Preface  pp. ix-x

Preface

By Kenneth M. Merz, Jr, Dagmar Ringe and Charles H. Reynolds

Image View Previous Chapter Next Chapter



Our goal in producing this book is to provide a broad overview of the most important approaches used in protein- and ligand-structure-based drug design. Beyond this we aim to illustrate how these approaches are currently being applied in drug discovery efforts. We hope this book will be a useful resource to practitioners in the field, as well as a good introduction for researchers or students who are new to the field. We believe it provides a snapshot of the most important trends and capabilities in the application of modeling and structural data in drug discovery.

Since the 1990s the role of structure and modeling in drug discovery has grown enormously. There have been remarkable scientific advances in both the experimental and computational fields that are the underpinnings of modern drug design. For example, x-ray capabilities have improved to the point that protein structures are now routinely available for a wide range of protein targets. One only need look at the exponential growth of the Protein Databank (RCSB) for evidence. Tremendous strides have been made in all aspects of protein structure determination, including crystallization, data acquisition, and structure refinement. Modeling has made similar gains. Recent years have brought more realistic force fields, new and more robust free-energy methods, computational models for absorption/distribution/metabolism/excretion (ADME)-toxicity, faster and better docking algorithms, automated 3D pharmacophore detection and searching, and very-large-scale quantum calculations.

Reference Title: References

Reference Type: reference-list

Hughes, B. 2007 FDA drug approvals: a year of flux. Nat. Rev. Drug Discov. 2008, 7, 107–109.
Lahana, R. How many leads from HTS? Drug Discov. Today 1999, 4, 447–448.
Posner, B. A. High-throughput screening-driven lead discovery : Meeting the challenges of finding new therapeutics. Curr. Opin. Drug Disc. Dev. 2005, 8, 487–494.
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008, 12, 306–317.
Barreiro, G. ; Kim, J. T. ; Guimarães, C. R. W. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. From docking false-positive to active anti-HIV Agent. J. Med. Chem. 2007, 50, 5324–5329.
Friesner, R. A. ; Banks, J. L. ; Murphy, R. B. ; Halgren, T. A. ; Klicic, J. J. ; Mainz, D. T. ; Repasky, M. P. ; Knoll, E. H. ; Shelley, M. ; Perry, J. K. ; Shaw, D. E. ; Francis, P. ; Shenkin, P. S. GLIDE: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749.
Leach, A. R. ; Hann, M. M. ; Burrows, J. N. ; Griffen, E. J. Fragment screening: an introduction. Mol. Biosyst. 2006, 2, 429–446.
Congreve, M. ; Chessari, G. ; Tisi, D. ; Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 2008, 51, 3661–3680.
Rodgers, D. W. ; Gamblin, S. J. ; Harris, B. A. ; Ray, S. ; Culp, J. S. ; Hellmig, B. ; Woolf, D. J. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 1222–1226.
Jorgensen, W. L. ; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Nat. Acad. Sci U.S.A. 2005, 102, 6665–6670.
Jorgensen, W. L. ; Ruiz-Caro, J. ; Tirado-Rives, J. ; Basavapathruni, A. ; Anderson, K. S. ; Hamilton, A. D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 663–667.
Ruiz-Caro, J. ; Basavapathruni, A. ; Kim, J. T. ; Wang, L. ; Bailey, C. M. ; Anderson, K. S. ; Hamilton, A. D. ; Jorgensen, W. L. Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 668–671.
Thakur, V. V. ; Kim, J. T. ; Hamilton, A. D. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of pyrimidinyl- and triazinyl-amines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 5664–5667.
Kim, J. T. ; Hamilton, A. D. ; Bailey, C. M. ; Domaoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2006, 128, 15372–15373.
Jorgensen, W. L. QIKPROP, v 3.0. New York: Schrödinger LLC; 2006.
Jorgensen, W. L. ; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 2005, 26, 1689–1700.
Jorgensen, W. L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818.
Kellenberger, E. ; Rodrigo, J. ; Muller, P. ; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 2004, 57, 225–242.
Leach, A. R. ; Shoichet, B. K. ; Peishoff, C. E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 2006, 49, 5851–5855.
Zhou, Z. ; Felts, A. K. ; Friesner, R. A. ; Levy, R. M. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model. 2007, 47, 1599–1608.
Tirado-Rives, J. ; Jorgensen, W. L. Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J. Med. Chem. 2006, 49, 5880–5884.
Barreiro, G. ; Guimarães, C. R. W. ; Tubert-Brohman, I. ; Lyons, T. M. ; Tirado-Rives, J. ; Jorgensen, W. L. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J. Chem. Info. Model. 2007, 47, 2416–2428.
Friesner, R. A. ; Murphy, R. B. ; Repasky, M. P. ; Frye, L. L. ; Greenwood, J. R. ; Halgren, T. A. ; Sanschagrin, P. C. ; Mainz, D. T. Extra precision GLIDE: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196.
Zeevaart, J. G. ; Wang, L. ; Thakur, V. V. ; Leung, C. S. ; Tirado-Rives, J. ; Bailey, C. M. ; Domaoal, R. A. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of azoles as anti-HIV agents guided by free-energy calculations. J. Am. Chem. Soc. 2008, 130, 9492–9499.
Cournia, Z. ; Leng, L. ; Gandavadi, S. ; Du, X. ; Bucala, R. ; Jorgensen, W. L. Discovery of human macrophage migration inhibitory factor (MIF)-CD74 antagonists via virtual screening. J. Med. Chem. 2009, 52, 416–424.
Irwin, J. J. ; Shoichet, B. K. ZINC: a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.
Morand, E. F. ; Leech, M. ; Bernhagen, J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat. Rev. Drug Discov. 2006, 5, 399–411.
Hagemann, T. ; Robinson, S. C. ; Thompson, R. G. ; Charles, K. ; Kulbe, H. ; Balkwill, F. R. Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol. Cancer Ther. 2007, 6, 1993–2002.
Senter, P. D. ; Al-Abed, Y. ; Metz, C. N. ; Benigni, F. ; Mitchell, R. A. ; Chesney, J. ; Han, J. ; Gartner, C. G. ; Nelson, S. D. ; Todaro, G. J. ; Bucala, R. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase and biological activities by acetaminophen metabolites. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 144–149.
Sun, H. W. ; Bernhagen, J. ; Bucala, R. ; Lolis, E. Crystal structure at 2.6-Å resolution of human macrophage migration inhibitory factor. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5191–5196.
Egan, W. J. ; Merz, K. M., Jr. ; Baldwin, J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877.
Lipinski, C. A. ; Lombardo, F. ; Dominy, B. W. ; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26.
Jorgensen, W. L. ; Duffy, E. M. Prediction of solubility from structure. Adv. Drug Deliv. Rev., 54, 355–365.
Norinder, U. ; Bergström, C. A. S. Prediction of ADMET properties. ChemMedChem 2006, 1, 920–937.
Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 2005, 15, 1087–1090.
Weber, A. ; Casini, A. ; Heine, A. ; Kuhn, D. ; Supuran, C. T. ; Scozzafava, A. ; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004, 47, 550–557.
Chipot, C. ; Pohorille, A. In Springer Series in Chemical Physics: Free Energy Calculations: Theory and Applications in Chemistry and Biology, Vol. 86, Chipot, C. ; Pohorille, A. ; Eds. Berlin: Springer-Verlag; 2007, 33–75.
Jorgensen, W. L. ; Ravimohan, C. Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 1985, 83, 3050–3054.
Wong, C. F. ; McCammon, J. A. Dynamics and design of enzymes and inhibitors. J. Am. Chem. Soc. 1986, 108, 3830–3832.
McCammon, J. A. Computer-aided molecular design. Science 1987, 238, 486–491.
Kollman, P. A. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395–2417.
Merz, K. M. ; Kollman, P. A. Free energy perturbation simulations of the inhibition of thermolysin: prediction of the free energy of binding of a new inhibitor. J. Am. Chem. Soc. 1989, 111, 5649–5658.
Pearlman, D. A. ; Charifson, P. S. Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system. J. Med. Chem. 2001, 44, 3417–3423.
Pearlman, D. A. Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem. 2005, 48, 7796–7807.
Reddy, M. R. ; Erion, M. D. Calculation of relative binding free energy differences for fructose 1,6-biphosphatase inhibitors using thermodynamic cycle perturbation approach. J. Am. Chem. Soc. 2001, 123, 6246–6252.
Erion, M. D. ; Dang, Q. ; Reddy, M. R. ; Kasibhatla, S. R. ; Huang, J. ; Lipscomb, W. N. ; van Poelje, P. D. Structure-guided design of amp mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J. Am. Chem. Soc. 2007, 129, 15480–15490.
Pierce, A. C. ; Jorgensen, W. L. Computational binding studies of orthogonal cyclosporin-cyclophilin pairs. Angew. Chem. Int. Ed. Engl. 1997, 36, 1466–1469.
Essex, J. W. ; Severance, D. L. ; Tirado-Rives, J. ; Jorgensen, W. L. Monte Carlo simulations for proteins: binding affinities for trypsin-benzamidine complexes via free energy perturbations. J. Phys. Chem. 1997, 101, 9663–9669.
Plount-Price, M. L. ; Jorgensen, W. L. Analysis of binding affinities for celecoxib analogs with COX-1 and COX-2 from docking and Monte Carlo simulations and insight into COX-2/COX-1 selectivity. J. Am. Chem. Soc. 2000, 122, 9455–9466.
Plount-Price, M. L. ; Jorgensen, W. L. Rationale for the observed COX-2/COX-1 selectivity of celecoxib from Monte Carlo simulations. Bioorg. Med. Chem. Lett. 2001, 11, 1541–1544.
Guimarães, C. R. W ; Boger, D. L. ; Jorgensen, W. L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J. Am. Chem. Soc. 2005, 127, 17377–17384.
Rizzo, R. C. ; Wang, D.-P. ; Tirado-Rives, J. ; Jorgensen, W. L. Validation of a model for the complex of HIV-1 reverse transcriptase with Sustiva through computation of resistance profiles. J. Am. Chem. Soc. 2000, 122, 12898–12900.
Wang, D.-P. ; Rizzo, R. C. ; Tirado-Rives, J. ; Jorgensen, W. L. Antiviral drug design: Computational analyses of the effects of the L100I mutation for HIV-RT on the binding of NNRTIs. Bioorg. Med. Chem. Lett. 2001, 11, 2799–2802.
Udier-Blagović, M. ; Tirado-Rives, J. ; Jorgensen, W. L. Validation of a model for the complex of HIV-1 reverse transcriptase with the novel non-nucleoside inhibitor TMC125 J. Am. Chem. Soc. 2003, 125, 6016–6017.
Blagović, M. U. ; Tirado-Rives, J. ; Jorgensen, W. L. Structural and energetic analyses for the effects of the K103N mutation of HIV-1 reverse transcriptase on efavirenz analogs. J. Med. Chem. 2004, 46, 2389–2392.
Das, K. ; Clark, A. D., Jr. ; Lewi, P. J. ; Heeres, J. ; de Jonge, M. R. ; Koymans, L. M. H. ; Vinkers, H. M. ; Daeyaert, F. ; Ludovici, D. W. ; Kukla, M. J. ; De Corte, B. ; Kavash, R. W. ; Ho, C. Y. ; Ye, H. ; Lichtenstein, M. A. ; Andries, K. ; Pauwels, R. ; de Béthune, M.-P. ; Boyer, P. L. ; Clark, P. ; Hughes, S. H. ; Janssen, P. A. J. ; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (Etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 2004, 47, 2550–2560.
Jorgensen, W. L. ; Thomas, L. T. Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theor. Comput. 2008, 4, 869–876.

Reference Title: References

Reference Type: reference-list

Jancarik, J. ; Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 1991, 24, 409–411.
Dvir, H. ; Harel, M. ; McCarthy, A. A. ; Toker, L. ; Silman, I. ; Futerman, A. H. ; Sussman, J. X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. L. EMBO Rep. 2003, 4, 704–709.
Lieberman, R. L. ; Wustman, B. A. ; Huertas, P. ; Powe, A. C., Jr. ; Pine, W. P. ; Khanna, R. ; Schlossmacher, G. ; Ringe, D. ; Petsko, G. A. Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 2007, 3, 101–107.
Stout, G. H. ; Jensen, L. H. X-Ray Structure Determination: A Practical Guide, 2nd ed. New York, NY: Wiley & Sons, 1989.
Blow, D. Outline of Crystallography for Biologists. New York, NY: Oxford University Press; 2002.
Rhodes, G. Crystallography Made Crystal Clear. Burlington, VT: Academic Press; 2006.
Wlodawer, A. ; Minor, W. ; Dauter, Z. ; Jaskolski, M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structure. FEBS J. 2008, 275, 1–21.
Irving, J. A. ; Whisstock, J. C. ; Lesk, A. M. Protein structural alignments and functional genomics. Proteins 2001, 42, 378–382.
Chevrier, B. ; Schalk, C. ; D'Orchymont, H. ; Rondeau, J. M. ; Moras, D. ; Tarnus, C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure 1994, 2, 283–291.
Desmarais, W. ; Bienvenue, D. L. ; Bzymek, K. P. ; Petsko, G. A. ; Ringe, D. ; Holz, R. C. J. The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica . Biol. Inorg. Chem. 2006, 11, 398–408.
Hendrickson, W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985, 115, 252–270.
Kleywegt, G. J. ; Jones, A. T. Where freedom is given, liberties are taken. Structure 1995, 3, 535–540.
Engh, R. A. ; Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. D. Biol. Crystallogr. 1991, 47, 392–400; and Engh, R. A.; Huber, R. Bond lengths and angles of peptide backbone fragments. In: Structure Quality and Target Parameters, International Tables of Crystallography, Vol. F, Rossman, M. G.; Arnold, E.; Eds. Dordrecht: Kluwer, 2001, 382–392.
Allen, F. H. An experimental approach to mapping the binding surfaces of crystalline proteins. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 380–388.
Petsko, G. A. ; Ringe, D. Protein Structure and Function. London: New Science Press; 2004.
Brunger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355, 472–474.
Matthews, B. W. J. Mol. Biol. 1968, 33, 491–497.
Ramakrishnan, C. ; Ramachandran, G. N. Stereochemical criteria for polypeptide and protein chain configuration – part II. Allowed conformations for a pair of peptide units. Biophys. J. 1965, 5, 909–933.
Bernstein, F. C. ; Koetzle, T. F. ; Williams, G. J. B. ; Meyer, E. F., Jr. ; Brice, M. D. ; Rogers, J. R. ; Kennard, O. ; Shimanouchi, T. ; Tasumi, M. The Protein Data Bank. A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977, 112, 535–547.
Berman, H. M. ; Wetbrook, J. ; Feng, Z. ; Gilliland, G. ; Bhat, T. N. ; Weissig, H. ; Shindyalov, I. N. ; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242.
Fitzpatrick, P. A. ; Steinmetz, A. C. U. ; Ringe, D. ; Klibanov, A. M. Enzyme crystal structure in a neat organic solvent. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8653–8657.
Mattos, C. ; Ringe, D. Locating and characterizing binding sites on proteins. Nat. Biotechnol. 1996, 14, 595–599.
Allen, K. N. ; Bellamacina, C. ; Ding, C. ; Jeffrey, C. ; Mattos, C. ; Petsko, G. A. ; Ringe, D. The Cambridge Structural Database: a quarter of a million crystal structures and rising. J. Phys. Chem. 1996, 100, 2605–2611.
Mattos, C. ; Bellamacina, C. R. ; Peisach, E. ; Vitkup, D. ; Petsko, G. A. ; Ringe, D. Multiple solvent crystal structures: probing binding sites, plasticity and hydration. J. Mol. Biol. 2006, 357, 1471–1482.
Ringe, X. ; Mattos, X. Location of binding sites on proteins by the multiple solvent crystal structure method. In: Fragment-Based Approaches in Drug Discovery, Jahnke, W. ; Erlanson, D. A. ; Eds. Weinheim: Wiley-VCH; 2006.
Shuker, S. B. ; Hajduk, P. J. ; Meadows, R. P. ; Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996, 274, 1531–1534.
Guarnieri, F. Computational protein probing to identify binding sites. U.S. Patent 6735530, 2004.
Clark, M. ; Guarnieri, F. ; Shkurko, I. ; Wiseman, J. Grand canonical Monte Carlo simulation of ligand-protein binding. J. Med. Inf. Model. 2006, 46, 231–242.
Landon, M. R. ; Lancia, D. R., Jr. ; Yu, J. ; Thiel, S. C. ; Vajda, S. Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J. Med. Chem. 2007, 50, 1231–1240.
Graves, A. P. ; Shivakumar, D. M. ; Boyce, S. E. ; Jacobson, M. P. ; Case, D. A. ; Shoichet, B. K. Rescoring docking hit lists for model cavity sites: predictions and experimental. J. Mol. Biol. 2008, 377, 914–934.
Repasky, M. P. ; Shelley, M. ; Friesner, R. A. Flexible ligand docking with Glide. Curr. Protoc. Bioinformatics 2007, June; Chapter 8: Unit 8.12.

Reference Title: References

Reference Type: reference-list

Allen, K. N. ; Bellamacina, C. R. ; Ding, X. ; Jeffery, C. J. ; Mattos, C. ; Petsko, G. A. ; Ringe D. An experimental approach to mapping the binding surfaces of crystalline protein. J. Phys. Chem. 1996, 100, 2605–2611.
Verlinde, C. I. M. J. ; Rudenko, G. ; Hoi, W. G. J. In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J. Comput. Aided Mol. Des. 1992, 6, 131–147.
Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078–1082.
Kuntz, I. D. ; Meng; E. C. ; Shoichet, B. K. Structure-based molecular design. Acc. Chem. Res. 1994, 27, 117–123.
Caflisch, A. ; Miranker, A. ; Karplus, M. Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-I aspartic proteinase. J. Med. Chem. 1993, 36, 2142–2167.
Shuker, S. B. ; Hajduk, P. J. ; Meadows, R. P. ; Fesik, S. W. Discovering high affinity ligands for proteins: SAR by NMR. Science 1996, 274, 1531–1534.
Nienaber, V. I. ; Richardson, P. I. ; Klighofer, V. ; Bouska, J. J. ; Giranda, V. I. ; Greer J. Discovering novel ligands for macromolecules using x-ray crystallographic screening. Nat. Biotechnol. 2000, 18, 1105–1108.
Bohacek, R. S. ; McMartin, C. ; Guida, W. C. The art and practice of structure-based drug design: a molecular modelling perspective. Med. Res. Rev. 1996, 16, 3–50.
Hann, M. M. ; Leach, A. R. ; G. Harper , G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856–864.
Hann, M. M. ; Oprea, T. I. Pursuing the lead likeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 2004, 8, 255–263.
Oprea, T. I. ; Davis, A. M. ; Teague, S. J. ; Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41, 1308–1315.
Teague, S. J. ; Davis, A. M. ; Leeson, P. D. ; Oprea T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 1999, 38, 3743–3748.
Congreve, M. ; Chessari, G. ; Tisi, D. ; Woodhead A. J. Recent developments in fragment based drug discovery. J. Med. Chem. 2008, 51, in press.
Gill, A. I. ; Frederickson, M. ; Cleasby, A. ; Woodhead, S. J. ; Carr, M. G. ; Woodhead, A J. ; Walker, M. T. ; Congreve, M. S. ; et al. Identification of novel p38ct MAP kinase inhibitors using fragment-based lead generation. J. Med. Chem. 2005, 48, 414–426.
Lesuisse, D. ; Lange, G. ; Deprez, P. ; Benard, D. ; Schoot, B. ; Delettre, G. ; Marquette, J.-P. ; Broto, P .; et al. SAR and X-ray: a new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J. Med. Chem. 2002, 45, 2379–2387.
Card, G. I. ; Blasdel, I. ; England, B. P. ; Zhang, C. ; Suzuki, Y. ; Gillette, S. ; Fong, D. ; Ibrahim, P. N. ; et al. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat. Biotechnol. 2005, 23, 201–207.
Lipinski, C. A. ; Lombardo, F. ; Dominy, B. W. ; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Drug Deliv. Res. 1997, 23, 3–25.
Congreve, M. ; Carr, R. ; Murray, C. ; Jhoti, H. A “rule of three” for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877.
Wenlock, M. C. ; Austin, R. P. ; Barton, P. ; Davis, A M. ; Leeson P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 2003, 46, 1250–1256.
Vieth, M. ; Siegel, M. G. ; Higgs, R. E. ; Watson, I. A. ; Robertson, D. H. ; Savin, K. A. ; Durst, G. I. ; Hipskind P. A. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 2004, 47, 224–232.
Paolini, G. V. ; Shapland, R. H. B. ; van Hoorn, W. P. ; Mason, J. S. ; Hopkins A. L. Global mapping of pharmacological space. Nat. Biotechnol. 2006, 24, 805–815.
Blaney, J. ; Nienaber, V. ; Burley, S. K. In: Fragment-Based Approaches in Drug Discovery, Jahnke, W. ; and Erlanson, D. A. ; Eds. Weinheim: Wiley VCH; 2006, 215–248.
Fink, T. ; Bruggesser, H. ; Reymond, J.-L. Virtual exploration of the small molecule chemical universe below 160 daltons. Angew. Chem. Int. Ed. 2005, 44, 1504–1508.
Xie, X. ; Kokubo, T. ; Cohen, S. I. ; Mirza, U. A. ; Hoffman, A. ; Chait, B. T. ; Roeder, R. G. ; Nakatani, Y .; et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 1996, 380, 287–288.
Collaborative Computational Project . The CCP4 suite: programs for protein crystallography. Acta Cryst. 1994 D50, 760–763.

Reference Title: References

Reference Type: reference-list

Shuker, S. B. ; Hajduk, P. J. ; Meadows, R. P. ; Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996, 274, 1531–1534.
Fejzo, J. ; et al. The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem. Biol. 1999, 6, 755–769.
Boehm, H. J. ; et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 2000, 43, 2664–2674.
Lipinski, C. A. ; Lombardo, F. ; Dominy, B. W. ; Feeny, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25.
Teague, S. J. ; Davis, A. M. ; Leeson, P. D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 1999, 38, 3743–3747.
Oprea, T. I. ; Davis, A. M. ; Teague, S. J. ; Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41, 1308–1315.
Bemis, G. W. ; Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893.
Lewell, X. Q. ; Judd, D. B. ; Watson, S. P. ; Hann, M. M. RECAP – retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511–522.
Congreve, M. ; Carr, R. ; Murray, C. ; Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877.
Hann, M. M. ; Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 2004, 8, 255–263.
Lepre, C. A. ; Moore, J. M. ; Peng, J. W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 2004, 104, 3641–3676.
Schuffenhauer, A. ; et al. Library design for fragment based screening. Curr. Top. Med. Chem. 2005, 5, 751–762.
Hann, M. M. ; Leach, A. R. ; Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856–864.
Shoichet, B. K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem. 2006, 49, 7274–7277.
Siegal, G. ; Ab, E. ; Schultz, J. Integration of fragment screening and library design. Drug Discov. Today 2007, 12, 1032–1039.
Congreve, M. ; Chessari, G. ; Tisi, D. ; Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 2008, 51, 3661–3680.
Leeson, P. D. ; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890.
Bohacek, R. S. ; McMartin, C. ; Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 1996, 16, 3–50.
Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249.
Fink, T. ; Reymond, J. L. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model 2007, 47, 342–353.
Lepre, C. A. Library design for NMR-based screening. Drug. Discov. Today 2001, 6, 133–140.
Lepre, C. A. Strategies for NMR screening and library design. In: BioNMR Techniques in Drug Research, Zerbe, O. ; Ed. Weinheim: Wiley-VCH; 2002, 1349–1364.
Jacoby, E. ; Davies, J. ; Blommers, M. J. Design of small molecule libraries for NMR screening and other applications in drug discovery. Curr. Top. Med. Chem. 2003, 3, 11–23.
Baurin, N. , et al. Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J. Chem. Inf. Comput. Sci. 2004, 44, 2157–2166.
Hubbard, R. E. ; Davis, B. ; Chen, I. ; Drysdale, M. J. The SeeDs approach: integrating fragments into drug discovery. Curr. Top. Med. Chem. 2007, 7, 1568–1581.
Hartshorn, M. J. ; et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 2005, 48, 403–413.
Blaney, J. ; Nienaber, V. ; Burley, S. Fragment-based lead discovery and optimisation using X-ray crystallography, computational chemistry, and high-throughput organic synthesis. In: Fragment-Based Approaches in Drug Discovery: Methods and Principles in Medicinal Chemistry, Vol. 34, Jahnke, W. ; Erlanson, D. ; Eds. Wennheim: Wiley–VCH; 2006, 215–248.
Albert, J. S. ; et al. An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca's drug discovery programmes. Curr. Top. Med. Chem. 2007, 7, 1600–1629.
Bogan, A. A. ; Thorn, K. S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 1998, 280, 1–9.
Clackson, T. ; Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 1995, 267, 383–386.
Moreira, I. S. ; Fernandes, P. A. ; Ramos, M. J. Hot spots–a review of the protein-protein interface determinant amino-acid residues. Proteins 2007, 68, 803–812.
Reichmann, D. ; et al. Binding hot spots in the TEM1-BLIP interface in light of its modular architecture. J. Mol. Biol. 2007, 365, 663–679.
Rejto, P. A. ; Verkhivker, G. M. Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8945–8950.
Ciulli, A. ; Williams, G. ; Smith, A. G. ; Blundell, T. L. ; Abell, C. Probing hot spots at protein-ligand binding sites: a fragment-based approach using biophysical methods. J. Med. Chem. 2006, 49, 4992–5000.
Hajduk, P. J. ; Huth, J. R. ; Fesik, S. W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 2005, 48, 2518–2525.
Lobley, C. M. ; et al. The crystal structure of Escherichia coli ketopantoate reductase with NADP+ bound. Biochemistry 2005, 44, 8930–8939.
Murray, C. W. ; Verdonk, M. L. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J. Comput. Aided Mol. Des. 2002, 16, 741–753.
Page, M. I. ; Jencks, W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 1678–1683.
Hajduk, P. J. ; Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 2007, 6, 211–219.
Hopkins, A. L. ; Groom, C. R. ; Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 2004, 9, 430–431.
Abad-Zapatero, C. ; Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 2005, 10, 464–469.
Hajduk, P. J. Fragment-based drug design: how big is too big? J. Med. Chem. 2006, 49, 6972–6976.
Reynolds, C. H. ; Tounge, B. A. ; Bembenek, S. D. Ligand binding efficiency: trends, physical basis, and implications. J. Med. Chem. 2008, 51, 2432–243.
Vieth, M. ; et al. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 2004, 47, 224–232.
Wenlock, M. C. ; Austin, R. P. ; Barton, P. ; Davis, A. M. ; Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 2003, 46, 1250–1256.
Dill, K. A. Additivity principles in biochemistry. J. Biol. Chem. 1997, 272, 701–704.
Jencks, W. P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4046–4050.
Hajduk, P. J. ; Huth, J. R. ; Sun, C. SAR by NMR: an analysis of potency gains realized through fragment-linking and fragment elaboration strategies for lead generation. In: Fragment-Based Approaches in Drug Discovery, Jahnke, W. ; Erlanson, D. A. ; Eds. Wennheim: Wiley-VCH; 2006, 181–192.
Hajduk, P. J. ; Meadows, R. P. ; Fesik, S. J. NMR-based screening in drug discovery. Q. Rev. Biophys. 1999, 32, 211–240.
Moore, J. M. NMR screening in drug discovery. Curr. Opin. Biotechnol. 1999, 10, 54–58.
Pellecchia, M. ; Sem, D. S. ; Wuthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 211–219.
Peng, J. W. ; Moore, J. M. ; Abdul-Manan, N. NMR experiments for lead generation in drug discovery. Prog. Nucl. Mag. Reson. Spectrosc. 2004, 44, 225–256.
Roberts, G. C. Applications of NMR in drug discovery. Drug Discov. Today 2000, 5, 230–240.
Stockman, B. ; Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Mag. Reson. Spectrosc. 2002, 41, 187–231.
van Dongen, M. ; Weigelt, J. ; Uppenberg, J. ; Schultz, J. ; Wikstrom, M. Structure-based screening and design in drug discovery. Drug Discov. Today 2002, 7, 471–478.
Wyss, D. F. ; McCoy, M. A. ; Senior, M. M. NMR-based approaches for lead discovery. Curr. Opin. Drug Discov. Devel. 5, 630–647.
Ross, A. ; Schlotterbeck, G. ; Klaus, W. ; Senn, H. Automation of NMR measurements and data evaluation for systematically screening interactions of small molecules with target proteins. J. Biomol. NMR 2000, 16, 139–146.
Salzmann, M. ; Pervushin, K. ; Wider, G. ; Senn, H. ; Wuthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 13585–13590.
Weigelt, J. ; van Dongen, M. ; Uppenberg, J. ; Schultz, J. ; Wikström, M. Site-selective screening by NMR spectroscopy with labeled amino acid pairs. J. Am. Chem. Soc. 2002, 124, 2446–2447.
Grzesiek, S. ; Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 1992, 96, 432–440.
Ikura, M. ; Kay, L.E. ; Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 1990, 29, 4659–4667.
Hohwy, M. ; et al. Novel prostaglandin D synthase inhibitors generated by fragment-based drug design. J. Med. Chem. 2008, 51, 2178–2186.
Mayer, M. ; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 1999, 38, 1784–1788.
Claasen, B. ; Axmann, M. ; Meinecke, R. ; Meyer, B. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J. Am. Chem. Soc. 2005, 127, 916–919.
Meinecke, R. ; Meyer, B. Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin αIIbβ. J. Am. Chem. Soc. 2001, 44, 3059–3065.
Dalvit, C. ; Fogliatto, G. ; Stewart, A. ; Veronesi, M. ; Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 2001, 21, 349–359.
Dalvit, C. ; et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 2000, 18, 65–68.
Johnson, E. C. ; Feher, V. A. ; Peng, J. W. ; Moore, J. M. ; Williamson, J. R. Application of NMR SHAPES screening to an RNA target. J. Am. Chem. Soc. 2003, 125, 15724–15725.
Lepre, C. A. ; et al. Applications of SHAPES screening in drug discovery. Comb. Chem. High Throughput Screen. 2002, 5, 583–590.
Lin, M. L. ; Shapiro, M. J. ; Wareing, J. R. Diffusion-edited NMR: affinity NMR for direct observation of molecular interactions. J. Am. Chem. Soc. 1997, 119, 5349–5250.
Bleicher, K. ; Lin, M. ; Shapiro, M. ; Wareing, J. Diffusion edited NMR: screening compound mixtures by affinity NMR to detect binding ligands to vancomycin. J. Org. Chem. 1998, 63, 8486–8490.
Hajduk, P. J. ; Olejniczak, E. T. ; Fesik, S. W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 1997, 119, 12257–12261.
Jahnke, W. ; et al. Second-site NMR screening with a spin-labeled first ligand. J. Am. Chem. Soc. 2000, 122, 7394–7395.
Jahnke, W. ; Rudisser, S. ; Zurini, M. Spin label enhanced NMR screening. J. Am. Chem. Soc. 2001, 123, 3149–3150.
Murali, N. ; Jarori, G. K. ; Landy, S. B. ; Rao, B. D. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding. Biochemistry 1993, 32, 12941–12948.
Dalvit, C. ; et al. High-throughput NMR-based screening with competition binding experiments. J. Am. Chem. Soc. 2002, 124, 7702–7709.
Wang, Y.-S. ; Liu, D. ; Wyss, D. F. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn. Reson. Chem. 2004, 42, 485–489.
Huth, J. R. ; et al. Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem. Biol. Drug Des. 2007, 70, 1–12.
Li, D. ; DeRose, E. F. ; London, R. E. The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J. Biomol. NMR 1999, 15, 71–76.
Lugovskoy, A. A. ; et al. A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J. Am. Chem. Soc. 2002, 124, 1234–1240.
Pellecchia, M. ; et al. NMR-based structural characterization of large protein-ligand interactions. J. Biomol. NMR 2002, 22, 165–173.
Medek, A. ; Hajduk, P. J. ; Mack, J. ; Fesik, S. W. The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J. Am. Chem. Soc. 2000, 122, 1241–124.
McCoy, M. A. ; Wyss, D. F. Alignment of weakly interacting molecules to protein surfaces using simulations of chemical shift perturbations. J. Biomol. NMR 2000, 18, 189–198.
McCoy, M. A. ; Wyss, D. F. Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J. Am. Chem. Soc. 2002, 124, 11758–11763.
Klaus, W. ; Senn, H. Strategies for hit finding using NMR. In: BioNMR in Drug Research, Zerbe, O. ; Ed. Weinheim: Wiley-VCH; 2003, 417–437.
Liepinsh, E. ; Otting, G. Organic solvents identify specific ligand binding sites on protein surfaces. Nat. Biotechnol. 1997, 15, 264–268.
Fejzo, J. ; Lepre, C. ; Xie, X. Applications of NMR screening in drug discovery. Curr. Top. Med. Chem. 2002, 2, 1349–1364.
Hajduk, P. J. ; et al. Identification of novel inhibitors of urokinase via NMR-based screening. J. Med. Chem. 2000, 43, 3862–3866.
Nienaber, V. L. ; et al. Discovering novel ligands for macromolecules using x-ray crystallographic screening. Nat. Biotechnol. 2000, 18, 1105–1108.
Carr, R. ; Jhoti, H. Structure-based screening of low-affinity compounds. Drug Discov. Today 2002, 7, 522–527.
Lesuisse, D. ; et al. SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J. Med. Chem. 2002, 45, 2379–2387.
Oltersdorf, T. ; et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435, 677–681.
Petros, A. M. ; et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J. Med. Chem. 2006, 49, 656–663.
Bruncko, M. ; et al. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem. 2007, 50, 641–662.
Hajduk, P. J. ; et al. Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J. Med. Chem. 1999, 42, 3852–3859.
Park, C. M. ; et al. Non-peptidic small molecule inhibitors of XIAP. Bioorg. Med. Chem. Lett. 2005, 15, 771–775.
Hochgurtel, M. ; Lehn, J.-M. Dynamic combinatorial diversity in drug discovery. In: Fragment-Based Approaches in Drug Discovery, Vol. 34, Jahnke, W. ; Ed. Wennheim: Wiley-VCH; 2006, 341–364.
Roper, S. ; Kolb, H. Click chemistry for drug discovery. In: Fragment-Based Approaches in Drug Discovery, Vol. 34, Jahnke, W. ; Ed. Wennheim: Wiley-VCH; 2006, 313–339.
Huth, J. R. ; Sun, C. Utility of NMR in lead optimization: fragment-based approaches. Comb. Chem. High Throughput Screen. 2002, 5, 631–643.
Edwards, P. D. ; et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J. Med. Chem. 2007, 50, 5912–5925.
Geschwindner, S. ; et al. Discovery of a novel warhead against beta-secretase through fragment-based lead generation. J. Med. Chem. 2007, 50, 5903–5911.
Congreve, M. ; et al. Application of fragment screening by x-ray crystallography to the discovery of aminopyridines as inhibitors of beta-secretase. J. Med. Chem. 2007, 50, 1124–1132.
Murray, C. W. ; et al. Application of fragment screening by x-ray crystallography to beta-secretase. J. Med. Chem. 2007, 50, 1116–1123.

Reference Title: References

Reference Type: reference-list

Houston, J. G. ; Banks, M. N. ; Binnie, A. ; Brenner, S. ; O'Connell, J. ; Petrillo, E. W. Case study: impact of technology investment on lead discovery at Bristol Myers Squibb, 1998–2006. Drug Discov. Today 2008, 13, 44–51.
Keseru, G. M. ; Makara, G. M. Hit discovery and hit-to-lead approaches. Drug Discov. Today 2006, 11, 741–748.
Koppitz, M. ; Eis, K. Automated medicinal chemistry. Drug Discov. Today 2006, 11, 561–568.
Perola, E. ; Walters, W. ; Charifson, P. S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004, 56, 235–249.
Warren, G. L. ; Andrews, C. W. ; Capelli, A.-M. ; Clarke, B. ; LaLonde, J. ; Lambert, M. H. ; Lindvall, M. ; Nevins, N. ; Semus, S. F. ; Sender, S. ; Tedesco, G. ; Wall, I. D. ; Woolven, J. M. ; Peishoff, C. E. ; Head, M. S. A critial assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49(20), 5912–5931.
Enyedy, I.; Egan, W. Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 2008.
Hajduk, P. J. ; Sauer, D. R. Statistical analysis of the effects of common chemical substituents on ligand potency. J. Med. Chem. 2008, 51, 553–564.
Shirts, M. R. ; Mobley, D. L. ; Chodera, J. D. Alchemical free energy calculations: ready for prime time? Annu. Rep. Comput. Chem. 2007, 3, 41–59.
Huang, N. ; Jacobson, M. P. Physics-based methods for studying protein-ligand interactions. Curr. Opin. Drug Di. De. 2007, 10, 325–331.
Gilson, M. K. ; Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomed. 2007, 36, 21–42.
Meirovitch, H. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr. Opin. Struc. Biol. 2007, 17, 181–186.
Ytreberg, F. M. ; Swendsen, R. H. ; Zuckerman, D. M. Comparison of free energy methods for molecular systems. J. Chem. Phys. 2006, 125, 184114.
Rodinger, T. ; Pomès, R. Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr. Opin. Struc. Biol. 2005, 15, 164–170.
Brandsdal, B. O. ; Österberg, F. ; Almlöf, M. ; Feierberg, I. ; Luzhkov, V. B. ; Åqvist, J. Free energy calculations and ligand binding. Adv. Prot. Chem. 2003, 66, 123–158.
Chipot, C. ; Pohorille, A. ; Eds. Free Energy Calculations: Theory and Applications in Chemistry and Biology, Vol. 86. New York: Springer, 2007.
Frenkel, D. ; Smit, B. Understanding Molecular Simulation: from Algorithms to Applications. San Diego, CA: Academic Press; 2002.
Leach, A. R. Molecular Modelling: Principles and Applications. Harlow, Essex, England: Addison Wesley Longman Limited; 1996.
Allen, M. P. ; Tildesley, D. J. Computer Simulation of Liquids. New York: Oxford University Press; 1987.
Woods, C. J. ; Manby, F. R. ; Mulholland, A. J. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. J. Chem. Phys. 2008, 128(1), 014109.
Kollman, P. A. ; Massova, I. ; Reyes, C. ; Kuhn, B. ; Huo, S. ; Chong, L. ; Lee, M. ; Lee, T. ; Duan, Y. ; Wang, W. ; Donini, O. ; Cieplak, P. ; Srinivasan, J. ; Case, D. A. ; Cheatham, T. E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897.
Lee, M. S. ; Olson, M. A. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J. 2006, 90, 864–877.
Gohlke, H. ; Case, D. A. Converging free energy estimates: Mm-pb(gb)sa studies on the protein-protein complex ras-raf. J. Comput. Chem. 2004, 25, 238–250.
Swanson, J. M. J. ; Henchman, R. H. ; McCammon, J. A. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J. 2004, 86, 67–74.
Daggett, V. Long timescale simulations. Curr. Opin. Struc. Biol. 2000, 10, 160–164.
Sitkoff, D. ; Sharp, K. ; Honig, B. H. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 1994, 98, 1978–1988.
Honig, B. H. ; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149.
Gilson, M. K. ; Sharp, K. ; Honig, B. H. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 1987, 9, 327–335.
Gilson, M. K. ; Honig, B. H. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 1988, 4, 7–18.
Rubinstein, A. ; Sherman, S. Influence of the solvent structure on the electrostatic interactions in proteins. Biophys J. 2004, 87, 1544–1557.
Swanson, J. M. J. ; Mongan, J. ; McCammon, J. A. Limitations of atom-centered dielectric functions in implicit solvent models. J. Phys. Chem. B 2005, 109, 14769–14772.
Schutz, C. N. ; Warshel, A. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 2001, 44, 400–417.
Archontis, G. ; Simonson, T. ; Karplus, M. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations: Application to amino acid recognition by aspartyl-tRNA. J. Mol. Biol. 2001, 306, 307–327.
Sharp, K. ; Honig, B. H. Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Biol. 1990, 19, 301–332.
Richards, F. M. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Biol. 1977, 6, 151–176.
Sharp, K. ; Nicholls, A. ; Fine, R. F. ; Honig, B. H. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 1991, 252, 106–109.
Hermann, R. B. Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity surface area. J. Phys. Chem. 1972, 76, 2754–2759.
Reynolds, J. A. ; Gilbert, D. B. ; Tanford, C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 2925–2927.
Gallicchio, E. ; Kubo, M. M. ; Levy, R. M. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 2000, 104, 6271–6285.
Wagoner, J. A. ; Baker, N. A. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. P. Natl. Acad. Sci. U.S.A. 2006, 103, 8331–8336.
Tan, C. ; Tan, Y.-H. ; Luo, R. Implicit nonpolar solvent models. J. Phys. Chem. B 2007, 111, 12263–12274.
Levy, R. M. ; Zhang, L. Y. ; Gallicchio, E. ; Felts, T. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 2003, 125, 9523–9530.
Luo, H. ; Sharp, K. On the calculation of absolute macromolecular binding free energies. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10399–10404.
Brooks, B. R. ; Janezic, D. ; Karplus, M. Harmonic analysis of large systems. I. Methodology. J. Comput. Chem. 2004, 16, 1522–1542.
Bohm, H. J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aid. Mol. Des. 1994, 8, 243–256.
Hnizdo, V. ; Tan, J. ; Killian, B. J. ; Gilson, M. K. Efficient calculation of configurational entropy from molecular simulations by combining the mutual-information expansion and nearest-neighbor methods. J. Comput. Chem. 2008, 29(10), 1605–1614.
Froloff, N. ; Windemuth, A. ; Honig, B. H. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions. Protein Sci. 1997, 6, 1293–301.
Hünenberger, P. H. ; Helms, V. ; Narayana, N. ; Taylor, S. S. ; McCammon, J. A. Determinants of ligand binding to camp-dependent protein kinase. Biochemistry 1999, 38, 2358–2366.
Jian Shen, J. W. Electrostatic binding energy calculation using the finite difference solution to the linearized Poisson-Boltzmann equation: assessment of its accuracy. J. Comput. Chem. 1996, 17, 350–357.
Schapira, M. ; Torrv, M. Prediction of the binding energy for small molecules, peptides and proteins. J. Mol. Recognit. 1999, 12, 177–190.
Mobley, D. L. ; Dill, K. A. ; Chodera, J. D. Treating entropy and conformational changes in implicit solvent simulations of small molecules. J. Phys. Chem. B 2008, 112, 938–946.
Olson, M. A. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Proteins 2004, 57, 645–650.
Brown, S. P. ; Muchmore, S. W. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. J. Chem. Inf. Model. 2006, 46, 999–1005.
Bashford, D. ; Case , D. A. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152.
Onufriev, A. ; Bashford, D. ; Case, D. A. Modification of the generalized Born model suitable for macromolecules. J. Phys. Chem. B 2000, 104, 3712–3720.
Onufriev, A. ; Case, D. A. ; Bashford, D. Effective Born radii in the generalized Born approximation: the importance of being perfect. J. Comput. Chem. 2002, 23, 1297–1304.
Feig, M. ; Onufriev, A. ; Lee, M. S. ; Im, W. ; Case, D. A. ; Brooks, C. L., III . Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 2004, 25, 265–284.
Geney, R. ; Layten, M. ; Gomperts, R. ; Hornak, V. ; Simmerling, C. Investigation of salt bridge stability in a generalized born solvent model. J. Chem. Theory Comput. 2006, 2, 115–127.
Nymeyer, H. ; Garcia, A. E. Simulation of the folding equilibrium of alpha-helical peptides: a comparison of the generalized born approximation with explicit solvent. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13934–13939.
Gilson, M. K. ; Honig, B. H. The inclusion of electrostatic hydration energies in molecular mechanics calculations. J. Comput. Aid. Mol. Des. 1991, 5, 5–20.
Head, M. S. ; Given, J. A. ; Gilson, M. K. “Mining Minima”: direct computation of conformational free energy. J. Phys. Chem. A 1997, 101, 1609–1618.
Kolossváry, I. Evaluation of the molecular configuration integral in all degrees of freedom for the direct calculation of conformational free energies: prediction of the anomeric free energy of monosaccharides. J. Phys. Chem. A 1997, 101(51), 9900–9905.
Ragusa, A. ; Hayes, J. M. ; Light, M. E. ; Kilburn, J. D. Predicting enantioselectivity: computation as an efficient experimental tool for probing enantioselectivity. Eur. J. Org. Chem. 2006, 2006(9), 3545–3549.
Ragusa, A. ; Hayes, J. M. ; Light, M. E. ; Kilburn, J. D. A combined computational and experimental approach for the analysis of the enantioselective potential of a new macrocyclic receptor for n-protected α-amino acids. Chem. Eur. J. 2007, 13(9), 2717–2728.
Potter, M. J. ; Gilson, M. K. Coordinate systems and the calculation of molecular properties. J. Phys. Chem. A 2002, 106(3), 563–566.
Chang, C.-E. A. ; Gilson, M. K. Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem. Soc. 2004, 126(40), 13156–13164.
Chang, C.-E. ; Chen, W. ; Gilson, M. K. Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 2004, 87, 3035–3049.
Chen, W. ; Chang, C.-E. A. ; Gilson, M. K. Concepts in receptor optimization: Targeting the rgd peptide. J. Am. Chem. Soc. 2006, 128(14), 4675–4684.
Chang, C.-E. A. ; Chen, W. ; Gilson, M. K. Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104(5), 1534–1539.
Killian, B. J. ; Yundenfreund Kravitz, J. ; Gilson, M. K. Extraction of configurational entropy from molecular simulations via an expansion approximation. J. Chem. Phys. 2007, 127(2), 024107.
Chang, C.-E. A. ; Chen, W. ; Gilson, M. K. Evaluating the accuracy of the quasiharmonic approximation. J. Chem. Theory Comput. 2005, 1(5), 1017–1028.
Young, T. ; Abel, R. ; Kim, B. ; Berne, B. J. ; Friesner, R. A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 808–813.
Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 1954, 22(8), 1420–1426.
Shirts, M. R. ; Pande, V. S. Comparison of efficiency and bias of free energies computed by exponential averaging, the bennett acceptance ratio, and thermodynamic integration. J. Chem. Phys. 2005, 122, 144107.
Lu, N. D. ; Singh, J. K. ; Kofke, D. A. Appropriate methods to combine forward and reverse free-energy perturbation averages. J. Chem. Phys. 2003, 118(7), 2977–2984.
Wu, D. ; Kofke, D. A. Asymmetric bias in free-energy perturbation measurements using two Hamiltonian-based models. Phys. Rev. E 2005, 70, 066702.
Jarzynski, C. Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 2006, 73, 046105.
Widom, B. Some topics in the theory of fluids. J. Chem. Phys. 1963, 39(11), 2808–2812.
Jorgensen, W. L. ; Ravimohan, C. Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 1985, 83(6), 3050–3054.
Resat, H. ; Mezei, M. Studies on free energy calculations. I. Thermodynamic integration using a polynomial path. J. Chem. Phys. 1993, 99(8), 6052–6061.
Pitera, J. W. ; van Gunsteren, W. F. A comparison of non-bonded scaling approaches for free energy calculations. Mol. Simulat. 2002, 28(1–2), 45–65.
Shirts, M. R. ; Pitera, J. W. ; Swope, W. C. ; Pande, V. S. Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 2003, 119(11), 5740–5761.
Beutler, T. C. ; Mark, A. E. ; van Schaik, R. C. ; Gerber, P. R. ; van Gunsteren, W. F. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem. Phys. Lett. 1994, 222, 529–539.
Mobley, D. L. Unpublished data.
Pearlman, D. A. ; Kollman, P. A. The lag between the Hamiltonian and the system configuration in free-energy perturbation calculations. J. Chem. Phys. 1989, 91(12), 7831–7839.
Hendrix, D. A. ; Jarzynski, C. A “fast growth” method of computing free energy differences. J. Chem. Phys. 2001, 114(14), 5974–5961.
Oostenbrink, C. ; van Gunsteren, W. F. Calculating zeros: nonequilibrium free energy calculations. Chem. Phys. 2006, 323, 102–108.
Oostenbrink, C. ; van Gunsteren, W. F. Free energies of ligand binding for structurally diverse compounds. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(19), 6750–6754.
Crooks, G. E. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 2000, 61(3), 2361–2366.
Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 1976, 22, 245–268.
Shirts, M. R. ; Bair, E. ; Hooker, G. ; Pande, V. S. Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys. Rev. Lett. 2003, 91(14), 140601.
Rick, S. W. Increasing the efficiency of free energy calculations using parallel tempering and histogram reweighting. J. Chem. Theory Comput. 2006, 2, 939–946.
Ferrenberg, A. M. ; Swendsen, R. H. Optimized Monte Carlo data analysis. Phys. Rev. Lett. 1989, 63(12), 1195–1198.
Kumar, S. ; Bouzida, D. ; Swendsen, R. H. ; Kollman, P. A. ; Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13(8), 1011–1021.
Bartels, C. ; Karplus, M. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J. Comput. Chem. 1997, 18(12), 1450–1462.
Gallicchio, E. ; Andrec, M. ; Felts, A. K. ; Levy, R. M. Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 2005, 109, 6722–6731.
Souaille, M. ; Roux, B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001, 135(1), 40–57.
Wang, J. ; Deng, Y. ; Roux, B. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys. J. 2006, 91, 2798–2814.
Shirts, M. R. ; Chodera, J. D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 2008, 129, 129105.
Steinbrecher, T. ; Mobley, D. L. ; Case, D. A. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J. Chem. Phys. 2007, 127(21).
Pearlman, D. A. ; Connelly, P. R. Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and TYR82 → PHE82 FKBP-12 proteins using free energy simulations. J. Mol. Biol. 1995, 248(3), 696–717.
Wang, L. ; Hermans, J. Change of bond length in free-energy simulations: algorithmic improvements, but when is it necessary? J. Chem. Phys. 1994, 100(12), 9129–9139.
Boresch, S. ; Karplus, M. The Jacobian factor in free energy simulations. J. Chem. Phys. 1996, 105(12), 5145–5154.
Zacharias, M. ; Straatsma, T. P. ; McCammon, J. A. Separation-shifted scaling, a new scaling method for lennard-jones interactions in thermodynamic integration. J. Phys. Chem. 1994, 100(12), 9025–9031.
Shirts, M. R. ; Pande, V. S. Solvation free energies of amino acid side chains for common molecular mechanics water models. J. Chem. Phys. 2005, 122, 134508.
Blondel, A. Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal alchemical path, and practical solutions. J. Comput. Chem. 2004, 25(7), 985–993.
Rodinger, T. ; Howell, P. L. ; Pomès, R. Absolute free energy calcualtions by thermodynamic integration in four spatial dimensions. J. Chem. Phys. 2005, 123, 034104.
Lee, M. S. ; Olson, M. A. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys. J. 2006, 90, 864–877.
Woo, H.-J. ; Roux, B. Calculation of absolute protein-ligand binding free energy from computer simulation. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6825–6830.
Ytreberg, F. M. Absolute FKBP binding affinities obtained by nonequilibrium unbinding simulations. J. Chem. Phys. 2009, 130, 164906-8.
Gan, W. ; Roux, B. Binding specificity of SH2 domains: insight from free energy simulations. Proteins 2008, 74, 996–1007.
Torrie, G. M. ; Valleau, J. P. Non-physical sampling distributions in Monte-Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 1977, 23(2), 187–199.
Mobley, D. L. ; Chodera, J. D. ; Dill, K. A. Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J. Chem. Theory Comput. 2007, 3(4), 1231–1235.
Mobley, D. L. ; Graves, A. P. ; Chodera, J. D. ; McReynolds, A. C. ; Shoichet, B. K. ; Dill, K. A. Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol. 2007, 371(4), 1118–1134.
Okamoto, Y. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Model. 2004, 22, 425–439.
Pitera, J. W. ; Kollman, P. A. Exhaustive mutagenesis in silico: multicoordinate free energy calculations in proteins and peptides. Proteins 2000, 41, 385–397.
Roux, B. ; Faraldo-Gómez, J. D. Characterization of conformational equilibria through hamiltonian and temperature replica-exchange simulations: assessing entropic and environmental effects. J. Comput. Chem. 2007, 28(10), 1634–1647.
Woods, C. J. ; Essex, J. W. ; King, M. A. Enhanced configurational sampling in binding free energy calculations. J. Phys. Chem. B 2003, 107, 13711–13718.
Banba, S. ; Guo, Z. ; Brooks, C. L., III . Efficient sampling of ligand orientations and conformations in free energy calculations using the lambda-dynamics method. J. Phys. Chem. B, 2000, 104(29),6903–6910.
Bitetti-Putzer, R. ; Yang, W. ; Karplus, M. Generalized ensembles serve to improve the convergence of free energy simulations. Chem. Phys. Lett. 2003, 377, 633–641.
Hritz, J. ; Oostenbrink, C. Hamiltonian replica exchange molecular dynamics using soft-core interactions. J. Chem. Phys. 2008, 128(14), 144121.
Guo, Z. ; Brooks, C. L., III , Kong, X. Efficient and flexible algorithm for free energy calculations using the λ-dynamics approach. J. Phys. Chem. B 1998, 102, 2032–2036.
Kong, X. ; Brooks, C. L., III . λ-dynamics: a new approach to free energy calculations. J. Chem. Phys. 1996, 105(6), 2414–2423.
Li, H. ; Fajer, M. ; Yang, W. Simulated scaling method for localized enhanced sampling and simultaneous “alchemical” free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations. J. Chem. Phys. 2007, 126, 024106.
Zheng, L. ; Carbone, I. O. ; Lugovskoy, A. ; Berg, B. A. ; Yang, W. A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations. J. Chem. Phys. 2008, 129(3), 034105.
Zheng, L. ; Yang, W. Essential energy space random walks to accelerate molecular dynamics simulations: convergence improvements via an adaptive-length self-healing strategy. J. Chem. Phys. 2008, 129(1), 014105.
Min, D. ; Yang, W. Energy difference space random walk to achieve fast free energy calculations. J. Chem. Phys. 2008, 128(19).
Li, H. ; Yang, W. Forging the missing link in free energy estimations: lambda-WHAM in thermodynamic integration, overlap histogramming, and free energy perturbation. Chem. Phys. Lett. 2007, 440(1–3), 155–159.
Min, D. ; Li, H. ; Li, G. ; Bitetti-Putzer, R. ; Yang, W. Synergistic approach to improve “alchemical” free energy calculation in rugged energy surface. J. Chem. Phys. 2007, 126(14), 144109.
Oostenbrink, C. ; van Gunsteren, W. F. Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation. Proteins 2004, 54(2), 237–246.
Oostenbrink, C. ; van Gunsteren, W. F. Single-step perturbations to calculate free energy differences from unphysical reference states: limits on size, flexibility, and character. J. Comput. Chem. 2003, 24(14), 1730–1739.
Schwab, F. ; van Gunsteren, W. F. ; Zagrovic, B. Computational study of the mechanism and the relative free energies of binding of anticholesteremic inhibitors to squalene-hopene cyclase. Biochemistry 2008, 47(9), 2945–2951.
Srinivasan, J. III ; Cheatham, T. E. ; Cieplak, P. ; Kollman, P. A. ; Case, D. A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J. Am. Chem. Soc. 1998, 120, 9401–9409.
Cheatham, T. E. ; Srinivasan, J. ; Case, D. A. ; Kollman, P. A. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J. Biomol. Struct. Dyn. 1998, 16, 265–280.
Chong, L. ; Duan, Y. ; Wang, L. ; Massova, I. ; Kollman, P. A. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48g7. Proc. Natl. Acad. Sci. U.S.A. 1995, 96, 14330–14335.
Foloppe, N. ; Fisher, L. M. ; Howes, R. ; Kierstan, P. ; Potter, A. ; Robertson, A. G. ; Surgenor, A. E. Structure-based design of novel CHK1 inhibitors: insights into hydrogen bonding and protein-ligand affinity. J. Med. Chem. 2005, 48, 4332–4345.
Bryce, R. A. ; Hillier, I. H. ; Naismith, J. H. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin a. Biophys J., 2001, 81, 1373–1388.
Kuhn, B. ; Kollman, P. A. ; Stahl, M. Prediction of pka shifts in proteins using a combination of molecular mechanical and continuum solvent calculations. J. Comput. Chem. 2004, 25, 1865–1872.
Ferrara, P. ; Gohlke, H. ; Price, D. J. ; Klebe, G. ; Brooks, C. L., III . Assessing scoring functions for protein-ligand interactions. J. Med. Chem. 2004, 47, 3032–3047.
Massova, I. ; Kollman, P. A. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 1999, 121, 8133–8143.
Kuhn, B. ; Kollman, P. A. A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J. Am. Chem. Soc. 2000, 122, 3909–3916.
Kuhn, B. ; Kollman, P. A. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem. 2000, 43, 3786–3791.
Huo, S. ; Wang, J. ; Cieplak, P. ; Kollman, P. A. ; Kuntz, I. D. Molecular dynamics and free energy analyses of cathepsin d-inhibitor interactions: insight into structure-based ligand design. J. Med. Chem. 2002, 45, 1412–1419.
Mardis, K. L. ; Luo, R. ; Gilson, M. K. Interpreting trends in the binding of cyclic ureas to HIV-1 protease. J. Mol. Biol. 2001, 309, 507–517.
Schwarzl, S. M. ; Tschopp, T. B. ; Smith, J. C. ; Fischer, S. Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction? J. Comput. Chem. 2002, 23, 1143–1149.
Rizzo, R. C. ; Toba, S ; Kuntz, I. D. A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-A from generalized born molecular dynamics simulations. J. Med. Chem. 2004, 47, 3065–3074.
Brown, S. P. ; Muchmore, S. W. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA. J. Chem. Inf. Model. 2007, 47, 1493–1503.
Kuhn, B. ; Gerber, P. R. ; Schulz-Gasch, T. ; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem. 2005, 48, 4040–4048.
Pearlman, D. A. Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 map kinase. J. Med. Chem. 2005, 48, 7796–7807.
Weis, A. ; Katebzadeh, K. ; Söderhjelm, P. ; Nilsson, I. ; Ryde, U. Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J. Med. Chem. 2006, 49, 6596–6606.
Rafi, S. B. ; Cui, G ; Song, K ; Cheng, X ; Tonge, P. J. ; Simmerling, C. Insight through molecular mechanics Poisson-Boltzmann surface area calculations into the binding affinity of triclosan and three analogues for FabI, the E. Coli enoyl reductase. J. Med. Chem. 2006, 49, 4574–4580.
Donini, O. ; Kollman, P. A. Calculation and prediction of binding free energies for the matrix metalloproteinases. J. Med. Chem. 2000, 43, 4180–4188.
Tembe, B. L. ; McCammon, J. A. Ligand-receptor interactions. Comput. Chem. 1984, 8(4), 281–284.
Wong, C. F. ; McCammon, J. A. Dynamics and design of enzymes and inhibitors. J. Am. Chem. Soc. 1986, 108(13), 3830–3832.
Hermans, J. ; Subramaniam, S. The free energy of xenon binding to myoglobin from molecular dynamics simulation. Israel J. Chem. 1986, 27, 225–227.
Pearlman, D. A. Free energy calculations: methods for estimating ligand binding affinities. In: Free Energy Calculations in Rational Drug Design, Rami Reddy, M. ; Erion, M. D. ; Eds. Academic/Plenum; New York, NY: Kluwer, 2001.
Chipot, C. Free energy calculations in biomolecular simulations: how useful are they in practice? In: Lecture Notes in Computational Science and Engineering: New Algorithms for Molecular Simulation, Leimkuhler, B. ; Chipot, C. ; Elber, R. ; Laaksonen, A. ; Mark, A. E. ; Schlick, T. ; Schütte, C. ; Skeel, R. ; Eds. Vol. 49. New York: Springer, 2005, 183–209.
Rizzo, R. C. ; Wang, D. P. ; Tirado-Rives, J. ; Jorgensen, W. L. Validation of a model for the complex of HIV-1 reverse transcriptase with sustiva through computation of resistance profiles. J. Am. Chem. Soc. 2000, 122(51), 12898–12900.
Wang, D.-P. ; Rizzo, R. C. ; Tirado-Rives, J. ; Jorgensen, W. L. Antiviral drug design: computational analyses of the effects of the l100i mutation for HIV-RT on the binding of nnrtis. Bioorgan. Med. Chem. Lett. 2001, 11(21), 2799–2802.
Udier-Blagovic, M. ; Tirado-Rives, J. ; Jorgensen, W. L. Structural and energetic analyses of the effects of the K103N mutation of HIV-1 reverse transcriptase on efavirenz analogues. J. Med. Chem. 2004, 47(9), 2389–2392.
Kim, J. T. ; Hamilton, A. D. ; Bailey, C. M. ; Domoal, R. A. ; Wang, L. ; Anderson, K. S. ; Jorgensen, W. L. Fep-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2006, 128(48), 15372–15373.
Jorgensen, W. L. ; Ruiz-Caro, J. ; Tirado-Rives, J. ; Basavapathruni, A. ; Anderson, K. S. ; Hamilton, A. D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16(3), 663–667.
Kroeger Smith, M. B. ; Rader, L. H. ; Franklin, A. M. ; Taylor, E. V. ; Smith, K. D. ; Tirado-Rives, J. ; Jorgensen, W. L. Energetic effects for observed and unobserved HIV-1 reverse transcriptase mutations of residues l100, v106, and y181 in the presence of nevirapine and efavirenz. Bioorg. Med. Chem. Lett. 2008, 18(3), 969–972.
Zeevaart, J. G. ; Wang, L. ; Thakur, V. V. ; Leung, C. S. ; Tirado-Rives, J. ; Bailey, C. M. ; Domaoal, R. A. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc. 2008, 120, 9492–9499.
Henin, J. ; Maigret, B. ; Tarek, M. ; Escrieut, C. ; Fourmy, D. ; Chipot, C. Probing a model of a GPCR/ligand complex in an explicit membrane environment: the human cholecystokinin-1 receptor. Biophys. J. 2006, 90(4), 1232–1240.
Yang, W. ; Gao, Y. Q. ; Cui, Q. ; Ma, J. ; Karplus, M. The missing link between thermodynamics and structure in f1-atpase. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(3), 874–879.
Banerjee, A. ; Yang, W. ; Karplus, M. ; Verdine, G. L. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 2005 434, 612–618.
Oostenbrink, C. ; Pitera, J. W. ; van Lipzig, M. M. H. ; Meerman, J. H. N. ; van Gunsteren, W. F. Simulations of the estrogen receptor ligand-binding domain: affinity of natural ligands and xenoestrogens. J. Med. Chem. 2000, 43(24), 4594–4605.
Rami Reddy, M. ; Erion, M. D. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J. Am. Chem. Soc. 2001, 123, 6246–6252.
Steinbrecher, T. ; Case, D. A. ; Labahn, A. A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase. J. Med. Chem. 2006, 49, 1837–1844.
Gouda, H. ; Kuntz, I. D. ; Case, D. A. ; Kollman, P. A. Free energy calculations for theophylline binding to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 2003, 68, 16–34.
Tanida, Y. ; Ito, M. ; Fujitani, H. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values. Chem. Phys. 2007, 337(1–3), 135–143.
Jiao, D. ; Golubkov, P. A. ; Darden, T. A. ; Ren, P. Calculation of protein-ligand binding free energy using a polarizable potential. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(17), 6290–6295.
Khoruzhii, O. ; Donchev, A. G. ; Galkin, N. ; Illarionov, A. ; Olevanov, M. ; Ozrin, V. ; Queen, C. ; Tarasov, V. Application of a polarizable force field to calculations of relative protein-ligand binding affinities. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(30), 10378–10383.
Price, D. J. ; Jorgensen, W. L. Improved convergence of binding affinities with free energy perturbation: application to nonpeptide ligands with pp60src SH2 domain. J. Comput. Aided. Mol. Des. 2001, 15, 681–695.
Fowler, P. W. ; Jha, S. ; Coveney, P. V. Grid-based steered thermodynamic integration accelerates the calculation of binding free energies. Philos. T. R. Soc. B., 2005, 363, 1999–2015.
Chipot, C. ; Rozanska, X. ; Dixit, S. B. Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein. J. Comput. Aided Mol. Des. 2005, 19, 765–770.
Fowler, P. W. ; Geroult, S. ; Jha, S. ; Waksman, G. ; Coveney, P. V. Rapid, accurate, and precise calculation of relative binding affinities for the SH2 domain using a computational grid. J. Chem. Theory Comput. 2007, 3(3), 1193–1202.
Pearlman, D. A. ; Charifson, P. S. Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 map kinase protein system. J. Med. Chem. 2001, 44, 3417–3423.
Mobley, D. L. ; Chodera, J. D. ; Dill, K. A. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J. Chem. Phys. 2006, 125, 084902.
Gilson, M. K. ; Given, J. A. ; Bush, B. L. , McCammon, J. A. A statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 1997, 72(3), 1047–1069.
Deng, Y. ; Roux, B. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 2008, in press.
Helms, V. ; Wade, R. C. Hydration energy landscape of the active site cavity in cytochrome P450cam. Proteins 1998, 32(3), 381–396.
Helms, V. ; Wade, R. C. Computational alchemy to calculate absolute protein-ligand binding free energy. J. Am. Chem. Soc. 1998, 120(12), 2710–2713.
Deng Y. ; Roux, B. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. J. Chem. Phys. 2008, 128(11).
Zhang, L. ; Hermans, J. Hydrophilicity of cavities in proteins. Proteins 1996, 24(4), 433–438.
Olano, L. R. ; Rick, S. W. Hydration free energies and entropies for water in protein interiors. J. Am. Chem. Soc. 2004, 126(25), 7991–8000.
Barillari, C. ; Taylor, J. ; Viner, R. ; Essex, J. W. Classification of water molecules in protein binding sites. J. Am. Chem. Soc. 2007, 129(9), 2577–2587.
Hamelberg, D. ; McCammon, J. A. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J. Am. Chem. Soc. 2004, 126, 7683–7689.
Lu, Y. ; Wang, C.-Y. ; Wang, S. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. J. Am. Chem. Soc. 2006, 128, 11830–11839.
Roux, B. ; Nina, M. ; Pomès, R. ; Smith, J. C. Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys. J. 1996, 71(2), 670–681.
De Simone, A. ; Dobson, G. G. ; Verma, C. S. ; Zagari, A. ; Fraternali, F. Prion and water: tight and dynamical hydration sites have a key role in structural stability. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(21), 7535–7540.
Pan, C. ; Mezei, M. ; Mujtaba, S. ; Muller, M. ; Zeng, L. ; Li, J. ; Wang, Z. ; Zhou, M. M. Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 tat association with the human coactivator p300/CREB binding protein-associated factor. J. Med. Chem. 2007, 50(10), 2285–2288.
Eriksson, A. E. ; Baase, W. A. ; Zhang, X. J. ; Heinz, D. W. ; Blaber, M. ; Baldwin; E. P. ; Matthews, B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 1992, 255, 178–183.
Eriksson, A. E. ; Baase, W. A. ; Matthews, B. W. Similar hydrophobic replacements of leu99 and phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J. Mol. Biol. 1993, 229, 747–769.
Morton, A. ; Matthews, B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry 1995, 34, 8576–8588.
Morton, A. ; Baase, W. A. ; Matthews, B. W. Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry 1995, 34, 8564–8575.
Wei, B. Q. ; Baase, W. A. ; Weaver, L. H. ; Matthews, B. W. ; Shoichet, B. K. A model binding site for testing scoring functions in molecular docking. J. Mol. Biol. 2002, 322, 339–355.
Wei, B. Q. ; Weaver, L. H. ; Ferrari, A. M. ; Matthews, B. W. ; Shoichet, B. K. Testing a flexible-receptor docking algorithm in a model binding site. J. Mol. Biol. 2004, 337, 1161–1182.
Graves, A. P. ; Brenk, R. ; Shoichet, B. K. Decoys for docking. J. Med. Chem. 2005, 48, 3714–3728.
Hermans, J. ; Wang, L. Inclusion of the loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J. Am. Chem. Soc. 1997, 119, 2707–2714.
Mann, G. ; Hermans, J. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. J. Mol. Biol. 2000, 302, 979–989.
Boresch, S. ; Tettinger, F. ; Leitgeb, M. ; Karplus, M. Absolute binding free energies: a quantitative approach for their calculation. J. Phys. Chem. A 2003, 107(35), 9535–9551.
Deng, Y. ; Roux B. Calculation of standard binding free energies: aromatic molecules in the T4 lysozyme l99A mutant. J. Chem. Theory Comput. 2006, 2, 1255–1273.
Clark, M. ; Guarnieri, F. ; Shkurko, I. ; Wiseman, J. Grand canonical Monte Carlo simulation of ligand-protein binding. J. Chem. Info. Model. 2006, 46(1), 231–242.
Mobley, D. L. ; Dumont, È. ; Chodera, J. D. ; Dill, K. A. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J. Phys. Chem. B 2007, 111(9), 2242–2254.
Holt, D. A. ; Luengo, J. I. ; Yamashita, D. S. ; Oh, H. J. ; Konialian, A. L. ; Yen, H. K. ; Rozamus, L. W. ; Brandt, M. ; Bossard, M. J. ; Levy, M. A. ; Eggleston, D. S. ; Liang, J. ; Schultz, L. W. ; Stout, T. J. ; Clardy, J. Design, synthesis, and kinetic evaluation of high-affinity FKBP ligands and the x-ray crystal structures of their complexes with FKBP12. J. Am. Chem. Soc. 1993, 115(22), 9925–9938.
Shirts, M. R. Calculating precise and accurate free energies in biomolecular systems. Ph.D. dissertation, Stanford, January 2005.
Fujitani, H. ; Tanida, Y. ; Ito, M. ; Shirts, M. R. ; Jayachandran, G. ; Snow, C. D. ; Sorin E. J. ; Pande, V. S. Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 2005, 123, 84–108.
Jayachandran, G. ; Shirts, M. R. ; Park, S. ; Pande, V. S. Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. J. Chem. Phys. 2006, 125, 084901.
Dixit, S. B. ; Chipot, C. Can absolute free energies of association be estimated from molecular mechanical simulations? The biotin-streptavidin system revisited. J. Phys. Chem. A 2001, 105(42), 9795–9799.
Hess, B. ; van der Vegt, N. F. A. Hydration thermodynamic properties of amino acid analogues: a comparison of biomolecular force fields and water models. J. Phys. Chem. B 2006, 110, 17616–17626.
Nicholls, A. ; Mobley, D. L. ; Guthrie, P. J. ; Chodera, J. D. ; Pande, V. S. Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J. Med. Chem. 2008, 51, 769–779.
Steinbrecher, T. ; Hrenn, A. ; Dormann, K. L. ; Merfort, I. ; Labahn, A. Bornyl (3,4,5-trihydroxy)-cinnamate: an optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorgan. Med. Chem. 2008, 16(5), 2385–2390.
Talhout, R. ; Villa, A. ; Mark, A. E. ; Engberts, J. B. Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. J. Am. Chem. Soc. 2003, 125(35), 10570–10579.
Mao, H. Z. ; Weber, J. Identification of the betatp site in the x-ray structure of f1-atpase as the high-affinity catalytic site. Proc. Natl. Acad. Sci. U.S.A. 2007, 104(47), 18478–18483.
Zagrovic, B. ; van Gunsteren, W. F. Computational analysis of the mechanism and thermodynamics of inhibition of phosphodiesterase 5a by synthetic ligands. J. Chem. Theory Comput. 2007, 3, 301–311.
Leitgeb, M. ; Schröder, C. ; Boresch, S. Alchemical free energy calculations and multiple conformational substates. J. Chem. Phys. 2005, 122, 084109.
de Graaf, C. ; Oostenbrink, C. ; Keizers, P. H. J. ; van Vugt-Lussenburg, B. M. A. ; Commandeur, J. N. M. ; Vermeulen, N. P. E. Free energies of binding of R- and S- propranolol to wild-type and f483a mutant cytochrome p450 d26 from molecular dynamics simulations. Eur. Biophys. J. 2007, 36(6), 589–599.
van den Bosch, M. ; Swart, M. ; Snijders, J. G. ; Berendsen, H. J. C. ; Mark, A. E. ; Oostenbrink, C. ; van Gunsteren, W. F. ; Canters, G. W. Calculation of the redox potential of the protein azurin and some mutants. ChemBioChem 2005, 6(4), 738–746.
Dolenc, J. ; Oostenbrink, C. ; Koller, J. ; van Gunsteren, W. F. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an aaaaa DNA binding site. Nucleic Acids Res. 2005, 33(2), 725–733.
Donnini, S. ; Juffer, A. H. Calculations of affinities of peptides for proteins. J. Comput. Chem. 2004, 25, 393–411.
Oostenbrink, C. ; Villa, A. ; Mark, A. E. ; van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53a5 and 53a6. J. Comput. Chem. 2004, 25(13), 1656–1676.
Hornak, V. ; Abel, R. ; Okur, A. ; Strockbine, B. ; Roitberg, A. E. ; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 2006, 65(3), 712–725.
Kaminski, G. ; Friesner, R. A. ; Rives, J. ; Jorgensen, W. L. Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105(28), 6474–6487.
Wang, J. ; Wolf, R. M. ; Caldwell, J. W. ; Kollman, P. A. ; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25(9), 1157–1174.
Jakalian, A. ; Bush, B. L. ; Jack, D. B. ; Bayly, C. I. Fast, efficient generation of high-quality atomic charges, AM1-BCC model. I. Method. J. Comput. Chem. 2000, 21(2), 132–146.
Jakalian, A. ; Jack, D. B. ; Bayly, C. I. Fast, efficient generation of high-quality atomic charges, AM1-BCC model. II. Parameterization and validation. J. Comput. Chem. 2002, 23(16), 1623–1641.
Ponder, J. W. ; Case, D. A. Force fields for protein simulations, in Advances in Protein Chemistry, Dagget, V. ; Ed. San Diego, CA: Academic Press 2003, 66, 27–86.
Michel, J. ; Verdonk, M. L. ; Essex, J. W. Protein-ligand binding free energy predictions by implicit solvent simulation: a tool for lead optimization? J. Med. Chem. 2006, 49, 7427–7439.
Li, L. ; Dantzer, J. J. ; Nowacki, J. ; O'Callaghan, B. J. ; Meroueh, S. O. PDBCAL: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry. Chem. Bio. Drug Des. 2008, 71(6), 529–532.
Rami Reddy, M. ; Erion, M. D. , Eds. Free Energy Calculations in Rational Drug Design. Amsterdam: Kluwer Academic, 2001.
Marti-Renom, M. A. ; Madhusudhan, M. S. ; Fiser, A. ; Rost, B. ; Sali, A. Reliability of assessment of protein structure prediction methods. Structure 2002, 10(3), 435–440.
Méndez, R. ; Leplae, R. ; Lesink, M. F. ; Wodak, S. J. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005, 60(2), 150–169.
Day, G.M. ; Motherwell, W. D. S. ; Ammon, H. L. ; Boerrigter, S. X. M. ; Della Valle, R. G. ; Venuti, E. ; Dzyabchenko, A. ; Dunitz, J. D. ; Schweizer, B. ; van Eijck, B. P. ; Erk, P. ; Facelli, J. C. ; Bazterra, V. E. ; Ferraro, M. B. ; Hofmann, D. W. M. ; Leusen, F. J. J. ; Liang, C. ; Pantelides, C. C. ; Karamertzanis, P. G. ; Price, S. L. ; Lewis, T. C. ; Nowell, H. ; Torrisi, A. ; Scheraga, H. A. ; Arnautova, Y. A. , Schmidt, M. U. ; and Verwer, P. . A third blind test of crystal structure prediction. Acta Crystall. B-Struc., 2005, 61(5), 511–527.
Parker, C. N. McMaster University data-mining and docking competition: computational models on the catwalk. J. Biomol. Screen. 2005, 10(7), 647–648.
Villa, A. ; Zangi, R. ; Pieffet, G. ; Mark, A. E. Sampling and convergence in free energy calculations of protein-ligand interactions: the binding of triphenoxypyridine derivatives to factor xa and trypsin. J. Comput. Aided Mol. Des. 2003, 17(10), 673–686.
Naim, M. ; Bhat, S. ; Rankin, K. N. ; Dennis, S. ; Chowdhury, S. F. ; Siddiqi, I. ; Drabik, P. ; Sulea, T. ; Bayly, C. I. ; Jakalian, A. ; Purisima, E. O. Solvated interaction energy (sie) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Info. Model. 2007, 47(1), 122–133.
Jorgensen, W. L. The many roles of computation in drug discovery. Science 2004, 303(5665), 1813–1818.
Chipot, C. ; Pearlman, D. A. Free energy calculations: the long and winding gilded road. Mol. Simulat. 2002, 28(1–2), 1–12.
Mobley, D. L. ; Dill, K. A. Binding of small-molcule ligand to proteins. “What you see” is not always “what you get.” Structure 2009, 17, 489–498.
Kollman, P. A. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 1993, 7, 2395–2417.
Jorgensen, W. L. Free energy calculations: a breakthrough for modeling organic chemistry in solution. Accounts Chem. Res. 1989, 22(5), 184–189.

Reference Title: References

Reference Type: reference-list

Barresinoussi, F. ; et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune-deficiency syndrome (AIDS). Science 1983, 220(4599), 868–871.
Gallo, R. C. ; et al. Isolation of human T-cell leukemia-virus in acquired immune-deficiency syndrome (AIDS). Science 1983, 220(4599), 865–867.
Blair, W. S. ; et al. HIV-1 entry – an expanding portal for drug discovery. Drug Discov. Today 2000, 5(5), p. 183–194.
Moore, J. P. ; Stevenson, M. New targets for inhibitors of HIV-1 replication. Nat. Rev. Mol. Cell Biol. 2000, 1(1), 40–49.
Ren, J. S. ; et al. High-resolution structures of HIV-1 RT from 4 RT-inhibitor complexes. Nat. Struct. Biol. 1995, 2(4), 293–302.
Rhee, S. Y. ; et al. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003, 31(1), 298–303.
Condra, J. H. ; et al. In-vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 1995, 374(6522), 569–571.
Teague, S. J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003, 2(7), 527–541.
McCammon, J. A. Target flexibility in molecular recognition. Biochim. Biophys. Acta 2005, 1754(1–2), 221–224.
Vondrasek, J. ; Wlodawer, A. HIVdb: a database of the structures of human immunodeficiency virus protease. Proteins 2002, 49(4), 429–431.
Navia, M. A. ; et al. 3-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 1989, 337(6208), 615–620.
Wlodawer, A. ; et al. Conserved folding in retroviral proteases – crystal-structure of a synthetic HIV-1 protease. Science 1989, 245(4918), 616–621.
Lapatto, R. ; et al. X-ray-analysis of HIV-1 proteinase at 2.7 a resolution confirms structural homology among retroviral enzymes. Nature 1989, 342(6247), 299–302.
Prabu-Jeyabalan, M. ; et al. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J. Virol. 2006, 80(7), 3607–3616.
Prabu-Jeyabalan, M. ; et al. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J. Virol. 2006, 3607–3616.
Heaslet, H. ; et al. Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr. D Biol. Crystallogr. 2007, 63(Pt 8), 866–875.
Collins, J. R. ; Burt, S. K. ; Erickson, J. W. Flap opening in HIV-1 protease simulated by ‘activated’ molecular dynamics. Nat. Struct. Mol. Biol. 1995, 2(4), 334–338.
Heaslet, H. ; et al. Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr. D Biol. Crystallogr. 2007, 866–875.
Spinelli, S. ; et al. The 3-dimensional structure of the aspartyl protease from the HIV-1 isolate Bru. Biochimie 1991, 73(11), 1391–1396.
Liu, F. L. ; et al. Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation. J. Mol. Biol. 2006, 358(5), 1191–1199.
Martin, P. ; et al. “Wide-open” 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target. Structure 2005, 13(12), 1887–1895.
Logsdon, B. C. ; et al. Crystal structures of a multidrug-resistant human immunodeficiency virus type 1 protease reveal an expanded active-site cavity. J. Virol. 2004, 78(6), 3123–3132.
Panchal, S. C. ; et al. HIV-1 protease tethered heterodimer-pepstatin-A complex: NMR characterization. Curr. Sci. 2000, 79(12), 1684–1695.
LangeSavage, G. ; et al. Structure of HOE/BAY 793 complexed to human immunodeficiency virus (HIV-1) protease in two different crystal forms – structure/function relationship and influence of crystal packing. Eur. J. Biochem. 1997, 248(2), 313–322.
Miller, M. ; et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3-a resolution. Science 1989, 246(4934), 1149–1152.
Wlodawer, A. ; Vondrasek, J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 249–284.
Hornak, V. ; et al. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(4), 915–920.
Ding, F. ; Layten, M. ; Simmerling, C. Solution structure of HIV-1 protease flaps probed by comparison of molecular dynamics simulation ensembles and EPR experiments. J. Am. Chem. Soc. 2008, 130 (23), 7184–7185.
Layten, M. ; Hornak, V. ; Simmerling, C. The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts. J. Am. Chem. Soc. 2006, 128(41), 13360–13361.
Nicholson, L. K. ; et al. Flexibility and function in HIV-1 protease. Nat. Struct. Biol. 1995, 2(4), 274–280.
Freedberg, D. I. ; et al. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 2002, 11(2), 221–232.
Ishima, R. ; Louis, J. M. A diverse view of protein dynamics from NMR studies of HIV-1 protease flaps. Proteins 2007, 70, 1408–1415.
Galiano, L. ; Bonora, M. ; Fanucci, G. E. Interflap distances in HIV-1 protease determined by pulsed EPR measurements. J. Am. Chem. Soc. 2007, 129(36), 11004–11005.
Ishima, R. ; et al. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure 1999, 7(9), 1047–1055.
Katoh, E. ; et al. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex. Protein Sci. 2003, 12(7), 1376–1385.
Collins, J. R. ; Burt, S. K. ; Erickson, J. W. Flap opening in HIV-1 protease simulated by activated molecular dynamics. Nat. Struct. Biol. 1995, 2(4), 334–338.
Scott, W. R. P. ; Schiffer, C. A. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure 2000, 8(12), 1259–1265.
Meagher, K. L. ; Carlson, H. A. Solvation influences flap collapse in HIV-1 protease. Proteins 2005, 58(1), 119–125.
Hamelberg, D. ; McCammon, J. A. Fast peptidyl cis-trans isomerization within the flexible Gly-Rich flaps of HIV-1 protease. J. Am. Chem. Soc. 2005, 127 (40), 13778–13779.
Perryman, A. L. ; Lin, J. H. ; McCammon, J. A. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci. 2004, 13(4), 1108–1123.
Perryman, A. L. ; Lin, J. H. ; McCammon, J. A. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design. Biopolymers 2006, 82(3), 272–284.
Perryman, A. L. ; Lin, J. H. ; McCammon, J. A. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Chem. Biol. Drug Des. 2006, 67(5), 336–345.
Chang, C. E. ; et al. Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model. Biophys. J. 2006, 90(11), 3880–3885.
Tozzini, V. ; McCammon, J. A. A coarse grained model for the dynamics of flap opening in HIV-1 protease. Chem. Phys. Lett. 2005, 413(1–3), 123–128.
Hornak, V. ; et al. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(4), 915–920.
Pitera, J. W. ; Swope, W. Understanding folding and design: Replica-exchange simulations of “Trp-cage” miniproteins. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(13), 7587–7592.
Zhou, R. Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins 2003, 53(2), 148–161.
Zhou, R. ; Berne, B. J. Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12777–12782.
Roe, D. R. ; et al. Secondary structure bias in generalized born solvent models: Comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation. J. Phys. Chem. B 2007, 111(7), 1846–1857.
Geney, R. ; et al. Investigation of salt bridge stability in a generalized born solvent model. J. Chem. Theor. Comput. 2006, 2(1), 115–127.
Damm, K. L. ; Ung, P. M. ; Quintero, J. J. ; Gestwicki, J. E. ; Carlson, H. A. A poke in the eye: inhibiting HIV-1 protease through its flap-recognition pocket. Biopolymers 2008, 89, 643–652.
Hornak, V. ; et al. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. J. Am. Chem. Soc. 2006, 128(9), 2812–2813.
Krausslich, H. G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci. U.S.A. 1991, 88(8), 3213–3217.
Sayer, J. M. ; Liu, F. ; Ishima, R. ; Weber, I. T. ; Louis, J. M. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease. J. Biol. Chem. 2008, 283(19), 13459–13470.
Perryman, A. L. ; Lin, J.-H. ; McCammon, J. A. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci. 2004, 13(4), 1108–1123.
Tyndall, J. D. A. ; et al. Crystal structures of highly constrained substrate and hydrolysis products bound to HIV-1 protease: implications for the catalytic mechanism. Biochemistry 2008, 47(12), 3736–3744.
Toth, G. ; Borics, A. Flap opening mechanism of HIV-1 protease. J. Mol. Graph. Model. 2006, 24(6), 465–474.
Toth, G. ; Borics, A. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases. Biochemistry 2006, 45(21), 6606–6614.
Spinelli, S. ; et al. The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Biochimie 1991, 73(11), 1391–1396.
Lapatto, R. ; et al. X-ray analysis of HIV-1 proteinase at 2.7 [angst] resolution confirms structural homology among retroviral enzymes. Nature 1989, 342(6247), 299–302.
Marqusee, S. ; Robbins, V. H. ; Baldwin, R. L. Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. U.S.A. 1989, 86(14), 5286–5290.
Freedberg, D. I. ; et al. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 2002, 11(2), 221–232.
Dmytro Kovalskyy , Dubyna, V. ; Mark, A. E. ; Kornelyuk, A. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site. Proteins 2005, 58(2), 450–458.
Eisenmesser, E. Z. ; Bosco, D. A. ; Akke, M. ; Kern, D. Enzyme dynamics during catalysis. Science 2002, 295(5559), 1520–1523.
Huang, Y. J. ; Montelione, G. T. Structural biology: proteins flex to function. Nature 2005, 438(7064), 36–37.
Lange, O. F. ; Lakomek, N.-A. ; Farès, C. ; Schröder, G. F. ; Walter, K. F. A. ; Becker, S. ; Meiler, J. ; Grubmüller, H. ; Griesinger, C. ; de Groot, B. L. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Protein, 2008, 320(5882) 1471–1475.
Kohl, N. E. ; et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U.S.A. 1988, 85(13), 4686–4690.
O'Loughlin, T. L. ; Greene, D. N. ; Matsumura, I. Diversification and specialization of HIV protease function during in vitro evolution. Mol. Biol. Evol. 2006, 23(4), 764–772.
Piana, S. ; Carloni, P. ; Rothlisberger, U. Drug resistance in HIV-1 protease: flexibility-assisted mechanism of compensatory mutations. Protein Sci. 2002, 11(10), 2393–2402.
Piana, S. ; Carloni, P. ; Parrinello, M. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J. Mol. Biol. 2002, 319(2) 567–583.
Layten, M. ; Hornak, V. ; Simmerling, C. The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts. J. Am. Chem. Soc. 2006, 128(41), 13360–13361.
Wang, W. ; Kollman, P. A. Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(26), 14937–14942.
Prabu-Jeyabalan, M. ; Nalivaika, E. ; Schiffer, C. A. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 2002; 10(3), 369–381.
Foulkes-Murzycki, J. E. ; Scott, W. R. P. ; Schiffer, C. A. Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease. Structure 2007, 15(2), 225–233.
Luque, I. ; et al. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Biochemistry 1998, 37(17), 5791–5797.
Vega, S. ; et al. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Proteins 2004, 55(3), 594–602.
Rick, S. W. ; Erickson, J. W. ; Burt, S. K. Reaction path and free energy calculations of the transition between alternate conformations of HIV-1 protease. Proteins 1998, 32(1), 7–16.
Todd, M. J. ; et al. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant. Biochemistry 2000, 39(39) 11876–11883.
Ohtaka, H. ; et al. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets. Int. J. Biochem. Cell Biol. 2004, 36(9), 1787–1799.
Yoshimura, K. ; et al., JE-2147: a dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. Proc. Natl. Acad. Sci. U.S.A. 1999, 96(15), 8675–8680.
Velazquez-Campoy, A. ; Freire, E. Incorporating target heterogeneity in drug design. J. Cell. Biochem. 2001, 37, 82–88.
Velazquez-Campoy, A. ; Kiso, Y. ; Freire, E. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design. Arch. Biochem . Biophys. 2001, 390(2), 169–175.
Ghosh, A. K. ; et al. Structure-based design of novel HIV-1 protease inhibitors to combat drug resistance. J. Med. Chem. 2006, 49(17), 5252–5261.
Tie, Y. F. ; et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol. 2004, 338(2), 341–352.
Martin, P. ; et al. “Wide-open” 1.3 angstrom structure of a multidrug-resistant HIV-1 protease as a drug target. Structure 2005, 13(12), 1887–1895.
Pillai, B. ; Kannan, K. K. ; Hosur, M. V. 1.9 angstrom X-ray study shows closed flap conformation in crystals of tethered HIV-1PR. Proteins 2001, 43(1), 57–64.
Hwang, Y. S. ; Chmielewski, J. Development of low molecular weight HIV-1 protease dimerization inhibitors. J. Med. Chem. 2005, 48(6), 2239–2242.
Shultz, M. D. ; et al. Small-molecule dimerization inhibitors of wild-type and mutant HIV protease: a focused library approach. J. Am. Chem. Soc. 2004, 126(32), 9886–9887.
Bowman, M. J. ; Byrne, S. ; Chmielewski, J. Switching between allosteric and dimerization inhibition of HIV-1 protease. Chem. Biol. 2005, 12(4), 439–444.
Rezacova, P. ; et al. Crystal structure of a cross-reaction complex between an anti-HIV-1 protease antibody and an HIV-2 protease peptide. J. Struct. Biol. 2005, 149(3), 332–337.
Sperka, T. ; et al. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg. Med. Chem. Lett. 2005, 15(12), 3086–3090.
Gunasekaran, K. ; Ma, B. Y. ; Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 2004, 57(3), 433–443.
Fleisher, D. ; Bong, R. ; Stewart, B. H. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv. Drug Deliv. Rev. 1996, 19(2), 115–130.
Sohma, Y. ; et al. Development of water-soluble prodrugs of the HIV-1 protease inhibitor KNI-727: importance of the conversion time for higher gastrointestinal absorption of prodrugs based on spontaneous chemical cleavage. J. Med. Chem. 2003, 46(19), 4124–4135.

Reference Title: References

Reference Type: reference-list

http://www.nationalarchives.gov.uk/domesday/.
Kontoyianni, M. ; Madhav, P. ; Suchanek, E. ; Seibel, W. Theoretical and practical considerations in virtual screening: a beaten field? Curr. Med. Chem. 2008, 15, 107–116.
Cavasotto, C. N. ; Orry, A. J. W. Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem. 2007, 7, 1006–1014.
Zhong, S. ; Macias, A. T. ; MacKerell, A. D., Jr . Computational identification of inhibitors of protein-protein interactions. Curr. Top. Med. Chem. 2007, 7, 63–82.
Sousa, S. F. ; Fernandes, P. A. ; Ramos, M. J. Protein-ligand docking: current status and future challenges. Proteins 2006, 65, 15–26.
Rester, U. Dock around the clock: current status of small molecule docking and scoring. QSAR Comb. Sci. 2006, 25, 605–615.
Coupez, B. ; Lewis, R. A. Docking and scoring: theoretically easy, practically impossible? Curr. Med. Chem. 2006, 13, 2995–3003.
Mohan, V. ; Gibbs, A. C. ; Cummings, M. D. ; Jaeger, E. P. ; DesJarlais, R. L. Docking: successes and challenges. Curr. Pharm. Des. 2005, 11, 323–333.
Schulz-Gasch, T. ; Stahl, M. Scoring functions for protein-ligand interactions: a critical perspective. Drug Disc. Today 2004, 1, 231–239.
Kitchen, D. B. ; Decornez, H. ; Furr, J. R. ; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949.
Alvarez, J. C. High-throughput docking as a source of novel drug leads. Curr. Opin. Chem. Biol. 2004, 8, 365–370.
Muegge, I. ; Enyedy, I. J. Virtual screening for kinase targets. Curr. Med. Chem. 2004, 11, 693–707.
Brooijmans, N. ; Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003, 335–373.
Glen, R. C. ; Allen, S. C. Ligand-protein docking: cancer research at the interface between biology and chemistry. Curr. Med. Chem. 2003, 10, 763–777.
Taylor, R. D. ; Jewsbury, P. J. ; Essex; J. W. A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 2002, 16, 151–166.
Lyne, P. D. Structure-based virtual screening: an overview. Drug Disc. Today 2002, 7, 1047–1055.
Shoichet, B. K. ; McGovern, S. L. ; Wei, B. ; Irwin, J. J. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 2002, 6, 439–446.
Halperin, I. ; Ma, B. ; Wolfson, H. ; Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 2002, 47, 409–443.
Schneider, G. ; Bohm, H. J. Virtual screening and fast automated docking methods. Drug Disc. Today 2002, 7, 64–70.
Abagyan, R. ; Totrov, M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 2001, 5, 375–382.
Sheridan, R. P. ; McGaughey, G. B. ; Cornell, W. D. Multiple protein structures and multiple ligands: effects on the apparent goodness of virtual screening results. J. Comput. Aided Mol. Des. 2008, 22, 257–265.
McGaughey, G. B. ; Sheridan, R. P. ; Bayly, C. I. ; Culberson, J. C. ; Kreatsoulas, C. ; Lindsley, S. ; Maiorov, V. ; Truchon, J. F. ; Cornell, W. D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model. 2007, 47, 1504–1519.
Cornell, W. D. Recent evaluations of high throughput docking methods for pharmaceutical lead finding: consensus and caveats. Annu. Rep. Comp. Chem. 2006, 2, 297–323.
Warren, G. L. ; Andrews, C. W. ; Capelli, A. M. ; Clarke, B. ; LaLonde, J. ; Lambert, M. H. ; Lindvall, M. ; Nevins, N. ; Semus, S. F. ; Senger, S. ; Tedesco, G. ; Wall, I. D. ; Woolven, J. M. ; Peishoff, C. E. ; Head, M. S. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49, 5912–5931.
Cummings, M. D. ; DesJarlais, R. L. ; Gibbs, A. C. ; Mohan, V. ; Jaeger, E. P. Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 2005, 48, 962–976.
Perola, E. ; Walters, W. P. ; Charifson, P. S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004, 56, 235–249.
Gilson, M. K. ; Given, J. A. ; Bush, B. L. ; McCammon, J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 1997, 72, 1047–1069.
Shirts, M. R. ; Mobley, D. L. ; Brown, S. P. Free energy calculations. In: Structure-Based Drug Design, Merz, K. M. ; Ringe, D. ; Reynolds, C. H. , Eds. 2008, in press.
Chang, C. E. ; Potter, M. J. ; Gilson, M. K. Calculation of molecular configuration integrals. J. Phys. Chem. B 2003, 107, 1048–1055.
Kolossváry, I. Evaluation of the molecular configuration integral in all degrees of freedom for the direct calculation of conformational free energies: prediction of the anomeric free energy of monosaccharides. J. Phys. Chem. A 1997, 101(51), 9900–9905.
Head, M. S. ; Given, J. A. ; Gilson, M. K. Mining minima: direct computation of conformational free energy. J. Phys. Chem. A 1997, 101, 1609–1618.
Chang, C.-E. ; Chen, W. ; Gilson, M. K. Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1534–1539.
Kim, R. ; Skolnick, J. Assessment of programs for ligand binding affinity prediction. J. Comp. Chem. 2008, 29, 1316–1331.
Manetti, F. ; Falchi, F. ; Crespan, E. ; Schenone, S. ; Maga, G. ; Botta, M. N-(thiazol-2-yl)-2-thiophene carboxamide derivatives as Abl inhibitors identified by a pharmacophore-based database screening of commercially available compounds. Bioorg. Med. Chem. Lett. 2008, 18, 4328–4331.
Olsen, L. ; Pettersson, I. ; Hemmingsen, L. ; Adolph, H.-W. ; Jørgensen, F. S. Docking and scoring of metallo-β-lactamase inhibitors. J. Comput. Aided Mol. Des. 2004, 18, 287–302.
Holloway, M. K. ; Wai, J. M. ; Halgren, T. A. ; Fitzgerald, P. M. D. ; Vacca, J. P. ; Dorsey, B. D. ; Levin, R. B. ; Thompson, W. J. ; Chen, J. ; deSolms, J. ; Gaffin, N. ; Ghosh, A. K. ; Giuliani, E. A. ; Graham, S. L. ; Guare, J. P. ; Hungate, R. W. ; Lyle, T. A. ; Sanders, W. M. ; Tucker, T. J. ; Wiggins, M. ; Wiscount, C. M. ; Woltersdorf, O. W. ; Young, S. D. ; Darke, P. L. ; Zugay, J. A. A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J. Med. Chem. 1995, 38, 305–317.
http://www.rcsb.org/pdb/.
http://www.cas.org/products/scifindr/index.html.
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed.
http://scholar.google.com/.
Herschhorn, A. ; Hizi, A. Virtual screening, identification, and biochemical characterization of novel inhibitors of the reverse transcriptase of human immunodeficiency virus type-1. J. Med. Chem. 2008, 51, 5702–5713.
Park, H. ; Bahn, Y. J. ; Jung, S. K. ; Jeong, D. G. ; Lee, S.-H. ; Seo, I. ; Yoon, T.-S. ; Kim, S. J. ; Ryu, S. E. Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening. J. Med. Chem. 2008, 51, 5533–5541.
Zhong, S. ; Chen, X. ; Zhu, X. ; Dziegielewska, B. ; Bachman, K. E. ; Ellenberger, T. ; Ballin, J. D. ; Wilson, G. M. ; Tomkinson, A. E. ; MacKerell, A. D., Jr . Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J. Med. Chem. 2008, 51, 4553–4562.
Azim, M. K. ; Ahmed, W. ; Khan, I. A. ; Rao, N. A. ; Khan, K. M. Identification of acridinyl hydrazides as potent aspartic protease inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3011–3015.
Pierce, A. C. ; Jacobs, M. ; Stuver-Moody, C. Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J. Med. Chem. 2008, 51, 1972–1975.
Yang, H. ; Dou, W. ; Lou, J. ; Leng, Y. ; Shen, J. Discovery of novel inhibitors of 11β-hydroxysteroid dehydrogenase type 1 by docking and pharmacophore modeling. Bioorg. Med. Chem. Lett. 2008, 18, 1340–1345.
Dhagat, U. ; Carbone, V. ; Chung, R. P.-T.; Matsunaga, T. ; Endo, S. ; Hara, A. ; El-Kabbani, O. A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20α-hydroxysteroid dehydrogenase. Med. Chem. 2007, 3, 546–550.
Knox, A. J. S. ; Meegan, M. J. ; Sobolev, V. ; Frost, D. ; Zisterer, D. M. ; Williams, D. C. ; Lloyd, D. G. Target specific virtual screening: optimization of an estrogen receptor screening platform. J. Med. Chem. 2007, 50, 5301–5310.
Cozza, G. ; Bonvini, P. ; Zorzi, E. ; Poletto, G. ; Pagano, M. A. ; Sarno, S. ; Donella-Deana, A. ; Zagotto, G. ; Rosolen, A. ; Pinna, L. A. ; Meggio, F. ; Moro, S. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J. Med. Chem. 2006, 49, 2363–2366.
Siedlecki, P. ; Garcia Boy, R. ; Musch, T. ; Brueckner, B. ; Suhai, S. ; Lyko, F. ; Zielenkiewicz, P. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 2006, 49, 678–683.
Nolan, K. A. ; Timson, D. J. ; Stratford, I. J. ; Bryce, R. A. In silico identification and biochemical characterization of novel inhibitors of NQO1. Bioorg. Med. Chem. Lett. 2006, 16, 6246–6254.
Barril, X. ; Brough, P. ; Drysdale, M. ; Hubbard, R. E. ; Massey, A. ; Surgenor, A. ; Wright, L. Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 5187–5191.
Zhao, L. ; Brinton, R. D. Structure-based virtual screening for plant-based ERβ-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J. Med. Chem. 2005, 48, 3463–3466.
Mizutani, M. Y. ; Itai, A. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. J. Med. Chem. 2004, 47, 4818–4828.
Lyne, P. D. ; Kenny, P. W. ; Cosgrove, D. A. ; Deng, C. ; Zabludoff, S. ; Wendoloski, J. J. ; Ashwell, S. Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. J. Med. Chem. 2004, 47, 1962–1968.
Rastelli, G. ; Pacchioni, S. ; Sirawaraporn, W. ; Sirawaraporn, R. ; Parenti, M. D. ; Ferrari, A. M. Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. J. Med. Chem. 2003, 46, 2834–2845.
Vangrevelinghe, E. ; Zimmermann, K. ; Schoepfer, J. ; Portmann, R. ; Fabbro, D. ; Furet, P. Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem. 2003, 46, 2656–2662.
Enyedy, I. J. ; Lee, S.-L. ; Kuo, A. H. ; Dickson, R. B. ; Lin, C.-L. ; Wang, S. Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. J. Med. Chem. 2001, 44, 1349–1355.
Park, H. ; Bahn, Y. J. ; Jeong, D. G. ; Woob, E. J. ; Kwon, J. S. ; Ryu, S. E. Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Bioorg. Med. Chem. Lett. 2008, 18, 5372–5376.
Identification of BRAF inhibitors through in silico screening. J. Med. Chem. 2008, 51, 6121–6127.
Schlicker, C. ; Rauch, A. ; Hess, K. C. ; Kachholz, B. ; Levin, L. R. ; Buck, J. ; Steegborn, C. Structure-based development of novel adenylyl cyclase inhibitors. J. Med. Chem. 2008, 51, 4456–4464.
Park, H. ; Jung, S.-K. ; Jeong, D. G. ; Ryu, S. E. ; Kim, S. J. Discovery of VHR phosphatase inhibitors with micromolar activity based on structure-based virtual screening. ChemMedChem 2008, 3, 880–887.
Corbeil, C. R. ; Englebienne, P. ; Yannopoulos, C. G. ; Chan, L. ; Das, S. K. ; Bilimoria, D. ; L'Heureux, L. ; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 2. Development and application of FITTED 1.5 to the virtual screening of potential HCV polymerase inhibitors. J. Chem. Inf. Model. 2008, 48, 902–909.
Kolb, P. ; Huang, D. ; Dey, F. ; Caflisch, A. Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model. J. Med. Chem. 2008, 51, 1179–1188.
Salam, N. K. ; Huang, T. H-W. ; Kota, B. P. ; Kim, M. S. ; Li, Y. ; Hibbs, D. E. Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem. Biol. Drug Des. 2008, 71, 57–70.
Katritch, V. ; Byrd, C. M. ; Tseitin, V. ; Dai, D. ; Raush, E. ; Totrov, M. ; Abagyan, R. ; Jordan, R. ; Hruby, D. E. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J. Comput. Aided Mol. Des. 2007, 21, 549–558.
Hu, X. ; Prehna, G. ; Stebbins, C. E. Targeting plague virulence factors: a combined machine learning method and multiple conformational virtual screening for the discovery of Yersinia protein kinase A inhibitors. J. Med. Chem. 2007, 50, 3980–3983.
Rummey, C. ; Nordhoff, S. ; Thiemannc, M. ; Metz, G. In silico fragment-based discovery of DPP-IV S1 pocket binders. Bioorg. Med. Chem. Lett. 2006, 16, 1405–1409.
Irwin, J. J. ; Raushel, F. M. ; Shoichet, B. K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005, 44, 12316–12328.
Hancock, C. N. ; Macias, A. ; Lee, E. K. ; Yu, S. Y., Jr. ; MacKerell, A. D. ; Shapiro, P. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem. 2005, 48, 4586–4595.
Toledo-Sherman, L. ; Deretey, E. ; Slon-Usakiewicz, J. J. ; Ng, W. ; Dai, J.-R. ; Estelle Foster, J. ; Redden, P. R. ; Uger, M. D. ; Liao, L. C. ; Pasternak, A. ; Reid, N. Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J. Med. Chem. 2005, 48, 3221–3230.
Forino, M. ; Jung, D. ; Easton, J. B. ; Houghton, P. J. ; Pellecchia, M. Virtual docking approaches to protein kinase B inhibition. J. Med. Chem. 2005, 48, 2278–2281.
Mozziconacci, J.-C. ; Arnoult, E. ; Bernard, P. ; Do, Q. T. ; Marot, C. ; Morin-Allory, L. Optimization and validation of a docking-scoring protocol and application to virtual screening for COX-2 inhibitors. J. Med. Chem. 2005, 48, 1055–1068.
Chen, L. ; Gui, C. ; Luo, X. ; Yang, Q. ; Guenther, S. ; Scandella, E. ; Drosten, C. ; Bai, D. ; He, X. ; Ludewig, B. ; Chen, J. ; Luo, H. ; Yang, Y. ; Yang, Y. ; Zou, J. ; Thiel, V. ; Chen, K. ; Shen, J. ; Shen, X. ; Jiang, H. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol. 2005, 79, 7095–7103.
Li, C. ; Xu, L. ; Wolan, D. W. ; Wilson, I. A. ; Olson, A. J. Virtual screening of human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity set by use of Autodock to identify novel nonfolate inhibitors. J. Med. Chem. 2004, 47, 6681–6690.
Ferrari, A. M. ; Wei, B. Q. ; Costantino, L. ; Shoichet, B. K. Soft docking and multiple receptor conformations in virtual screening. J. Med. Chem. 2004, 47, 5076–5084.
Thurmond, R. L. ; Beavers, M. P. ; Cai, H. ; Meduna, S. P. ; Gustin, D. J. ; Sun, S. ; Almond, H. J. ; Karlsson, L. ; Edwards, J. P. Nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S. J. Med. Chem. 2004, 47, 4799–4801.
Schapira, M. ; Raaka, B. M. ; Das, S. ; Fan, L. ; Totrov, M. ; Zhou, Z. ; Wilson, S. R. ; Abagyan, R. ; Samuels, H. H. Discovery of diverse thyroid hormone receptor anagonists by high-throughput docking. Proc. Natl. Acad. Sci. USA 2003, 100, 7354–7359.
Wu, S. Y. ; McNae, I. ; Kontopidis, G. ; McClue, S. J. ; McInnes, C. ; Stewart, K. J. ; Wang, S. ; Zheleva, D. I. ; Marriage, H. ; Lane, D. P. ; Taylor, P. ; Fischer, P. M. ; Walkinshaw, M. D. Discovery of a novel family of CDK inhibitors with the program LIDAEUS structural basis for ligand-induced disordering of the activation loop. Structure 2003, 11, 399–410.
Liu, H. ; Li, Y. ; Song, M. ; Tan, X. ; Cheng, F. ; Zheng, S. ; Shen, J. ; Luo, X. ; Ji, R. ; Yue, J. ; Hu, G. ; Jiang, H. ; Chen, K. Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing. Chemistry 2003, 10, 1103–1113.
Doman, T. N. ; McGovern, S. L. ; Witherbee, B. J. ; Kasten, T. P. ; Kurumbail, R. ; Stallings, W. C. ; Connolly, D. T. ; Shoicht, B. K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 2002, 45, 2213–2221.
Paiva, A. M. ; Vanderwall, D. E. ; Blanchard, J. S. ; Kozarich, J. W. ; Williamson, J. M. ; Kelly, T. M. Inhibitors of dihydropicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis . Biochim. Biophys. Acta 2001, 1545, 67–77.
Enyedy, I. J. ; Ling, Y. ; Nacro, K. ; Tomita, Y. ; Wu, X. ; Cao, Y. ; Guo, R. ; Li, B. ; Zhu, X. ; Huang, Y. ; Long, Y.-Q. ; Roller, P. P. ; Yang, D. ; Wang, S. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 2001, 44, 4313–4234.
Iwata, Y. ; Arisawa, M. ; Hamada, R. ; Kita, Y. ; Mizutani, M. Y. ; Tomioka, N. ; Itai, A. ; Miyamoto, S. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis. J. Med. Chem. 2001, 44, 1718–1728.
Gradler, U. ; Gerber, H.-D. ; Goodenough-Lashua, D. A. M. ; Garcia, G. A. ; Ficner, R. ; Reuter, K. ; Stubbs, M. T. ; Klebe, G. A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase. J. Mol. Biol. 2001, 306, 455–467.
Pang, Y.-P. ; Xub, K. ; Kollmeyer, T. M. ; Perola, E. ; McGrathe, W. J. ; Greene, D. T. ; Mangele, W. F. Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. FEBS Lett. 2001, 502, 93–97.
Hopkins, S. C. ; Vale, R. D. ; Kuntz, I. D. Inhibitors of kinesin activity from structure-based computer screening. Biochemistry 2000, 39, 2805–2814.
Freymann, D. M. ; Wenck, M. A. ; Engel, J. C. ; Feng, J. ; Focia, P. J. ; Eakin, A. E. ; Craig, S. P., III . Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi . Chem. Biol. 2000, 7, 957–968.
Wang, J.-L. ; Liu, D. ; Zhang, Z.-J. ; Shan, S. ; Han, X. ; Srinivasula, S. M. ; Croce, C. M. ; Alnemri, E. S. ; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000, 97, 7124–7129.
Liu, J.-S. ; Cheng, W.-C. ; Wang, H.-J. ; Chen, Y.-C. ; Wang, W.-C. Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase. Biochem. Biophys. Res. Commun. 2008, 373, 1–7.
Mukherjee, P. ; Desai, P. ; Ross, L. ; White, E. L. ; Avery, M. A. Structure-based virtual screening against SARS-3CLpro to identify novel non-peptidic hits. Bioorg. Med. Chem. 2008, 16, 4138–4149.
Park, H. ; Jung, S.-K. ; Jeong, D. G. ; Ryu, S. E. ; Kim, S. J. Discovery of novel PRL-3 inhibitors based on the structure-based virtual screening. Bioorg. Med. Chem. Lett. 2008, 18, 2250–2255.
Ruiz, F. M. ; Gil-Redondo, R. ; Morreale, A. ; Ortiz, A. R. ; Fabrega, C. ; Bravo, J. Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities. J. Chem. Inf. Model. 2008, 48, 844–854.
Babaoglu, K. ; Simeonov, A. ; Irwin, J. J. ; Nelson, M. E. ; Feng, B. ; Thomas, C. J. ; Cancian, L. ; Costi, M. P. ; Maltby, D. A. ; Jadhav, A. ; Inglese, J. ; Austin, C. P. ; Shoichet, B. K. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J. Med. Chem. 2008, 51, 2502–2511.
Park, H. ; Hwang, K. Y. ; Oh, K. H. ; Kim, Y. H. ; Lee, J. Y. ; Kim, K. Discovery of novel α-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg. Med. Chem. 2008, 16, 284–292.
Montes, M. ; Braud, E. ; Miteva, M. A. ; Goddard, M.-L. ; Mondesert, O. ; Kolb, S. ; Brun, M.-P. ; Ducommun, B. ; Garbay, C. ; Villoutreix, B. O. Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. J. Chem. Inf. Model. 2008, 48, 157–165.
Agarwal, S. M. ; Jain, R. ; Bhattacharya, A. ; Azam, A. Inhibitors of Escherichia coli serine acetyltransferase block proliferation of Entamoeba histolytica trophozoites. Int. J. Parasitol. 2008, 38, 137–141.
Hellmuth, K. ; Grosskopf, S. ; Lum, C. T. ; Wuertele, M. ; Roeder, N. ; von Kries, J. P. ; Rosario, M. ; Rademann, J. ; Birchmeier, W. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc. Natl. Acad. Sci. USA 2008, 105, 7275–7280.
Betzi, S. ; Restouin, A. ; Opi, S. ; Arold, S. T. ; Parrot, I. ; Guerlesquin, F. ; Morelli, X. ; Collette, Y. Protein-protein interaction inhibition (2P2I) combining high throughput and virtual screening: application to the HIV-1 nef protein. Proc. Natl. Acad. Sci. USA 2007, 104, 19256–19261.
Wang, G. ; Huang, N. ; Meng, Z. ; Liu, Q. Identification of novel inhibitors of the streptogramin group A acetyltransferase via virtual screening. Yaoxue Xuebao 2007, 42, 47–53.
Luzhkov, V. B. ; Selisko, B. ; Nordqvist, A. ; Peyrane, F. ; Decroly, E. ; Alvarez, K. ; Karlen, A. ; Canard, B. ; Aaqvist, J. Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg. Med. Chem. 2007, 15, 7795–7802.
Ragno, R. ; Mai, A. ; Simeoni, S. ; Caroli, A. ; Caffarelli, E. ; La Neve, P. ; Gioia, U. ; Bozzoni, I. Structure-based drug discovery of XendoU inhibitors through multi-docking virtual screening. In: Frontiers in CNS and Oncology Medicinal Chemistry, Vol. COMC-063. Washington, DC: American Chemical Society; 2007.
Park, H. ; Kim, Y.-J. ; Hahn, J.-S. A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. Bioorg. Med. Chem. Lett. 2007, 17, 6345–6349.
Ostrov, D. A. ; Hernandez Prada, J. A. ; Corsino, P. E. ; Finton, K. A. ; Le, N. ; Rowe, T. C. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antibac. Agents Chemother. 2007, 51, 3688–3698.
Szewczuk, L. M. ; Saldanha, S. A. ; Ganguly, S. ; Bowers, E. M. ; Javoroncov, M. ; Karanam, B. ; Culhane, J. C. ; Holbert, M. A. ; Klein, D. C. ; Abagyan, R. ; Cole, P. A. De novo discovery of serotonin N-acetyltransferase inhibitors. J. Med. Chem. 2007, 50, 5330–5338.
Liao, C. ; Karki, R. G. ; Marchand, C. ; Pommier, Y. ; Nicklaus, M. C. Virtual screening application of a model of full-length HIV-1 integrase complexed with viral DNA. Bioorg. Med. Chem. Lett. 2007, 17, 5361–5365.
Srivastava, S. K. ; Dube, D. ; Kukshal, V. ; Jha, A. K. ; Hajela, K. ; Ramachandran, R. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor. Proteins 2007, 69, 97–111.
Brooks, W. H. ; McCloskey, D. E. ; Daniel, K. G. ; Ealick, S. E. ; III; Secrist, J. A. ; Waud, W. R. ; Pegg, A. E. ; Guida, W. C. In silico chemical library screening and experimental validation of a novel 9-aminoacridine based lead-inhibitor of human S-adenosylmethionine decarboxylase. J. Chem. Inf. Model. 2007, 47, 1897–1905.
Spannhoff, A. ; Machmur, R. ; Heinke, R. ; Trojer, P. ; Bauer, I. ; Brosch, G. ; Schuele, R. ; Hanefeld, W. ; Sippl, W. ; Jung, M. A novel arginine methyltransferase inhibitor with cellular activity. Bioorg. Med. Chem. Lett. 2007, 17, 4150–4153.
Wang, J.-G. ; Xiao, Y.-J. ; Li, Y.-H. ; Ma, Y. ; Li, Z.-M. Identification of some novel AHAS inhibitors via molecular docking and virtual screening approach. Bioorg. Med. Chem. 2007, 15, 374–380.
Hamilton, D. ; Wu, J. H. ; Batist, G. Structure-based identification of novel human γ-glutamylcysteine synthetase inhibitors. Mol. Pharm. 2007, 71, 1140–1147.
Tsai, K.-C. ; Chen, S.-Y. ; Liang, P.-H. ; Lu, I.-L. ; Mahindroo, N. ; Hsieh, H.-P. ; Chao, Y.-S. ; Liu, L. ; Liu, D. ; Lien, W. ; Lin, T.-H. ; Wu, S.-Y. Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies. J. Med. Chem. 2006, 49, 3485–3495.
Cavasotto, C. N. ; Ortiz, M. A. ; Abagyan, R. A. ; Piedrafita, F. J. In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett. 2006, 16, 1969–1974.
Dooley, A. J. ; Shindo, N. ; Taggart, B. ; Park, J-.G. ; Pang, Y-.P. From genome to drug lead: identification of a small-molecule inhibitor of the SARS virus. Bioorg. Med. Chem. Lett. 2006, 16, 830–833.
Prykhod'ko, A. O. ; Yakovenko, O. Y. ; Golub, A. G. ; Bdzhola, V. G. ; Yarmoluk, S. M. Evaluation of 4H-4-chromenone derivatives as inhibitors of protein kinase CCK. Biopolimeri i Klitina 2005, 21, 287–292.
Huang, D. ; Lüthi, U. ; Kolb, P. ; Edler, K. ; Cecchini, M. ; Audetat, S. ; Barberis, A. ; Caflisch, A. Discovery of cell-permeable nonpeptide inhibitors of β-secretase by high-throughput docking and continuum electrostatics calculations. J. Med. Chem. 2005, 48, 5108–5111.
Liu, Z. ; Huang, C. ; Fan, K. ; Wei, P. ; Chen, H. ; Liu, S. ; Pei, J. ; Shi, L. ; Li, B. ; Yang, K. ; Liu, Y. ; Lai, L. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model. 2005, 45, 10–17.
Soelaiman, S. ; Wei, B. Q. ; Bergson, P. ; Lee, Y.-S. ; Shen, Y. ; Mrksich, M. ; Shoichet, B. K. ; Tang, W.-J. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J. Biol. Chem. 2003, 278, 25990–25997.
McNally, V. A. ; Gbaj, A. ; Douglas, K. T. ; Stratford, I. J. ; Jaffar, M. ; Freemanan, S. ; Bryce, R. A. Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening. Bioorg. Med. Chem. Lett. 2003, 13, 3705–3709.
Peng, H. ; Huang, N. ; Qi, J. ; Xie, P. ; Xu, C. ; Wang, J. ; Yang, C. Identification of novel inhibitors of BCR-Abl tyrosine kinase via virtual screening. Bioorg. Med. Chem. Lett. 2003, 13, 3693–3699.
Pickett, S. D. ; Sherborne, B. S. ; Wilkinson, T. ; Bennett, J. ; Borkakoti, N. ; Broadhurst, M. ; Hurst, D. ; Kilford, I. ; McKinnell, M. ; Jones, P. S. Discovery of novel low molecular weight inhibitors of IMPDH via virtual needle screening. Bioorg. Med. Chem. Lett. 2003, 13, 1691–1694.
Powers, R. A. ; Morandi, F. ; Shoichet, B. K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC β-lactamase. Structure 2002, 10, 1013–1023.
Kamionka, M. ; Rehm, T. ; Beisel, H.-G. ; Lang, K. ; Engh, R. A. ; Holak, T. A. In silico and NMR identification of inhibitors of the IGF-I and IGF-Binding Protein-5 interaction. J. Med. Chem. 2002, 45, 5655–5660.
Iino, M. ; Furugori, T. ; Mori, T. ; Moriyama, S. ; Fukuzawa, A. ; Shibano, T. Rational design and evaluation of new lead compound structures for selective βARK1 inhibitors. J. Med. Chem. 2002, 45, 2150–2159.
Perola, E. ; Xu, K. ; Kollmeyer, T. M. ; Kaufmann, S. H. ; Prendergast, F. G. ; Pang, Y.-P. Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J. Med. Chem. 2000, 43, 401–408.
Sarmiento, M. ; Wu, L. ; Keng, Y.-F. ; Song, L. ; Luo, Z. ; Huang, Z. ; Wu, G.-Z. ; Yuan, A. K. ; Zhang, Z.-Y. Structure-based discovery of small molecule inhibitors targeted to protein tyrosine phosphatase 1B. J. Med. Chem. 2000, 43, 146–155.
Nordqvist, A. ; Nilsson, M. T. ; Roettger, S. ; Odell, L. R. ; Krajewski, W. W. ; Andersson, C. E. ; Larhed, M. ; Mowbray, S. L. ; Karlen, A. Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery. Bioorg. Med. Chem. 2008, 16, 5501–5513.
Feder, M. ; Purta, E. ; Koscinski, L. ; Cubrilo, S. ; Vlahovicek, G. M. ; Bujnicki, J. M. Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics. ChemMedChem 2008, 3, 316–322.
Zeng, Z. ; Qian, L. ; Cao, L. ; Tan, H. ; Huang, Y. ; Xue, X. ; Shen, Y. ; Zhou, S. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa . App. Microbiol. Biotechnol. 2008, 79, 119–126.
Kuo, C.-J. ; Guo, R.-T. ; Lu, I.-L. ; Liu, H. G. ; Wu, S.-Y. ; Ko, T.-P. ; Wang, A. H.-J. ; Liang, P.-H. Structure-based inhibitors exhibit differential activities against Helicobacter pylori and Escherichia coli undecaprenyl pyrophosphate synthases. J. Biomed. Biotechnol. 2008.
Hirayama, K. ; Aoki, S. ; Nishikawa, K. ; Matsumoto, T. ; Wada, K. Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorg. Med. Chem. 2007, 15, 6810–6818.
Song, H. ; Wang, R. ; Wang, S. ; Lin, J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc. Natl. Acad. Sci. USA 2005, 102, 4700–4705.
Westerfors, M. ; Tedebark, U. ; Andersson, H. O. ; Öhrman, S. ; Choudhury, D. ; Ersoy, O. ; Shinohara, Y. ; Axén, A. ; Carredano, E. ; Baumann, H. Structure-based discovery of a new affinity ligand to pancreatic α-amylase. J. Mol. Recognit. 2003, 16, 396–405.
Chowdhury, S. F. ; Lucrezia, R. D. ; Guerrero, R. H. ; Brun, R. ; Goodman, J. ; Ruiz-Perez, L. M. ; Pacanowska, D. G. ; Gilbert, I. H. Novel inhibitors of leishmanial dihydrofolate reductase. Bioorg. Med. Chem. Lett. 2001, 11, 977–980.
Malvezzi, A. ; de Rezende, L. ; Izidoro, M. A. ; Cezari, M. H. S. ; Juliano, L. ; Amaral, A. T. Uncovering false positives on a virtual screening search for cruzain inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 350–354.
Barreiro, G. ; Guimaraes, C. R. W. ; Tubert-Brohman, I. ; Lyons, T. M. ; Tirado-Rives, J. ; Jorgensen, W. L. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J. Chem. Inf. Model. 2007, 47, 2416–2428.
Brenk, R. ; Irwin, J. J. ; Shoichet, B. K. Here be dragons: docking and screening in an uncharted region of chemical space. J. Biomol. Screen. 2005, 10, 667–674.
Kanji., G. K. 100 Statistical Tests, 3rd edition. Thousand Oaks, CA: Sage, 2006.
http://stattrek.com/Tables/ChiSquare.aspx.
Snedecor, G. W. ; Cochran., W. G. Statistical Methods, 8th edition. Ames, IA: Iowa State University Press; 1989, 135–148.
Irwin, J. J. Shoichet, B. K. ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.
Negron-Encarnacion, I. ; Arce, R. ; Jimenez, M. Characterization of acridine species adsorbed on (NH4)2SO4, SiO2, Al2O3, and MgO by steady-state and time-resolved fluorescence and diffuse reflectance techniques. J. Phys. Chem. A 2005, 109, 787–797.
Turek-Etienne, T. C. ; Small, E. C. ; Soh, S. C. ; Xin, T. A. ; Gaitonde, P. V. ; Barrabee, E. B. ; Hart, R. F. ; Bryant, R. W. Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. J. Biomol. Screening 2003, 8, 176–184.
Feng, B. Y. ; Simeonov, A. ; Jadhav, A. ; Babaoglu, K. ; Inglese, J. ; Shoichet, B. K. ; Austin, C. P. A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem. 2007, 50, 2385–2390.
Mojumdar, S. C. ; Martiska, L. ; Valigura, D. ; Melnik, M. Thermal and spectral properties of halogenosalicylato-Cu(II) complexes. J. Therm. Analysis and Calor. 2003, 74, 905–914.
Schwarz, K. B. ; Arey, B. J. ; Tolman, K. ; Mahanty, S. Iron chelation as a possible mechanism for aspirin-induced malondialdehyde production by mouse liver microsomes and mitochondria. J. Clin. Invest. 1988, 81, 165–170.
Ha, S. ; Andreani, R. ; Robbins, A. ; Muegge, I. Evaluation of docking/scoring approaches: a comparative study based on MMP3 inhibitors. J. Comput. Aided Mol. Design 2000, 14, 435–448.
http://sampl.eyesopen.com/.
Goto, J. ; Kataoka, R. ; Hirayama, N. Ph4Dock: pharmacophore-based protein-ligand docking. J. Med. Chem. 2004, 47, 6804–6811.
Blow, D. M. A rearrangement of Cruickshanks formulae for the diffraction-component precision index. Acta Crystallogr., Sect. D 2002, D58, 792–797.
Cruickshank, D. W. J. Remarks about protein structure precision. Acta Crystallogr., Sect. D 1999, D55, 583–601.
http://www.eyesopen.com/products/applications/omega.html.
http://www.eyesopen.com/products/applications/rocs.html.
Bohacek, R. S. ; McMartin, C. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design. J. Med. Chem. 1992, 35, 1671–1684.
Wang, Z. ; Canagarajah, B. J. ; Boehm, J. C. ; Kassisà, S. ; Cobb, M. H. ; Young, P. R. ; Abdel-Meguid, S. ; Adams, J. L. ; Goldsmith, E. J. Structural basis of inhibitor selectivity in MAP kinases. Structure 1998, 6, 1117–1128.
Hare, B. J. ; Walters, W. P. ; Caron, P. R. ; Bemis, G. W. CORES: An automated method for generating three-dimensional models of protein/ligand complexes. J. Med. Chem. 2004, 47, 4731–4740.
http://www.bioinform.com/issues/12_41/features/150096-1.html.

Reference Title: References

Reference Type: reference-list

Cavalli, A. ; Carloni, P. ; Recanatini, M. Target-related applications of first principles quantum chemical methods in drug design. Chem. Rev. 2006, 106, 3497–3519.
Fedorov, D. G. ; Kitaura, K. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J. Phys. Chem. A 2007, 111, 6904–6914.
Mulholland, A. J. Modelling enzyme reaction mechanisms, specifity and catalysis. Drug. Discov. Today 2005, 10, 1393–1402.
Friesner, R. A. ; Gullar, V. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Ann. Rev. Phys. Chem. 2005, 56, 389–427.
Blundell, T. L. ; Jhoti, H. ; Abell, C. High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov. 2002, 1(1), 45–54.
Hartshorn, M. J. ; Murray, C. W. ; Cleasby, A. ; Frederickson, M. ; Tickle, I. J. ; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 2005, 48(2), 403–413.
Nienaber, V. L. ; Richardson, P. L. ; Klighofer, V. ; Bouska, J. J. ; Giranda, V. L. ; Greer, J. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat. Biotechnol. 2000, 18(10), 1105–1108.
Jack, A. ; Levitt, M. Refinement of large structures by simultaneous minimization of energy and R factor. Acta Crystallogr. A 1978, 34, 931–935.
Kleywegt, G. J. ; Jones, T. A. Where freedom is given, liberties are taken. Structure 1995, 3(6), 535–540.
Kleywegt, G. J. ; Jones, T. A. Databases in protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 1998, 54, 1119–1131.
Brooks, B. R. ; Bruccoleri, R. E. ; Olafson, B. D. ; States, D. J. ; Swaminathan, S. ; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217.
Engh, R. A. ; Huber, R. Accurate bond and angle parameters for x-ray protein-structure refinement. Acta Crystallogr. A 1991, 47, 392–400.
Cornell, W. D. ; Cieplak, P. ; Bayly, C. I. ; Gould, I. R. ; Merz, K. M. ; Ferguson, D. M. ; Spellmeyer, D. C. ; Fox, T. ; Caldwell, J. W. ; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117(19), 5179–5197.
Davis, A. M. ; Teague, S. J. ; Kleywegt, G. J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed. Engl. 2003, 42(24), 2718–2736.
Yu, N. ; Li, X. ; Cui, G. ; Hayik, S. A. ; Merz, K. M. Critical assessment of quantum mechanics based energy restraints in protein crystal structure refinement. Protein Sci. 2006, in press.
Yu, N. ; Yennawar, H. P. ; Merz, K. M. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 322–332.
Nilsson, K. ; Ryde, U. Protonation status of metal-bound ligands can be determined by quantum refinement. J. Inorg. Biochem. 2004, 98(9), 1539–1546.
Ryde, U. ; Nilsson, K. Quantum chemistry can locally improve protein crystal structures. J. Am. Chem. Soc. 2003, 125(47), 14232–14233.
Ryde, U. ; Nilsson, K. Quantum refinement: a method to determine protonation and oxidation states of metal sites in protein crystal structures. J. Inorg. Biochem. 2003, 96(1), 39–39.
Ryde, U. ; Nilsson, K. Quantum refinement: a combination of quantum chemistry and protein crystallography. J. Mol. Struct. 2003, 632, 259–275.
Ryde, U. ; Olsen, L. ; Nilsson, K. Quantum chemical geometry optimizations in proteins using crystallographic raw data. J. Comput. Chem. 2002, 23(11), 1058–1070.
Yu, N. ; Hayik, S. A. ; Wang, B. ; Liao, N. ; Reynolds, C. H. ; Merz, K. M. Assigning the protonation states of the key aspartates in beta-secretase using QM/MM x-ray structure refinement. J. Chem. Theor. Comput. 2006, 2, 1057–1069.
Nilsson, K. ; Hersleth, H. P. ; Rod, T. H. ; Andersson, K. K. ; Ryde, U. The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement. Biophys. J. 2004, 87(5), 3437–3447.
Cui, G. ; Xue, L. ; Merz, J., K. M. Understanding the substrate selectivity and the product regioselectivity of orf2-catalyzed aromatic prenylations. Biochemistry 2006, submitted.
Kuzuyama, T. ; Noel, J. P. ; Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 2005, 435(7044), 983–987.
Schiffer, C. ; Hermans, J. Promise of advances in simulation methods for protein crystallography: implicit solvent models, time-averaging refinement, and quantum mechanical modeling. Methods Enzymol, 2003, 374, 412–461.
Shuker, S. B. ; Hajduk, P. J. ; Meadows, R. P. ; Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996, 274(5292), 1531–1534.
Homans, S. W. NMR spectroscopy tools for structure-aided drug design. Angew. Chem. Int. Ed. Engl. 2004, 43(3), 290–300.
Lepre, C. A. ; Moore, J. M. ; Peng, J. W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 2004, 104(8), 3641–3676.
Meyer, B. , Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 2003, 42(8), 864–890.
Hajduk, P. J. ; Huth, J. R. ; Fesik, S. W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 2005, 48(7), 2518–2525.
Hajduk, P. J. ; Huth, J. R. ; Tse, C. Predicting protein druggability. Drug Discov. Today 2005, 10(23–24), 1675–1682.
Sitkoff, D. ; Case, D. A. Density functional calculations of proton chemical shifts in model peptides. J. Am. Chem. Soc. 1997, 119(50), 12262–12273.
Wishart, D. S. ; Watson, M. S. ; Boyko, R. F. ; Sykes, B. D. Automated 1H and 13C chemical shift prediction using the BioMagResBank. J. Biomol. NMR 1997, 10(4), 329–336.
Iwadate, M. ; Asakura, T. ; Williamson, M. P. C-alpha and C-beta carbon-13 chemical shifts in proteins from an empirical database. J. Biomol. NMR 1999, 13(3), 199–211.
Xu, X. P. ; Case, D. A. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database. J. Biomol. NMR 2001, 21(4), 321–333.
McCoy, M. A. ; Wyss, D. F. , Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J. Am. Chem. Soc. 2002, 124(39), 11758–11763.
Wang, B. ; Brothers, E. N. ; Van Der Vaart, A. ; Merz, K. M. Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: a divide-and-conquer approach. J. Chem. Phys. 2004, 120(24), 11392–11400.
Wang, B. ; Raha, K. ; Merz, K. M., Jr. Pose scoring by NMR. J. Am. Chem. Soc. 2004, 126(37), 11430–11431.
Abagyan, R. ; Totrov, M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 2001, 5(4), 375–382.
Wang, B. ; Westerhoff, L. M. ; Merz, K. M., Jr. A critical assessment of the performance of protein−ligand scoring functions based on NMR chemical shift perturbations. J. Med. Chem. 2007, 50(21), 5128–5134.
Cui, G. ; Wang, B. ; Merz, K. M., Jr. Computational studies of the farnesyltransferase ternary complex part I: substrate binding. Biochemistry 2005, 44(50), 16513–16523.
Chou, J. J. ; Case, D. A. ; Bax, A. Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings. J. Am. Chem. Soc. 2003, 125(29), 8959–8966.
Salvador, P. ; Dannenberg, J. J. Dependence upon basis sets of trans hydrogen-bond c08-88723-N-15 3-bond and other scalar J-couplings in amide dimers used as peptide models: a density functional theory study. J. Phys. Chem. B 2004, 108(39), 15370–15375.
Fersht, A. R. ; Daggett, V. Protein folding and unfolding at atomic resolution. Cell 2002, 108, 1–20.
Baldwin, R. L. In search of the energetic role of peptide hydrogen bonds. J. Biol. Chem. 2003, 278(20), 17581–17588.
Dill, K. A. ; Ozkan, S. B. ; Shell, M. S. ; Weikl, T. R. The protein folding problem. Annu. Rev. Biophys. 2008, 37, 289–316.
Dewar, M. J. S. ; Zoebisch, E. G. ; Healy, E. F. ; Stewart, J. J. P. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909.
Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comp. Chem. 1989, 10(2), 209–220.
Möhle, K. ; Hofmann, H. J. ; Thiel, W. Description of peptide and protein secondary structures employing semiempirical methods. J. Comput. Chem. 2001, 22, 509–520.
Wollacott, A. M. ; Merz, K. M. Development of a parameterized force field to reproduce semiempirical geometries. J. Chem. Theory Comput. 2006, 2, 1070–1077.
Hendlich, M. ; Lackner, P. ; Weitckus, S. ; Floeckner, H. ; Froschauer, R. ; Gottsbacher, K. ; Casari, G. ; Sippl, M. J. Identification of native protein folds amongst a large number of incorrect models: the calculation of low energy conformations from potentials of mean force. J. Mol. Biol. 1990, 216(1), 167–180.
Lazaridis, T. ; Karplus, M. Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 2000, 10(2), 139–145.
Park, B. ; Levitt, M. Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J. Mol. Biol. 1996, 258(2), 367–392.
Simons, K. T. ; Kooperberg, C. ; Huang, E. ; Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 1997, 268(1), 209–225.
Lee, M. R. .; Kollman, P. A. Free-energy calculations highlight differences in accuracy between X-ray and NMR structures and add value to protein structure prediction. Structure 2001, 9(10), 905–916.
Morozov, A. V. ; Tsemekhman, K. ; Baker, D. Electron density redistribution accounts for half the cooperativity of alpha helix formation. J. Phys. Chem. B 2006, 110(10), 4503–4505.
Khandogin, J. ; York, D. M. Quantum descriptors for biological macromolecules from linear-scaling electronic structure methods. Proteins 2004, 56, 724–737.
Khandogin, J. ; Musier-Forsyth, K. ; York, D. M. Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods. J. Mol. Biol, 2003, 330, 993–1004.
Dixon, S. L. ; Merz, K. M. Semiempirical molecular orbital calculations with linear system size scaling. J. Chem. Phys. 1996, 104(17), 6643–6649.
Dixon, S. L. ; Merz, K. M. Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 1997, 107(3), 879–893.
Rajamani, R. ; Reynolds, C. H. Modeling the protonation states of catalytic aspartates in b-secretase. J. Med. Chem. 2004, 47, 5159–5166.
Raha, K. ; Merz, K. M., Jr. Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem. 2005, 48, 4558–4575.
Hensen, C. ; Hermann, J. C. ; Nam, K. ; Ma, S. ; Gao, J. ; Holtje, H. A combined QM/MM approach to protein-ligand interaction: polarization effects of HIV-1 protease on selected high affinity inhibitors. J. Med. Chem. 2004, 47, 6673–6680.
Garcia-Viloca, M. ; Truhlar, D. G. ; Gao, J. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. J. Mol. Biol. 2003, 372(2), 549–560.
Claeyssens, F. ; Ranaghan, K. E. ; Manby, F. R. ; Harvey, J. N. ; Mulholland, A. J. Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem. Commun. (Camb.) 2005, 40, 5068–5070.
Xu, D. ; Zhou, Y. ; Xie, D. ; Guo, H. Antibiotic binding to monozinc CphA beta-lactamase from Aeromonas hydropila: quantum mechanical/molecular mechanical and density functional theory studies. J. Med. Chem. 2005, 48(21), 6679–6689.
Zhang, X. ; Bruice, T. C. A definitive mechanism for chorismate mutase. Biochemistry 2005, 44(31), 10443–10448.
Park, H. ; Brothers, E. N. ; Merz, K. M. Jr. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J. Am. Chem. Soc. 2005, 127(12), 4232–4241.
Szefczyk, B. ; Mulholland, A. J. ; Ranaghan, K. E. ; Sokalski, W. A. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J. Am. Chem. Soc. 2004, 126(49), 16148–16159.
Hermann, J. C. ; Hensen, C. ; Ridder, L. ; Mulholland, A. J. ; Holtje, H. D. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. J. Am. Chem. Soc. 2005, 127(12), 4454–4465.
Diaz, N. ; Suarez, D. ; Merz, K. M., Jr. ; Sordo, T. L. Molecular dynamics simulations of the TEM-1 beta-lactamase complexed with cephalothin. J. Med. Chem. 2005, 48(3), 780–791.
Taylor, R. ; Jewsbury, P. J. ; Essex, J. W. A review of protein-small molecule docking methods. J. Comput. Aided. Mol. Des. 2002, 16, 151–166.
Schneidman-Duhovny, D. ; Nussinov, R. ; Wolfson, H. J. Predicting molecular interactions in silico. II. Protein-protein and protein-drug docking. Curr. Med. Chem. 2004, 11, 91–107.
Raha, K. ; Merz, K. M., Jr. Calculating binding free energy in protein-ligand interaction. Ann. Rep. Comput. Chem. 2005, 1, 113–130.
Irwin, J. J. ; Shoichet, B. K. ZINC: a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45(1), 177–182.
Irwin, J. J. ; Raushel, F. M. ; Shoichet, B. K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005, 44(37), 12316–12328.
Cho, A. E. ; Guallar, V. ; Berne, B. J. ; Friesner, R. A. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical approach. J. Comp. Chem. 2005, 29, 917–930.
Mlinsek, G. ; Novic, M. ; Hodoscek, M. ; Solmajer, T. Prediction of enzyme binding: human thrombin inhibition study by quantum chemical and artificial intelligence methods based on X-ray structures. J. Chem. Inf. Comput. Sci. 2001, 41(5), 1286–1294.
Khandelwal, A. ; Lukacova, V. ; Comez, D. ; Kroll, D. M. ; Raha, S. ; Balaz, S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 2005, 48(17), 5437–5447.
Klahn, M. ; Braun-Sand, S. ; Rosta, E. ; Warshel, A. On possible pitfalls of ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J. Phys. Chem. B 2005, 109, 15645–15650.
Raha, K. ; Merz, K. M., Jr. A quantum mechanics based scoring function: study of zinc-ion mediated ligand binding. J. Am. Chem. Soc. 2004, 126, 1020–1021.
Gogonea, V. ; Merz, K. M., Jr. Fully quantum mechanical description of proteins in solution. combining linear scaling quantum mechanical methodologies with the Poisson-Boltzmann equation. J. Phys. Chem. A 1999, 103, 5171–5188.
Nikitina, E. ; Sulimov, D. ; Zayets, V. ; Zaitseva, N. Semiempirical calculations of binding enthalpy for protein-ligand complexes. Int. J. Quantum Chem. 2004, 97(2), 747–763.
Vasilyev, V. ; Bliznyuk, A. A. Application of semiempirical quantum chemical methods as a scoring function in docking. Theor. Chem. Acc. 2004, 112, 313–317.
Ohno, K. ; Mitsuthoshi, W. ; Saito, S. ; Inoue, Y. ; Sakurai, M. Quantum chemical study of the affinity maturation of 48g7 antibody. Theor. Chem. Acc. 2005, 722, 203–211.
Gao, A. M. ; Zhang, D. W. ; Zhang, J. Z. H. ; Zhang, Y. K. An efficient linear scaling method for ab initio calculation of electron density of proteins. Chem. Phys. Lett. 2004, 394(4–6), 293–297.
Chen, X. H. ; Zhang, J. Z. H. Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy. J. Chem. Phys. 2004, 120, 11386–11391.
Fukuzawa, K. ; Kitaura, K. ; Uebayasi, M. ; Nakata, K. ; Kaminuma, T. ; Nakano, T. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method. J. Comput. Chem. 2005, 26(1), 1–10.
He, X. ; Mei, Y. ; Xiang, Y. ; Zhang, D. W. ; Zhang, J. Z. H. Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations. Proteins 2005, 61(2), 423–432.
Raha, K. ; Van Der Vaart, A. J. ; Riley, K. E. ; Peters, M. B. ; Westerhoff, L. M. ; Kim, H. ; Merz, K. M., Jr. Pairwise decomposition of residue interaction energies using semiempirical quantum mechanical methods in studies of protein-ligand interaction. J. Am. Chem. Soc. 2005, 127(18), 6583–6594.
Ortiz, A. R. ; Pisabarro, M. T. ; Gago, F. ; Wade, R. C. Prediction of drug-binding affinities by comparative binding-energy analysis. J. Med. Chem. 1995, 38(14), 2681–2691.
Peters, M. B. ; Merz, K. M. Semiempirical comparative binding energy analysis (SE-COMBINE) of a series of trypsin inhibitors. J. Chem. Theor. Comput. 2006, 2(2), 383–399.
Karelson, M. ; Lobanov, V. S. ; Katritzky, A. R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996, 96(3), 1027–1044.
Brüstle, M. ; Beck, B. ; Schindler, T. ; King, W. ; Mitchell, T. ; Clark, T. Descriptors, physical properties, and drug-likeness. J. Med. Chem. 2002, 45, 3345–3355.
Wan, J. ; Zhang, L. ; Yang, G. ; Zhan, C. Quantitative structure–activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. J. Chem. Inf. Comput. Sci. 2004, 44, 2099–2105.
Cramer III, R. D. ; Patterson, D. E. ; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967.
Klebe, G. Comparative molecular similarity indices: CoMSIA. In: 3D QSAR in Drug Design, Vol. 3, Kubinyi, H. ; Folkers, G. ; Martin, Y. C. ; Eds. London: Kluwer Academic; 1998, 87.
Sutherland, J. J. ; O' Brien, L. A. ; Weaver, D. F. A comparison of methods for modeling quantitative structure-activity relationships. J. Med. Chem. 2004, 47, 5541–5554.
Dixon, S. ; Merz, K. M., Jr. ; Lauri, G. ; Ianni, J. C. QMQSAR: utilization of a semiempirical probe potential in a field-based qsar method. J. Comput. Chem. 2005, 26, 23–34.
Turner, D. B. ; Willett, P. ; Ferguson, A. M. ; Heritage, T. Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application. J. Comput. Aided Mol. Des. 1997, 11(4), 409–422.
Tuppurainen, K. EEVA (electronic eigenvalue): A new QSAR/QSPR descriptor for electronic substituent effects based on molecular orbital energies. Sar and Qsar in Environ. Res. 1999, 10(1), 39–46.
Bursi, R. ; Dao, T. ; van Wijk, T. ; de Gooyer, M. ; Kellenbach, E. ; Verwer, P. Comparative spectra analysis (CoSA): spectra as three-dimensional molecular descriptors for the prediction of biological activities. J. Chem. Inf. Comput. Sci. 1999, 39(5), 861–867.
Asikainen, A. ; Ruuskanen, J. ; Tuppurainen, K. Spectroscopic QSAR methods and self-organizing molecular field analysis for relating molecular structure and estrogenic activity. J. Chem. Inf. Comput. Sci. 2003, 43(6), 1974–1981.
Besalu, E. ; Girones, X. ; Amat, L. ; Carbo-Dorca, R. Molecular quantum similarity and the fundamentals of QSAR. Acc. Chem. Res. 2002, 35, 289–295.
Carbó-Dorca, R. ; Gironés, X. Foundation of quantum similarity measures and their relationship to QSPR: density function structure, approximations, and application examples. Int. J. Quantum Chem. 2005, 101, 8–20.
Bultinck, P. ; Kuppens, T. ; Gironés, X. ; Carbó-Dorca, R. Quantum similarity superposition algorithm (QSSA): a consistent scheme for molecular alignment and molecular similarity based on quantum chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 1143–1150.
Fusti-Molnar, L. ; Merz, K. M., Jr. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring. J. Chem. Phys. 2008, 129, 25102–25113.
O'Brien, S. E. ; Popelier, P. L. A. Quantum molecular similarity. 3. QTMS descriptors. J. Chem. Inf. Comput. Sci. 2001, 41, 764–775.
Chaudry, U. A. ; Popelier, P. L. A. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. J. Org. Chem. 2004, 69, 233–241.

Reference Title: References

Reference Type: reference-list

Ehrlich, P. Present status of chemotherapy. Chem. Ber. 1909, 42, 17–47.
Gund, P. Three-dimensional pharmacophore pattern searching. In: Progress in Molecular and Subcellular Biology, Hahn, F. E. ; Ed. Berlin: Springer-Verlag; 1977, 5, 117–143.
Marshall, G. R. ; Barry, C. D. ; Bosshard, H. E. ; Dammkoehler, R. A. ; Dunn, D. A. The conformational parameter in drug design: the active analog approach. In: Computer-Assisted Drug Design, Olson, E. C. ; Christoffersen, R. E. ; Eds. Washington, D.C.: American Chemical Society; 1979, 205–226.
Cramer, R. D. ; Patterson, D. E. ; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967.
Klebe, G. ; Abraham, U. ; Mietzner, T. Molecular similarity indices in comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130–4146.
Li, H. ; Sutter, J. ; Hoffmann, R. HypoGen: an automated system for generating 3d predictive pharmacophore models. In: Pharmacophore Perception, Development and Use in Drug Design, Güner, O. F. ; Ed. La Jolla, CA: International University Line; 2000, 173–189.
Dixon, S. L. ; Smondyrev, A. M. ; Knoll, E. H. ; Rao, S. N. ; Shaw, D. E. ; Friesner, R. A. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3d database screening. 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006, 20, 647–671.
Jacobsson, M. ; Gäredal, M. ; Schultz, J. ; Karlén, A. Identification of plasmodium falciparum spermidine synthase active site binders through structure-based virtual screening. J. Med. Chem. 2008, 51, 2777–2786.
Martin, Y. C. Distance comparisons (DISCO): a new strategy for examining 3d structure-activity relationships. In: Classical and 3D QSAR in Agrochemistry, Hansch, C. , Fujita, T. ; Ed. Washington, D.C.: American Chemical Society; 1995, 318–329.
Barnum, D. ; Greene, J. ; Smellie, A. ; Sprague, P. Identification of common functional configurations among molecules. J. Chem. Inf. Comput. Sci. 1996, 36, 563–571.
Jones, G. ; Willett, P. ; Glen, R. C. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput. Aided Mol. Des. 1995, 9, 532–549.
Richmond, N. J. ; Abrams, C. A. ; Wolohan, P. R. N. ; Abrahamian, E. ; Willet, P. ; Clark, R. D. GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput. Aided Mol. Des. 2006, 20, 567–587.
Greenidge, P. A. ; Carlsson, B. ; Bladh, L. ; Gillner, M. Pharmacophores incorporating numerous excluded volumes defined by x-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J. Med. Chem. 1998, 41, 2503–2512.
Van Drie, J. H. “Shrink-Wrap” surfaces: a new method for incorporating shape into pharmacophoric 3d database searching. J. Chem. Inf. Comput. Sci. 1997, 37, 38–42.
Good, A. C. ; Kuntz, I. D. Investigating the extension of pairwise distance pharmacophore measures to triplet-based descriptors. J. Comput. Aided Mol. Des. 1995, 9, 373–379.
Pickett, S. D. ; Mason, J. S. ; McLay, I. M. Diversity profiling and design using 3d pharmacophores: pharmacophore-derived queries (PDQ). J. Chem. Inf. Comput. Sci. 1996, 36, 1214–1223.
McGregor, M. J. ; Muskal, S. M. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci. 1999, 39, 569–574.
Cato, S. J. Exploring pharmacophores with CHEM-X. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F. ; Ed. La Jolla, CA: International University Line; 2000, 110–125.
Güner, O. F. ; Henry, D. R. ; Pearlman, R. S. Use of flexible queries for searching conformationally flexible molecules in databases of three-dimensional structures. J. Chem. Inf. Comput. Sci. 1992, 32, 101–109.
Greene, J. ; Kahn, S. ; Savoj, H. ; Sprague, P. ; Teig, S. Chemical function queries for 3d database search. J. Chem. Inf. Comput. Sci. 1994, 34, 1297–1308.
Van Drie, J. H. Strategies for the determination of pharmacophoric 3d database queries. J. Comput. Aided Mol. Des. 1997, 11, 39–52.
Güner, O. F. Pharmacophore Perception, Development, and Use in Drug Design. La Jolla, CA: International University Line; 2000.
Mason, J. S. ; Good, A. C. ; Martin, E. J. 3D pharmacophores in drug discovery. Curr. Pharm. Des. 2001, 7, 567–597.
Güner, O. F. History and evolution of the pharmacophore concept in computer-aided drug design. Curr. Top. Med. Chem. 2002, 2, 1321–1332.
Van Drie, J. H. Pharmacophore discovery: lessons learned. Curr. Pharm. Des. 2003, 9, 1649–1664.
Dror, O. ; Shulman-Peleg, A. ; Nussov, R. ; Wolfson, H. J. Predicting molecular interaction in silico. I. A guide to pharmacophore identification and its applications to drug design. Curr. Med. Chem. 2004, 11, 71–90.
Van Drie, J. Pharmacophore-based virtual screening: A practical perspective. In: Virtual Screening in Drug Discovery, Alvarez, J. ; Shoichet, B. ; Ed. Boca Raton, FL: CRC Press; 2005.
Gund, P. ; Wipke, W. T. ; Langridge, R. Computer Searching of a Molecular Structure File for Pharmacophoric Patterns, Amsterdam: Elsevier; 1974, 3, 33–39.
Sheridan, R. P. ; Nilakantan, R. ; Dixon, J. S. ; Venkataraghavan, R. The ensemble approach to distance geometry: application to the nicotinic pharmacophore. J. Med. Chem. 1986, 29, 899–906.
Mayer, D. ; Naylor, C. B. ; Motoc, I. ; Marshall, G. R. A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activity studies. J. Comput. Aided Mol. Des. 1987, 1, 3–16.
Golender, V. E. ; Vorpagel, E. R. Computer-assisted pharmacophore identification. In: 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi, H. ; Ed. Leiden: ESCOM Science Publishers; 1993, 137–149.
Havel, T. F. ; Kuntz, I. D. ; Crippen, G. M. The theory and practice of distance geometry. Bull. Math. Biol. 1983, 45, 665–720.
Bron, C. ; Kerbosch, J. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 1973, 16, 575–577.
Patel, Y. ; Gillet, V. J. ; Bravi, G. ; Leach, A. R. A comparison of the pharmacophore identification programs: CATALYST, DISCO and GASP. J. Comput. Aided Mol. Des. 2002, 16, 653–681.
Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley; 1989.
Breiman, L. ; Friedman, J. H. ; Olshen, R. A. ; Stone, C. J. Classification and Regression Trees. Belmont, CA: Wadsworth International Group; 1984.
Young, S. S. ; Hawkins, D. M. Analysis of a 29 full factorial chemical library. J. Med. Chem. 1995, 38, 2784–2788.
Hawkins, D. M. ; Young, S. S. ; Rusinko, A. Analysis of a large structure-activity data set using recursive partitioning. Quant. Struct.-Act. Relat. 1997, 16, 1–7.
Young, S. S. ; Hawkins, D. M. Using recursive partitioning to analyze a large sar data set. SAR QSAR. Eviron. Res. 1998, 8, 183–193.
Chen, X. ; Rusinko, A., III ; Young, S. S. Recursive partitioning analysis of a large structure-activity data set using three-dimensional descriptors. J. Chem. Inf. Comput. Sci. 1998, 38, 1054–1062.
Dixon, S. L. ; Villar, H. O. Investigation of classification methods for the prediction of activity in diverse chemical libraries. J. Comput. Aided Mol. Des. 1999, 13, 533–545.
Chen, X. ; Rusinki, A., III ; Tropsha, A. ; Young, S. S. Automated pharmacophore identification for large chemical data sets. J. Chem. Inf. Comput. Sci. 1999, 39, 887–896.
Van Drie, J. H. ; Weininger, D. ; Martin, Y. C. ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophoric pattern recognition from geometric, steric and substructure searching of three-dimensional molecular structures. J. Comput. Aided Mol. Des. 1989, 3, 225–251.
Lauri, G. ; Bartlett, P. A. CAVEAT: a program to facilitate the design of organic molecules. J. Comput. Aided Mol. Des. 1994, 8, 51–66.
Seeman, P. ; Watanabe, M. ; Grigoriadis, D. ; Tedesco, J. L. ; George, S. R. ; Svensson, U. ; Nilsson, J. L. G. ; Neumeyer, J. L. Dopamine D-2 receptor binding sites for agonists: a tetrahedral model. Mol. Pharmacol. 1985, 28, 391–399.
Chang, G. ; Guida, W. ; Still, W. C. An internal coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 1989, 111, 4379–4386.
Smellie, A. ; Teig, S. L. ; Towbin, P. Poling: promoting conformational variation. J. Comput. Chem. 1995, 16, 171–187.
catalyst/confirm. San Diego, CA Accelrys.
OMEGA . Sante Fe, NM OpenEye Scientific Software. September 2008.
Li, J. ; Ehlers, T. ; Sutter, J. ; Varma-O' Brien, S. ; Kirchmair, J. CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational consideration. J. Chem. Inf. Model. 2007, 47, 1923–1932.
Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J. Comput. Chem. 1996, 17, 520–552.
Jorgensen, W. L. ; Maxwell, D. S. ; Tirado-Rives, J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.
Shelley, J. ; Cholleti, A. ; Frye, L. L. ; Greenwood, J. R. ; Timlin, M. R. ; Uchimaya, M. EPIK: a software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691.
Forbes, I. T. ; Dabbs, S. ; Duckworth, M. D. ; Ham, P. ; Jones, G. E. ; King, F. D. ; Saunders, D. V. ; Blaney, F. E. ; Naylor, C. B. ; Baxter, G. S. ; Blankburn, T. P. ; Kennett, G. A. ; Wood, M. D. Synthesis, biological activity, and molecular modeling studies of selective 5-HT2C/2B receptor antagonists. J. Med. Chem. 1996, 39, 4966–4977.
phase 3.0. New York: Schrödinger, LLC; 2008.
Ash, S. ; Cline, M. A. ; Homer, R. W. ; Hurst, T. ; Smith, G. B. SYBYL line notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. Comput. Sci. 1997, 37, 71–79.
SMARTS: Smiles ARbitrary Target Specification. Aliso Viejo, CA: Daylight Chemical Information Systems.
Schonemann, P. A generalized solution of the orthogonal procrustes problem. Psychometrika 1966, 31, 1–10.
Ferro, D. ; Hermans, J. A. A different best rigid-body molecular fit routine. Acta Crystallogr. 1977, A33, 345–347.
Beusen, D. D. ; Marshall, G. R. Pharmacophore definition using the active analog approach. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F. ; Ed. La Jolla, CA: International University Line; 2000, 23–45.
Griffith, R. ; Bremner, J. B. ; Coban, B. Docking-derived pharmacophores from models of receptor-ligand complexes. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F. ; Ed. La Jolla, CA: International University Line; 2000, 387–408.
Claussen, H. ; Gastreich, M. ; Apelt, V. ; Greene, J. ; Hindle, S. A. ; Lemmen, C. The FlexX database docking environment: rational extraction of receptor based pharmacophores. Curr. Drug Discov. Technol. 2004, 1, 49–60.
Tschinke, V. ; Cohen, N. C. The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. J. Med. Chem. 1993, 36, 3863–3870.
Gastreich, M. ; Lilienthal, M. ; Briem, H. ; Claussen, H. Ultrafast de novo docking combining pharmacophores and combinatorics. J. Comput. Aided Mol. Des. 2006, 20, 717–734.
Carlson, H. A. ; Masukawa, K. M. ; Rubins, K.; D., B. F. ; Jorgensen, W. L. ; Lins, R. D. ; Briggs, J. M. ; McCammon, J. A. Developing a dynamic pharmacophore model for HIV-1 integrase. J. Med. Chem. 2000, 43, 2100–2114.
Deng, J. ; Lee, K. W. ; Sanchez, T. ; Cui, M. ; Neamati, N. ; Briggs, J. M. Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J. Med. Chem. 2005, 48, 1496–1505.
Kirchhoff, P. D. ; Brown, R. ; Kahn, S. ; Waldman, M. Application of structure-based focusing to the estrogen receptor. J. Comput. Chem. 2001, 22, 993–1003.
Böhm, H.-J. LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J. Comput. Aided Mol. Des. 1992, 6, 593–606.
Wlber, G. ; Langer, T. ligandscout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169.
Markt, P. ; Schuster, D. ; Kirchmair, J. ; Laggner, C. ; Langer, T. Pharmacophore modeling and parallel screening for PPAR ligands. J. Comput. Aided Mol. Des. 2007, 21, 575–590.
Murray, C. W. ; Baxter, C. A. ; Frenkel, A. D. The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J. Comput. Aided Mol. Des. 1999, 13, 547–562.
Carlson, H. A. ; McCammon, J. A. Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 2000, 57, 213–218.
Sherman, W. ; Day, T. ; Jacobson, M. P. ; Friesner, R. A. ; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534–553.
catalyst/hyporefine. San Diego, CA: Accelrys.
Schuster, D. ; Laggner, C. ; Steindl, T. M. ; Palusczak, A. ; Hartmann, R. ; Langer, T. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J. Chem. Inf. Model. 2006, 46, 1301–1311.
Brown, R. D. ; Martin, Y. C. Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 1996, 36, 572–584.
Brown, R. D. ; Martin, Y. C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 1997, 37, 1–9.
Flower, D. R. On the properties of bit string-based measures of chemical similarities. J. Chem. Inf. Comput. Sci. 1998, 38, 379–386.
Dixon, S. L. ; Koehler, R. T. The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries. J. Med. Chem. 1999, 42, 2287–2900.
Patterson, D. E. ; Cramer, R. D. ; Ferguson, A. M. ; Clark, R. D. ; Weinberger, L. E. Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 1996, 3049–3059.
Matter, H. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 1997, 40, 1219–1229.
Lajiness, M. S. Dissimilarity-based compound selection techniques. Perspect. Drug Discov. Des. 1997, 7/8, 65–84.
Pötter, T. ; Matter, H. Random or rational design? Evaluation of diverse compound subsets from chemical structure databases. J. Med. Chem. 1998, 41, 478–488.
Ajay, A. ; Walters, W. P. ; Murcko, M. A. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem. 1998, 41, 3314–3324.
Murrall, N. W. ; Davies, E. K. Conformational freedom in 3-D databases. 1. Techniques. J. Chem. Inf. Comput. Sci. 1990, 30, 312–316.
Clark, D. E. ; Jones, G. ; Willett, P. Pharmacophoric pattern matching in files of three-dimensional chemical structures: comparison of conformational searching algorithms for flexible searching. J. Chem. Inf. Comput. Sci. 1994, 34, 197–206.
Moock, T. E. ; Henry, D. R. ; Ozkabak, A. G. ; Alamgir, M. Conformational searching in ISIS/3D databases. J. Chem. Inf. Comput. Sci. 1994, 34, 184–189.
Hurst, T. Flexible 3D searching: the directed tweak technique. J. Chem. Inf. Comput. Sci. 1994, 34, 190–196.
Martin, Y. ; Bures, M. ; Danaher, E. ; DeLazzer, J. New strategies that improve the efficiency of the 3D design of bioactive molecules. In: Trends in QSAR and Molecular Modelling 92, Wermuth, C. ; Ed. Leiden: ESCOM; 1993, 20–26.
Schneider, G. ; Neidhart, W. ; Giller, T. ; Schmid, G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. Engl. 1999, 38, 2894–2896.

Reference Title: References

Reference Type: reference-list

Hansch, C. ; Streich, M. ; Geiger, F. ; Muir, R. M. ; Maloney, P. P. ; Fujita, T. Correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 1963, 85, 2817–2824.
Boyd D. Successes of computer-assisted molecular design. In: Reviews in Computational Chemistry, Boyd, D. ; Lipkowitz, K. B. ; Eds. New York, NY: VCH; 1990, 355–371.
Doweyko, A. M. QSAR: dead or alive? J. Comput. Aided. Mol. Des. 2008, 22, 81–89.
Tropsha A. Recent trends in quantitative structure-activity relationships. In: Burger's Medicinal Chemistry and Drug Discovery, Abraham, D. ; Ed. New York, NY: John Wiley & Sons, 2003; 49–77.
Stouch, T. R. ; Kenyon, J. R. ; Johnson, S. R. ; Chen, X. Q. ; Doweyko, A. ; Li, Y. In silico ADME/Tox: why models fail. J. Comput. Aided Mol. Des. 2003, 17, 83–92.
Jorgensen, W. L. ; Tirado-Rives, J. QSAR/QSPR and proprietary data. J. Chem. Inf. Model. 2006, 46, 937.
Maggiora, G. M. On outliers and activity cliffs: why QSAR often disappoints. J. Chem. Inf. Model. 2006, 46, 1535.
Johnson, S. R. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 2008, 48, 25–26.
PubChem . http://pubchem.ncbi.nlm.nih.gov/. 2008.
Roth, B. L. ; Kroeze W. K. Screening the receptorome yields validated molecular targets for drug discovery. Curr. Pharm. Des. 2006, 12, 1785–1795.
NCI . http://dtp nci nih gov/docs/3d_database/structural_information/smiles_strings html 2007.
FDA . http://www.fda.gov/cder/Offices/OPS_IO/. 2005.
NTP . http://ntp.niehs.nih.gov/ntpweb/. 2005.
DSSTox . http://www.epa.gov/nheerl/dsstox/About.html. 2005.
Oprea, T. ; Tropsha, A. Target, chemical and bioactivity databases: integration is key. Drug Discov. Today 2006, 3, 357–365.
Hansch, C. ; Fujita, T. r-s-p analysis: a method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964, 86, 1616–1626.
Zheng, W. ; Tropsha, A. Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci. 2000, 40, 185–194.
Tropsha, A. Application of predictive QSAR models to database mining. In: Cheminformatics in Drug Discovery, Oprea, T. ; Ed. Weinheim: Wiley-VCH; 2005, 437–455.
Tropsha, A. Predictive QSAR (quantitative structure activity relationships) modeling. In: Comprehensive Medicinal Chemistry II, Martin, Y. C. ; Ed. Amsterdam: Elsevier, 2006; 113–126.
Papa, E. ; Villa, F. ; Gramatica, P. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J. Chem. Inf. Model. 2005, 45, 1256–1266.
Tetko, I. V. Neural network studies. 4. Introduction to associative neural networks. J. Chem. Inf. Comput. Sci. 2002, 42, 717–728.
Zupan, J. ; Novic, M. ; Gasteiger, J. Neural networks with counter-propagation learning-strategy used for modeling. Chemometrics Intelligent Lab. Syst. 1995, 27(2), 175–187.
Devillers, J. Strengths and weaknesses of the back propagation neural network in QSAR and QSPR studies. In: Genetic Algorithms in Molecular Modeling, Devillers, J. ; Ed. San Diego, CA: Academic Press; 1996; 1–24.
Engels, M. F. M. ; Wouters, L. ; Verbeeck, R. ; Vanhoof, G. Outlier mining in high throughput screening experiments. J. Biomol. Screen. 2002; (7): 341–351.
Schuurmann, G. ; Aptula, A. O. ; Kuhne, R. ; Ebert, R. U. Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Chem. Res. Toxicol. 2003, 16, 974–987.
Xue, Y. ; Li, H. ; Ung, C. Y. ; Yap, C. W. ; Chen, Y. Z. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chem. Res. Toxicol. 2006, 19, 1030–1039.
Breiman, L. ; Friedman, J. H. ; Olshen, R. A. ; Stone, C. J. Classification and Regression Trees. Florence, KY: Wadsworth; 1984.
Deconinck, E. ; Hancock, T. ; Coomans, D. ; Massart, D. L. ; Vander Heyden, Y. Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J. Pharm. Biomed. Anal. 2005, 39, 91–103.
MOE . http://www.chemcomp.com/fdept/prodinfo.htm#Cheminformatics. 2005.
Put, R. ; Perrin, C. ; Questier, F. ; Coomans, D. ; Massart, D. L. ; Vander Heyden, Y. V. Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitative structure-retention relationship studies. J. Chromatogr. A 2003, 988, 261–276.
Breiman L. Random forests. J. Mach. Learn. Res. 2001, 45, 5–32.
Svetnik, V. ; Liaw, A. ; Tong, C. ; Culberson, J. C. ; Sheridan, R. P. ; Feuston, B. P. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958.
Put, R. ; Xu, Q. S. ; Massart, D. L. ; Heyden. Y. V. Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. J. Chromatogr. A 2004, 1055, 11–19.
Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67.
Vapnik, V. N. The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag; 1995.
Aires-de-Sousa, J. ; Gasteiger, J. Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions. J. Comb. Chem. 2005, 7, 298–301.
Oloff, S. ; Mailman, R. B. ; Tropsha, A. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J. Med. Chem. 2005, 48, 7322–7332.
Chohan, K. K. ; Paine, S. W. ; Waters, N. J. Quantitative structure activity relationships in drug metabolism. Curr. Top. Med. Chem. 2006, 6, 1569–1578.
Golbraikh, A. ; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002a, 20, 269–276.
Tropsha, A. ; Gramatica, P. ; Gombar, V. K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003 22, 69–77.
Kubinyi, H. ; Hamprecht, F. A. ; Mietzner, T. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem. 1998, 41, 2553–2564.
Novellino, E. ; Fattorusso, C. ; Greco, G. Use of comparative molecular field analysis and cluster analysis in series design. Pharm. Acta Helv. 1995, 70, 149–154.
Norinder, U. Single and domain made variable selection in 3D QSAR applications. J. Chemomet. 1996, 10, 95–105.
Tropsha, A. ; Cho, S. J. Cross-validated R2-guided region selection for CoMFA studies. In: 3D QSAR in Drug Design, Vol. III, Kubinyi, H. ; Folkers, G. ; Martin, Y. C. ; Eds. Dordrecht: Kluwer Academic; 1998, 57–69.
Golbraikh, A. ; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des. 2002b, 16, 357–369.
Golbraikh, A. ; Shen, M. ; Xiao, Z. ; Xiao, Y. D. ; Lee, K. H. ; Tropsha, A. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided. Mol. Des. 2003b, 17, 241–253.
Pavan, M. ; Netzeva, T. I. ; Worth, A. P. Validation of a QSAR model for acute toxicity. SAR QSAR Environ. Res. 2006, 17, 147–171.
Vracko, M. ; Bandelj, V. ; Barbieri, P. ; Benfenati, E. ; Chaudhry, Q. ; Cronin, M. ; Devillers, J. ; Gallegos, A. ; Gini, G. ; Gramatica, P. ; Helma, C. ; Mazzatorta, P. ; Neagu, D. ; Netzeva, T. ; Pavan, M. ; Patlewicz, G. ; Randic, M. ; Tsakovska, I. ; Worth, A. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ. Res. 2006, 17, 265–284.
Saliner, A. G. ; Netzeva, T. I. ; Worth A. P. Prediction of estrogenicity: validation of a classification model. SAR QSAR Environ. Res. 2006, 17, 195–223.
Roberts, D. W. ; Aptula, A. O. ; Patlewicz, G. Mechanistic applicability domains for non-animal based prediction of toxicological endpoints: QSAR analysis of the schiff base applicability domain for skin sensitization. Chem. Res. Toxicol. 2006, 19, 1228–1233.
Estrada, E. ; Patlewicz, G. On the usefulness of graph-theoretic descriptors in predicting theoretical parameters: phototoxicity of polycyclic aromatic hydrocarbons (PAHs). Acta Clin. Croat. 2004, 77, 203–211.
Moss, G. P. ; Cronin, M. T. D. Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data. Int. J. Pharm. 2002, 238, 105–109.
Leo, A. J. ; Hansch, C. Role of hydrophobic effects in mechanistic QSAR. Perspectives in Drug Discov. Des. 1999, 17, 1–25.
Zhang, S. ; Golbraikh, A. ; Tropsha, A. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J. Med. Chem. 2006b, 49, 2713–2724.
Golbraikh, A. ; Bonchev, D. ; Tropsha, A. Novel chirality descriptors derived from molecular topology. J. Chem. Inf. Comput. Sci. 2001, 41, 147–158.
Kovatcheva, A. ; Buchbauer, G. ; Golbraikh, A. ; Wolschann, P. QSAR modeling of alpha-campholenic derivatives with sandalwood odor. J. Chem. Inf. Comput. Sci. 2003, 43, 259–266.
Shen, M. ; Xiao, Y. ; Golbraikh, A. ; Gombar, V. K. ; Tropsha, A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J. Med. Chem. 2003, 46, 3013–3020.
Shen, M. ; LeTiran, A. ; Xiao, Y. ; Golbraikh, A. ; Kohn, H. ; Tropsha, A. Quantitative structure-activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J. Med. Chem. 2002, 45, 2811–2823.
Shen, M. ; Beguin, C. ; Golbraikh, A. ; Stables, J. P. ; Kohn, H. ; Tropsha, A. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J. Med. Chem. 2004, 47, 2356–2364.
Zhang, S. ; Golbraikh, A. ; Oloff, S. ; Kohn, H. ; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model. 2006a, 46, 1984–1995.
Golbraikh, A. ; Shen, M. ; Xiao, Z. ; Xiao, Y. D. ; Lee, K. H. ; Tropsha, A. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided. Mol. Des. 2003a, 17, 241–253.
Mandel, J. Use of the singular value decomposition in regression-analysis. Am. Stat. 1982, 36, 15–24.
Afantitis, A. ; Melagraki, G. ; Sarimveis, H. ; Koutentis, P. A. ; Markopoulos, J. ; Igglessi-Markopoulou, O. A novel QSAR model for predicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg. Med. Chem. 2006, 14, 6686–6694.
Netzeva, T. I. ; Gallegos, S. A. ; Worth, A. P. Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory. Environ. Toxicol. Chem. 2006, 25, 1223–1230.
Tong, W. ; Xie, Q. ; Hong, H. ; Shi, L. ; Fang, H. ; Perkins, R. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Environ. Health Perspect. 2004, 112, 1249–1254.
Helma, C. Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol. Divers. 2006, 10, 147–158.
Zhu, H. ; Tropsha, A. ; Fourches, D. ; Varnek, A. ; Papa, E. ; Gramatica, P. ; Oberg, T. ; Dao, P. ; Cherkasov, A. ; Tetko, I. V. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis . J. Chem. Inf. Model. 2008, 48, 766–784.
Wang, X. S. ; Tang, H. ; Golbraikh, A. ; Tropsha, A. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J. Chem. Inf. Model. 2008, 48, 997–1013.
de Cerqueira, L. P. ; Golbraikh, A. ; Oloff, S. ; Xiao, Y. ; Tropsha, A. Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 2006, 46, 1245–1254.
Kovatcheva, A. ; Golbraikh, A. ; Oloff, S. ; Xiao, Y. D. ; Zheng, W. ; Wolschann, P. ; Buchbauer, G. ; Tropsha, A. Combinatorial QSAR of ambergris fragrance compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 582–595.
Sachs, L. Handbook of Statistics. New York, NY: Springer-Verlag; 1984.
Zhu, H. ; Tropsha, A. ; Fourches, D. ; Varnek, A. ; Papa, E. ; Gramatica, P. ; Oberg, T. ; Dao, P. ; Cherkasov, A. ; Tetko, I. V. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis . J. Chem. Inf. Model. 2008, 48(4), 766–784.
Aptula, A. O. ; Roberts, D. W. ; Cronin, M. T. D. ; Schultz, T. W. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis . Chem. Res. Toxicol. 2005, 18, 844–854.
Netzeva, T. I. ; Schultz, T. W. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere 2005, 61, 1632–1643.
Schultz, T. W. ; Sinks, G. D. ; Miller, L. A. Population growth impairment of sulfur-containing compounds to Tetrahymena pyriformis . Environ. Toxicol. 2001, 16, 543–549.
Schultz, T. W. ; Cronin, M. T. ; Netzeva, T. I. ; Aptula, A. O. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis . Chem. Res. Toxicol. 2002, 15, 1602–1609.
Schultz, T. W. ; Netzeva, T. I. Development and evaluation of QSARs for ecotoxic endpoints: the benzene response-surface model for Tetrahymena toxicity. In: Modeling Environmental Fate and Toxicity, Cronin, M. T. D. ; Livingstone, D. J. ; Eds. Boca Raton, FL: CRC Press; 2004, 265–284.
Schultz, T. W. ; Netzeva, T. I. ; Roberts, D. W. ; Cronin, M. T. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Chem. Res. Toxicol. 2005, 18, 330–341.
Schultz, T. W. ; Yarbrough, J. W. ; Woldemeskel, M. Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates. Cell Biol. Toxicol. 2005, 21, 181–189.
Schultz, T. W. Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol. 1999, 12, 1262–1267.
Schultz, T. W. ; Hewitt, M. ; Netzeva, T. I. ; Cronin. M. T. D. Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb. Sci. 2007, 26, 238–254.
Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 2007, 26, 694–701.
Yang, C. ; Richard, A. M. ; Cross, K. P. The art of data mining the minefields of toxicity databases to link chemistry to biology. Curr. Comput. Aided Drug Des. 2006, 2, 135–150.
Irwin, J. J. ; Shoichet, B. K. ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.
Medina-Franco, J. L. ; Golbraikh, A. ; Oloff, S. ; Castillo, R. ; Tropsha, A. Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSAR-based database mining. J. Comput. Aided Mol. Des. 2005, 19, 229–242.
Zhang, S. ; Wei, L. ; Bastow, K. ; Zheng, W. ; Brossi, A. ; Lee, K. H. ; Tropsha, A. Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des. 2007, 21, 97–112.
Hsieh, J. H. ; Wang, X. S. ; Teotico, D. ; Golbraikh, A. ; Tropsha, A. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening. J. Comput. Aided Mol. Des. 2008, 22(9), 593–609.
Tropsha, A. ; Cho, S. J. ; Zheng, W. “New tricks for an old dog”: development and application of novel QSAR methods for rational design of combinatorial chemical libraries and database mining. In: Rational Drug Design: Novel Methodology and Practical Applications, Parrill, A. L. ; Reddy, M. R. ; Eds. Washington, DC: American Chemical Society; 1999, 198–211.
Cho, S. J. ; Zheng, W. ; Tropsha, A. Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J. Chem. Inf. Comput. Sci. 1998, 38, 259–268.
Gussio, R. ; Pattabiraman, N. ; Kellogg, G. E. ; Zaharevitz, D. W. Use of 3D QSAR methodology for data mining the National Cancer Institute Repository of Small Molecules: application to HIV-1 reverse transcriptase inhibition. Methods 1998, 14, 255–263.
Tropsha, A. ; Zheng, W. Identification of the descriptor pharmacophores using variable selection QSAR: applications to database mining. Curr. Pharm. Des. 2001, 7, 599–612.
Maybridge . http://www.daylight.com/products/databases/Maybridge.html 2005.
Babaoglu, K. ; Simeonov, A. ; Irwin, J. J. ; Nelson, M. E. ; Feng, B. ; Thomas, C. J. ; Cancian, L. ; Costi, M. P. ; Maltby, D. A. ; Jadhav, A. ; Inglese, J. ; Austin, C. P. ; Shoichet, B. K. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J. Med. Chem. 2008, 51, 2502–2511.
Austin, C. P. ; Brady, L. S. ; Insel, T. R. ; Collins, F. S. NIH Molecular Libraries Initiative. Science 2004, 306, 1138–1139.

Reference Title: References

Reference Type: reference-list

Mervis, J. Productivity counts – but the definition is key. Science 2005, 309, 726.
Kola, I. ; Landis, J. Opinion: Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Disc. 2004, 3, 711.
Adams, C. ; Brantner, V. Estimating the cost of new drug development: is it really 802 million dollars? Health Affairs 2006, 25, 420.
Patchett, A. Excursions in drug discovery. J. Med. Chem. 1993, 36, 2051.
Hamming, R. Numerical Methods for Scientists and Engineers. New York: McGraw-Hill; 1962.
Lipinski, C. A. ; Lombardo, F. ; Dominy, B. W. ; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3.
Wenlock, M. C. ; Austin, R. P. ; Barton, P. ; Davis, A. M. ; Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 2003, 46, 1250.
Vieth, M. ; Siegel, M. G. ; Higgs, R. E. ; Watson, I. A. ; Robertson, D. H. ; Savin, K. A. ; Durst, G. L. ; Hipskind, P. A. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 2004, 47, 224.
Leeson, P. D. ; Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 2004, 47, 6338.
Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 2005, 15, 1087.
Vieth, M. ; Sutherland, J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem. 2006, 49, 3451.
Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 2006, 49, 2969.
O'Shea, R. ; Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 2008, 51, 2871.
Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 2008, 51, 817.
Bhal, S. K. ; Kassam, K. ; Peirson, I. G. ; Pearl, G. M. The Rule of Five revisited: applying log D in place of log P in drug-likeness filters. Mol. Pharm. 2007, 4, 556.
Faller, B. ; Wang, J. ; Zimmerlin, A. ; Bell, L. ; Hamon, J. ; Whitebread, S. ; Azzaoui, K. ; Bojanic, D. ; Urban, L. High-throughput in vitro profiling assays: lessons learnt from experiences at Novartis. Expert Opin. Drug Metab. Tox. 2006, 2, 823.
Johnson, S. R. ; Zheng, W. Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J. 2006, 8, E27.
Balakin, K. V. ; Savchuk, N. P. ; Tetko, I. V. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr. Med. Chem. 2006, 13, 223.
Leach, A. G. ; Jones, H. D. ; Cosgrove, D. A. ; Kenny, P. W. ; Ruston, L. ; MacFaul, P. ; Wood, J. M. ; Colclough, N. ; Law, B. Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J. Med. Chem. 2006, 49, 6672.
Lamanna, C. ; Bellini, M. ; Padova, A. ; Westerberg, G. ; Maccari, L. Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J. Med. Chem. 2008, 51, 2891.
Huuskonen, J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J. Chem. Inf. Comp. Sci. 2000, 40, 773.
Yan, A. ; Gasteiger, J. Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Combin. Sci. 2003, 22, 821.
Yan, A. ; Gasteiger, J. ; Krug, M. ; Anzali, S. Linear and nonlinear functions on modeling of aqueous solubility of organic compounds by two structure representation methods. J. Comput. Aided Mol. Des. 2004, 18, 75.
Delaney, J. S. Predicting aqueous solubility from structure. Drug Discov. Today 2005, 10, 289.
Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Meth. 2000, 44, 235.
Goeller, A. H. ; Hennemann, M. ; Keldenich, J. ; Clark, T. In silico prediction of buffer solubility based on quantum-mechanical and HQSAR- and topology-based descriptors. J. Chem. Inf. Model. 2006, 46, 648.
Schwaighofer, A. ; Schroeter, T. ; Mika, S. ; Laub, J. ; Ter Laak, A. ; Suelzle, D. ; Ganzer, U. ; Heinrich, N. ; Mueller, K.-R. Accurate solubility prediction with error bars for electrolytes: a machine learning approach. J. Chem. Inf. Model. 2007, 47, 407.
Obrezanova, O. ; Csanyi, G. ; Gola, J. M. R. ; Segall, M. D. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model. 2007, 47, 1847.
Obrezanova, O. ; Gola, J. M. R. ; Champness, E. J. ; Segall, M. D. Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility. J. Comput. Aided Mol. Des. 2008, 22, 431.
Balakin, K. V. ; Ivanenkov, Y. A. ; Skorenko, A. V. ; Nikolsky, Y. V. ; Savchuk, N. P. ; Ivashchenko, A. A. In silico estimation of DMSO solubility of organic compounds for bioscreening. J. Biomolec. Screen. 2004, 9, 22.
Lu, J. ; Bakken, G. A. Building classification models for DMSO solubility: comparison of five methods. 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004, CINF-045.
Johnson, S. R. ; Chen, X. Q. ; Murphy, D. ; Gudmundsson, O. A. Computational model for the prediction of aqueous solubility that includes crystal packing, intrinsic solubility, and ionization effects. Mol. Pharm. 2007, 4, 513.
Egan, W. J. ; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002, 54, 273.
Egan, W. J. ; Merz, K. M. ; Baldwin, J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867.
Zhao, Y. H. ; Le, J. ; Abraham, M. H. ; Hersey, A. ; Eddershaw, P. J. ; Luscombe, C. N. ; Boutina, D. ; Beck, G. ; Sherborne, B. ; Cooper, I. ; Platts, J. A. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001, 90, 749.
Zhao, Y. H. ; Abraham, M. H. ; Hersey, A. ; Luscombe, C. N. Quantitative relationship between rat intestinal absorption and Abraham descriptors. Eur. J. Med. Chem. 2003, 38, 939.
Bai, J. P. F. ; Utis, A. ; Crippen, G. ; He, H. D. ; Fischer, V. ; Tullman, R. ; Yin, H. Q. ; Hsu, C. P. ; Jing, Hwang, K. K. Use of classification regression tree in predicting oral absorption in humans. J. Chem. Inf. Comp. Sci. 2004, 44, 2061.
Jones, R. ; Connolly, P. C. ; Klamt, A. ; Diedenhofen, M. Use of surface charges from DFT calculations to predict intestinal absorption. J. Chem. Inf. Model. 2005, 45, 1337.
Rezai, T. ; Bock, J. E. ; Zhou, M. V. ; Kalyanaraman, C. ; Lokey, R. S. ; Jacobson, M. P. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc. 2006, 128, 14073.
Rezai, T. ; Yu, B. ; Millhauser, G. L. ; Jacobson, M. P. ; Lokey, R. S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 2006, 128, 2510.
Stoner, C. L. ; Troutman, M. ; Gao, H. ; Johnson, K. ; Stankovic, C. ; Brodfuehrer, J. ; Gifford, E. ; Chang, M. Moving in silico screening into practice: a minimalist approach to guide permeability screening!! Lett. Drug Design Discov. 2006, 3, 575.
Clark, D. E. Computational prediction of blood-brain barrier permeation. Ann. Rep. Med. Chem. 2005, 40, 403.
Kelder, J. ; Grootenhuis, P. D. ; J. Bayada, D. M. ; Delbressine, L. P. C. ; Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 1999, 16, 1514.
Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 1999, 88, 815.
Lobell, M. ; Molnar, L. ; Keseru, G. M. Recent advances in the prediction of blood-brain partitioning from molecular structure. J. Pharm. Sci. 2003, 92, 360.
Gerebtzoff, G. ; Seelig, A. In silico prediction of blood-brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J. Chem. Inf. Model. 2006, 46, 2638.
Abraham, M. H. ; Ibrahim, A. ; Zhao, Y. ; Acree, W. E. A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J. Pharm. Sci. 2006, 95, 2091.
Zhao, Y. H. ; Abraham, M. H. ; Ibrahim, A. ; Fish, P. V. ; Cole, S. ; Lewis, M. L. ; de Groot, M. J. ; Reynolds, D. P. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes. J. Chem. Inf. Model. 2007, 47, 170.
Pardridge, W. M. Log(BB), PS products and in silico models of drug brain penetration. Drug Disc. Today 2004, 9, 392.
Liu, X. ; Tu, M. ; Kelly, R. S. ; Chen, C. ; Smith, B. J. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab. Dispos. 2004, 32, 132.
Abraham, M. H. The factors that influence permeation across the blood-brain barrier. Eur. J. Med. Chem. 2004, 39, 235.
Lin, J. H. ; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 2003, 42, 59.
Raub, T. J. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol. Pharm. 2006, 3, 3.
Varma, M. V. S. ; Sateesh, K. ; Panchagnula, R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol. Pharm. 2005, 2, 12.
Gombar, V. K. ; Polli, J. W. ; Humphreys, J. E. ; Wring, S. A. ; Serabjit-Singh, C. S. Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model. J. Pharm. Sci. 2004, 93, 957.
Cabrera, M. A. ; Gonzalez, I. ; Fernandez, C. ; Navarro, C. ; Bermejo, M. A topological substructural approach for the prediction of P-glycoprotein substrates. J. Pharm. Sci. 2006, 95, 589.
de Lima, P. ; Golbraikh, A. ; Oloff, S. ; Xiao, Y. ; Tropsha, A. Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 2006, 46, 1245.
Seelig, A. A general pattern for substrate recognition by P-glycoprotein. Eur. J. Biochem. 1998, 251, 252.
Pajeva, I. K. ; Wiese, M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). J. Med. Chem. 2002, 45, 5671.
Vandevuer, S. ; Van Bambeke, F. ; Tulkens, P. M. ; Prevost, M. Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins 2006, 63, 466.
Cianchetta, G. ; Singleton, R. W. ; Zhang, M. ; Wildgoose, M. ; Giesing, D. ; Fravolini, A. ; Cruciani, G. ; Vaz, R. A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J. Med. Chem. 2005, 48, 2927.
Crivori, P. ; Reinach, B. ; Pezzetta, D. ; Poggesi, I. Computational models for identifying potential P-glycoprotein substrates and inhibitors. Mol. Pharm. 2006, 3, 33.
Mente, S. R. ; Lombardo, F. A recursive-partitioning model for blood-brain barrier permeation. J. Comput. Aided Mol. Design 2005, 19, 465.
Garg, P. ; Verma, J. In silico prediction of blood brain barrier permeability: an artificial neural network model. J. Chem. Inf. Model. 2006, 46, 289.
Van de Waterbeemd, H. ; Smith, D. A. ; Jones, B. C. Lipophilicity in PK design: methyl, ethyl, futile. J. Comput. Aided Mol. Des. 2001, 15, 273.
Yamazaki, K. , Kanaoka, M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J. Pharm. Sci. 2004, 93, 1480.
Kratochwil, N. A. ; Huber, W. ; Mueller, F. ; Kansy, M. ; Gerber, P. R. Predicting plasma protein binding of drugs – revisited. Curr. Opin. Drug Disc. Devel. 2004, 7, 507.
Kratochwil, N. A. ; Huber, W. ; Muller, F. ; Kansy, M. ; Gerber, P. R. Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 2002, 64, 1355.
Gleeson, M. P. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J. Med. Chem. 2007, 50, 101.
Votano, J. R. ; Parham, M. ; Hall, L. M. ; Hall, L. H. ; Kier, L. B. ; Oloff, S. ; Tropsha, A. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J. Med. Chem. 2006, 49, 7169.
Liu, J. ; Yang, L. ; Li, Y. ; Pan, D. ; Hopfinger, A. J. Constructing plasma protein binding model based on a combination of cluster analysis and 4D-fingerprint molecular similarity analyses. Bioorg. Med. Chem. 2006, 14, 611.
Estrada, E. ; Uriarte, E. ; Molina, E. ; Simon-Manso, Y. ; Milne, G. W. A. An integrated in silico analysis of drug-binding to human serum albumin. J. Chem. Inf. Model. 2006, 46, 2709.
Ghuman, J. ; Zunszain, P. A. ; Petitpas, I. ; Bhattacharya, A. A. ; Otagiri, M. ; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38.
Rodgers, S. L. ; Davis, A. M. ; Tomkinson, N. P. ; Van de Waterbeemd, H. QSAR modeling using automatically updating correction libraries: application to a human plasma protein binding model. J. Chem. Inf. Model. 2007, 47, 2401.
Zhang, H. ; Zhang, Y. Convenient nonlinear model for predicting the tissue/blood partition coefficients of seven human tissues of neutral, acidic, and basic structurally diverse compounds. J. Med. Chem. 2006, 49, 5815.
Gleeson, M. P. ; Waters, N. J. ; Paine, S. W. ; Davis, A. M. In silico human and rat Vss quantitative structure-activity relationship models. J. Med. Chem. 2006, 49, 1953.
Lombardo, F. ; Obach, R. S. ; DiCapua, F. ; Bakken, G. A. ; Lu, J. ; Potter, D. M. ; Gao, F. ; Miller, M. D. ; Zhang, Y. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J. Med. Chem. 2006, 49, 2262.
Hirom, P. C. ; Millburn, P. ; Smith, R. L. ; Williams, R. T. Species variations in the threshold molecular-weight factor for the biliary excretion of organic anions. Biochem. J. 1972, 129, 1071.
Hirom, P. C. ; Millburn, P. ; Smith, R. L. Bile and urine as complementary pathways for the excretion of foreign organic compounds. Xenobiotica 1976, 6, 55.
Smith, D. A. Physicochemical properties in drug metabolism and pharmacokinetics. In: Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry, van de Waterbeemd, H. ; Testa, B. ; Folkers, G. ; Eds. Weinheim: Wiley-VCH; 1997, 267.
Doddareddy, M. R. ; Cho, Y. S. ; Koh, H. Y. ; Kim, D. H. ; Pae, A. N. In silico renal clearance model using classical Volsurf approach. J. Chem. Inf. Model. 2006, 46, 1312.
Yap, C. W. ; Li, Z. R. ; Chen, Y. Z. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J. Mol. Graph. Model. 2006, 24, 383.
Borodina, Y. ; Rudik, A. ; Filimonov, D. ; Kharchevnikova, N. ; Dmitriev, A. ; Blinova, V. ; Poroikov, V. A new statistical approach to predicting aromatic hydroxylation sites. Comparison with model-based approaches. J. Chem. Inf. Comp. Sci. 2004, 44, 1998.
Boyer, S. ; Arnby, C. ; Hasselgren, C. ; Carlsson, L. ; Smith, J. ; Stein, V. ; Glen, R. C. Reaction site mapping of xenobiotic biotransformations. J. Chem. Inf. Model. 2007, 47, 583.
Singh, S. B. ; Shen, L. Q. ; Walker, M. J. ; Sheridan, R. P. A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. J. Med. Chem. 2003, 46, 1330.
Lewin, J. L. ; Cramer, C. J. Rapid quantum mechanical models for the computational estimation of C-H bond dissociation energies as a measure of metabolic stability. Mol. Pharm. 2004, 1, 128.
Beck, M. E. Do Fukui function maxima relate to sites of metabolism? A critical case study. J. Chem. Inf. Model. 2005, 45, 273.
Olsen, L. ; Rydberg, P. ; Rod, T. H. ; Ryde, U. Prediction of activation energies for hydrogen abstraction by Cytochrome P450. J. Med. Chem. 2006, 49, 6489.
Shen, M. ; Xiao, Y. ; Golbraikh, A. ; Gombar, V. K. ; Tropsha, A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J. Med. Chem. 2003, 46, 3013.
Crivori, P. ; Zamora, I. ; Speed, B. ; Orrenius, C. ; Poggesi, I. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates. J. Comput. Aided Mol. Des. 2004, 18, 155.
Wang, Y. H. ; Li, Y. ; Li, Y. H. ; Yang, S. L. ; Yang, L. Modeling Km values using electrotopological state: substrates for cytochrome P450 3A4-mediated metabolism. Bioorg. Med. Chem. Lett. 2005, 15, 4076.
Lee, P. H. ; Cucurull-Sanchez, L. ; Lu, J. ; Du, Y. J. Development of in silico models for human liver microsomal stability. J. Comput. Aided Mol. Des. 2007, 21, 665.
Schwaighofer, A. ; Schroeter, T. ; Mika, S. ; Hansen, K. ; ter Laak, A. ; Lienau, P. ; Reichel, A. ; Heinrich, N. ; Mueller, K. R. A probabilistic approach to classifying metabolic stability. J. Chem. Inf. Model. 2008, 48, 785.
Lewis, D. F. V. ; Ito, Y. ; Goldfarb, P. S. Structural modeling of the human drug-metabolizing cytochromes P 450. Curr. Med. Chem. 2006, 13, 2645.
Lewis, D. F. V. ; Lake, B. G. ; Dickins, M. ; Goldfarb, P. S. Homology modelling of CYP3A4 from the CYP2C5 crystallographic template: analysis of typical CYP3A4 substrate interactions. Xenobiotica 2004, 34, 549.
Tanaka, T. ; Okuda, T. ; Yamamoto, Y. Characterization of the CYP3A4 active site by homology modeling. Chem. Pharm. Bull. 2004, 52, 830.
Park, H. ; Lee, S. ; Suh, J. Structural and dynamical basis of broad substrate specificity, catalytic mechanism, and inhibition of cytochrome P 450 3A4. J. Am. Chem. Soc. 2005, 127, 13634.
Yano, J. K. ; Wester, M. R. ; Schoch, G. A. ; Griffin, K. J. ; Stout, C. D. ; Johnson, E. F. The structure of human microsomal Cytochrome P450 3A4 determined by x-ray crystallography to 2.05-.ANG. resolution. J. Biol. Chem. 2004, 279, 38091.
Williams, P. A ; Cosme, J. ; Vinkovic, D. M. ; Ward, A. ; Angove, H. C. ; Day, P. J. ; Vonrhein, C. ; Tickle, I. J. ; Jhoti, H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004, 305, 683.
Ekroos, M. ; Sjoegren, T. Structural basis for ligand promiscuity in cytochrome P 450 3A4. Proc. National Acad. Sci. U.S.A. 2006, 103, 13682.
Cruciani, G. ; Carosati, E. ; De Boeck, B. ; Ethirajulu, K. ; Mackie, C. ; Howe, T. ; Vianello, R. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem. 2005, 48, 6970.
Zhou, D. ; Afzelius, L. ; Grimm, S. W. ; Andersson, T. B. ; Zauhar, R. J. ; Zamora, I. Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab. Dispos. 2006, 34, 976.
Kjellander, B. ; Masimirembwa, C. M. ; Zamora, I. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach. J. Chem. Inf. Model. 2007, 47, 1234.
Caron, G. ; Ermondi, G. ; Testa, B. Predicting the oxidative metabolism of statins: an application of the MetaSite algorithm. Pharm. Res. 2007, 24, 480.
Ahlstroem, M. A. ; Ridderstrom, M. ; Zamora, I. ; Luthman, K. CYP2C9 structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. J. Med. Chem. 2007, 50, 4444.
Ahlstroem, M. A. ; Ridderstrom, M. ; Zamora, I. CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites. J. Med. Chem. 2007, 50, 5382.
Sykes, M. J. ; McKinnon, R. A. ; Miners, J. O. Prediction of metabolism by cytochrome P450 2C9: alignment and docking studies of a validated database of substrates. J. Med. Chem. 2008, 51, 780.
Sheridan, R. P. ; Korzekwa, K. R. ; Torres, R. A. ; Walker, M. J. Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. J. Med. Chem. 2007, 50, 3173.
Oh, W. S. ; Kim, D. N. ; Jung, J. ; Cho, K. H. ; No, K. T. New combined model for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. J. Chem. Inf. Model. 2008, 48, 591.
Terfloth, L. ; Bienfait, B. ; Gasteiger, J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J. Chem. Inf. Model. 2007, 47, 1688.
Delisle, R. K. ; Lowrie, J. F. ; Hobbs, D. W. ; Diller, D. J. Computational ADME/Tox modeling: aiding understanding and enhancing decision making in drug design. Curr. Comput. Aided Drug Des. 2005, 1, 325.
Stoner, C. L. ; Gifford, E. ; Stankovic, C. ; Lepsy, C. S. ; Brodfuehrer, J. ; Prasad, J. ; Surendran, N. Implementation of an ADME enabling selection and visualization tool for drug discovery. J. Pharm. Sci. 2004, 93, 1131.
Lobell, M. ; Hendrix, M. ; Hinzen, B. ; Keldenich, J. ; Meier, H. ; Schmeck, C. ; Schohe-Loop, R. ; Wunberg, T. ; Hillisch, A. In silico ADMET traffic lights as a tool for the prioritization of HTS hits. ChemMedChem 2006, 1, 1229.
Segall, M. D. ; Beresford, A. P. ; Gola, J. M. R. ; Hawksley, D. ; Tarbit, M. H. Focus on success: using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery. Expert Opin. Drug Metab. Toxicol. 2006, 2, 325.
Appell, K. ; Baldwin, J. J. ; Egan, W. J. Combinatorial chemistry and high-throughput screening in drug discovery and development. In: Handbook of Modern Pharmaceutical Analysis, Ahuja, S ; Scypinski, S. ; Eds. San Diego, Academic Press; 2001, 23.
Biller, S. A. ; Custer, L. ; Dickinson, K. E. ; Durham, S. K. ; Gavai, A. V. ; Hamann, L. G. ; Josephs, J. L. ; Moulin, F. ; Pearl, G. M. ; Flint, O. P. ; Sanders, M. ; Tymiak, A. A. ; Vaz, R. The challenge of quality in candidate optimization. In: Biotechnology: Pharmaceutical Aspects, 1(Pharmaceutical Profiling in Drug Discovery for Lead Selection), Arlington, AAPS Press, 2004, 413.
Egan, W. J. ; Walters, W. P. ; Murcko, M. A. Guiding molecules towards drug-likeness. Curr. Opin. Drug Discov. Devel. 2002, 5, 540.

Reference Title: References

Reference Type: reference-list

Clark, D. E. What has computer-aided molecular design ever done for drug discovery? Exp. Opin. Drug Discov. 2006, 1(2), 103–110.
Jorgensen, W. L. The many roles of computation in drug discovery. Science 2004, 303(5665), 1813–1818.
Richon, A. B. An early history of the molecular modeling industry. Drug Discov. Today 2008, 13, 659–664.
Hansch, C. ; Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, D.C., 1995.
Hansch, C. ; Fukunaga, J. Designing biologically active materials. ChemTech 1977, 7(2), 120–8.
Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 1969, 2(8), 232–239.
www.rcsb.org.
Cherezov, V. ; Rosenbaum, D. M. ; Hanson, M. A. ; Rasmussen, S. G. F. ; Thian, F. S. ; Kobilka, T. S. ; Choi, H.-J. ; Kuhn, P. ; Weis, W. I. ; Kobilka, B. K. ; Stevens, R. C. ; Takeda, S. ; Kadowaki, S. ; Haga, T. ; Takaesu, H. ; Mitaku, S. ; Fredriksson, R. ; Lagerstrom, M. C. ; Lundin, L. G. ; Schioth, H. B. ; Pierce, K. L. ; Premont, R. T. ; Lefkowitz, R. J. ; Lefkowitz, R. J. ; Shenoy, S. K. ; Rosenbaum, D. M. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 2007, 318, (5854), 1258–1265.
Jiang, Y. ; Lee, A. ; Chen, J. ; Cadene, M. ; Chait, B. T. ; MacKinnon, R. The open pore conformation of potassium channels. Nature 2002, 417(6888), 523–526.
Jiang, Y. ; Lee, A. ; Chen, J. ; Ruta, V. ; Cadene, M. ; Chait, B. T. ; MacKinnon, R. X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423(6935), 33–41.
Palczewski, K. ; Kumasaka, T. ; Hori, T. ; Behnke, C. A. ; Motoshima, H. ; Fox, B. A. ; Le Trong, I. ; Teller, D. C. ; Okada, T. ; Stenkamp, R. E. ; Yamamoto, M. ; Miyano, M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289(5480), 739–745.
Rasmussen, S. G. F. ; Choi, H.-J. ; Rosenbaum, D. M. ; Kobilka, T. S. ; Thian, F. S. ; Edwards, P. C. ; Burghammer, M. ; Ratnala, V. R. P. ; Sanishvili, R. ; Fischetti, R. F. ; Schertler, G. F. X. ; Weis, W. I. ; Kobilka, B. K. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 2007, 450(7168), 383–387.
Zhou, Y. , Morals-Cabral, J. H. ; Kaufman, A. ; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0.ANG. resolution. Nature 2001, 414(6859), 43–48.
Coulson, C. A. Coulson is credited with using this analogy to describe the accuracy required to compute the energy of interaction between two molecules.
Cornell, W. D. ; Cieplak, P. ; Bayly, C. I. ; Gould, I. R. ; Merz, K. M., Jr. ; Ferguson, D. M. ; Spellmeyer, D. C. ; Fox, T. ; Caldwell, J. W. ; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117(19), 5179–5197.
Weiner, P. K. ; Kollman, P. A. AMBER: assisted model building with energy refinement: a general program for modeling molecules and their interactions. J. Comput. Chem. 1981, 2(3), 287–303.
MacKerell, A. D., Jr. ; Bashford, D. ; Bellott, M. ; Dunbrack, R. L. ; Evanseck, J. D. ; Field, M. J. ; Fischer, S. ; Gao, J. ; Guo, H. ; Ha, S. ; Joseph-McCarthy, D. ; Kuchnir, L. ; Kuczera, K. ; Lau, F. T. K. ; Mattos, C. ; Michnick, S. ; Ngo, T. ; Nguyen, D. T. ; Prodhom, B. ; Reiher, W. E., III ; Roux, B. ; Schlenkrich, M. ; Smith, J. C. ; Stote, R. ; Straub, J. ; Watanabe, M. ; Wiorkiewicz-Kuczera, J. ; Yin, D. ; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102(18), 3586–3616.
Brooks, B. R. ; Bruccoleri, R. E. ; Olafson, B. D. ; States, D. J. ; Swaminathan, S. ; Karplus, M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4(2), 187–217.
Jorgensen, W. L. ; Tirado-Rives, J. The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110(6), 1657–66.
Curtiss, L. A. ; Redfern, P. C. ; Raghavachari, K. ; Pople, J. A. Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J. Chem. Phys. 2001, 114(1), 108–117.
Curtiss, L. A. ; Raghavachari, K. ; Redfern, P. C. ; Rassolov, V. ; Pople, J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109(18), 7764–7776.
Karplus, M. Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers 2003, 68(3), 350–358.
Guimaraes, C. R. W. ; Boger, D. L. ; Jorgensen, W. L. Elucidation of fatty acid amide hydrolase inhibition by potent a-ketoheterocycle derivatives from monte carlo simulations. J. Am. Chem. Soc. 2005, 127(49), 17377–17384.
Ulmschneider, J. P. ; Jorgensen, W. L. Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. J. Chem. Phys. 2003, 118(9), 4261–4271.
Dewar, M. J. S. ; Zoebisch, E. G. ; Healy, E. F. ; Stewart, J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107(13), 3902–3909.
Dewar, M. J. S. ; Thiel, W. Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 1977, 99(15), 4907–4917.
Fersht, A. Enzyme Structure and Mechanism, 2nd ed. New York: Freeman & Co.; 1985.
Davis, A. M. ; Teague, S. J. ; Kleywegt, G. J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed. Engl. 2003, 42(24), 2718–2736.
Davis, A. M. ; St. Gallay, S. A. ; Gerard, J. K. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today 2008, 13, 831–841.
Yu, N. ; Hayik, S. A. ; Wang, B. ; Liao, N. ; Reynolds, C. H. ; Merz, K. M., Jr. Assigning the protonation states of the key aspartates in β-secretase using QM/MM x-ray structure refinement. J. Chem. Theor. Comput. 2006, 2(4), 1057–1069.
Rajamani, R. ; Reynolds, C. H. Modeling the protonation states of the catalytic aspartates in b-secretase. J. Med. Chem. 2004, 47(21), 5159–5166.
Piana, S. ; Sebastiani, D. ; Carloni, P. ; Parrinello, M. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease clevage site. J. Am. Chem. Soc. 2001, 123, 8730–8737.
Smith, R. ; Brereton, I. M. ; Chai, R. Y. ; Kent, S. B. H. Ionization states of the catalytic residues in HIV-1 protease. Nature Struct. Biol. 1996, 3, 946–950.
Hong, L. ; Koelsch, G. ; Lin, X. ; Wu, S. ; Terzyan, S. ; Ghosh, A. K. ; Zhang, X. C. ; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 2000, 290, 150–153.
Harte, W. E., Jr. ; Beveridge, D. L. Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexed via molecular dynamics simulation. J. Am. Chem. Soc. 1993, 115, 3883–3886.
Piana, S. ; Carloni, P. Conformational flexibility of the catalytic asp dyad in HIV-1 protease: an ab initio study on the free enzyme. Proteins 2000, 39, 26–36.
Wang, Y. ; Freedberg, D. I. ; Yamazaki, T. ; Wingfield, P. T. ; Stahl, S. J. ; Kaufman, J. D. ; Kiso, Y. ; Torchia, D. A. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the assymetric drug KNI-272. Biochemistry 1996, 35, 9945–9950.
Yamazaki, T. ; Nicholson, L. K. ; Torchia, D. A. , Wingfield, P. ; Stahl, S. J. ; Kaufman, J. D. ; Eyermann, C. J. ; Hedge, C. N. ; Lam, P. Y. S. ; R u, Y. ; Jadhav, P. K. ; Chang, C. ; Webers, P. C. NMR and x-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Am. Chem. Soc. 1994, 116, 10791–10792.
Kleywegt, G. J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2007, D63(1), 94–100.
Kleywegt, G. J. ; Henrick, K. ; Dodson, E. J. ; Van Aalten, D. M. F. Pound-wise but penny-foolish: how well do micromolecules fare in macromolecular refinement? Structure 2003, 11(9), 1051–1059.
Hong, L. ; Turner, R. T. ; Koelsch, G. ; Shin, D. ; Ghosh, A. K. ; Tang, J. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 2002, 41, 10963–10967.
Patel, S. ; Vuillard, L. ; Cleasby, A. ; Murray, C. W. ; Yon, J. Apo and inhibitor complex structures of BACE (β-secretase). J. Mol. Biol. 2004, 343(2), 407–416.
Cummings, M. D. ; DesJarlais, R. L. ; Gibbs, A. C. ; Mohan, V. ; Jaeger, E. P. Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 2005, 48(4), 962–976.
Perola, E. ; Walters, W. P. ; Charifson, P. S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004, 56(2), 235–249.
McGaughey, G. B. ; Sheridan, R. P. ; Bayly, C. I. ; Culberson, J. C. ; Kreatsoulas, C. ; Lindsley, S. ; Maiorov, V. ; Truchon, J.-F. ; Cornell, W. D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model. 2007, 47(4), 1504–1519.
Warren, G. L. ; Andrews, C. W. ; Capelli, A.-M. ; Clarke, B. ; LaLonde, J. ; Lambert, M. H. ; Lindvall, M. ; Nevins, N. ; Semus, S. F. ; Senger, S. ; Tedesco, G. ; Wall, I. D. ; Woolven, J. M. ; Peishoff, C. E. ; Head, M. S. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49(20), 5912–5931.
DesJarlais, R. L. ; Cummings, M. D. ; Gibbs, A. C. Virtual docking: how are we doing and how can we improve? Front. Drug Des. Discov. 2007, 3, 81–103.
Gilson, M. K. ; Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21–42.
Zeevaart, J. G. ; Wang, L. ; Thakur, V. V. ; Leung, C. S. ; Tirado-Rives, J. ; Bailey, C. M. ; Domaoal, R. A. ; Anderson, K. S. ; Jorgensen, W. L. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc. 2008, 130(29), 9492–9499.
Aqvist, J. ; Marelius, J. The linear interaction energy method for predicting ligand binding free energies. Comb. Chem. High Throughput Screen. 2001, 4(8), 613–626.
Hansson, T. ; Marelius, J. ; Aqvist, J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des. 1998, 12(1), 27–35.
Wesolowski, S. S. ; Jorgensen, W. L. Estimation of binding affinities for celecoxib analogues with COX-2 via Monte Carlo-extended linear response. Bioorg. Med. Chem. Lett. 2002, 12(3), 267–270.
Lamb, M. L. ; Tirado-Rives, J. ; Jorgensen, W. L. Estimation of the binding affinities of FKBP12 inhibitors using a linear response method. Bioorg. Med. Chem. 1999, 7(5), 851–860.
Smith, R. H., Jr. ; Jorgensen, W. L. ; Tirado-Rives, J. ; Lamb, M. L. ; Janssen, P. A. J. ; Michejda, C. J. , Smith, M. B. K. Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method. J. Med. Chem. 1998, 41(26), 5272–5286.
Holloway, M. K. A priori prediction of ligand affinity by energy minimization. Perspectives in Drug Discovery and Design. 3D QSAR in Drug Design: Ligand/Protein Interactions and Molecular Similarity. New York: Springer-Verlag; 1998, 63–84.
Tounge, B. A. ; Rajamani, R. ; Baxter, E. W. ; Reitz, A. B. ; Reynolds, C. H. Linear interaction energy models for β-secretase (BACE) inhibitors: role of van der Waals, electrostatic, and continuum-solvation terms. J. Mol. Graph. Model. 2006, 24(6), 475–484.
Kuhn, B. ; Donini, O. ; Huo, S. ; Wang, J. ; Kollman, P. A. MM-PBSA applied to computer-assisted ligand design. In: Free Energy Calculations in Rational Drug Design, Rami Reddy, R. ; Erion, M. D. ; Eds. New York: Kluwer Academic/Plenum; 2001, 243–251.
Wang, J. ; Morin, P. ; Wang, W. ; Kollman, P. A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123(22), 5221–5230.
Tounge, B. A. ; Reynolds, C. H. Calculation of the binding affinity of β-secretase inhibitors using the linear interaction energy method. J. Med. Chem. 2003, 46, 2074–2082.
Rajamani, R. ; Reynolds, C. H. Modeling the binding affinities of β-secretase inhibitors: application to subsite specificity. Bioorg. Med. Chem. Lett. 2004, 14(19), 4843–4846.
Qiu, D. ; Shenkin, P. S. ; Hollinger, F. P. ; Still, W. C. The GB/SA continuum model for solvation: a fast analytical method for the calculation of approximate born radii. J. Phys. Chem. A 1997, 101(16), 3005–3014.
Ghosh, A. K. ; Bilcer, G. ; Harwood, C. ; Kawahama, R. ; Shin, D. ; Hussain, K. A. ; Hong, L. ; Loy, J. A. ; Nguyen, C. ; Koelsch, G. ; Ermolieff, J. ; Tang, J. Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase). J. Med. Chem. 2001, 44(18), 2865–2868.
Baxter, E. W. ; Conway, K. A. ; Kennis, L. ; Bischoff, F. ; Mercken, M. H. ; De Winter, H. L. ; Reynolds, C. H. ; Tounge, B. A. ; Luo, C. ; Scott, M. K. ; Huang, Y. ; Braeken, M. ; Pieters, S. M. A. ; Berthelot, D. J. C. ; Masure, S. ; Bruinzeel, W. D. ; Jordan, A. D. ; Parker, M. H. ; Boyd, R. E. ; Qu, J. ; Alexander, R. S. ; Brenneman, D. E. ; Reitz, A. B. 2-amino-3,4-dihydroquinazolines as inhibitors of BACE-1 (β-site APP cleaving enzyme): use of structure based design to convert a micromolar hit into a nanomolar lead. J. Med. Chem. 2007, 50(18), 4261–4264.
Park, H. ; Lee, S. Determination of the active site protonation state of b-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J. Am. Chem. Soc. 2003, 125, 16416–16422.
Schechter, I. ; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162.
Tobias, D. J. ; Sneddon, S. F. ; Brooks, C. L., III. Stability of a model β-sheet in water. J. Mol. Biol. 1992, 227(4), 1244–1252.
Frey, J. A. ; Leutwyler, S. An ab initio benchmark study of hydrogen bonded formamide dimers. J. Phys. Chem. A 2006, 110(45), 12512–12518.
Kangas, E. ; Tidor, B. Optimizing electrostatic affinity in ligand-receptor binding: theory, computation, and ligand properties. J. Chem. Phys. 1998, 109(17), 7522–7545.
Ghosh, A. K. ; Krishnan, K. ; Walters, D. E. ; Cho, W. ; Cho, H. ; Koo, Y. ; Trevino, J. ; Holland, L. ; Buthod, J. Structure based design: novel spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors. Bioorg. Med. Chem. Lett. 1998, 8(8), 979–982.
Graham, S. L. ; Ghosh, A. K. ; Huff, J. R. ; Scholz, T. H. HIV protease inhibitors with n-terminal polyether substituents. Eur. Pat. Appl. 1993.
Pearlstein, R. ; Vaz, R. ; Rampe, D. Understanding the structure-activity relationship of the human ether-a-go-go-related gene cardiac K+ channel: a model for bad behavior. J. Med. Chem. 2003, 46(11), 2017–2022.
Vandenberg, J. I. ; Walker, B. D. ; Campbell, T. J. HERG K+ channels: friend and foe. Trends Pharmacol. Sci. 2001, 22(5), 240–246.
Rajamani, R. ; Tounge, B. A. ; Li, J. ; Reynolds, C. H. A two-state homology model of the hERG K+ channel: application to ligand binding. Bioorg. Med. Chem. Lett. 2005, 15(6), 1737–1741.
Sanchez-Chapula, J. A. ; Navarro-Polanco, R. A. ; Culberson, C. ; Chen, J. ; Sanguinetti, M. C. Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. J. Biol. Chem. 2002, 277(26), 23587–23595.
Cavalli, A. ; Poluzzi, E. ; De Ponti, F. ; Recanatini, M. Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J. Med. Chem. 2002, 45(18), 3844–3853.

Reference Title: References

Reference Type: reference-list

Lee, J. C. ; Laydon, J. T. ; McDonnell, P. C. ; Gallagher, T. F. ; Kumar, S. ; Green, D. ; McNulty, D. ; Blumenthal, M. J. ; Heyes, J. R. ; Landvatter, S. W. ; Strickler, J. E. ; McLaughlin, M. M. ; Siemens, I. R. ; Fisher, S. M. ; Livi, G. P. ; White, J. R. ; Adams, J. L. ; Young, P. R. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994, 372, 739–746
Hale, K. K. ; Trollinger, D. ; Rihanek, M. ; Manthey, C. L. Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ and δ in inflammatory cell lineages J. Immunol. 1999, 162, 4246–4252.
Lee, J. C. ; Kassis, S. ; Kumar, S. ; Badger, A. ; Adams, J. L. p38 mitogen-activated protein kinase inhibitors – mechanisms and therapeutic potentials. Pharmacol. Ther. 1999, 82, 389–397.
Chen, Z. ; Gibson, T. B. ; Robinson, F. ; Silvestro, L. ; Pearson, G. ; Xu, B.-E. ; Wright, A. ; Vanderbilt, C. ; Cobb, M. H. MAP kinases. Chem. Rev. 2001, 101, 2449–2476.
Dambach, D. M. Potential adverse effects associated with inhibition of p38. α/β MAP kinases Curr. Top. Med. Chem. 2005, 5, 929–939.
Pearson, G. ; Robinson, F. ; Gibson, T. B. ; Xu, B. -E.; Karandikar, M. ; Berman, K. ; Cobb, M. H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183.
Schieven, G. L. The biology of p38 kinase: a central role in inflammation. Curr. Top. Med. Chem. 2005, 5, 921–928.
Boehm, J. C. ; Adams, J. L. New inhibitors of p38 kinase. Expert Opin. Ther. Pat. 2000, 10, 25–37.
Chakravarty, S. ; Dugar, S. Inhibitors of p38a MAP kinase. Ann. Rep. Med. Chem. 2002, 37, 177–186.
Cirillo, P. F. ; Pargellis, C. ; Regan, J. The non-diaryl heterocycle class of p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 2002, 2, 1021–1035.
Doweyko, A. M. ; Wrobleski, S. T. A comparison of p38 inhibitor-protein structures. Am. Drug Discov. 2006, 1, 47–52.
Dumas, J. ; Sibley, R. ; Riedl, B. ; Monahan, M. K. ; Lee, W. ; Lowinger, T. B. ; Redman, A. M. ; Johnson, J. S. ; Kingery-Wood, J. ; Scott, W. J. ; Smith, R. A. ; Bobko, M. ; Schoenleber, R. ; Ranges, G. E. ; Housley, T. J. ; Bhargava, A. ; Wilhelm, S. M. ; Shrikhande, A. Discovery of a new class of p38 kinase inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 2047–2050.
Dumas, J. ; Smith, R. A. ; Lowinger, T. B. Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr. Opin. Drug Discov. Dev. 2004, 7, 600–616.
Hanson, G. Inhibitors of p38 kinase. Expert Opin. Ther. 1997, 7, 729–733.
Jackson, P. F. ; Bullington, J. L. Pyridinylimidazole based p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 2002, 2, 1011–1020.
Salituro, F. G. ; Germann, U. A. ; Wilson, K. P. ; Benis, G. W. ; Fox, T. ; Su, M. S.-S. Inhibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr. Med. Chem. 1999, 6, 807–823.
Wrobleski, S. T. ; Doweyko, A. M. Structural comparison of p38 inhibitor-protein complexes: a review of recent p38 inhibitors having unique binding interactions. Curr. Top. Med. Chem. 2005, 5, 1005–1016.
Berman, H. M. ; Westbrook, J. ; Feng, Z. ; Gilliland, G. ; Bhat, T. N. ; Weissig, H. ; Shindyalov, I. N. ; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242.
Lin, T. H. ; Metzger, A. ; Diller, D. J. ; Desai, M. ; Henderson, I. ; Ahmed, G. ; Kimble, E. F. ; Quadros, E. ; Webb, M. L. Discovery and characterization of triaminotriazine aniline amides as highly selective p38 kinase inhibitors. J. Pharmacol. Exp. Ther. 2006, 318, 495–502.
Leftheris, K. ; Ahmed, G. ; Chan, R. ; Dyckman, A. J. ; Hussain, Z. ; Ho, K. ; Hynes, J., Jr. ; Letourneau, J. ; Li, W. ; Lin, S. ; Metzger, A. ; Moriarty, K. J. ; Riviello, C. ; Shimshock, Y. ; Wen, J. ; Wityak, J. ; Wrobleski, S. T. ; Wu, H. ; Wu, J. ; Desai, M. ; Gillooly, K. M. ; Lin, T. H. ; Loo, D. ; McIntyre, K. W. ; Pitt, S. ; Shen, D. R. ; Shuster, D. J. ; Zhang, R. ; Diller, D. ; Doweyko, A. ; Sack, J. ; Baldwin, J. ; Barrish, J. ; Dodd, J. ; Henderson, I. ; Kanner, S. ; Schieven, G. L. ; Webb, M. The discovery of orally active triaminotriazine aniline amides as inhibitors of p38 MAP kinase J. Med. Chem. 2004, 47, 6283–6291.
Chen, J. C. ; Xu, S. L. ; Wawrzak, Z. ; Basarab, G. S. ; Jordan, D. B. Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry 1998, 37, 17735–17744.
Wissner, A. ; Berger, D. M. ; Boschelli, D. H. ; Floyd, B. ; Greenberger, L. M. ; Gruber, B. C. ; Johnson, B. D. ; Mamuya, N. ; Nilakantan, R. ; Reich, M. F. ; Shen, R. ; Tsou, H. -R.; Upeslacis, E. ; Wang, Y. F. ; Wu, B. ; Ye, F. ; Zhang, N. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J. Med. Chem. 2000, 43, 3244–3256.
Liu, C. ; Wrobleski, S. T. ; Lin, J. ; Ahmed, G. ; Metzger, A. ; Wityak, J. ; Gillooly, K. M. ; Shuster, D. J. ; McIntyre, K. W. ; Pitt, S. ; Shen, D. R. ; Zhang, R. F. ; Zhang, H. ; Doweyko, A. M. ; Diller, D. ; Henderson, I. ; Barrish, J. C. ; Dodd, J. H. ; Schieven, G. L. ; Leftheris, K. 5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38α MAP kinase. J. Med. Chem. 2005, 48, 6261–6270.
Hynes, J. , Jr.; Dyckman, A. J. ; Lin, S. ; Wrobleski, S. T. ; Wu, H. ; Gillooly, K. M. ; Kanner, S. B. ; Lonial, H. ; Loo, D. ; McIntyre, K. W. ; Pitt, S. ; Shen, D. R. ; Shuster, D. J. ; Yang, X. ; Zhang, R. ; Behnia, K. ; Zhang, H. ; Marathe, P. H. ; Doweyko, A. M. ; Tokarski, J. S. ; Sack, J. S. ; Pokross, M. ; Kiefer, S. E. ; Newitt, J. A. ; Barrish, J. C. ; Dodd, J. ; Schieven, G. L. ; Leftheris, K. Design, synthesis, and anti-inflammatory properties of orally active 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine p38α mitogen-activated protein kinase inhibitors. J. Med. Chem. 2008, 51, 4–16.
Hunt, J. T. ; Mitt, T. ; Borzilleri, R. ; Gullo-Brown, J. ; Fargnoli, J. ; Fink, B. ; Han, W. -C.; Mortillo, S. ; Vite, G. ; Wautlet, B. ; Wong, T. ; Yu, C. ; Zheng, Z. ; Bhide, R. Discovery of the pyrrolo[2,1-f][1,2,4]triazine nucleus as a new kinase inhibitor template. J. Med. Chem. 2004, 47, 4054–4059.
Pargellis, C. ; Tong, L. ; Churchill, L. ; Cirillo, P. F. ; Gilmore, T. ; Graham, A. G. ; Grob, P. M. ; Hickey, E. R. ; Moss, N. ; Pav, S. ; Regan, J. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 2002, 9, 268–272.
Wrobleski, S. T. ; Lin, S. ; Hynes, J. ; Wu, H. ; Pitt, S. ; Shen, D. R. ; Zhang, R. ; Gillooly, K. M. ; Shuster, D. J. ; McIntyre, K. W. ; Doweyko, A. M. ; Kish, K. F. ; Tredup, J. A. ; Duke, G. J. ; Sack, J. S. ; McKinnon, M. ; Dodd, J. ; Barrish, J. C. ; Schieven, G. L. ; Lefterheris, K. Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2739–2744.
Das, J. ; Moquin, R. V. ; Pitt, S. ; Zhang, R. ; Shen, D. R. ; McIntyre, K. W. ; Gillooly, K. M. ; Doweyko, A. M. ; Sack, J. S. ; Zhang, H. ; Kiefer, S. E. ; Kish, K. F. ; McKinnon, M. ; Barrish, J. C. ; Dodd, J. ; Schieven, G. L. ; Lefterheris, K. Pyrazolo-pyrimidines: a novel heterocyclic scaffold for potent and selective p38α inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2652–2657.
Hynes, J. ; Wu, H. ; Pitt, S. ; Shen, D. R. ; Zhang, R. ; Schieven, G. L. ; Gillooly, K. M. ; Shuster, D. J. ; Taylor, T. L. ; Yang, X. ; McIntyre, K. W. ; McKinnon, M. ; Zhang, H. ; Marathe, P. H. ; Doweyko, A. M. ; Kish, K. ; Kiefer, S. E. ; Sack, J. S. ; Newitt, J. A. ; Barrish, J. C. ; Dodd, J. ; Leftheris, K. The discovery of (R)-2-(sec-butylamino)-N-(2-methyl-5-(methyl-carbamoyl)phenyl) thiazole-5-carboxamide (BMS-640994) – A potent and efficacious p38α MAP kinase inhibitor. Bioorg. Med. Chem. Lett. 2008, 18, 1762–1767.
Mavunkel, B. J. ; Chakravarty, S. ; Perumattam, J. J. ; Luedtke, G. R. ; Liang, X. ; Lim, D. ; Xu, Y.-J. ; Laney, M. ; Liu, D. Y. ; Schreiner, G. F. ; Lewicki, J. A. ; Dugar, S. Indole-based heterocyclic inhibitors of p38α MAP kinase: designing a conformationally restricted analogue. Bioorg. Med. Chem. Lett. 2003, 13, 3087–3090.
Dhar, T. G. M. ; Wrobleski, S. T. ; Lin, S. ; Furch, J. A. ; Nirschl, D. S. ; Fan, Y. ; Todderud, G. ; Pitt, S. ; Doweyko, A. M. ; Sack, J. S. ; Mathur, A. ; McKinnon, M. ; Barrish, J. C. ; Dodd, J. H. ; Schieven, G. L. ; Leftheris, K. Synthesis and SAR of p38α MAP kinase inhibitors based on heterobicyclic scaffolds. Bioorg. Med. Chem. Lett. 2007, 17, 5019–5024.
Boehm, J. C. ; Smietana, J. M. ; Sorenson, M. E. ; Garigipati, R. S. ; Gallagher, T. F. ; Sheldrake, P. L. ; Breadbeer, J. ; Badger, A. M. ; Laydon, J. T. ; Lee, J. C. ; Hillegass, L. M. ; Griswold, D. E. ; Breton, J. J. ; Chabot-Fletcher, M. C. ; Adams, J. L. 1-Substituted 4-aryl-5-pyridinylimidazoles: a new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J. Med. Chem. 1996, 39, 3929–3937.
Trejo, A. ; Arzeno, H. ; Browner, M. ; Chanda, S. ; Cheng, S. ; Comer, D. D. ; Dalrymple, S. A. ; Dunten, P. ; Lafargue, J. ; Lovejoy, B. ; Freire-Moar, J. ; Lim, J. ; McIntosh, J. ; Miller, J. ; Papp, E. ; Reuter, D. ; Roberts, R. ; Sanpablo, F. ; Saunders, J. ; Song, K. ; Villasenor, A. ; Warren, S. D. ; Welch, M. ; Weller, P. ; Whiteley, P. E. ; Zeng, L. ; Goldstein, D. M. Design and synthesis of 4-azaindoles as inhibitors of p38 MAP kinase. J. Med. Chem. 2003, 46, 4702–4713.
Dombroski, M. A. ; Letavic, M. A. ; McClure, K. F. ; Barberia, J. T. ; Carty, T. J. ; Cortina, S. R. ; Csiki, C. ; Dipesa, A. J. ; Elliott, N. C. ; Gabel, C. A. ; Jordan, C. K. ; Labasi, J. M. ; Martin, W. H. ; Peese, K. M. ; Stock, I. A. ; Svensson, L. ; Sweeney, F. J. ; Yu, C. H. Benzimidazolone p38 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 919–923.
McClure, K. F. ; Letavic, M. A. ; Kalgutkar, A. S. ; Gabel, C. A. ; Audoly, L. ; Barberia, J. T. ; Braganza, J. F. ; Carter, D. ; Carty, T. J. ; Cortina, S. R. ; Dombroski, M. A. ; Donahue, K. M. ; Elliott, N. C. ; Gibbons, C. P. ; Jordan, C. K. ; Kuperman, A. V. ; Labasi, J. M. ; LaLiberte, R. E. ; McCoy, J. M. ; Naiman, B. M. ; Nelson, K. L. ; Nguyen, H. T. ; Peese, K. M. ; Sweeney, F. J. ; Taylor, T. J. ; Trebino, C. E. ; Abramov, Y. A. ; Laird, E. R. ; Volberg, W. A. ; Zhou, J. ; Bach, J. ; Lombardo, F. Structure-activity relationships of triazolopyridine oxazole p38 inhibitors: identification of candidates for clinical development. Bioorg. Med. Chem. Lett. 2006, 16, 4339–4344.
Liu, C. ; Lin, J. ; Pitt, S. ; Zhang, R. F. ; Sack, J. S. ; Kiefer, S. E. ; Kish, K. ; Doweyko, A. M. ; Zhang, H. ; Marathe, P. H. ; Trzaskos, J. ; McKinnon, M. ; Dodd, J. H. ; Barrish, J. C. ; Schieven, G. L. ; Leftheris, K. Benzothiazole based inhibitors of p38α MAP kinase. Bioorg. Med. Chem. Lett. 2008, 18, 1874–1879.

Reference Title: References

Reference Type: reference-list

Hepatitis C – global prevalence (update). Weekly Epidemiology Record 1999, 74, 425–427.
Alter, M. J. Epidemiology of hepatitis C. Hepatology 1997, 26, 62S–65S.
Liang, T. J. ; Heller, T. VX-950, a novel hepatitis C virus (HCV) NS3-4A protease inhibitor, exhibits potent antiviral activities in HCV replicon cells. Gastroenterology 2004, 127, S62–S71.
Salmon-Ceron, D. ; Lewden, C. ; Morlat, P. ; Bevilacqua, S. ; Jougla, E. ; Bonnet, F. ; Heripret, L. ; Costagliola, D. ; May, T. ; Chene, G. Liver disease as a major cause of death among HIV infected patients: role of hepatitis C and B viruses and alcohol. J. Hepatol. 2005, 42, 799–805.
Brown, R. S. Hepatitis C and liver transplantation. Nature 2005, 436, 973–978.
In Management of Hepatitis C: 2002; National Institutes of Health, 2002. http://consensus.nih.gov/2002/2002HepatitisC2002116html.htm.
Poynard, T. ; Marcellin, P. ; Lee, S. S. ; Niederau, C. ; Minuk, G. S. ; Ideo, G. ; Bain, V. ; Heathcote, J. ; Zeuzem, S. ; Trepo, C. ; Albrecht, J. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 1998, 352, 1426–1432.
Gordon, C. P. ; Keller, P. A. Control of hepatitis C: a medicinal chemistry perspective. J. Med. Chem. 2005, 48, 1–20.
Thomson, J. A. ; Perni, R. B. Hepatitis C virus NS3-4A protease inhibitors: countering viral subversion in vitro and showing promise in the clinic. Curr. Opin. Drug Discov. Devel. 2006, 9, 606–617.
Chen, S. H. ; Tan, S. L. Discovery of small-molecule inhibitors of HCV NS3-4A protease as potential therapeutic agents against HCV infection. Curr. Med. Chem. 2005, 12, 2317–2342.
Bartenschlager, R. ; Ahlborn-Laake, L. ; Mous, J. ; Jacobsen, H. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 1993, 67, 3835–3844.
Kolykhalov, A. A. ; Mihalik, K. ; Feinstone, S. M. ; Rice, C. M. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J. Virol. 2000, 74, 2046–2051.
Llinas-Brunet, M. ; Bailey, M. D. ; Bolger, G. ; Brochu, C. ; Faucher, A. M. ; Ferland, J. M. ; Garneau, M. ; Ghiro, E. ; Gorys, V. ; Grand-Maitre, C. ; Halmos, T. ; Lapeyre-Paquette, N. ; Liard, F. ; Poirier, M. ; Rheaume, M. ; Tsantrizos, Y. S. ; Lamarre, D. Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J. Med. Chem. 2004, 47, 1605–1608.
Perni, R. B. ; Almquist, S. J. ; Byrn, R. A. ; Chandorkar, G. ; Chaturvedi, P. R. ; Courtney, L. F. ; Decker, C. J. ; Dinehart, K. ; Gates, C. A. ; Harbeson, S. L. ; Heiser, A. ; Kalkeri, G. ; Kolaczkowski, E. ; Lin, K. ; Luong, Y. P. ; Rao, B. G. ; Taylor, W. P. ; Thomson, J. A. ; Tung, R. D. ; Wei, Y. ; Kwong, A. D. ; Lin, C . Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3-4A serine protease. Antimicrob. Agents Chemother. 2006, 50, 899–909.
Tsantrizos, Y. S. ; Bolger, G. ; Bonneau, P. ; Cameron, D. R. ; Goudreau, N. ; Kukolj, G. ; LaPlante, S. R. ; Llinas-Brunet, M. ; Nar, H. ; Lamarre, D. Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew. Chem. Int. Ed. Engl. 2003, 42, 1356–1360.
Laplante, R. ; Llinas-Brunet, M. Dynamics and Structure-based Design of Drugs Targeting the Critical Serine Protease of the Hepatitis C Virus – From a Peptidic Substrate to BILN 2061. Curr. Med. Chem. Antinfect. Agents 2005, 4, 111–132.
Yan, Y. ; Li, Y. ; Munshi, S. ; Sardana, V. ; Cole, J. L. ; Sardana, M. ; Steinkuehler, C. ; Tomei, L. ; De Francesco, R. ; Kuo, L. C. ; Chen, Z. Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci. 1998, 7, 837–847.
Yao, N. ; Reichert, P. ; Taremi, S. S. ; Prosise, W. W. ; Weber, P. C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 1999, 7, 1353–1363.
Halgren, T. A. Merck Molecular Force Field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.
Halgren, T. A. Merck Molecular Force Field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 1996, 17, 520–552.
Halgren, T. A. Merck Molecular Force Field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553–586.
Halgren, T. A. ; Nachbar, R. B. Merck Molecular Force Field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615.
Halgren, T. A. Merck Molecular Force Field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 1996, 17, 616–641.
Crippen, C. M. ; Havel, T. F. Distance Geometry and Molecular Conformation. New York, NY: John Wiley & Sons; 1988.
Kuszewski, J. ; Nilges, M. ; Brunger, A. T. Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR 1992, 2, 33–56.
Wang, R. ; Lu, Y. ; Fang, X. ; Wang, S. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comput. Sci. 2004, 44, 2114–2125.
Liverton, N. J. ; Holloway, M. K. ; McCauley, J. A. ; Rudd, M. T. ; Butcher, J. W. ; Carroll, S. S. ; DiMuzio, J. ; Fandozzi, C. ; Gilbert, K. F. ; Mao, S. S. ; McIntyre, C. J. ; Nguyen, K. T. ; Romano, J. J. ; Stahlhut, M. ; Wan, B. L. ; Olsen, D. B. ; Vacca, J. P. Molecular modeling based approach to potent P2-P4 macrocyclic inhibitors of hepatitis C NS3/4A protease. J. Am. Chem. Soc. 2008, 130, 4607–4609.
Mao, S. S. ; DiMuzio, J. ; McHale, C. ; Burlein, C. ; Olsen, D. ; Carroll, S. S. A time-resolved, internally quenched fluorescence assay to characterize inhibition of hepatitis C virus nonstructural protein 3-4A protease at low enzyme concentrations. Anal. Biochem. 2008, 373, 1–8.
Migliaccio, G. ; Tomassini, J. E. ; Carroll, S. S. ; Tomei, L. ; Altamura, S. ; Bhat, B. ; Bartholomew, L. ; Bosserman, M. R. ; Ceccacci, A. ; Colwell, L. F. ; Cortese, R. ; De Francesco, R. ; Eldrup, A. B. ; Getty, K. L. ; Hou, X. S. ; LaFemina, R. L. ; Ludmerer, S. W. ; MacCoss, M. ; McMasters, D. R. ; Stahlhut, M. W. ; Olsen, D. B. ; Hazuda, D. J. ; Flores, O. A. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J. Biol. Chem. 2003, 278, 49164–49170.
Tu, Y. ; Scola, P. , Michael; Good , A. , Charles ; Campbell, J. A. Bristol-Myers Squibb. Preparation of prolinamide peptides as hepatitis C virus inhibitors: WO 2005054430, 2005.
Wang, X. A. ; Sun, L.-Q. ; Sit, S.-Y. ; Sin, N. ; Scola, P. M. ; Hewawasam, P. ; Good, A. C. ; Chen, Y. ; Campbell, J. A. Bristol-Myers Squibb Hepatitis C Virus Inhibitors: US 6,995,174, 2006.
Nicola, T. ; Brenner, M. ; Donsbach, K. ; Kreye, P. First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient. Org. Process Res. Dev. 2005, 9, 513–515.
Marchetti, A. ; Ontoria, J. M. ; Matassa, V. G. Synthesis of Two Novel Cyclic Biphenyl Ether Analogs of an Inhibitor of HCV NS3 Protease. Synlett 1999, S1, 1000–1002.
Chen, K. X. ; Njoroge, F. G. ; Pichardo, J. ; Prongay, A. ; Butkiewicz, N. ; Yao, N. ; Madison, V. ; Girijavallabhan, V. Potent 7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid-based macrocyclic inhibitors of hepatitis C virus NS3 protease. J. Med. Chem. 2006, 49, 567–574.

Reference Title: References

Reference Type: reference-list

Pauling, L. Molecular architecture and biological reactions. Chem. Eng. News 1946, 24, 1375–1377.
Wolfenden, R. Transition state analogues for enzyme catalysis. Nature 1969, 223, 704–705.
Wolfenden, R. Analog approaches to the structure of the transition state in enzyme reactions. Acc. Chem. Res. 1972, 5, 10–18.
Jencks, W. Binding energy, specificity, and enzymic catalysis: the Circe effect. Adv. Enzymol. Relat. Areas Mol. Biol. 1975, 43, 219–410.
Anderson, V. Ground state destabilization. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd.; 2001, 1–5.
Shih, I. ; Been, M. Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 2002, 71, 887–917.
Wu, N. ; Mo, Y. ; Gao, J. ; Pai, E. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2017–2022.
Amyes, T. L. ; Wood, B. M. ; Chan, K. ; Gerlt, J. A. ; Richard, J. P. Formation and stability of a vinyl carbanion at the active site of orotidine 5′-monophosphate decarboxylase: pKa of the C-6 proton of enzyme-bound UMP. J. Am. Chem. Soc. 2008, 130, 1574–1575.
Bruice, T. C. ; Lightstone, F. C. Ground state and transition state contributions to the rates of intramolecular and enzymatic reactions. Acc. Chem. Res. 1999, 32, 127–136.
Lightstone, F. C. ; Bruice, T. C. Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-Δ4-tetrahydrophthalate monophenyl esters. J. Am. Chem. Soc. 1996, 118, 2595–2605.
Antoniou, D. ; Basner, J. ; Núñez, S. ; Schwartz, S. Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem. Rev. 2006, 106, 3170–3187.
Kohen, A. ; Cannio, R. ; Bartolucci, S. ; Klinman, J. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 1999, 399, 496–499.
Agarwal, P. ; Billeter, S. ; Rajagopalan, P. ; Benkovic, S. ; Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2794–2799.
Wong, K. ; Selzer, T. ; Benkovic, S. ; Hammes-Schiffer, S. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6807–6812.
Nunez, S. ; Antoniou, D. ; Schramm, V. L. ; Schwartz, S. D. Promoting vibrations in human purine nucleoside phosphorylase: a molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J. Am. Chem. Soc. 2004, 126, 15720–15729.
Saen-Oon, S. ; Ghanem, M. ; Schramm, V. ; Schwartz, S. Remote mutations and active site dynamics correlate with catalytic properties of purine nucleoside phosphorylase. Biophys. J. 2008, 94(10), 4078–4088.
Lienhard, G. Enzymatic catalysis and transition-state theory. Science 1973, 180, 149–154.
Wolfenden, R. ; Kati, W. M. Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors. Acc. Chem. Res. 1991, 24, 209–215.
Wolfenden, R. Conformational aspects of inhibitor design: enzyme-substrate interactions in the transition state. Bioorg. Med. Chem. 1999, 7, 647–652.
Schramm, V. Enzymatic transition state theory and transition state analogue design. J. Biol. Chem. 2007, 282, 28297–28300.
Schramm, V. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 1998, 67, 693–720.
Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 1955, 77, 334–338.
Jencks, W. In: Catalysis in Chemistry and Enzymology. Dover: New York, 1987, 170–182.
Schramm, V. Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch. Biochem. Biophys. 2005, 433, 13–26.
Cleland, W. Isotope Effects: Determination of enzyme transition state structure. Methods Enzymol. 1995, 249, 341–373.
Parkin, D. W. In: Enzyme Mechanism from Isotope Effects, Cook, P. F. ; Ed. Boca Raton: CRC Press; 1991, 269–290.
Rodgers, J. ; Femec, D. A. ; Schowen, R. L. Isotopic mapping of transition-state structural features associated with enzymic catalysis of methyl transfer. J. Am. Chem. Soc. 1982, 104, 3263–3268.
Sunhel, J. ; Schowen, R. In: Enzyme Mechanism from Isotope Effects, Cook, P. F. ; Ed. Boca Raton: CRC Press; 1991, 3–36.
Huskey, W. In: Enzyme Mechanism from Isotope Effects, Cook, P. F. ; Ed. Boca Raton: CRC Press; 1991, 37–72.
Berti, P. J. ; Tanaka, K. S. E . Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer. Adv. Phys. Org. Chem. 2002, 37, 239–314.
Rose, I. The isotope trapping method: desorption rates of productive e.s complexes. Methods Enzymol. 1980, 64, 47–59.
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Zakrzewski, V. G. ; Montgomery, J. ; Stratmann, R. E. ; Burant, J. C. ; Dapprich, S. ; Millam, J. M. ; Daniels, A. D. ; Kudin, K. N. ; Strain, M. C. ; Farkas, O. ; Tomasi, J. ; Barone, V. ; Cossi, M. ; Cammi, R. ; Mennucci, B. ; Pomelli, C. ; Adamo, C. ; Ochterski, J. ; Petersson, G. A. ; Ayala, P. Y. ; Cui, Q. ; Morokuma, K. ; Rega, N. ; Salvador, P. ; Dannenberg, J. J. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Cioslowski, J. ; Ortiz, J. V. ; Baboul, A. G. ; Stefanov, B. B. ; G. Liu, A. L. ; Piskorz, P. ; Komaromi, I. ; Gomperts, R. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Al-Laham, M. A. ; Peng, C. Y. ; Nanayakkara, A. ; Challacombe, M. ; Gill, P. M. W. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Andres, J. L. ; Gonzalez, C. ; Head-Gordon, M. ; Replogle, E. S. ; Pople, J. A. ; Revision A.11.2 ed.; Gaussian, Inc.: Pittsburgh, PA, 2001.
Saunders, M. ; Laidig, K. E. ; Wolfsberg, M. Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies. J. Am. Chem. Soc. 1989, 111, 8989–8994.
Anisimov, V. ; Paneth, P. ISOEFF98: a program for studies of isotope effects using hessian modifications. J. Math. Chem. 1999, 26, 75–86.
Melander, L. ; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules. New York, NY: Wiley & Sons; 1980.
Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 1949, 17, 675–678.
Bigeleisen, J. ; Wolsberg, M. Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1958, 1, 15–76.
Streitwieser, A. ; Jagow, R. H. ; Fahey, R. C. ; Suzuki, S. Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates. J. Am. Chem. Soc. 1958, 80, 2326–2332.
Northrop, D. The expression of isotope effects on enzyme-catalyzed reactions. Annu. Rev. Biochem. 1981, 50, 103–131.
Birck, M. ; Schramm, V. Binding causes the remote [5′-3H]thymidine kinetic isotope effect in human thymidine phosphorylase. J. Am. Chem. Soc. 2004, 126, 6882–6883.
Murkin, A. S. ; Birck, M. R. ; Rinaldo-Matthis, A. ; Shi, W. X. ; Taylor, E. A. ; Almo, S. C. ; Schramm, V. L. Neighboring group participation in the transition state of human purine nucleoside phosphorylase. Biochemistry 2007, 46, 5038–5049.
Ruszczycky, M. ; Anderson, V. Interpretation of V/K isotope effects for enzymatic reactions exhibiting multiple isotopically sensitive steps. J. Theor. Biol. 2006, 243, 328–342.
Giblett, E. R. ; Ammann, A. J. ; Wara, D. W. ; Sandman, R. ; Diamond, L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975, 1, 1010–1013.
Markert, M. ; Finkel, B. ; McLaughlin, T. ; Watson, T. ; Collard, H. ; McMahon, C. ; Andrews, L. ; Barrett, M. ; Ward, F. Mutations in purine nucleoside phosphorylase deficiency. Hum. Mutat. 1997, 9, 118–121.
Markert, M. Purine nucleoside phosphorylase deficiency. Immunodef. Rev. 1991, 3, 45–81.
Oliver, F. ; Collins, M. ; López-Rivas, A. dNTP pools imbalance as a signal to initiate apoptosis. Experientia 1996, 52, 995–1000.
Zoltewicz, J. ; Clark, D. ; Sharpless, T. ; Grahe, G. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 1970, 92, 1741–1749.
McCann, J. ; Berti, P. Transition state analysis of acid-catalyzed dAMP hydrolysis. J. Am. Chem. Soc. 2007, 129, 7055–7064.
Krenitsky, T. Purine nucleoside phosphorylase: kinetics, mechanism, and specificity. Mol. Pharmacol. 1967, 3, 526–536.
Kim, B. ; Cha, S. ; Parks, R. J. Purine nucleoside phosphorylase from human erythroyctes. II. Kinetic analysis and substrate-binding studies. J. Biol. Chem. 1968, 243, 1771–1776.
Lewis, A. ; Lowy, B . Human erythrocyte purine nucleoside phosphorylase: molecular weight and physical properties: a Theorell-Chance catalytic mechanism. J. Biol. Chem. 1979, 254, 9927–9932.
Lewis, A. ; Glantz, M. Bovine brain purine-nucleoside phosphorylase purification, characterization, and catalytic mechanism. Biochemistry 1976, 15, 4451–4457.
Porter, D. Purine nucleoside phosphorylase: kinetic mechanism of the enzyme from calf spleen. J. Biol. Chem. 1992, 267, 7342–7351.
Carlson, J. ; Fischer, A. Thyroid purine nucleoside phosphorylase. II. Kinetic model by alternate substrate and inhibition studies. Biochim. Biophys. Acta 1979, 566, 259–265.
Kline, P. ; Schramm, V. Purine nucleoside phosphorylase: catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 1993, 32, 13212–13219.
Erion, M. D. ; Stoeckler, J. D. ; Guida, W. C. ; Walter, R. L. ; Ealick, S. E. Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry 1997, 36, 11735–11748.
Ghanem, M. ; Saen-Oon, S. ; Zhadin, N. ; Wing, C. ; Cahill, S. ; Schwartz, S. ; Callender, R. ; Schramm, V. Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry 2008, 47, 3202–3215.
Kline, P. ; Schramm, V. Purine nucleoside phosphorylase: inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity. Biochemistry 1992, 31, 5964–5973.
Lewandowicz, A. ; Schramm, V. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 2004, 43, 1458–1468.
Rising, K. A. ; Schramm, V. L. Transition state analysis of NAD+ hydrolysis by the cholera toxin catalytic subunit. J. Am. Chem. Soc. 1997, 119, 27–37.
Stein, R. ; Cordes, E. Kinetic alpha-deuterium isotope effects for Escherichia coli purine nucleoside phosphorylase-catalyzed phosphorolysis of adenosine and inosine. J. Biol. Chem. 1981, 256, 767–772.
Lehikoinen, P. ; Sinnott, M. ; Krenitsky, T. Investigation of alpha-deuterium kinetic isotope effects on the purine nucleoside phosphorylase reaction by the equilibrium-perturbation technique. Biochem. J. 1989, 257, 355–359.
Parks, R. E., Jr. ; Agarwal, R. P. In: The Enzymes, Boyer, P. D. ; Ed. New York, NY: Academic Press; 1972, Vol. 7, 483–514.
Schramm, V. ; Shi, W. Atomic motion in enzymatic reaction coordinates. Curr. Opin. Struct. Biol. 2001, 11, 657–665.
Birck, M. ; Schramm, V. Nucleophilic participation in the transition state for human thymidine phosphorylase. J. Am. Chem. Soc. 2004, 126, 2447–2453.
Kline, P. ; Schramm, V. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase. Biochemistry 1995, 34, 1153–1162.
Horenstein, B. ; Parkin, D. ; Estupiñán, B. ; Schramm, V. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata . Biochemistry 1991, 30, 10788–10795.
Scheuring, J. ; Berti, P. ; Schramm, V. Transition-state structure for the ADP-ribosylation of recombinant gialpha1 subunits by pertussis toxin. Biochemistry 1998, 37, 2748–2758.
Scheuring, J. ; Schramm, V. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin. Biochemistry 1997, 36, 4526–4534.
Scheuring, J. ; Schramm, V. Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20. Biochemistry 1997, 36, 8215–8223.
Berti, P. J. ; Blanke, S. R. ; Schramm, V. L. Transition state structure for the hydrolysis of NAD+ catalyzed by diphtheria toxin. J. Am. Chem. Soc. 1997, 119, 12079–12088.
Parkin, D. W. ; Leung, H. B. ; Schramm, V. L. Synthesis of nucleotides with specific radiolabels in ribose: primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP, and inosine. J. Biol. Chem. 1984, 259, 9411–9417.
Parkin, D. W. ; Schramm, V. L. Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases. J. Biol. Chem. 1984, 259, 9418–9425.
Parkin, D. ; Schramm, V. Catalytic and allosteric mechanism of amp nucleosidase from primary, beta-secondary, and multiple heavy atom kinetic isotope effects. Biochemistry 1987, 26, 913–920.
Parikh, S. ; Schramm, V. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin. Biochemistry 2004, 43, 1204–1212.
Parkin, D. ; Mentch, F. ; Banks, G. ; Horenstein, B. ; Schramm, V. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects. Biochemistry 1991, 30, 4586–4594.
Hunt, C. ; Gillani, N. ; Farone, A. ; Rezaei, M. ; Kline, P. Kinetic isotope effects of nucleoside hydrolase from Escherichia coli . Biochim. Biophys. Acta 2005, 1751, 140–149.
Singh, V. ; Schramm, V. Transition-state structure of human 5′-methylthioadenosine phosphorylase. J. Am. Chem. Soc. 2006, 128, 14691–14696.
Singh, V. ; Luo, M. ; Brown, R. ; Norris, G. ; Schramm, V. Transition-state structure of Neisseria meningitides 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J. Am. Chem. Soc. 2007, 129, 13831–13833.
Chen, X. Y. ; Berti, P. J. ; Schramm, V. L. Ricin A-chain: kinetic isotope effects and transition state structure with stem-loop RNA. J. Am. Chem. Soc. 2000, 122, 1609–1617.
Chen, X. Y. ; Berti, P. J. ; Schramm, V. L. Transition-state analysis for depurination of DNA by ricin A-chain. J. Am. Chem. Soc. 2000, 122, 6527–6534.
Werner, R. ; Stivers, J. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39, 14054–14064.
Singh, V. ; Lee, J. ; Núñez, S. ; Howell, P. ; Schramm, V. Transition state structure of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 2005, 44, 11647–11659.
Singh, V. ; Schramm, V. Transition-state analysis of S. pneumoniae 5′-methylthioadenosine nucleosidase. J. Am. Chem. Soc. 2007, 129, 2783–2795.
Munns, A. ; Tollin, P. The crystal and molecular structure of inosine. Acta Crystallogr. B 1970, 26, 1101–1113.
Miles, R. W. ; Tyler, P. C. ; Furneaux, R. H. ; Bagdassarian, C. K. ; Schramm, V. L. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry 1998, 37, 8615–8621.
Sauve, A. ; Cahill, S. ; Zech, S. ; Basso, L. ; Lewandowicz, A. ; Santos, D. ; Grubmeyer, C. ; Evans, G. ; Furneaux, R. ; Tyler, P. ; McDermott, A. ; Girvin, M. ; Schramm, V. Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases. Biochemistry 2003, 42, 5694–5705.
Schramm, V. L. Development of transition state analogues of purine nucleoside phosphorylase as anti-T-cell agents. Biochim. Biophys. Acta 2002, 1587, 107–117.
Bzowska, A. ; Kulikowska, E. ; Darzynkiewicz, E. ; Shugar, D. Purine nucleoside phosphorylase. structure-activity relationships for substrate and inhibitor properties of N-1-, N-7-, and C-8-substituted analogues; differentiation of mammalian and bacterial enzymes with N-1-methylinosine and guanosine. J. Biol. Chem. 1988, 263, 9212–9217.
Bagdassarian, C. K. ; Schramm, V. L. ; Schwartz, S. D. Molecular electrostatic potential analysis for enzymatic substrates, competitive inhibitors, and transition-state inhibitors. J. Am. Chem. Soc. 1996, 118, 8825–8836.
Braunheim, B. ; Miles, R. ; Schramm, V. ; Schwartz, S. Prediction of inhibitor binding free energies by quantum neural networks: nucleoside analogues binding to trypanosomal nucleoside hydrolase. Biochemistry 1999, 38, 16076–16083.
Evans, G. B. ; Furneaux, R. H. ; Gainsford, G. J. ; Schramm, V. L. ; Tyler, P. C. Synthesis of transition state analogue inhibitors for purine nucleoside phosphorylase and N-riboside hydrolases. Tetrahedron 2000, 56, 3053–3062.
Evans, G. ; Furneaux, R. ; Hutchison, T. ; Kezar, H. ; Morris, P. J. ; Schramm, V. ; Tyler, P. Addition of lithiated 9-deazapurine derivatives to a carbohydrate cyclic imine: convergent synthesis of the aza-C-nucleoside Immucillins. J. Org. Chem. 2001, 66, 5723–5730.
Ealick, S. ; Rule, S. ; Carter, D. ; Greenhough, T. ; Babu, Y. ; Cook, W. ; Habash, J. ; Helliwell, J. ; Stoeckler, J. ; Parks, R. J. Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 Å resolution. J. Biol. Chem. 1990, 265, 1812–1820.
Mao, C. ; Cook, W. J. ; Zhou, M. ; Federov, A. A. ; Almo, S. C. ; Ealick, S. E. Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues. Biochemistry 1998, 37, 7135–7146.
Wang, F. ; Miles, R. W. ; Kicska, G. ; Nieves, E. ; Schramm, V. L. ; Angeletti, R. H. Immucillin-H binding to purine nucleoside phosphorylase reduces dynamic solvent exchange. Protein Sci. 2000, 9, 1660–1668.
Fedorov, A. ; Shi, W. ; Kicska, G. ; Fedorov, E. ; Tyler, P. ; Furneaux, R. ; Hanson, J. ; Gainsford, G. ; Larese, J. ; Schramm, V. ; Almo, S. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry 2001, 40, 853–860.
Shi, W. ; Li, C. ; Tyler, P. ; Furneaux, R. ; Cahill, S. ; Girvin, M. ; Grubmeyer, C. ; Schramm, V. ; Almo, S. The 2.0 Å structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. Biochemistry 1999, 38, 9872–9880.
Shi, W. ; Li, C. ; Tyler, P. ; Furneaux, R. ; Grubmeyer, C. ; Schramm, V. ; Almo, S. The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat. Struct. Biol. 1999, 6, 588–593.
Héroux, A. ; White, E. ; Ross, L. ; Davis, R. ; Borhani, D. Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg(2+) ions bound: insights into the catalytic mechanism. Biochemistry 1999, 38, 14495–14506.
Tao, W. ; Grubmeyer, C. ; Blanchard, J. Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry 1996, 35, 14–21.
Sauve, A. ; Wolberger, C. ; Schramm, V. ; Boeke, J. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006, 75, 435–465.
Bianchet, M. ; Seiple, L. ; Jiang, Y. ; Ichikawa, Y. ; Amzel, L. ; Stivers, J. Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase. Biochemistry 2003, 42, 12455–12460.
Vocadlo, D. ; Davies, G. ; Laine, R. ; Withers, S. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 2001, 412, 835–838.
Kicska, G. A. ; Tyler, P. C. ; Evans, G. B. ; Furneaux, R. H. ; Shi, W. X. ; Fedorov, A. ; Lewandowicz, A. ; Cahill, S. M. ; Almo, S. C. ; Schramm, V. L. Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase. Biochemistry 2002, 41, 14489–14498.
Evans, G. ; Furneaux, R. ; Lewandowicz, A. ; Schramm, V. ; Tyler, P. Exploring structure-activity relationships of transition state analogues of human purine nucleoside phosphorylase. J. Med. Chem. 2003, 46, 3412–3423.
Lewandowicz, A. ; Tyler, P. C. ; Evans, G. B. ; Furneaux, R. H. ; Schramm, V. L . Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J. Biol. Chem. 2003, 278, 31465–31468.
Jiang, Y. ; Ichikawa, Y. ; Stivers, J. Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic. Biochemistry 2002, 41, 7116–7124.
Berti, P. ; McCann, J. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006, 106, 506–555.
Evans, G. ; Furneaux, R. ; Lewandowicz, A. ; Schramm, V. ; Tyler, P. Synthesis of second-generation transition state analogues of human purine nucleoside phosphorylase. J. Med. Chem. 2003, 46, 5271–5276.
Evans, G. ; Furneaux, R. ; Tyler, P. ; Schramm, V. Synthesis of a transition state analogue inhibitor of purine nucleoside phosphorylase via the mannich reaction. Org. Lett. 2003, 5, 3639–3640.
Furneaux, R. ; Tyler, P. Improved syntheses of 3H,5H-pyrrolo[3,2-d]pyrimidines. J. Org. Chem. 1999, 64, 8411–8412.
Lewandowicz, A. ; Shi, W. X. ; Evans, G. B. ; Tyler, P. C. ; Furneaux, R. H. ; Basso, L. A. ; Santos, D. S. ; Almo, S. C. ; Schramm, V. L. Over-the-barrier transition state analogues and crystal structure with mycobacterium tuberculosis purine nucleoside phosphorylase. Biochemistry 2003, 42, 6057–6066.
Taylor Ringia, E. A. ; Tyler, P. C. ; Evans, G. B. ; Furneaux, R. H. ; Murkin, A. S. ; Schramm, V. L. Transition state analogue discrimination by related purine nucleoside phosphorylases. J. Am. Chem. Soc. 2006, 128, 7126–7127.
Clinch, K. ; Evans, G. ; Fleet, G. ; Furneaux, R. ; Johnson, S. ; Lenz, D. ; Mee, S. ; Rands, P. ; Schramm, V. ; Taylor Ringia, E. ; Tyler, P. Syntheses and bio-activities of the L-enantiomers of two potent transition state analogue inhibitors of purine nucleoside phosphorylases. Org. Biomol. Chem. 2006, 4, 1131–1139.
Rinaldo-Matthis, A. ; Murkin, A. ; Ramagopal, U. ; Clinch, K. ; Mee, S. ; Evans, G. ; Tyler, P. ; Furneaux, R. ; Almo, S. ; Schramm, V. L-enantiomers of transition state analogue inhibitors bound to human purine nucleoside phosphorylase. J. Am. Chem. Soc. 2008, 130, 842–844.
Lewandowicz, A. ; Ringia, E. ; Ting, L. ; Kim, K. ; Tyler, P. ; Evans, G. ; Zubkova, O. ; Mee, S. ; Painter, G. ; Lenz, D. ; Furneaux, R. ; Schramm, V. Energetic mapping of transition state analogue interactions with human and Plasmodium falciparum purine nucleoside phosphorylases. J. Biol. Chem. 2005, 280, 30320–30328.
Nunez, S. ; Wing, C. ; Antoniou, D. ; Schramm, V. L. ; Schwartz, S. D. Insight into catalytically relevant correlated motions in human purine nucleoside phosphorylase. J. Phys. Chem. A 2006, 110, 463–472.
Murkin, A. ; Tyler, P. ; Schramm, V. Transition-state interactions revealed in purine nucleoside phosphorylase by binding isotope effects. J. Am. Chem. Soc. 2008, 130, 2166–2167.
Kicska, G. ; Long, L. ; Hörig, H. ; Fairchild, C. ; Tyler, P. ; Furneaux, R. ; Schramm, V. ; Kaufman, H. Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside phosphorylase, selectively inhibits human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 4593–4598.
Bantia, S. ; Miller, P. J. ; Parker, C. D. ; Ananth, S. L. ; Horn, L. L. ; Kilpatrick, J. M. ; Morris, P. E. ; Hutchison, T. L. ; Montgomery, J. A. ; Sandhu, J. S. Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H) – a novel potent and orally active immunosuppressive agent. Int. Immunopharmacol. 2001, 1, 1199–1210.
Galmarini, C. Drug evaluation: forodesine – PNP inhibitor for the treatment of leukemia, lymphoma and solid tumor. IDrugs 2006, 9, 712–722.
Larson, R. A. Three new drugs for acute lymphoblastic leukemia: nelarabine, clofarabine, and forodesine. Semin. Oncol. 2007, 34, S13–20.
Korycka, A. ; Blonski, J. Z. ; Robak, T. Forodesine (BCX-1777, Immucillin H) – a new purine nucleoside analogue: mechanism of action and potential clinical application. Mini Rev. Med. Chem. 2007, 7, 976–983.
Gore, L. ; Stelljes, M. ; Quinones, R. Forodesine treatment and post-transplant graft-versus-host disease in two patients with acute leukemia: facilitation of graft-versus-leukemia effect? Semin. Oncol. 2007, 34, S35–39.
Gandhi, V. ; Balakrishnan, K. Pharmacology and mechanism of action of forodesine, a T-cell targeted agent. Semin. Oncology 2007, 34, S8–S12.
Furman, R. R. ; Hoelzer, D. Purine nucleoside phosphorylase inhibition as a novel therapeutic approach for B-cell lymphoid malignancies. Semin. Oncol. 2007, 34, S29–S34.
Duvic, M. ; Foss, F. M. Mycosis fungoides: pathophysiology and emerging therapies. Semin. Oncol. 2007, 34, S21–28.
Duvic, M. Systemic monotherapy vs combination therapy for ctcl: rationale and future strategies. Oncology 2007, 21, 33–40.
BioCryst Pharmaceuticals Inc ., Forodesine, October 7, 2009, http://www.biocryst.com/forodesine.
Semeraro, T. ; Lossani, A. ; Botta, M. ; Ghiron, C. ; Alvarez, R. ; Manetti, F. ; Mugnaini, C. ; Valensin, S. ; Focher, F. ; Corelli, F. Simplified analogues of Immucillin-G retain potent human purine nucleoside phosphorylase inhibitory activity. J. Med. Chem. 2006, 49, 6037–6045.
Taylor, E. ; Clinch, K. ; Kelly, P. ; Li, L. ; Evans, G. ; Tyler, P. ; Schramm, V. Acyclic ribooxacarbenium ion mimics as transition state analogues of human and malarial purine nucleoside phosphorylases. J. Am. Chem. Soc. 2007, 129, 6984–6985.
Acronym for 2′-Deoxy-2′-Amino-Tetritol-N-(9-Methylene)-ImmH but the IUPAC name is 9-deaza-9-[[(2R,3S)-1,3,4-trihydroxybutan-2-ylamino]methyl]hypoxanthine. This acronym first appeared in Taylor et al., but as an oversight, was never defined; DATMe-ImmH is compound 19 in that manuscript.
Taylor, E. A. ; Rinaldo-Matthis, A. ; Li, L. ; Ghanem, M. ; Hazleton, K. Z. ; Cassera, M. B. ; Almo, S. C. ; Schramm, V. L. Anopheles gambiae purine nucleoside phosphorylase: catalysis, structure, and inhibition. Biochemistry 2007, 46, 12405–12415.
Agarwal, R. ; Spector, T. ; Parks, R. J. Tight-binding inhibitors. IV. Inhibition of adenosine deaminases by various inhibitors. Biochem. Pharmacol. 1977, 26, 359–367.
Tokutake, N. ; Hiratake, J. ; Katoh, M. ; Irie, T. ; Kato, H. ; Oda, J. Design, synthesis and evaluation of transition-state analogue inhibitors of Escherichia coli gamma-glutamylcysteine synthetase. Bioorg. Med. Chem. 1998, 6, 1935–1953.
von Itzstein, M. ; Wu, W. ; Kok, G. ; Pegg, M. ; Dyason, J. ; Jin, B. ; Van Phan, T. ; Smythe, M. ; White, H. ; Oliver, S. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418–423.
Bolin, J. ; Filman, D. ; Matthews, D. ; Hamlin, R. ; Kraut, J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. I. General features and binding of methotrexate. J. Biol. Chem. 1982, 257, 13650–13662.
Kimble, E. ; Hadala, J. ; Ludewig, R. ; Peters, P. ; Greenberg, G. ; Xiao, G. ; Guida, W. ; McQuire, L. ; Simon, P. The biochemical and pharmacological activity of 9-benzyl-9-deazaguanine, a potent purine nucleoside phosphorylase (PNP) inhibitor. Inflamm. Res. 1995, 44(suppl. 2), S181–S182.
Perzborn, E. ; Strassburger, J. ; Wilmen, A. ; Pohlmann, J. ; Roehrig, S. ; Schlemmer, K. H. ; Straub, A. In vitro and in vivo studies of the novel antithrombotic agent bay 59–7939 – an oral, direct factor Xa inhibitor. J. Thromb. Haemost. 2005, 3, 514–521.
Taylor Ringia, E. A. ; Schramm, V. L. Transition states and inhibitors of the purine nucleoside phosphorylase family. Curr. Top. Med. Chem. 2005, 5, 1237–1258.
Kicska, G. A. ; Tyler, P. C. ; Evans, G. B. ; Furneaux, R. H. ; Kim, K. ; Schramm, V. L. Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum . J. Biol. Chem. 2002, 277, 3219–3225.
Barsacchi, D. ; Cappiello, M. ; Tozzi, M. ; Del Corso, A. ; Peccatori, M. ; Camici, M. ; Ipata, P. ; Mura, U. Purine nucleoside phosphorylase from bovine lens: purification and properties. Biochim. Biophys. Acta 1992, 1160, 163–170.
Stoeckler, J. D. ; Poirot, A. F. ; Smith, R. M. ; Parks, R. E. ; Ealick, S. E. ; Takabayashi, K. ; Erion, M. D. Purine nucleoside phosphorylase. 3. Reversal of purine base specificity by site-directed mutagenesis. Biochemistry 1997, 36, 11749–11756.

Reference Title: References

Reference Type: reference-list

Filmore, D. It's a GPCR world Mod. Drug Discov. 2004, 7, 47–48.
Bockaert, J. ; Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999, 18, 1723.
Wise, A. ; Gearing, K. ; Rees, S. Target validation of G-protein coupled receptors. Drug Discov. Today 2002, 7, 235.
Leach, A. R. Molecular Modeling Principles and Applications. Essex, UK: Prentice Hall; 2001.
Müller, G . Towards 3D Structures of G Protein-Coupled Receptors: A Multidisciplinary Approach. Curr. Med. Chem. 2000, 7, 861.
Bleicher, K. H. ; Green, L. G. ; Martin, R. E. ; Rogers-Evans, M. Ligand identification for G-protein-coupled receptors: a lead generation perspective. Curr. Opin. Chem. Biol. 2004, 8, 287.
Walters W. P. ; Stahl, M. T. ; Murcko, M. A. Virtual screening – an overview. Drug Discov. Today 1998, 3, 160.
Hawkins, P. C. D. ; Skillman, A.G. ; Nicholls, A. Comparison of Shape-Matching and Docking as Virtual Screening Tools. J. Med. Chem. 2007, 50, 74.
Clement, O. ; Mehl, A.T. In: Pharmacophore Preception, Development, and Use in Drug Design, O. F. Guner , Ed.; La Jolla, CA: International University Line; 2000, 71.
Palczewski, K. ; Kumasaka, T. ; Hori, T. ; Behnke, C. A. ; Motoshima, H. ; Fox, B. A .; Le Trong, I. ; Teller, D. C. ; Okada, T .; Stenkamp, R. E .; Yamamoto, M. ; Miyano, M. Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science 2000, 289, 739.
Stenkamp, R. E. ; Teller, D. C. ; Palczewski, K. Crystal Structure of Rhodopsin: A G-Protein-Coupled Receptor. ChemBioChem 2002, 3, 963.
Rasmussen, S. G. F. ; Choi, H. J. ; Rosenbaum, D. M. ; Kobilka, B. K. ; Thian, F. S. ; Edwards, P. C. ; Burghammer, M. ; Ratnala, V. R. P. ; Sanishvili, R. ; Fischetti, R. F. ; Schertler, G. F. X. ; Weis, W. I. ; Kobilka, T. S. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 2007, 450, 383.
Cherezov, V. ; Rosenbaum, D. M. ; Hanson, M. A. ; Rasmussen, S. G. F .; Thian, F. S. ; Kobilka, T. S. ; Choi, H. J. ; Kuhn, P. ; Weis, W. I. ; Kobilka, B. K. ; Stevens, R. C. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein-Coupled Receptor. Science 2007, 318, 1258.
Rosenbaum, D. M. ; Cherezov, V. ; Hanson, M. A. ; Rasmussen, S. G. F. ; Thian, F. S. ; Kobilka, T. S. ; Choi, H. J. ; Yao, X. J. ; Weis, W. I. ; Stevens, R. C. ; Kobilka, B. K. GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function. Science 2007, 318, 1266.
Greer, J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 1990, 7, 317.
Lanyi, J. ; Luecke, H. Bacteriorhodopsin. Curr. Opin. Struc. Biol. 2001, 11, 415.
Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66 665.
Pebay-Peyroula, E. ; Rummel, G. ; Rosenbusch, J. P ; Landau, E. M. X-ray Structure of Bacteriorhodopsin at 2.5 Angstroms from Microcrystals Grown in Lipidic Cubic Phases. Science, 1997, 277, 1676.
Luecke, H. ; Richter, H. T. ; Lanyi, J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 1998, 280, 1934.
Luecke, H. ; Schobert, B. ; Richter, H. T. ; Cartailler, J. P. ; Lanyi, J. K. Structure of Bacteriorhodopsin at 1.55 Å Resolution. J. Mol. Biol., 1999, 291, 899.
Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993, 12 1693.
Unger, V. M. ; Schertler, G. F. X. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys. J. 1995, 68, 1776.
Schertler, G. F. ; Villa, C. ; Henderson, R. Projection structure of rhodopsin. Nature 1993, 362, 770.
Pardo, L. ; Ballesteros, J. A. ; Osman, R. ; Weinstein, H. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4009.
Hibert, M. F. ; Trumpp-Kallmeyer, S. ; Bruinvels, A. ; Hofloack, J. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 1991, 40, 8.
MaloneyHuss, K. ; Lybrand, T. P. Three-dimensional structure for the β2 adrenergic receptor protein based on computer modeling studies. J. Mol. Biol. 1992, 225, 859.
Alorta, I. ; Loew, G. H. A 3D model of the ö opioid receptor and ligand-receptor complexes. Protein Eng. 1996, 9, 573.
Archer, E. ; Maigret, B. ; Escrieut, C. ; Pradayrol, L. ; Fourmy, D. Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors? Trends Pharmacol. Sci. 2003, 24, 36.
Hubbell, W. L. ; Altenbach, C. ; Hubbell, C. M. ; Khorana, H.G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 2003, 63, 243.
Kobilka, B. ; Schertler, F. X. New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 2008, 29, 79.
Oliveira L. ; Hulsen T. ; Lutje Hulsik D. ; Paiva A. C. ; Vriend G. Heavier-than-air flying machines are impossible. FEBS Lett. 2004 564, 269.
Hibert, M. F. Protein homology modeling and drug discovery. In: The Practice of Medicinal Chemistry. New York, NY: Academic Press; 1996, 523–546.
Kiss, R. ; Koᾓri, Z. ; Keserũ, G. M. Homology modeling and binding site mapping of the human histamine H1 receptor Eur. J. Med. Chem. 2004, 39, 959.
Furse, K. E. ; Lybrand, T. P. Three-Dimensional Models for β-Adrenergic Receptor Complexes with Agonists and Antagonists. J. Med. Chem. 2003, 46, 4450.
Evers, A ; Klabunde, T . Structure-based Drug Discovery Using GPCR Homology Modeling: Successful Virtual Screening for Antagonists of the Alpha1A Adrenergic Receptor. J. Med. Chem. 2005, 48, 1088.
Axe, F. U. ; Bembenek, S. D. ; Szalma, S. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. J. Mol. Graph. Model. 2006, 24, 456.
Costanzi, S . On the Applicability of GPCR Homolgy Models to Computer-Aided Drug Discovery: A Comparison between In Silico and Crystal Structures of the β2-Adrenergic Receptor. J. Med. Chem. 2008, 51, 2907.
Becker, O. M. ; Marantz, Y. ; Shacham, S. ; Inbal, B. ; Heifetz, A. ; Kalid, O. ; Bar-Haim, S. ; Warshaviak, D. ; Fichman, M. ; Noiman, S. G Protein-coupled receptors: In silico drug discovery in 3D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11304.
Shacham, S. ; Marantz, Y .; Bar-Haim, S. ; Kalid, O. ; Warshaviak, D. ; Avisar, N. ; Inbal, B. ; Heifetz, A. ; Fichman, M. ; Topf, M. ; Naor, Z. ; Noiman, S. ; Becker, O.M. PREDICT Modeling and In-Silico Screening for G-Protein Coupled Receptors. Proteins 2004, 57, 51.
Vaidehi, N. ; Floriano, W. B. ; Trabanino, R. ; Hall, S. E. ; Freddolino, P. ; Choi, E. J. ; Zamanakos, G. ; Goddard, W. A. Prediction of structure and function of G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12627.
Floriano, W. B. ; Vaidehi, N. ; Goddard, W. A. ; Singer, M. S. ; Shepherd, G. M. Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10712.
Li, Y. ; Goddard, W. A. Prediction of the Structure of G-Protein Coupled Receptor with Application for Drug Design. Pac. Symp. Biocomput. 2008, 13, 344.
Kontoyianni, M. ; DeWeese, C. ; Penzotti, J. E. ; Lybrand, T. P. Three-Dimensional Models for Agonist and Antagonist Complexes with β2 Agrenergic Receptor. J. Med. Chem. 1996, 4406.
Xhaard, H. ; Rantanen, V. V .; Nyrönen, T. ; Johnson, M. S. Molecular Evolution of Adrenoceptors and Dopamine Receptors: Implications for the Binding of Catecholamines. J. Med. Chem. 2006, 49, 1706.
Trumpp-Kallmeyer, S. ; Hoflack, J. ; Bruinvels, A. ; Hibert, M. Modeling of G-Protein-Coupled Receptors: Application to Dopamine, Adrenaline, Serotonin, Acetylcholine, and Mammalian Opsin Receptors. J. Med. Chem. 1992, 35, 3448.
Bissantz, C. ; Bernard, P. ; Hibert, M .; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. II. Are Homology Models of G-Protein Coupled Receptors Suitable Targets? Proteins 2003, 50, 5.
Cavasotto, C. N. ; Orry, A. J. W. ; Murgolo, N. J. ; Czarniecki, M. F. ; Kocsi, S. A .; Hawes, B. E. ; O'Neill, K. A. ; Hine, H. ; Burton, M. S. ; Voigt, J. H. ; Abagyan, R. A. ; Bayne, M. L. ; Monsma, F. J. Discovery of Novel Chemotypes to a G-Protein-Coupled Receptor through Ligand-Steered Homology Modeling and Structure-Based Virtual Screening. J. Med. Chem. 2008, 51, 581.
Kiss, R. ; Kiss, B. ; Könczöl, A. ; Szalai, F. ; Jelinek, I. ; László, V. ; Noszál, B. ; Falus, A. ; Keserũ, G. M. Discovery of Novel Human Histamine H4 Receptor Ligands by Large-Scale Structure-Based Virtual Screening. J. Med. Chem. 2008, 51, 3145.
Cavasotto, C. N. ; Orry, A. J. W .; Abagyan, R. A. Structure-Based Identification of Binding Sites, Native Ligands and Potential Inhibitors for G-Protein Coupled Receptors. Proteins 2008, 51, 423.
Varady, J. ; Wu, X. ; Fang, X. ; Min, J. ; Hu, Z. ; Levant, B. ; Wang, S. Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Screening Approach. J. Med. Chem. 2003, 46, 4377.
Kellenberger, E. ; Springael, J. Y. ; Parmentier, M. ; Hachet-Haas, M. ; Galzi, J. L. ; Rognan, D. Identification of Nonpeptide CCR5 Receptor Agonists by Structure-based Virtual Screening. J. Med. Chem. 2007, 50, 1294.
Topiol, S. ; Sabio, M. Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg. Med. