sensation time]. Psychologische Forschung 16: 185–218.
NagaiM., KazaiK., & YagiA. (2000). Larger flash lag effect when flashed objects are presented at the onset of a moving object. Perception 29: S93.
NagaiM., KazaiK., & YagiA. (2002). Larger forward displacement in the direction of gravity. Vis Cogn 9: 28–40.
NagaiM., & SaikiJ. (2005). Illusory motion and representational momentum. Perception & Psychophysics 67: 855–866.
NagaiM., & SaikiJ. (2006). Re-examination of eye-movement related factors of representational momentum. The Japanese Journal of Psychology 77: 105–114 (in Japanese).
NagaiM., & YagiA. (2001). Pointedness effect on representational momentum. Memory & Cognition 29: 91–99.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (1997). Visual decomposition of colour through motion extrapolation. Nature 386: 66–69.
NijhawanR. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential visual latency. Nature 396: 424.
ReedC. L., & VinsonN. G. (1996). Conceptual effects on representational momentum. J Exp Psychol Hum Percept Perform 22: 839–850.
VerfaillieK., & d'YdewalleG. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. J Exp Psychol Learn Mem Cogn 17: 302–313.
VinsonN. G., & ReedC. L. (2002). Sources of object-specific effects in representational momentum. Vis Cogn 9: 41–65.
WatanabeK. (2004). Visual grouping by motion precedes the relative localization between moving and flashed stimuli. J Exp Psychol Hum Percept Perform 30: 504–512.
WatanabeK., NijhawanR., KhuranaB., & ShimojoS. (2001). Perceptual organization of moving stimuli modulates the flash-lag effect. J Exp Psychol Hum Percept Perform 27: 879–894.
WatanabeK., SatoT. R., & ShimojoS. (2003). Perceived shifts of flashed stimuli by visible and invisible object motion. Perception 32: 545–559.

Reference Title: References

Reference Type: bibliography

AdelsonE. H., & MovshonJ. A. (1982). Phenomenal coherence of moving visual pattern. Nature 300: 523–525.
ArnoldD. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.
ArnoldD. H., CliffordC. W., & WenderothP. (2001). Asynchronous processing in vision: color leads motion. Curr Biol 11: 596–600.
BedellH. E., ChungS. T. L., ÖğmenH., & PatelS. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.
BedellH. E., PatelS. S., ChungS. T. L., & ÖğmenH. (2006). Perceptual consequences of timing differences within parallel feature-processing systems in human vision. In H.Öğmen & B. G.Breitmeyer (eds.), The First Half Second: The Microgenesis and Temporal Dynamics of Unconscious and Conscious Visual Processes (245–258). Cambridge, MA: MIT Press.
BrennerE., & SmeetsJ. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.
CaiR. H. (2003). The Fröhlich effect is not due to a failure to perceive the beginning portion of motion trajectory J Vis 3: 485a.
CaiR. H., & CavanaghP. (2002). Motion interpolation of a unique feature into stimulus gaps and blind spots. J Vis 2: 30a.
CaiR. H., & SchlagJ. (2001a). A new form of illusory conjunction between color and shape. J Vis 1: 127a.
CaiR. H., & SchlagJ. (2001b). Asynchronous feature binding and the flash-lag illusion. Invest Ophthalmol Vis Sci 42: S711.
CaiR. H., Schlag-ReyM., & SchlagJ. (2000). Displacement of the moving bar exists in the flash-lag effect. Society for Neuroscience Abstract 561: 1.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
FennemaC. L., & ThompsonW. B. (1979). Velocity determination in scenes containing several moving objects. Computer Graphics and Image Processing 9: 301–315.
GrzywaczN., & YuilleA. (1991). Theories for the visual perception of local velocity and coherent motion. In J.Landy & J.Movshon (eds.), Computational Models of Visual Processing (231–252). Cambridge, MA: MIT Press.
HarrisL. R., DukeP. A., & KopinskaA. (2006). Flash lag in depth. Vision Res 46: 2735–2742.
KanaiR., ShethB. R., & ShimojoS. (2004). Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44: 2109–2128.
KerzelD., & GegenfurtnerK. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13: 1975–1978.
KrekelbergB., & LappeM. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24: 335–339.
LaurenceauJ., & ShiffrarM. (1992). The influence of terminators on motion integration across space. Vision Res 32: 263–273.
MarrD., & UllmanS. (1981). Directional selectivity and its use in early visual processing. Proc R Soc Lond B Biol Sci 211: 151–180.
McKeeS. P., & TaylorD. G. (1984). Discrimination of time: comparison of foveal and peripheral sensitivity. J Opt Soc Am A 1: 620–627.
MingollaE., ToddJ. T., & NormanJ. F. (1992). The perception of globally coherent motion. Vision Res 32: 1015–1031.
MoutoussisK., & ZekiS. A. (1997). Direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264: 393–399.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
ÖğmenH., PatelS. S., BedellH. E., & CamuzK. (2004). Differential latencies and the dynamics of the position-computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.
PackC. C., BerezovskiiV. K., & BornR. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414: 905–908.
PatelS. S., ÖğmenH., BedellH. E., & SampathV. (2000). Flash-lag effect: differential latency, not postdiction. Science 290: 1051a.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential latency. Nature 396: 424.
ReganD., & BeverleyK. I. (1978). Looming detectors in human visual pathway. Vision Res 18: 415–421.
RoufsJ. A. (1974). Dynamic properties of vision – V. Vision Res 14: 853–869.
TylerC. W. (1985). Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions. J Opt Soc Am A 2: 393–398.
WallachH. (1995). Über Visuell Wahrgenommene Bewegungrichtung. Psychologische Forschung 20: 325–380.
WhitneyD., MurakamiI., & CavanaghP. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.
WilliamsJ. M., & LitA. (1983). A luminance-dependent visual latency for the Hess effect, the Pulfrich effect, and simple reaction time. Vision Res 23: 171–179.

Reference Title: References

Reference Type: bibliography

AlaisD., & BurrD. (2003). The flash-lag effect occurs in audition and cross-modally. Curr Biol 13: 59–63.
BaldoM. V. C., & CatichaN. (2004). The flash-lag and Fröhlich effects caught by the net: computational modeling of visual illusions. In A. M.Oliveira, M.Teixeira, G. F.Borges, & M. J.Ferro (eds.), Annual Meeting of the International Society for Psychophysics (Coimbra, Portugal) 222–227.
BaldoM. V. C., & CatichaN. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.
BaldoM. V. C., KiharaA. H., & KleinS. A. (2000). Lagging behind because of sensory and attentional delays. [Abstract] Invest Ophthalmol Vis Sci 41: S420.
BaldoM. V. C., KiharaA. H., NambaJ., & KleinS. A. (2002). Evidence for an attentional component of perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
BaldoM. V. C., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
BaldoM. V. C., & NambaJ. (2002). The attentional modulation of the flash-lag effect. Braz J Med Biol Res 35: 969–972.
BaldoM. V. C., RanvaudR. D., & MoryaE. (2002). Flag errors in soccer games: the flash-lag effect brought to real life. Perception 31: 1205–1210.
BerryM. J., BrivanlouI. H., JordanT. A., & MeisterM. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
BrennerE., & SmeetsJ. B. J. (2000). Computational neurobiology of the flash-lag effect. Vision Res 40: 1645–1648.
CantorC. R. L., & SchorC. M. (2004). Does the temporal impulse response cause the flash-lag effect? [Abstract] J Vis 4(8): 72, 72a, http://journalofvision.org/4/8/72/, doi: 10.1167/4.8.72.
ChappellM., HineT. J., AcworthC., & HardwickD. R. (2006). Attention “capture” by the flash-lag flash. Vision Res 46: 3205–3213.
CorbettaM., & ShulmanG. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215
CravoA. M., & BaldoM. V. C. (2008). A psychophysical and computational analysis of the spatio-temporal mechanisms underlying the flash-lag effect. Perception 37: 1850–1866.
DehaeneS., ChangeuxJ. P., NaccacheL., SackurJ., & SergentC. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10: 204–211.
EaglemanD. M. (2001). Visual illusions and neurobiology. Nat Rev Neurosci 2: 920–926.
EaglemanD. M., & SejnowskiT. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EaglemanD. M., & SejnowskiT. J. (2000b). Reply to Krekelberg et al. Science 289(5482): 1107a.
EngelA. K., FriesP., & SingerW. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.
EnnsJ. T., & OrietC. (2004). Perceptual asynchrony: modularity of consciousness or object updating? [Abstract] J Vis 4(8): 27, 27a, http://journalofvision.org/4/8/27/, doi: 10.1167/4.8.27.
ErlhagenW. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
HayesA. E., & FreydJ. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.
HikosakaO., MiyauchiS., & ShimojoS. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research 33: 1219–1240.
HoutkampR., SpekreijseH., & RoelfsemaP. R. (2003). A gradual spread of attention during mental curve tracing. Perception & Psychophysics 65: 1136–1144.
HubbardT. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonom Bull Rev 12: 822–851.
KanaiR., ShethB. R., & ShimojoS. (2004). Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44: 2605–2619.
KastnerS., & UngerleiderL. G. (2000). Mechanisms of visual attention in the human cortex. Ann Rev Neurosci 23: 315–341.
KerzelD. (2003). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
KerzelD., & GegenfurtnerK. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Res 44: 577–590.
KerzelD., & MüsselerJ. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Res 42: 181–189.
KhayatP. S., SpekreijseH., & RoelfsemaP. R. (2006). Attention lights up new object representations before the old ones fade away. J Neurosci 26: 138–142.
KhuranaB., & NijhawanR. (1995). Reply to Baldo and Klein. Nature 378: 566.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.
KirschfeldK., & KammerT. (2000). Visual attention and metacontrast modify latency to perception in opposite directions. Vision Res 40: 1027–1033.
KrekelbergB., & LappeM. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24: 335–339.
LammeV. A. F. (2003). Why visual attention and awareness are different. Trends Cogn Sci 7: 12–18.
LappeM., & KrekelbergB. (1998). The position of moving objects. Perception 27: 1437–1449.
LinaresD., & Lopez-MolinerJ. (2007). Absence of flash-lag when judging global shape from local positions. Vision Res 47: 357–362.
MackayD. M. (1958). Perceptual stability of a stroboscopically lit visual field containing selfluminous objects. Nature 181: 507–508.
MetzgerW. (1931). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.
MooreC. M., & EnnsJ. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.
MüsselerJ., & AscherslebenG. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and attention shifting explanation. Perception and Psychophysics 60: 683–695.
MüsselerJ., & NeumannO. (1992). Apparent distance reduction with moving stimuli (tandem effect) – Evidence for an attention-shifting model. Psychol Res-Psychologische Forschung 54: 246–266.
NambaJ., & BaldoM. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception 34: 621–631.
NiemanD., NijhawanR., KhuranaB., & ShimojoS. (2006). Cyclopean flash-lag illusion. Vision Res 46: 3909–3914.
NijhawanR. (1992). Misalignment of contours through the interaction of apparent and real motion systems. [Abstract] Invest Ophthalmol Vis Sci 33: 1415.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
NijhawanR., & KhuranaB. (2000). Conscious registration of continuous and discrete visual events. In T.Metzinger (ed.), Neural Correlates of Consciousness: Empirical and Conceptual Questions (203–219). Cambridge, MA: MIT Press.
ÖğmenH., PatelS. S., BedellH. E., & CamuzK. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.
PalmerS. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.
PashlerH. E. (1998). The Psychology of Attention. Cambridge, MA: MIT Press.
PatelS. S., ÖğmenH., BedellH. E., & SampathV. (2000). Flash-lag effect: differential latency, not postdiction. Science 290: 1051a.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential visual latency. Nature 396: 424.
RoelfsemaP. R. (2006). Cortical algorithms for perceptual grouping. Ann Rev Neurosci 29: 203–227.
RoelfsemaP. R., LammeV. A. F., & SpekreijseH. (2000). The implementation of visual routines. Vision Res 40: 1385–1411.
RotmanG., BrennerE., & SmeetsJ. B. J. (2002). Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit. Perception 31: 1195–1203.
SarichD., ChappellM., & BurgessC. (2007). Dividing attention in the flash-lag illusion. Vision Res 47: 544–547.
SchlagJ., & Schlag-ReyM. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–200.
SerencesJ. T., & YantisS. (2006). Selective visual attention and perceptual coherence. Trends Cogn Sci 10: 38–45.
ShethB., NijhawanR., & ShimojoS. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.
ShimW. M., & CavanaghP. (2003). Attentive tracking can modulate the illusory misalignment of a flash. [Abstract] J Vis 3(9): 188a, http://journalofvision.org/3/9/188/, doi: 10.1167/3.9.188
SpenceC., ShoreD. I., & KleinR. M. (2001). Multisensory prior entry. J Exp Psychol 4: 799–832.
TsalY. (1983). Movements of attention across the visual field. J Exp Psychol Hum Percept Perform 9: 523–530.
VrevenD., & VergheseP. (2005). Predictability and the dynamics of position processing in the flash-lag effect. Perception 34: 31–44.
WhitneyD. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6: 211–216.
WhitneyD., & MurakamiI. (1998). Latency difference not spatial extrapolation. Nat Neurosci 1: 656–657.
WundtW. (1874). Grundzüge der physiologischen psychologies. Leipzig, Germany: Wilhelm Engelmann.
YantisS., & SerencesJ. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13: 187–193.

Reference Title: References

Reference Type: bibliography

AdelsonE. H., & BergenJ. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299.
AnstisS. M. (1970). Phi movement as a subtraction process. Vision Res 10: 1411–1430.
AnstisS. M. (1990). Imperceptible intersections: The chopstick illusion. In A.Blake & T.Troscianko (eds.), AI and the Eye (105–117). London: Wiley.
AnstisS. M. (2003). Levels of motion perception. In L.Harris & M.Jenkin (eds.), Levels of Perception. New York: Springer-Verlag.
AnstisS. M. (2007). The flash-lag effect during illusory chopstick rotation. Perception 36: 1043–1048.
AnstisS. M., & RogersB. J. (1975). Illusory reversal of visual depth and movement during changes of contrast. Vision Res 15: 957–961.
BaldoM. V., KiharaA. H., NambaJ., & KleinS. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
BraddickO. (1974). A short-range process in apparent motion. Vision Res 14: 519–527.
BraddickO. J. (1980). Low-level and high-level processes in apparent motion. Philos Trans R Soc Lond B Biol Sci 290: 137–151.
CaiR., & SchlagJ. (2001). A new form of illusory conjunction between color and shape [Abstract]. J Vis 1(3): 127a, http://journalofvision.org/1/3/127/, doi:10.1167/1.3.127.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.
KowlerE. (ed.) (1990). Eye Movements and Their Role in Visual and Cognitive Processes. Amsterdam; New York: Elsevier.
KrauzlisR. J. (1994). The visual drive for smooth eye movements. In A. T.Smith & R. J.Snowden (eds.), Visual Detection of Motion (437–473). London; New York: Academic Press.
KreegipuuK., & AllikJ. (2004). Confusion of space and time in the flash-lag effect. Perception 33: 293–306.
KrekelbergB., & LappeM. (2000). A model of the perceived relative position of moving objects based upon a slow averaging process. Vision Res 40: 201–215.
LisbergerS. G., MorrisE. J., & TychsenL. (1987). Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Neurosci 10: 97–129.
LuZ. L., & SperlingG. (1999). Second-order reversed phi. Perception & Psychophysics 61: 1075–1088.
MackayD. M. (1961). Interactive processes in visual perception. In W. A.Rosenblith (ed.), Sensory Communication (339–355). Cambridge, MA: MIT Press.
MetelliF. (1974). The perception of transparency. Scientific American 230: 90–98.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
RogersB. J., & AnstisS. M. (1975). Reversed depth from positive and negative stereograms. Perception 4: 193–201.
ShiffrarM., & PavelM. (1991). Percepts of rigid motion within and across apertures. J Exp Psychol Hum Percept Perform 17: 749–761.
ShimojoS., SilvermanG. H., & NakayamaK. (1989). Occlusion and the solution to the aperture problem for motion. Vision Res 29: 619–626.
SinhaP., & PoggioT. (1996). I think I know that face … Nature 384: 404.
StonerG. R., & AlbrightT. D. (1994). Visual motion integration: A neurophysiological and psychophysical perspective. In A. T.Smith & R. J.Snowden (eds.), Visual Detection of Motion (253–290). London: Academic Press.
UllmanS. (1979). The Interpretation of Visual Motion. Cambridge, MA: MIT Press.
WhitneyD., CavanaghP., & MurakamiI. (2000). Temporal facilitation for moving stimuli is independent of changes in direction. Vision Res 40: 3829–3839.
WhitneyD., MurakamiI., & CavanaghP. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.

Reference Title: References

Reference Type: bibliography

AbelesM. (1991). Corticonics. Cambridge: Cambridge University Press.
BaldoM. V. C., & CatichaN. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.
BaldoM. V. C., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
Ben-YishaiR., HanselD., & SompolinskyH. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comp Neurosci 4: 57–77.
BerryM. J. II, BrivanlouI. H., JordanT. A., & MeisterM. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
BringuierV., ChavaneF., GlaeserL., & FrégnacY. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695–699.
ColtheartM. (1980). Iconic memory and visible persistence. Perception & Psychophysics 27: 183–228.
DayanP., & AbbottL. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.
DouglasR. J., KochC., MahowaldM., MartinK. A. C., & SuarezH. (1995). Recurrent excitation in neocortical circuits. Science 269: 981–985.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
ErlhagenW. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
ErlhagenW., BastianA., JanckeD., RiehleA., & SchönerG. (1999). The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods 94: 53–66.
ErlhagenW., & JanckeD. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modelling study. Vis Cogn 11(2/3): 315–340.
FitzpatrickD. (2000). Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol 10: 438–443.
FreydJ. J., & FinkeR. A. (1984). Representational momentum. J Exp Psych Learn Mem Cogn 10: 126–132.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
FuY., ShenY., & YangD. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci 21 (RC 172): 1–5.
GieseM., & XieX. (2002). Exact solution of the nonlinear dynamics of recurrent neural mechanisms for direction selectivity. Neurocomp 44–46: 417–422
GilbertS. D. (1995). Dynamic properties of adult visual cortex. In M.Gazzaniga (ed.), The Cognitive Neurosciences (73–90). Cambridge: MIT Press.
GrinvaldA., LiekeE., FrostigR., & HildesheimR. (1994). Real-time optical imaging of naturally evoked electrical activity in intact frog brain. J Neurosci 14: 2545–2568.
GrossbergS. (1988). Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1: 17–61.
HahnloserR., DouglasR. J., MahowaldM., & HeppK. (1999). Feedback interactions between neuronal pointers and maps for attentional processing. Nat Neurosci 2(8): 746–752.
HubbardT. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18(3): 299–309.
HubbardT. L., & BharuchaJ. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics 44: 211–221.
HubbardT. L., & MotesM. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition 82: B89–B99.
JanckeD., ChavaneF., NaamanS., & GrinvaldA. (2004a). Imaging correlates of visual illusion in early visual cortex. Nature 428: 423–426.
JanckeD., ErlhagenW., DinseH. R., AkhavanA. C., GieseM., SteinhageA., et al. (1999). Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19: 9016–9028.
JanckeD., ErlhagenW., SchönerG., & DinseH. R. (2004b). Shorter latencies for motion trajectories for flashes in population responses of cat visual cortex. J Physiol 556.3: 971–982.
KhuranaB., & NijhawanR. (1995). Extrapolation or attentional shift? Nature 378: 565–566.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vis Res 39: 3702–3709.
KreegipuuK., & AllikJ. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43: 1625–1635.
KrekelbergB., & LappeM. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40: 201–215.
KrekelbergB., & LappeM. (2001). Neuronal latencies and the position of moving objects. TINS 24: 335–339.
LammeV. A. F., & RoelfsemaR. (2000). The distinct modes of vision offered by feedforward and recurrent processing. TINS 23: 571–579.
LennieP. (1981). The physiological basis of variations of visual latency. Vision Res. 21: 815–824.
LiW., PiëchV., & GilbertC. D. (2004). Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci 7(6): 651–657.
MaicheA., BudelliR., & Gómez-SenaL. (2007). Spatial facilitation is involved in the flash-lag effect. Vision Res 47: 1655–1661.
MetzgerW. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.
MüsselerJ., & AscherslebenG. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics 60: 683–695.
MüsselerJ., StorkS., & KerzelD. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Vis Cog 9(1/2): 120–138.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR., WatanabeK., KhuranaB., & ShimojoS. (2004). Compensation of neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cog 11(2/3): 275–298.
PurushothamanG., PatelS. S., BedellH. E., & ÖğmenH. (1998). Moving ahead through differential visual latency. Nature 396: 424.
SalinasE., & AbbottL. F. (1994). Vector reconstruction from firing rates. J Comput Neurosci 1: 89–107.
ThorntonI. M. (2002). The onset repulsion effect. Spatial Vision 15: 219–243.
WhitneyD. (2002). The influence of visual motion on perceived position. TICS 6: 211–216.
WhitneyD., CavanaghP., & MurakamiI. (2000). Temporal facilitation for moving stimuli is independent of changes in direction. Vision Res 40: 3829–3839.
WhitneyD., MurakamiI., & CavanaghP. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.
WilsonH. R., & CowanJ. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik (Biol Cybern) 13: 55–80.

Reference Title: References

Reference Type: bibliography

AngellR. B. (1974). The geometry of visibles. Noûs 8: 87–117.
AnsbacherH. L. (1944). Distortion in the perception of real movement. J Exp Psychol 34: 1–23.
AnstisS. (1989). Kinetic edges become displaced, segregated, and invisible. In D. M.-K.Lam & C. D.Gilbert (eds.), Neural Mechanisms of Visual Perception (247–260). The Woodlands, TX: Portfolia.
AnstisS. M., HowardI. P., & RogersB. (1978). A Craik-O'Brien-Cornsweet illusion for visual depth. Vision Res 18: 213–217.
ArendL. E., & GoldsteinR. (1990). Lightness and brightness over spatial illumination gradients. J Opt Soc Am A 7: 1929–1936.
BairdJ. C. (1968). Toward a theory of frontal-size judgments. Percept Psychophys 4: 49–53.
BerlinerA., & BerlinerS. (1948). The distortion of straight and curved lines in geometrical fields. Am J Psychol 61: 153–166.
BerryM. J. II, BrivanlouI. H., JordanT. A., & MeisterM. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
BiersdorfW. R., OhwakiS., & KozilD. J. (1963). The effect of instructions and oculomotor adjustments on apparent size. Am J Psychol 76: 1–17.
BlakemoreM. R., & SnowdenR. J. (1999). The effect of contrast upon perceived speed: a general phenomenon? Perception 28: 33–48.
BoringE. G. (1943). The moon illusion. Am J Phys 11: 55–60.
BoringE. G. (1962). On the moon illusion – a letter. Science 137: 902–906.
BrookesA., & StevensK. A. (1989). The analogy between stereo depth and brightness. Perception 18: 601–614.
BrooksK. (2001). Stereomotion speed perception is contrast dependent. Perception 30: 725–731.
BrooksK., & MatherG. (2000). Perceived speed of motion in depth is reduced in the periphery. Vision Res 40: 3507–3516.
BrownJ. F. (1931). The visual perception of velocity. Psychologische Forschung 14: 199–232.
BurbeckC. A. (1987). Locus of spatial-frequency discrimination. J Opt Soc Am A 4: 1807–1813.
BurrD. (2000). Motion vision: are “speed lines” used in human visual motion? Curr Biol 10: R440–R443.
BurrD. C., & RossJ. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22: 8661–8664.
CampbellF. W., & MaffeiL. (1981). The influence of spatial frequency and contrast on the perception of moving patterns. Vision Res 21: 713–721.
CannonM. W., & FullenkampS. C. (1991). Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Res 31: 1985–1998.
CannonM. W. Jr., & FullenkampS. C. (1993). Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Res 33: 1685–1695.
CarlsonV. R. (1960). Overestimation in size-constancy judgments. Am J Psychol 73: 199–213.
CarlsonV. R. (1962). Size-constancy judgments and perceptual compromise. J Exp Psychol 63: 68–73.
CesàroA. L., & AgostiniT. (1998). The trajectory of a dot crossing a pattern of tilted lines is misperceived. Percept Psychophys 60: 518–523.
ChangiziM. A. (2001). “Perceiving the present” as a framework for ecological explanations of the misperception of projected angle and angular size. Perception 30: 195–208.
ChangiziM. A. (2003). The Brain from 25,000 Feet: High Level Explorations of Brain Complexity, Perception, Induction and Vagueness. Dordrecht: Kluwer Academic.
ChangiziM. A. (2009). The Vision Revolution. Dallas, TX: Benbella.
ChangiziM. A., & WiddersD. (2002). Latency correction explains the classical geometrical illusions. Perception 31: 1241–1262.
ChubbC., SperlingG., & SolomonJ. A. (1989). Texture interactions determine perceived contrast. Proc Natl Acad Sci USA 86: 9631–9635.
CorenS., & GirgusJ. S. (1978). Seeing Is Deceiving: The Psychology of Visual Illusions. Hillsdale, NJ: Erlbaum.
CorenS., GirgusJ. S., ErlichmanH., & HakstianA. R. (1976). An empirical taxonomy of visual illusions. Percept Psychophys 20: 129–137.
CraigE. J. (1969). Phenomenal geometry. Br J Philos Sci 20: 121–134.
CuttingJ. E. (2002). Representing motion in a static image: constraints and parallels in art, science, and popular culture. Perception 31: 1165–1194.
CuttingJ. E., & VishtonP. M. (1995). Perceiving layout and knowing distance: the integration, relative potency, and contextual use of different information about depth. In W.Epstein & S.Rogers (eds.), Handbook of Perception and Cognition. Vol. 5: Perception of Space and Motion (69–117). San Diego: Academic Press.
DanielsN. (1972). Thomas Reid's discovery of a non-euclidean geometry. Philosophy of Science 39: 219–234.
DavisE. T. (1990). Modeling shifts in perceived spatial frequency between the fovea and periphery. J Opt Soc Am A 7: 286–296.
De ValoisR. L., & De ValoisK. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31: 1619–1626.
De WeertC. M. M., SnoerenP. R., & PutsM. J. H. (1998). Mutual dependence of luminance, size, and disparity in depth, size and luminance discrimination tasks. Perception 27 (suppl.): 111.
DienerH. C., WistE. R., DichgansJ., & BrandtT. (1976). The spatial frequency effect on perceived velocity. Vision Res 16: 169–176.
DworkinL. (1997). The effects of brightness contrast and stimulus presentation and duration on the magnitude of the Oppel-Kundt illusion. Unpublished thesis, Department of Psychology, Concordia University.
EdwardsM., & BadcockD. R. (2003). Motion distorts perceived depth. Vision Res 43: 1799–1804.
EhrensteinW. (1925). Versuche ueber die Beziehungen zwischen Bewegungs- und Gestaltwahrnehmung. (Experiments on the relationships between the perception of motion and of gestalt). Zeitschrift fuer Psychologie 96: 305–352.
EjimaY., & TakahashiS. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Res 25: 1223–1232.
EnrightJ. T. (1989). Manipulating stereopsis and vergence in an outdoor setting: moon, sky and horizon. Vision Res 29: 1815–1824.
EpsteinW., ParkJ., & CaseyA. (1961). The current status of the size-distance hypothesis. Psychol Bull 58: 491–514.
FarnèM. (1972). Studies on induced motion in the third dimension. Perception 1: 351–357.
FarnèM. (1977). Motion in depth induced by brightness changes in the background. Perception 6: 295–297.
FoleyJ. M. (1972). The size-distance relation and intrinsic geometry of visual space: implications for processing. Vision Res 12: 323–332.
FosterC., & AltschulerE. L. (2001). The bulging grid. Perception 30: 393–395.
GegenfurtnerK. R., & HawkenM. J. (1996). Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res 36: 1281–1290.
GeislerW. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400: 65–69.
GeislerW. S., AlbrechtD. G., CraneA. M., & SternL. (2001). Motion direction signals in the primary visual cortex of cat and monkey. Vis Neurosci 18: 501–516.
GelbD. J., & WilsonH. R. (1983). Shifts in perceived size as a function of contrast and temporal modulation. Vision Res 23: 71–82.
GeorgesonM. A. (1980). Spatial frequency analysis in early visual processing. Philos Trans R Soc Lond B Biol Sci 290: 11–22.
GeorgesonM. A. (1991). Contrast overconstancy. J Opt Soc Am A 8: 579–586.
GibsonJ. J. (1950). The Perception of the Visual World. Boston: Houghton Mifflin.
GilinskyA. S. (1955). The effect of attitude upon the perception of size. Am J Psychol 68: 173–192.
GillamB. J. (1998). Illusions at century's end. In J.Hochberg (ed.), Perception and Cognition at Century's End (98–137). San Diego: Academic Press.
GogelW. C., & EbyD. W. (1997). Measures of perceived linear size, sagittal motion, and visual angle from optical expansions and contractions. Percept Psychophys 59: 783–806.
GogelW. C., & McNultyP. (1983). Perceived velocity as a function of reference mark density. Scand J Psychol 24: 257–265.
GregoryR. (2005). The Medawar Lecture 2001: knowledge for vision, vision for knowledge. Philos Trans R Soc Lond B Biol Sci 360: 1231–1251.
HarkerG. S. (1962). Apparent frontoparallel plane, stereoscopic correspondence, and induced cyclotorsion of the eyes. Percept Mot Skills 14: 75–87.
HawkenM. J., GegenfurtnerK. R., & TangC. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367: 268–270.
HeinemannE. G., TulvingE., & NachmiasJ. (1959). The effect of oculomotor adjustments on apparent size. Am J Psychol 72: 32–45.
HelsonH. (1963). Studies of anomalous contrast and assimilation. J Opt Soc Am 53: 179–184.
HessC. V. (1904). Untersuchungen über den Erregungsvorgang in Sehorgan bei Kurzund bei länger dauernder Reizung. Pflügers Arch Gesamte Physiol 101: 226–262.
JamesW. (1950). Principles of Psychology, Vol. II (New York: Dover), originally published 1890.
JenkinN., & HymanR. (1959). Attitude and distance-estimation as variables in size-matching. Am J Psychol 72: 68–76.
JohanssonG. (1950). Configurations in the perception of velocity. Acta Psychologica 7: 25–79.
JordanK., & RandallJ. (1987). The effects of framing ratio and oblique length on Ponzo illusion magnitude. Percept Psychophys 41: 435–439.
JoynsonR. B. (1949). The problem of size and distance. Q J Exp Psychol 1: 119–135.
KanekoH., & UchikawaK. (1993). Apparent relative size and depth of moving objects. Perception 22: 537–547.
KanekoH., & UchikawaK. (1997). Perceived angular and linear size: the role of binocular disparity and visual surround. Perception 26: 17–27.
KatzE., GizziM. S., CohenB., & MalachR. (1990). The perceived speed of object motion varies inversely with distance travelled. Perception 19: 387.
KaufmanL., & KaufmanJ. H. (2000). Explaining the moon illusion. Proc Natl Acad Sci USA 97: 500–505.
KaufmanL., & RockI. (1962). The moon illusion, I. Science 136: 953–961.
KhuranaB., WatanabeR., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.
KleinS., StromeyerC. F. III, & GanzL. (1974). The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings. Vision Res 14: 1421–1432.
KomodaM. K., & OnoH. (1974). Oculomotor adjustments and size-distance perception. Percept Psychophys 15: 353–360.
KooiF. L., De ValoisK. K., GrosofD. H., & De ValoisR. L. (1992). Properties of the recombination of one-dimensional motion signals into a pattern motion signal. Percept Psychophys 52: 415–424.
KourtziZ., & KanwisherN. (2000). Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 12: 48–55.
KrekelbergB., DannenbergS., HoffmannK-P., BremmerF., & RossJ. (2003). Neural correlates of implied motion. Nature 424: 674–677.
KrekelbergB., VatakisA., & KourtziZ. (2005). Implied motion from form in the human visual cortex. J Neurophysiol 94: 4373–4386.
KulikowskiJ. J. (1972). Relation of psychophysics to electrophysiology. Trace, Paris 6: 64–69.
KulikowskiJ. J. (1975). Apparent fineness of briefly presented gratings: balance between movement and pattern channels. Vision Res 15: 673–680.
LedgewayT., & SmithA. T. (1995). The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Res 35: 1421–1434.
LeibowitzH., BrislinR., PerlmutterL., & HennessyR. (1969). Ponzo perspective illusion as a manifestation of space perception. Science 166: 1174–1176.
LeibowitzH. W., & HarveyL. O., Jr. (1969). Effect of instructions, environment, and type of test object on matched size. J Exp Psychol 81: 36–43.
LennieP. (1981). The physiological basis of variations in visual latency. Vision Res 21: 815–824.
LewisC. F., & McBeathM. K. (2004). Bias to experience approaching motion in a three-dimensional virtual environment. Perception 33: 259–276.
LewisE. O. (1912–1913). The illusion of filled and unfilled space. Br J Psychol 5: 36–50.
LiuL., & SchorC. M. (1998). Functional division of the retina and binocular correspondence. J Opt Soc Am A 15: 1740–1755.
LivingstoneM. S., & HubelD. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7: 3416–3468.
LoomisJ. M., & NakayamaK. (1973). A velocity analogue of brightness contrast. Perception 2: 425–428.
LucasJ. R. (1969). Euclides ab omni naevo vindicatus. Br J Philos Sci 20: 1–11.
MackA. (1978). Three modes of visual perception. In M. H.Pick & E.Saltzman (eds.), Modes of Perceiving and Information Processing (171–186). Hillsdale, NJ: Erlbaum.
MacKayD. M. (1973). Lateral interaction between neural channels sensitive to texture density? Nature 245: 159–161.
MaddessT., & KulikowskiJ. J. (1999). Apparent fineness of stationary compound gratings. Vision Res 39: 3404–3416.
MassaroD. W., & AndersonN. H. (1971). Judgmental model of the Ebbinghaus illusion. J Exp Psychol 89: 147–151.
MateeffS., & GourevichA. (1983). Peripheral vision and perceived visual direction. Biol Cybern 49: 111–118.
MaunsellJ. H. R., & GibsonJ. R. (1992). Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68: 1332–1344.
McBeathM. K., MorikawaK., & KaiserM. K. (1992). Perceptual bias for forward-facing motion. Psychol Sci 3: 362–367.
McCourtM. E. (1982). A spatial frequency dependent grating-induction effect. Vision Res 22: 119–134.
McCreadyD. (1965). Size-distance perception and accommodation-convergence micropsia – a critique. Vision Res 5: 189–206.
McCreadyD. (1985). On size, distance, and visual angle perception. Percept Psychophys 37: 323–334.
McCreadyD. (1986). Moon illusions redescribed. Percept Psychophys 39: 64–72.
McKeeS. P., SilvermanG. H., & NakayamaK. (1986). Precise velocity discrimination despite variations in temporal frequency and contrast. Vision Res 26: 609–619.
McKeeS. P., & SmallmanH. S. (1998). Size and speed constancy. In V.Walsh & J.Kulikowski (eds.), Perceptual Constancy: Why Things Look As They Do (373–408). Cambridge: Cambridge University Press.
McKeeS. P., & WelchL. (1989). Is there a constancy for velocity? Vision Res 29: 553–561.
McKeeS. P., & WelchL. (1992). The precision of size constancy. Vision Res 32: 1447–1460.
MüllerR., & GreenleeM. W. (1994). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision Res 34: 2071–2092.
MurakamiI., & ShimojoS. (1993). Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes. Vision Res 33: 2091–2107.
NewsomeL. R. (1972). Visual angle and apparent size of objects in peripheral vision. Percept Psychophys 12: 300–304.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (1997). Visual decomposition of colour through motion extrapolation. Nature 386: 66–69.
NijhawanR. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
OnoH. (1966). Distal and projected size under reduced and non-reduced viewing conditions. Am J Psychol 79: 234–241.
OppelJ. J. (1854–1855). Über geometrisch-optische Tauschungen. Jahresbericht des Frankfurter Vereins (37–47).
OrbisonW. D. (1939). Shape as a function of the vector-field. Am J Psychol 52: 31–45.
OverR. (1960). The effect of instructions on size-judgments under reduction-conditions. Am J Psychol 73: 599–602.
OyamaT., & IwawakiS. (1972). Role of convergence and binocular disparity in size constancy. Psychol Forsch 35: 117–130.
PalmerS. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.
PantleA. (1992). Immobility of some second-order stimuli in human peripheral vision. J Opt Soc Am A 9: 863–867.
ParkerA. (1981). Shifts in perceived periodicity induced by temporal modulation and their influence on the spatial frequency tuning of two aftereffects. Vision Res 21: 1739–1747.
ParkerA. (1983). The effects of temporal modulation on the perceived spatial structure of sine-wave gratings. Perception 12: 663–682.
PastoreN. (1964). Induction of a stereoscopic depth effect. Science 144: 888.
PastoreN., & TerwilligerM. (1966). Induction of stereoscopic depth effects. Br J Psychol 57: 201–202.
PavlovaM., Krägeloh-MannI., BirbaumerN., & SokolovA. (2002). Biological motion shown backwards: the apparent-facing effect. Perception 31: 435–443.
PierceB. J., HowardI. P., & FeresinC. (1998). Depth interactions between inclined and slanted surfaces in vertical and horizontal orientations. Perception 27: 87–103.
PlugC., & RossH. E. (1994). The natural moon illusion: a multifactor angular account. Perception 23: 321–333.
RamachandranV. S. (1987). Interaction between colour and motion in human vision. Nature 328: 645–647.
RamachandranV. S., & AnstisS. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception 19: 611–616.
RaymondJ. E., & DarcangeloS. M. (1990). The effect of local luminance contrast on induced motion. Vision Res 30: 751–756.
ReddingG. M. (2002). A test of size-scaling and relative-size hypotheses for the moon illusion. Percept Psychophys 64: 1281–1289.
ReganD., & BeverlyK. I. (1982). How do we avoid confounding the direction we are looking and the direction we are going? Science 215: 194–196.
ReidT. (1813). Works. In Four Volumes. Stewart, Dugald, et al. Inquiry into the Human Mind. Charlestown: Samuel Etheridge, Jr., in vol 1.
Reinhardt-RutlandA. H. (1983). Induced movement-in-depth: Relative location of static stimulus and direction asymmetry. Percept Mot Skills 57: 255–258.
RentschlerI., HilzR., & GrimmW. (1975). Processing of positional information in the human visual system. Nature 253: 444–445.
RentschlerI., HilzR., SütterlinC., & NoguchiK. (1981). Illusions of filled lateral and angular extent. Exp Brain Res 44: 154–158.
RestleF. (1970). Moon illusion explained on the basis of relative size. Science 167: 1092–1096.
RobinsonE. J. (1954). The influence of photometric brightness on judgments of size. Am J Psychol 67: 464–474.
RockI. (1983). The Logic of Perception. Cambridge, MA: MIT Press.
RockI., & KaufmanL. (1962). The moon illusion, II. Science 136: 1023–1031.
RockI., & McDermottW. (1964). The perception of visual angle. Acta Psychologica 22: 119–134.
RogersB. J., & GrahamM. E. (1983). Anisotropies in the perception of three-dimensional surfaces. Science 221: 1409–1411.
RossJ., BadcockD. R., & HayesA. (2000). Coherent global motion in the absence of coherent velocity signals. Curr Biol 10: 679–682.
SatoM., & HowardI. P. (2001). Effects of disparity-perspective cue conflict on depth contrast. Vision Res 41: 415–426.
SchiffmanH. R., & ThompsonJ. G. (1978). The role of apparent depth and context in the perception of the Ponzo illusion. Perception 7: 47–50.
SchlagJ., CaiR. H., DorfmanA., MohempourA., & Schlag-ReyM. (2000). Extrapolating movement without retinal motion. Nature 403: 38–39.
SchlykowaL., EhrensteinW. H., CavoniusC. R., & ArnoldB. E. (1993). Perception 22 (suppl.): 97.
SchmoleskyM. T., WangY., HanesD. P., ThompsonK. G., LeutgerS., SchallJ. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79: 3272–3278.
SchneiderB., EhrlichD. J., SteinR., FlaumM., & MangelS. (1978). Changes in the apparent lengths of lines as a function of degree of retinal eccentricity. Perception 7: 215–223.
SedgwickH. A. (1986). In K. R.Boff, L.Kaufman, & J. P.Thomas (eds.), Handbook of Perception and Human Performance, Vol. 1: Sensory Processes and Perception (21.1–21.57). New York: Wiley.
SedgwickH. A., & NicholisA. L. (1993). Interaction between surface and depth in the Ponzo illusion. Invest Ophthalmol Vis Sci 34: 1184.
ShethB. R., NijhawanR., & ShimojoS. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.
SmithA. T., & EdgarG. K. (1990). The influence of spatial frequency on perceived temporal frequency and perceived speed. Vision Res 30: 1467–1474.
SnowdenR. J. (1999). The bigger they are the slower they move: the effects of field size on speed discrimination. Perception 28: 24S.
SnowdenR. J., & HammettS. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Res 38: 1935–1945.
SnowdenR. J., StimpsonN., & RuddleR. A. (1998). Speed perception fogs up as visibility drops. Nature 392: 450.
SolomonJ. A., SperlingG., & ChubbC. (1993). The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation. Vision Res 33: 2671–2683.
StegerJ. A. (1969). Visual lightness assimilation and contrast as a function of differential stimulation. Am J Psychol 82: 56–72.
StoneL. S., & ThompsonP. (1992). Human speed perception is contrast dependent. Vision Res 32: 1535–1549.
SwanstonM. T. (1984). Displacement of the path of perceived movement by intersection with static contours. Percept Psychophys 36: 324–328.
TakeuchiT., & De ValoisK. K. (2000). Modulation of perceived contrast by a moving surround. Vision Res 40: 2697–2709.
te PasS. F., RogersB. J., & LedgewayT. (1997). A curvature contrast effect for stereoscopically-defined surfaces. Applied Vision Association Meeting on Depth Perception, United Kingdom.
ThompsonP. (1982). Perceived rate of movement depends on contrast. Vision Res 22: 377–380.
ThoulessR. H. (1931). Phenomenal regression to the real object. I. Br J Psychol 21: 339–359.
TinbergenN. (1939). Why do the birds behave the way they do? Bird Lore 41: 23–30.
TinbergenN. (1951). The Study of Instinct. Oxford: Oxford University Press.
TreueS., SnowdenR. J., & AndersenR. A. (1993). The effect of transiency on perceived velocity of visual patterns: a case of “temporal capture.” Vision Res 33: 791–798.
TynanP., & SekulerR. (1974). Perceived spatial frequency varies with stimulus duration. J Opt Soc Am 64: 1251–1255.
TynanP., & SekulerR. (1975). Simultaneous motion contrast: velocity, sensitivity and depth response. Vision Res 15: 1231–1238.
TynanP. D., & SekulerR. (1982). Motion processing in peripheral vision: reaction time and perceived velocity. Vision Res 22: 61–68.
van EeR., BanksM. S., & BackusB. T. (1999). An analysis of binocular slant contrast. Perception 28: 1121–1145.
VirsuV. (1974). Dark adaptation shifts apparent spatial frequency. Vision Res 14: 433–435.
VirsuV., & NymanG. (1974). Monophasic temporal modulation increases apparent spatial frequency. Perception 3: 337–363.
VirsuV., NymanF., & LehtiöP. K. (1974). Diphasic and polyphasic temporal modulations multiply apparent spatial frequency. Perception 3: 323–336.
VirsuV., & VuorinenR. (1975). Dark adaptation and short-wavelength backgrounds decrease perceived size. Perception 4: 19–34.
von HelmholtzH. (1867/1962). Treatise on Physiological Optics vol. 3 (New York: Dover, 1962); English translation by JPC Southall for the Optical Society of America (1925) from the 3rd German edition of Hundbuch der Physiologischen Optik (Voss, Hamburg, 1910; first published in 1867, Voss, Leipzig).
WadeN. J., & SwanstonM. T. (1984). Illusions of size change in dynamic displays. Percept Psychophys 35: 286–290.
WalkerP., & PowellD. J. (1974). Lateral interaction between neural channels sensitive to velocity in the human visual system. Nature 252: 732–733.
WallaceG. K. (1975). The effect of contrast on the Zollner illusion. Vision Res 15: 963–966.
WannJ. P., & SwappD. K. (2000). Why you should look where you are going. Nat Neurosci 3: 647–648.
WatamaniukS. N. J., GrzywaczN. M., & YuilleA. L. (1993). Dependence of speed and direction perception on cinematogram dot density. Vision Res 33: 849–859.
WealeR. A. (1975). Apparent size and contrast. Vision Res 15: 949–955.
WealeR. A. (1978). Experiments on the Zöllner and related optical illusions. Vision Res 18: 203–208.
WeintraubD. J., & SchneckM. K. (1986). Fragments of Delboeuf and Ebbinghaus illusions: contour/context explorations of misjudged circle size. Percept Psychophys 40: 147–158.
WernerH. (1938). Binocular depth contrast and the conditions of the binocular field. Am J Psychol 51: 489–497.
WhitakerD., McGrawP. V., & PearsonS. (1999). Non-veridical size perception of expanding and contracting objects. Vision Res 39: 2999–3009.
WhitneyD., & CavanaghP. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3: 954–959.
WilkieR. M., & WannJ. P. (2003). Eye-movements aid the control of locomotion. J Vis 3: 677–684.
YuC., KleinS. A., & LeviD. M. (2001). Surround modulation of perceived contrast and the role of brightness induction. J Vis 1: 18–31.
ZankerJ. M., QuenzerT., & FahleM. (2001). Perceptual deformation induced by visual motion. Naturewissenschaften 88: 129–132.
ZhangJ., YehS-L., & DeValois. (1993). Motion contrast and motion integration. Vision Res 33: 2721–2732.

Reference Title: References

Reference Type: bibliography

AlaisD., & BurrD. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology 13(1): 59–63.
BachmannT., LuigaI., PõderE., & KalevK. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Conscious Cogn 12: 279–297.
BaldoM. V. C., KiharaA. H., NambaJ., & KleinS. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
BaldoM. V., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
BerryM. J., BrivanlouI. H., JordanT. A., & MeisterM. (1999). Anticipation of moving stimuli by the retina. Nature 398(6725): 334–338.
BrennerE., & SmeetsJ. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.
BurrD. C., & MorganM. J. (1997). Motion deblurring in human vision. Proc R Soc Lond B Biol Sci 264(1380): 431–436.
CaiR., & SchlagJ. (2001). A new form of illusory conjunction between color and shape [Abstract]. J Vis 1(3): 127. Retrieved from doi:10.1167/1.3.127
CavanaghP. (1997). Predicting the present. Nature 386(6620): 19, 21.
De ValoisR. L., & De ValoisK. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31: 1619–1626.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287(5460): 2036–2038.
FröhlichF. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
FröhlichF. W. (1929). Die Empfindungszeit. Jena: Gustav Fischer.
FuY. X., ShenS. Y., & DanY. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci 21(20): (RC172).
GegenfurtnerK. (1999). Neurobiology. The eyes have it! Nature 398(6725): 291–292.
GhezC., & KrakauerJ. (2000). The organization of movement. In E. R.Kandel, J. H.Schwartz, & T. M.Jessel (eds.), Principles of Neural Science (4th ed.). New York: McGraw-Hill.
HazelhoffF., & WiersmaH. (1924). Die Wahrnehmungszeit. Zeitschrift für Psychologie 96: 171–188.
HessC. (1904). Untersuchungen über den Erregungsvorgang im Sehorgan bei kurz- und länger dauernder Reizung. Pflügers Archiv für die gesamte Physiologie 101: 226–262.
IchikawaM., & MasakuraY. (2006). Manual control of the visual stimulus reduces the flash-lag effect. Vision Res 46(14): 2192–2203.
JamesW. (1890/1952). The Principles of Psychology. London: Encyclopaedia Brittanica.
JanckeD., ErlhagenW., SchonerG., & DinseH. (2004). Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J Physiol 556(Pt 3): 971–982.
JordanM. I. (1995). Computational motor control. In M. S.Gazzaniga (ed.), The Cognitive Neurosciences. Cambridge, MA: MIT Press.
KhuranaB., & NijhawanR. (1995). Extrapolation or attention shift: reply. Nature 378(6557): 565–566.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29(6): 675–692.
KirschfeldK., & KammerT. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39(22): 3702–3709.
KöhlerW. (1947/1992). Gestalt Psychology: An Introduction to New Concepts in Modern Psychology. New York: Liveright.
KratzK. E., & MayJ. G. (1990). Response persistence of cat retinal ganglion cells to the temporally discrete presentation of sinewave gratings. Int J Neurosci 52(1–2): 111–119.
KrekelbergB., & LappeM. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40(2): 201–215.
KrekelbergB., & LappeM. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24(6): 335–339.
MachE. (1885/1897). Contributions to the Analysis of the Sensations (C. M. Williams, Trans.). Chicago: The Open Court Publishing Company.
MacKayD. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.
MateeffS., & HohnsbeinJ. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Res 28(6): 711–719.
MausG. W., & NijhawanR. (2006). Forward displacements of fading objects in motion: the role of transient signals in perceiving position. Vision Res 46(26): 4375–4381.
MausG. W., & NijhawanR. (2008). Motion extrapolation into the blind spot. Psychol Sci 19(11): 1087–1091.
MausG. W., & NijhawanR. (in press). Going, going, gone: localizing abrupt offsets of moving objects. J Exp Psychol Hum Percept Perform.
MeisterM., WongR. O., BaylorD. A., & ShatzC. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252: 939–943.
MetzgerW. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16, 176–200.
MollonJ. D., & Perkinsa. J. (1996). Errors of judgement at Greenwich in 1796. Nature 380(6570): 101–102.
NambaJ., & BaldoM. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception 33: 621–631.
NijhawanR. (1992). Misalignment of contours through the interaction of apparent and real motion systems. Invest Ophthalmol Vis Sci 33(4): 974. See Appendix.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370(6487): 256–257.
NijhawanR. (1997). Visual decomposition of colour through motion extrapolation. Nature 386(6620): 66–69.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6(9): 387–393.
NijhawanR. (2008a). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behav Brain Sci 31: 179–239.
NijhawanR. (2008b). Predictive perceptions, predictive actions, and beyond. Behav Brain Sci 31(2): 222–239.
NijhawanR., & KirschfeldK. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: evidence from motor flash-lag. Curr Biol 13(9): 749–753.
NijhawanR., WatanabeK., KhuranaB., & ShimojoS. (2004). Compensation for neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cogn 11: 275–298.
NijhawanR., & WuS. (2009). Compensating time delays with neural predictions: are predictions sensory or motor? Philos Trans R Soc Lond A Math Phys Eng Sci 367: 1063–1078.
PurushothamanG., PatelS. S., BedellH. E., & OgmenH. (1998). Moving ahead through differential visual latency. Nature 396(6710): 424.
RaiguelS. E., LagaeL., GulyasB., & OrbanG. A. (1989). Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res 493(1): 155–159.
RatliffF. (1965). Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco, CA: Holden-Day.
Rojas-AnayaH., ThirkettleM., & NijhawanR. (2005). Flash-lag anisotrypy for movement in three domains [Abstract]. Perception 34(ECVP abstract supplement): 219–220.
RoulstonB. W., SelfM. W., & ZekiS. (2006). Perceptual compression of space through position integration. Proc R Soc Lond B Biol Sci 273(1600): 2507–2512.
RubinE. (1929). Kritisches und Experimentelles zur ‘Empfindungszeit’ Fröhlichs. Psychologische Forschung 13: 101–112.
SchlagJ., CaiR. H., DorfmanA., MohempurA., & Schlag-ReyM. (2000). Extrapolating movement without retinal motion. Nature 403: 38–39.
ShethB. R., NijhawanR., & ShimojoS. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3(5): 489–495.
SillitoA. M., CudeiroJ., & JonesH. E. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29(6): 307–316.
SillitoA. M., & JonesH. E. (2002). Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357(1428): 1739–1752.
SundbergK. A., FallahM., & ReynoldsJ. H. (2006). A motion-dependent distortion of retinotopy in area V4. Neuron 49(3): 447–457.
van de GrindW. (2002). Physical, neural, and mental timing. Conscious Cogn 11(2): 241–264; discussion 208–213.
VroomenJ., & de GelderB. (2004). Temporal ventriloquism: sound modulates the flash-lag effect. J Exp Psychol Hum Percept Perform 30(3): 513–518.
WhitneyD., & MurakamiI. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1(8): 656–657.
WojtachW. T., SungK., TruongS., & PurvesD. (2008). An empirical explanation of the flash-lag effect. Proc Nat Acad Sci USA 105: 16338–16343.

Reference Title: References

Reference Type: bibliography

Di LolloV., EnnsJ. T., & RensinkR. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J Exp Psychol Gen 129: 481–507.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EimerM., & SchlagheckenF. (1998). Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. J Exp Psychol Hum Percept Perform 24: 1737–1747.
EnnsJ. T. (2004). Object substitution and its relation to other forms of visual masking. Vision Res 44: 1321–1331.
EnnsJ. T., & Di LolloV. (1997). Object substitution: a new form of masking in unattended visual locations. Psychol Sci 8: 135–139.
EnnsJ. T., & Di LolloV. (2000). What's new in visual masking? Trends Cogn Sci 4: 345–352.
GoodaleM., & HumphreysG. K. (1998). The objects of action and perception. Cognition 67: 181–207.
HendersonJ. M., & FerreiraF. (2004). The Interface of Language, Vision, and Action. New York: Psychology Press.
JiangY. H., & ChunM. M. (2001). Asymmetric object substitution masking. J Exp Psychol Hum Percept Perform 27(4): 895–918.
KlappS. T., & HinkleyL. B. (2002). The negative compatibility effect: unconscious inhibition influences reaction time and response selection. J Exp Psychol Gen 131: 255–269.
KrekelbergB., & LappeM. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40: 201–215.
LeeS. H., & BlakeR. (1999). Visual form created solely from temporal structure. Science 284: 1165–1168.
LlerasA., & EnnsJ. T. (2004). Negative compatibility or object updating? A cautionary tale of mask-dependent priming. J Exp Psychol Gen 133: 475–493.
LlerasA., & MooreC. M. (2003). When the target becomes the mask: using apparent motion to isolate the object-level component of object substitution masking. J Exp Psychol Hum Percept Perform 29: 106–120.
MacKayD. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.
MilnerA. D., & GoodaleM. A. (1995). The Visual Brain in Action. London: Oxford University Press.
MooreC. M., & EnnsJ. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.
MooreC. M., & LlerasA. (2005). On the role of object representations in substitution masking. J Exp Psychol Hum Percept Perform 31: 1171–1180.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264: 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264: 1407–1414.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.
OrietC., & EnnsJ. T. (under review). The perceptual asynchrony illusion: object updating and unbinding take time. J Exp Psychol Hum Percept Perform.
SchlagJ., & Schlag-ReyM. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–200.
SekulerA. B., & BennettP. J. (2001). Generalized common fate: grouping by common luminance changes. Psychol Sci 12: 437–444.
TsotsosJ. (1990). Analyzing vision at the complexity level, Behav Brain Sci 13: 423–445.
UsherM., & DonnellyN. (1998). Visual synchrony affects binding and segmentation in perception. Nature 394: 179–182.
VogelE. K., WoodmanG. F., & LuckS. J. (2001). Storage of features, conjunctions, and objects in visual working memory. J Exp Psychol Hum Percept Perform 27: 92–114.
WhitneyD. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6: 211–216.
WhitneyD., & MurakamiI. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1: 656–657.
WhitneyD., MurakamiI., & CavanaghP. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.
ZekiS., & BartelsA. (1998). The asynchrony of consciousness. Proc R Soc Lond B Biol Sci 265: 1583–1585.

Reference Title: References

Reference Type: bibliography

AdelsonE. H., & BergenJ. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2): 284–299.
AndersonS. J., & BurrD. C. (1985). Spatial and temporal selectivity of the human motion detection system. Vision Res 25(8): 1147–1154.
BattelliL., CavanaghP., IntriligatorJ., TramoM. J., HenaffM. A., MichelF., et al. (2001). Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron 32(6): 985–995.
BattelliL., CavanaghP., MartiniP., & BartonJ. J. (2003). Bilateral deficits of transient visual attention in right parietal patients. Brain 126(Pt. 10): 2164–2174.
BaylisG. C., & DriverJ. (1993). Visual attention and objects: evidence for hierarchical coding of location. J Exp Psychol Hum Percept Perform 19(3): 451–470.
BlakeR., SobelK. V., & GilroyL. A. (2003). Visual motion retards alternations between conflicting perceptual interpretations. Neuron 39(5): 869–878.
BrittenK. H., NewsomeW. T., ShadlenM. N., CelebriniS., & MovshonJ. A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13(1): 87–100.
BuchelC., JosephsO., ReesG., TurnerR., FrithC. D., & FristonK. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain 121 (Pt 7): 1281–1294.
BurrD. C., RossJ., & MorroneM. C. (1986). Smooth and sampled motion. Vision Res 26(4): 643–652.
CavanaghP. (1992). Attention-based motion perception. Science 257(5076): 1563–1565.
ChaudhuriA. (1990). Modulation of the motion aftereffect by selective attention. Nature 344(6261): 60–62.
CorbettaM., & ShulmanG. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3): 201–215.
CoullJ. T., & FrithC. D. (1998). Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage 8(2): 176–187.
CrickF., & KochC. (2003). A framework for consciousness. Nat Neurosci 6(2): 119–126.
DoesburgS. M., KitajoK., & WardL. M. (2005). Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. Neuroreport 16(11): 1139–1142.
GeorgiadesM. S., & HarrisJ. P. (2000). Attentional diversion during adaptation affects the velocity as well as the duration of motion after-effects. Proc R Soc Lond B Biol Sci 267(1461): 2559–2565.
GeorgiadesM. S., & HarrisJ. P. (2002). Evidence for spatio-temporal selectivity in attentional modulation of the motion aftereffect. Spat Vis 16(1): 21–31.
HarterM. R. (1967). Excitability cycles and cortical scanning: a review of two hypotheses of central intermittency in perception. Psychol Bull 68(1): 47–58.
HolcombeA. O., CliffordC. W., EaglemanD. M., & PakarianP. (2005). Illusory motion reversal in tune with motion detectors. Trends Cogn Sci 9(12): 559–560.
HutchinsonC. V., & LedgewayT. (2006). Sensitivity to spatial and temporal modulations of first-order and second-order motion. Vision Res 46(3): 324–335.
JamesW. (1890). The Principles of Psychology (Vol. I). New York: Holt.
KlineK., HolcombeA. O., & EaglemanD. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res 44(23): 2653–2658.
KlineK., HolcombeA. O., & EaglemanD. M. (2005). Illusory motion reversal is not caused by discrete sampling of global or hemispheric visual fields. Society for Neuroscience 2005 abstracts #619.15.
KlineK., HolcombeA. O., & EaglemanD. M. (2006). Illusory motion reversal does not imply discrete processing: reply to Rojas et al. Vision Res 46(6–7): 1158–1159.
KobayashiT., KatoK., OwadaT., & KurikiS. (1996). Difference of EEG spectral powers observed between binocular rivalry and binocular fusion. Front Med Biol Eng 7(1): 11–19.
LankheetM. J., & VerstratenF. A. (1995). Attentional modulation of adaptation to two-component transparent motion. Vision Res 35(10): 1401–1412.
LuZ. L., & SperlingG. (1995a). Attention-generated apparent motion. Nature 377(6546): 237–239.
LuZ. L., & SperlingG. (1995b). The functional architecture of human visual motion perception. Vision Res 35(19): 2697–2722.
LumerE. D., FristonK. J., & ReesG. (1998). Neural correlates of perceptual rivalry in the human brain. Science 280(5371): 1930–1934.
O'CravenK. M., DowningP. E., & KanwisherN. (1999). fMRI evidence for objects as the units of attentional selection. Nature 401(6753): 584–587.
PantleA. J. (1978). Temporal frequency response characteristic of motion channels measured with three different psychophysical techniques. Percept Psychophys 24(3): 285–294.
PfurtschellerG., & Lopes da SilvaF. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11): 1842–1857.
PittsW., & McCullochW. S. (1947). How we know universals: the perception of auditory and visual forms. Bull Math Biophys 9: 127–147.
PosnerM. I., SnyderC. R. R., & DavidsonB. J. (1980). Attention and the detection of signals. J Exp Psychol Gen 109: 160–174.
PurvesD., PaydarfarJ. A., & AndrewsT. J. (1996). The wagon wheel illusion in movies and reality. Proc Natl Acad Sci U S A 93(8): 3693–3697.
ReesG., FrithC. D., & LavieN. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278(5343): 1616–1619.
ReesG., & LavieN. (2001). What can functional imaging reveal about the role of attention in visual awareness? Neuropsychologia 39(12): 1343–1353.
ReichardtW. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A.Rosenblith (ed.), Sensory Communication (303–317). Cambridge, MA: MIT Press.
RezecA., KrekelbergB., & DobkinsK. R. (2004). Attention enhances adaptability: evidence from motion adaptation experiments. Vision Res 44(26): 3035–3044.
SaenzM., BuracasG. T., & BoyntonG. M. (2002). Global effects of feature-based attention in human visual cortex. Nat Neurosci 5(7): 631–632.
SchoutenJ. F. (1967). Subjective stroboscopy and a model of visual movement detectors. In I.Wathen-Dunn (ed.), Models for the Perception of Speech and Visual Form (44–45). Cambridge, MA: MIT Press.
SeiffertA. E., & CavanaghP. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res 38(22): 3569–3582.
ShalliceT. (1964). The detection of change and the perceptual moment hypothesis. British Journal of Statistical Psychology 17: 113–135.
ShorterS., & PattersonR. (2001). The stereoscopic (cyclopean) motion aftereffect is dependent upon the temporal frequency of adapting motion. Vision Res 41(14): 1809–1816.
ShulmanG. L. (1993). Attentional effects of adaptation of rotary motion in the plane. Perception 22(8): 947–961.
SimpsonW. A., ShahaniU., & ManahilovV. (2005). Illusory percepts of moving patterns due to discrete temporal sampling. Neurosci Lett 375(1): 23–27.
SinghK. D., BarnesG. R., HillebrandA., FordeE. M., & WilliamsA. L. (2002). Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16(1): 103–114.
SnowdenR. J., & HessR. F. (1992). Temporal frequency filters in the human peripheral visual field. Vision Res 32(1): 61–72.
StroudJ. M. (1956). The fine structure of psychological time. In H.Quastler (ed.), Information Theory in Psychology (174–205). Chicago, IL: Free Press.
TreueS., & Martinez TrujilloJ. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399(6736): 575–579.
UchidaN., KepecsA., & MainenZ. F. (2006). Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7(6): 485–491.
VanRullenR. (2006). The continuous Wagon Wheel Illusion is object-based. Vision Res 46(24): 4091–4095.
VanRullenR. (2007). The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation. Vision Res, in press.
VanRullenR., GuyonneauR., & ThorpeS. J. (2005). Spike times make sense. Trends Neurosci 28(1): 1–4.
VanRullenR., & KochC. (2003). Is perception discrete or continuous? Trends Cogn Sci 7(5): 207–213.
VanRullenR., ReddyL., & KochC. (2005). Attention-driven discrete sampling of motion perception. Proc Natl Acad Sci U S A 102(14): 5291–5296.
VanRullenR., ReddyL., & KochC. (2006). The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. J Neurosci 26(2): 502–507.
van SantenJ. P., & SperlingG. (1985). Elaborated Reichardt detectors. J Opt Soc Am A 2(2): 300–321.
van WinsumW., SergeantJ., & GeuzeR. (1984). The functional significance of event-related desynchronization of alpha rhythm in attentional and activating tasks. Electroencephalogr Clin Neurophysiol 58(6): 519–524.
VarelaF. J., ToroA., JohnE. R., & SchwartzE. L. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5): 675–686.
WhiteC. (1963). Temporal numerosity and the psychological unit of duration. Psychological Monographs: General and Applied 77(12): 1–37, Whole No. 575.
WordenM. S., FoxeJ. J., WangN., & SimpsonG. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20(6): RC63.
WrightM. J., & JohnstonA. (1985). Invariant tuning of motion aftereffect. Vision Res 25(12): 1947–1955.

Reference Title: References

Reference Type: bibliography

AlaisD., & BurrD. (2003). The “flash-lag” effect occurs in audition and cross-modally. Curr Biol 13: 59–63.
ArrighiR., AlaisD., & BurrD. (2005). Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Res 45: 2917–2925.
BaarsB. (1995). Surprisingly small subcortical structures are needed for the state of waking consciousness, while cortical projection areas seem to provide perceptual contents of consciousness. Conscious Cogn 4: 159–162.
BaarsB. J. (1997). In the Theater of Consciousness: The Workspace of the Mind. Oxford: Oxford University Press.
BachmannT. (1984). The process of perceptual retouch: nonspecific afferent activation dynamics in explaining visual masking. Percept Psychophys 35: 69–84.
BachmannT. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica 70: 3–17.
BachmannT. (1994). Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience. Commack, NY: Nova Science Publishers.
BachmannT. (1997). Visibility of brief images: The dual-process approach. Conscious Cogn 6: 491–518.
BachmannT. (1999). Twelve spatiotemporal phenomena, and one explanation. In G.Aschersleben, T.Bachmann, & J.Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events. (173–206). Amsterdam: Elsevier.
BachmannT. (2000). Microgenetic Approach to the Conscious Mind. Amsterdam/Philadelphia: John Benjamins.
BachmannT., LuigaI., PõderE., & KalevK. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Conscious Cogn 12: 279–297.
BachmannT., & OjaA. (2003). Flash-lag without change in feature space is alive and well at late intervals after stream onset. Perception 32(Suppl.): 126–127.
BachmannT., & PõderE. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Res 41: 1103–1106.
BachmannT., PõderE., & LuigaI. (2004). Illusory reversal of temporal order: the bias to report a dimmer stimulus as the first. Vision Res 44: 241–246.
BachmannT., & SikkaP. (2005). Perception of successive targets presented in invariant-item streams. Acta Psychologica 120: 19–34.
BaldoM. V. C., & KleinS. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
BaldoM. V. C., KiharaA. H., NambaJ., & KleinS. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.
BogenJ. E. (1995). On the neurophysiology of consciousness: I. An overview. Conscious Cogn 4: 52–62.
BonnehY., CoopermanA., & SagiD. (2001). Motion-induced blindness in normal observers. Nature 411: 798–801.
BörgersC., EpsteinS., & KopellN. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci U S A 102: 7002–7007.
BregmanA. S., & RudnickyA. J. (1975). Auditory segregation: stream or streams? J Exp Psychol Hum Percept Perform 104: 263–267.
BreitmeyerB. G., & ÖğmenH. (2006). Visual Masking: Time Slices Through Conscious and Unconscious Vision. Oxford: Oxford University Press.
BrennerE., & SmeetsJ. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.
BrooksB., & JungR. (1973). Neuronal physiology of the visual cortex. In R.Jung (ed.), Handbook of Sensory Physiology. Vol. VII/.3 (325–440). New York: Springer-Verlag.
CaiR., & SchlagJ. (2001). A new form of illusory conjunction between color and shape [Abstract]. J Vis 1: 127a.
CarretieL., HinojosaJ. A., MercadoF., & TapiaM. (2005). Cortical response to subjectively unconscious danger. NeuroImage 24: 615–623.
CrickF. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A 81: 4586–4590.
CrickF., & KochC. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391: 245–250.
CrickF., & KochC. (2003). A framework for consciousness. Nat Neurosci 6: 119–126.
DiLolloV., EnnsJ. T., & RensinkR. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J Exp Psychol Gen 129: 481–507.
EaglemanD. M. (2010). How does the timing of neural signals map onto the timing of perception? In R.Nijhawan & B.Khurana (eds.), Space and Time in Perception and Action (216–231). Cambridge: Cambridge University Press.
EaglemanD. M., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EriksenC. W., & HoffmanJ. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Percep Psychophys 12: 201–204.
HerrmannC. S., & MecklingerA. (2001). Gamma activity in human EEG is related to high-speed memory comparisons during object selective attention. Vis Cogn 8: 593–608.
HochsteinS., & AhissarM. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.
HommukK., BachmannT., & OjaA. (2008). Precuing an isolated stimulus temporarily outweighs in-stream stimulus facilitation. J Gen Psychol 135: 167–181.
JaśkowskiP., van der LubbeR., SchlotterbeckE., & VerlegerR. (2002). Traces left on visual selective attention by stimuli that are not consciously identified. Psychol Sci 13: 48–54.
JohnE. R. (2005). From synchronous neuronal discharges to subjective awareness? In S.Laureys (ed.), Progress in Brain Research. 150: 143–171.
KanwisherN. (2001). Neural events and perceptual awareness. Cognition 79: 89–113.
KentridgeR. W., HeywoodC. A., & WeiskrantzL. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologia 42: 831–835.
KhuranaB., & NijhawanR. (1995). Extrapolation or attention shift? Nature 378: 566.
KhuranaB., WatanabeK., & NijhawanR. (2000). The role of attention in motion extrapolation: are moving objects “corrected” of flashed objects attentionally delayed? Perception 29: 675–692.
KirschfeldK. (2006). Stopping motion and the flash-lag effect. Vision Res 46: 1547–1551.
KochC., & TsuchiyaN. (2007). Attention and consciousness: two distinct brain processes. Trends Cogn Sci 11: 16–22.
KreegipuuK., & AllikJ. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43: 1625–1635.
KrekelbergB. (2001). The persistence of position. Vision Res 41: 529–539.
KrekelbergB., & LappeM. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Res 39: 2669–2679.
LaBergeD. (1997). Attention, awareness, and the triangular circuit. Conscious Cogn 6: 149–181.
LammeV. A. F. (2003). Why visual attention and awareness are different. Trends Cogn Sci 7: 12–18.
LammeV. A. F. (2004). Separate neural definitions of visual consciousness and visual attention; a case for phenomenal awareness. Neural Netw 17: 861–872.
LibetB. (2004). Mind Time. The Temporal Factor in Consciousness. Cambridge, MA: Harvard University Press.
LlinásR., LeznikE., & UrbanoF. J. (2002). Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99: 449–454.
LlinásR., & RibaryU. (2001). Consciousness and the brain. The thalamocortical dialogue in health and disease. Ann N Y Acad Sci 929: 166–175.
LlinásR., RibaryU., ContrerasD., & PedroarenaC. (1998). The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841–1849.
LlinásR., UrbanoF. J., LeznikE., RamirezR. R., & van MerleH. J. F. (2005). Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28: 325–333.
MagounH. W. (1958). The Waking Brain. Springfield, IL: C. C. Thomas.
McDonaldJ. J., Teder-SälejärviW. A., Di RussoF., & HillyardS. A. (2005). Neural basis of auditory-induced shifts in visual time-order perception. Nat Neurosci 8: 1197–1202.
MelcherD., PapathomasT. V., & VidnyanskyZ. (2005). Implicit attentional selection of bound visual features. Neuron 46: 723–729.
MitroffS. R., & SchollB. J. (2004). Last but not least: seeing the disappearance of unseen objects. Perception 33: 1267–1273.
MitroffS. R., & SchollB. J. (2005). Forming and updating object representations without awareness: evidence from motion-induced blindness. Vision Res 45: 961–967.
Montaser-KouhsariL., & RajimehrR. (2005). Subliminal attentional modulation in crowding condition. Vision Res 45: 839–844.
MooreC. M., & EnnsJ. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.
MoutoussisK., & ZekiS. (1997). Functional segregation and temporal hierarchy of the visual perceptive system. Proc R Soc Lond B Biol Sci 264: 1407–1414.
MurakamiI. (2001). A flash-lag effect in random motion. Vision Res 41: 3101–3119.
NaccacheL., BlandinE., & DehaeneS. (2002). Unconscious masked priming depends on temporal attention. Psychol Sci 13: 416–424.
NeumannO. (1982). Experimente zum Fehrer-Raab-Effekt und das Wetterwart-Modell der visuellen Maskierung. Report No. 24/1982, Psychological Institute, Ruhr-University Bochum.
NewmanJ. (1995). Thalamic contributions to attention and consciousness. Conscious Cogn 4: 172–193.
NijhawanR. (1994). Motion extrapolation in catching. Nature 370: 256–257.
NijhawanR. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.
NijhawanR., & KhuranaB. (2000). Conscious registration of continuous and discrete visual events. In T.Metzinger (ed.), Neural Correlates of Consciousness. (203–219). Cambridge, MA: MIT Press.
ÖğmenH., PatelS. S., BedellH. E., & CamuzK. (2004). Differential latencies and the dynamics of the position computation process of moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.
PurpuraD. (1970). Operations and processes in thalamic and synaptically related neural subsystems. In F. O.Schmitt (ed.), The Neurosciences. Second Study Program (458–470). New York: Rockefeller University Press.
ReesG., KreimanG., & KochC. (2002). Neural correlates of consciousness in humans. Nat Rev Neurosci 3: 261–270.
ReichardtW. (1961). Autocorrelation: a principle for the evaluation of sensory information by the central nervous system. In W. A.Rosenblith (ed.), Principles of Sensory Communication. New York: Wiley.
RibaryU. (2005). Dynamics of thalamo-cortical network oscillations and human perception. In S.Laureys (ed.), Progress in Brain Research, Vol. 150 (127–142).
RoseD. (2006). Consciousness. Oxford: Oxford University Press.
SalminenN., KoivistoM., & RevonsuoA. (2005). Independence of visual awareness from attention at early processing stages. Paper presented at ASSC9, June 24–27, Pasadena, CA.
ScharlauI. (2004a). Evidence against response bias in temporal order tasks with attention manipulation by masked prime. Psychol Res 68: 224–236.
ScharlauI. (2004b). The spatial distribution of attention in perceptual latency priming. Q J Exp Psychol 57: 1411–1436.
ScharlauI. (2007). Temporal processes in prime-mask interaction. Advances in Cognitive Psychology 3: 241–255.
ScharlauI., & AnsorgeU. (2003). Intention-mediated control of attention by nonconscious information (paper presented at ASSC8).
ScharlauI., & NeumannO. (2003a). Temporal parameters and time course of perceptual latency priming. Acta Psychologica 113: 185–203.
ScharlauI., & NeumannO. (2003b). Perceptual latency priming by masked and unmasked stimuli: evidence for an attentional interpretation. Psychol Res 67: 184–196.
ScheibelA. (1980). Anatomical and physiological substrates of arousal: a view from the bridge. In J. A.Hobson & M. A. B.Brazier (eds.), The Reticular Formation Revisited: Specifying Function for a Nonspecific System (55–66). New York: Raven.