1 - Progress and issues for computationally guided lead discovery and optimization  pp. 1-14

Progress and issues for computationally guided lead discovery and optimization

By William L. Jorgensen

Image View Previous Chapter Next Chapter



INTRODUCTION

Since the late 1980s there have been striking advances, fueled by large increases in both industrial and NIH-funded academic research, that have revolutionized drug discovery. This period has seen the introduction of high-throughput screening (HTS), combinatorial chemistry, PC farms, Linux, SciFinder, structure-based design, virtual screening by docking, free-energy methods, absorption/distribution/metabolism/excretion (ADME) software, bioinformatics, routine biomolecular structure determination, structures for ion channels, G-protein-coupled receptors (GPCRs) and ribosomes, structure/activity relationships (SAR) obtained from nuclear magnetic resonance (SAR by NMR), fragment-based design, gene knockouts, proteomics, small interfering RNA (siRNA), and human genome sequences. The result is a much-accelerated progression from identification of biomolecular target to lead compound to clinical candidate. However, a serious concern is that the dramatic increase in drug discovery abilities and expenditures has not been paralleled by an increase in FDA approvals of new molecular entities. High demands for drug safety, broader and longer clinical trials, too much HTS, too little natural products research, and effective generic drugs for many once-pressing afflictions have all been suggested as contributors. Numerous corporate mergers and acquisitions may have also had adverse effects on productivity through distractions of reorganization and integration. Nevertheless, one should consider what the success would have been in the absence of the striking technical advances. Certainly, progress with some critical and challenging target classes such as kinases would have been greatly diminished, and the adverse impact on many cancer patients would have been profound.

