13 - Dynamics of visual feature binding  pp. 199-215

Dynamics of visual feature binding

By Colin W. G. Clifford

Image View Previous Chapter Next Chapter


This chapter is concerned with the temporal aspects of visual binding. In particular, it concentrates on findings from studies of perceptual asynchrony between stimulus features and the temporal resolution of feature binding. I review the circumstances in which perceptual asynchronies are apparent versus those in which they are not. I argue that the existing data cannot be accounted for simply by a characteristic latency difference in the processing of different visual attributes (Moutoussis & Zeki 1997a,b) or by a scheme of temporal markers at salient stimulus transitions (Nishida & Johnston 2002). Instead, I outline a potential mechanism based on feedback from higher visual areas to primary visual cortex to account for the dynamics of binding color with orientation and direction of motion.


How is the content of our conscious visual experience related to neural processing? Is our visual awareness an online monitor of visual processing, or do interpretative processes intervene to give conscious visual experience a postdictive quality? In the words of William James, “A succession of feelings, in and of itself, is not a feeling of succession. And because, to our successive feelings, a feeling of their own succession is added, that must be treated as an additional fact requiring its own special elucidation” (James 1890). But what is the nature of this “additional fact”? The simplest account would seem to be that the perceived sequence of events is directly related to the amount and duration of neural processing needed to achieve conscious experience (Jeannerod 1992).

AlbrightT. D., & DesimoneR. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65: 582–592.
ArnoldD. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.
ArnoldD. H., & CliffordC. W. G. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B 269: 579–583.
ArnoldD. H., CliffordC. W. G., & WenderothP. (2001). Asynchronous processing in vision: colour leads motion. Curr Biol 11: 596–600.
BarburJ. L., WolfJ., & LennieP. (1998). Visual processing levels revealed by response latencies to changes in different visual attributes. Proc R Soc Lond B 265: 2321–2325.
BartelsA., & ZekiS. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B 265: 2332–2337.
BedellH. E., ChangS. T. L., OgmenH., & PatelS. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.
BlakeR., & HeS. (2005). Adaptation as a tool for probing the neural correlates of visual awareness: progress and precautions. In: C. W. G.Clifford & G.Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (281–307). Oxford: Oxford University Press.
BlaserE., PapathomasT., & VidnyanszkyZ. (2005). Binding of motion and colour is early and automatic. Eur J Neurosci 21: 2040–2044.
CliffordC. W. G. (2005). Functional ideas about adaptation applied to spatial and motion vision. In: C. W. G.Clifford & G.Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (47–82). Oxford: Oxford University Press.
CliffordC. W. G., ArnoldD. H., & PearsonJ. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.
CliffordC. W. G., HolcombeA. O., & PearsonJ. (2004). Rapid global form binding with loss of associated colors. J Vis 4: 1090–1101.
CliffordC. W. G., SpeharB., & PearsonJ. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.
DennettD. C., & KinsbourneM. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.
EaglemanD., & SejnowskiT. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
EnnsJ. T., & OrietC. (2004). Perceptual modularity: modularity of consciousness or object updating? J Vis 4: 27a.
FavreauO. E., EmersonV. F., & CorballisM. C. (1972). Motion perception: a color-contingent aftereffect. Science 176: 78–79.
ForteJ., & CliffordC. W. G. (2005). Interocular transfer of the tilt illusion shows that monocular orientation mechanisms are colour selective. Vision Res 45: 2715–2721.
FrisbyJ. P. (1980). Seeing: Illusion, Brain and Mind. Oxford: Oxford University Press.
HeS., & MacLeodD. I. (2001). Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411: 473–476.
HeS., CavanaghP., & IntriligatorJ. (1996). Attentional resolution and the locus of visual awareness. Nature 383: 334–337.
HochsteinS., & AhissarM. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.
HolcombeA. O. (2001). A purely temporal transparency mechanism in the visual system. Perception 30: 1311–1320.
HolcombeA. O., & CavanaghP. (2001). Early binding of feature pairs for visual perception. Nat Neurosci 4: 127–128.
HorwitzG. D., & AlbrightT. D. (2005). Paucity of chromatic linear motion detectors in macaque V1. J Vis 5: 525–533.
HumphreyG. K., & GoodaleM. A. (1998). Probing unconscious visual processing with the McCollough effect. Conscious Cogn 7: 494–519.
JamesW. (1890). The Principles of Psychology, Vol. 1. New York: Henry Holt.
JeannerodM. (1992). The where in the brain determines the when in the mind. Behav Brain Sci 15: 212–213.
JohnsonE. N., HawkenM. J., & ShapleyR. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4: 409–416.
JohnstonA., & NishidaS. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.
KanaiR., PaffenC. L. E., GerbinoW., & VerstratenF. A. J. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.
MatherG., VerstratenF., & AnstisS. (eds.). (1998). The Motion Aftereffect: A Modern Perspective. Cambridge, MA: MIT Press.
MayhewJ. E. W., & AnstisS. M. (1972). Movement aftereffects contingent on colour, intensity and pattern. Perception & Psychophysics 12: 77–85.
MoradiF., & ShimojoS. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.
MoutoussisK., & ZekiS. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B 264: 393–399.
MoutoussisK., & ZekiS. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B 264: 1407–1414.
MunkM. H. J., NowakL. G., GirardP., ChounlamountriN., & BullierJ. (1995). Visual latencies in cytochrome oxidase bands of macaque area V2. Proc Natl Acad Sci USA 92: 988–992.
NishidaS., & JohnstonA. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.
Pascual-LeoneA., & WalshV. (2001). Fast back projections from the motion to the primary visual area necessary for visual awareness. Science 292: 510–512.
QianN., & AndersenR. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367–7380.
QianN., AndersenR. A., & AdelsonE. H. (1994a). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14: 7357–7366.
QianN., AndersenR. A., & AdelsonE. H. (1994b). Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci 14: 7381–7392.
RajimehrR. (2004). Unconscious orientation processing. Neuron 41: 663–673.
SchillerP. H., & MalpeliJ. G. (1978). Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 41: 788–797.
SeidemannE., PoirsonA. B., WandellB. A., & NewsomeW. T. (1999). Color signals in area MT of the macaque monkey. Neuron 24: 911–917.
ShadlenM. N., & NewsomeW. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896.
ShadyS., MacLeodD. I., & FisherH. S. (2004). Adaptation from invisible flicker. Proc Natl Acad Sci USA 101: 5170–5173.
ShippS., & ZekiS. (1989). The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1: 309–332.
SnowdenR. J., TreueS., EricksonR. G., & AndersenR. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785.
van DoornA. J., & KoenderinkJ. J. (1982). Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188.
VivianiP., & AymozC. (2001). Colour, form, and movement are not perceived simultaneously. Vision Res 41: 2909–2918.
WuD. A., KanaiR., & ShimojoS. (2004). Vision: steady-state misbinding of colour and motion. Nature 429: 262.
ZekiS. (1993). A Vision of the Brain. Oxford: Blackwell.
ZekiS. (2003). The disunity of consciousness. Trends Cogn Sci 7: 214–218.
ZekiS., & BartelsA. (1998). The asynchrony of consciousness. Proc R Soc Lond B 265: 1583–1585.
ZekiS., & BartelsA. (1999). Toward a theory of visual consciousness. Conscious Cogn 8: 225–229.