Barreiro, G. ; Guimarães, C. R. W. ; Tubert-Brohman, I. ; Lyons, T. M. ; Tirado-Rives, J. ; Jorgensen, W. L. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J. Chem. Info. Model. 2007, 47, 2416–2428.
Barreiro, G. ; Kim, J. T. ; Guimarães, C. R. W. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. From docking false-positive to active anti-HIV Agent. J. Med. Chem. 2007, 50, 5324–5329.
Blagović, M. U. ; Tirado-Rives, J. ; Jorgensen, W. L. Structural and energetic analyses for the effects of the K103N mutation of HIV-1 reverse transcriptase on efavirenz analogs. J. Med. Chem. 2004, 46, 2389–2392.
Chipot, C. ; Pohorille, A. In Springer Series in Chemical Physics: Free Energy Calculations: Theory and Applications in Chemistry and Biology, Vol. 86, Chipot, C. ; Pohorille, A. ; Eds. Berlin: Springer-Verlag; 2007, 33–75.
Congreve, M. ; Chessari, G. ; Tisi, D. ; Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 2008, 51, 3661–3680.
Cournia, Z. ; Leng, L. ; Gandavadi, S. ; Du, X. ; Bucala, R. ; Jorgensen, W. L. Discovery of human macrophage migration inhibitory factor (MIF)-CD74 antagonists via virtual screening. J. Med. Chem. 2009, 52, 416–424.
Das, K. ; Clark, A. D., Jr. ; Lewi, P. J. ; Heeres, J. ; de Jonge, M. R. ; Koymans, L. M. H. ; Vinkers, H. M. ; Daeyaert, F. ; Ludovici, D. W. ; Kukla, M. J. ; De Corte, B. ; Kavash, R. W. ; Ho, C. Y. ; Ye, H. ; Lichtenstein, M. A. ; Andries, K. ; Pauwels, R. ; de Béthune, M.-P. ; Boyer, P. L. ; Clark, P. ; Hughes, S. H. ; Janssen, P. A. J. ; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (Etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 2004, 47, 2550–2560.
Egan, W. J. ; Merz, K. M., Jr. ; Baldwin, J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877.
Erion, M. D. ; Dang, Q. ; Reddy, M. R. ; Kasibhatla, S. R. ; Huang, J. ; Lipscomb, W. N. ; van Poelje, P. D. Structure-guided design of amp mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J. Am. Chem. Soc. 2007, 129, 15480–15490.
Essex, J. W. ; Severance, D. L. ; Tirado-Rives, J. ; Jorgensen, W. L. Monte Carlo simulations for proteins: binding affinities for trypsin-benzamidine complexes via free energy perturbations. J. Phys. Chem. 1997, 101, 9663–9669.
Friesner, R. A. ; Banks, J. L. ; Murphy, R. B. ; Halgren, T. A. ; Klicic, J. J. ; Mainz, D. T. ; Repasky, M. P. ; Knoll, E. H. ; Shelley, M. ; Perry, J. K. ; Shaw, D. E. ; Francis, P. ; Shenkin, P. S. GLIDE: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749.
Friesner, R. A. ; Murphy, R. B. ; Repasky, M. P. ; Frye, L. L. ; Greenwood, J. R. ; Halgren, T. A. ; Sanschagrin, P. C. ; Mainz, D. T. Extra precision GLIDE: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196.
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008, 12, 306–317.
Guimarães, C. R. W ; Boger, D. L. ; Jorgensen, W. L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J. Am. Chem. Soc. 2005, 127, 17377–17384.
Hagemann, T. ; Robinson, S. C. ; Thompson, R. G. ; Charles, K. ; Kulbe, H. ; Balkwill, F. R. Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol. Cancer Ther. 2007, 6, 1993–2002.
Hughes, B. 2007 FDA drug approvals: a year of flux. Nat. Rev. Drug Discov. 2008, 7, 107–109.
Irwin, J. J. ; Shoichet, B. K. ZINC: a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.
Jorgensen, W. L. ; Duffy, E. M. Prediction of solubility from structure. Adv. Drug Deliv. Rev., 54, 355–365.
Jorgensen, W. L. ; Ravimohan, C. Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 1985, 83, 3050–3054.
Jorgensen, W. L. ; Ruiz-Caro, J. ; Tirado-Rives, J. ; Basavapathruni, A. ; Anderson, K. S. ; Hamilton, A. D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 663–667.
Jorgensen, W. L. ; Thomas, L. T. Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theor. Comput. 2008, 4, 869–876.
Jorgensen, W. L. ; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 2005, 26, 1689–1700.
Jorgensen, W. L. ; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Nat. Acad. Sci U.S.A. 2005, 102, 6665–6670.
Jorgensen, W. L. QIKPROP, v 3.0. New York: Schrödinger LLC; 2006.
Jorgensen, W. L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818.
Kellenberger, E. ; Rodrigo, J. ; Muller, P. ; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 2004, 57, 225–242.
Kim, J. T. ; Hamilton, A. D. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2006, 128, 15372–15373.
Kollman, P. A. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395–2417.
Lahana, R. How many leads from HTS? Drug Discov. Today 1999, 4, 447–448.
Leach, A. R. ; Hann, M. M. ; Burrows, J. N. ; Griffen, E. J. Fragment screening: an introduction. Mol. Biosyst. 2006, 2, 429–446.
Leach, A. R. ; Shoichet, B. K. ; Peishoff, C. E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 2006, 49, 5851–5855.
Lipinski, C. A. ; Lombardo, F. ; Dominy, B. W. ; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26.
McCammon, J. A. Computer-aided molecular design. Science 1987, 238, 486–491.
Merz, K. M. ; Kollman, P. A. Free energy perturbation simulations of the inhibition of thermolysin: prediction of the free energy of binding of a new inhibitor. J. Am. Chem. Soc. 1989, 111, 5649–5658.
Morand, E. F. ; Leech, M. ; Bernhagen, J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat. Rev. Drug Discov. 2006, 5, 399–411.
Norinder, U. ; Bergström, C. A. S. Prediction of ADMET properties. ChemMedChem 2006, 1, 920–937.
Pearlman, D. A. ; Charifson, P. S. Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system. J. Med. Chem. 2001, 44, 3417–3423.
Pearlman, D. A. Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem. 2005, 48, 7796–7807.
Pierce, A. C. ; Jorgensen, W. L. Computational binding studies of orthogonal cyclosporin-cyclophilin pairs. Angew. Chem. Int. Ed. Engl. 1997, 36, 1466–1469.
Plount-Price, M. L. ; Jorgensen, W. L. Analysis of binding affinities for celecoxib analogs with COX-1 and COX-2 from docking and Monte Carlo simulations and insight into COX-2/COX-1 selectivity. J. Am. Chem. Soc. 2000, 122, 9455–9466.
Plount-Price, M. L. ; Jorgensen, W. L. Rationale for the observed COX-2/COX-1 selectivity of celecoxib from Monte Carlo simulations. Bioorg. Med. Chem. Lett. 2001, 11, 1541–1544.
Posner, B. A. High-throughput screening-driven lead discovery : Meeting the challenges of finding new therapeutics. Curr. Opin. Drug Disc. Dev. 2005, 8, 487–494.
Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 2005, 15, 1087–1090.
Reddy, M. R. ; Erion, M. D. Calculation of relative binding free energy differences for fructose 1,6-biphosphatase inhibitors using thermodynamic cycle perturbation approach. J. Am. Chem. Soc. 2001, 123, 6246–6252.
Rizzo, R. C. ; Wang, D.-P. ; Tirado-Rives, J. ; Jorgensen, W. L. Validation of a model for the complex of HIV-1 reverse transcriptase with Sustiva through computation of resistance profiles. J. Am. Chem. Soc. 2000, 122, 12898–12900.
Rodgers, D. W. ; Gamblin, S. J. ; Harris, B. A. ; Ray, S. ; Culp, J. S. ; Hellmig, B. ; Woolf, D. J. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 1222–1226.
Ruiz-Caro, J. ; Basavapathruni, A. ; Kim, J. T. ; Wang, L. ; Bailey, C. M. ; Anderson, K. S. ; Hamilton, A. D. ; Jorgensen, W. L. Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 668–671.
Senter, P. D. ; Al-Abed, Y. ; Metz, C. N. ; Benigni, F. ; Mitchell, R. A. ; Chesney, J. ; Han, J. ; Gartner, C. G. ; Nelson, S. D. ; Todaro, G. J. ; Bucala, R. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase and biological activities by acetaminophen metabolites. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 144–149.
Sun, H. W. ; Bernhagen, J. ; Bucala, R. ; Lolis, E. Crystal structure at 2.6-Å resolution of human macrophage migration inhibitory factor. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5191–5196.
Thakur, V. V. ; Kim, J. T. ; Hamilton, A. D. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of pyrimidinyl- and triazinyl-amines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 5664–5667.
Tirado-Rives, J. ; Jorgensen, W. L. Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J. Med. Chem. 2006, 49, 5880–5884.
Udier-Blagović, M. ; Tirado-Rives, J. ; Jorgensen, W. L. Validation of a model for the complex of HIV-1 reverse transcriptase with the novel non-nucleoside inhibitor TMC125 J. Am. Chem. Soc. 2003, 125, 6016–6017.
Wang, D.-P. ; Rizzo, R. C. ; Tirado-Rives, J. ; Jorgensen, W. L. Antiviral drug design: Computational analyses of the effects of the L100I mutation for HIV-RT on the binding of NNRTIs. Bioorg. Med. Chem. Lett. 2001, 11, 2799–2802.
Weber, A. ; Casini, A. ; Heine, A. ; Kuhn, D. ; Supuran, C. T. ; Scozzafava, A. ; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004, 47, 550–557.
Wong, C. F. ; McCammon, J. A. Dynamics and design of enzymes and inhibitors. J. Am. Chem. Soc. 1986, 108, 3830–3832.
Zeevaart, J. G. ; Wang, L. ; Thakur, V. V. ; Leung, C. S. ; Tirado-Rives, J. ; Bailey, C. M. ; Domaoal, R. A. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of azoles as anti-HIV agents guided by free-energy calculations. J. Am. Chem. Soc. 2008, 130, 9492–9499.
Zhou, Z. ; Felts, A. K. ; Friesner, R. A. ; Levy, R. M. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model. 2007, 47, 1599–1608.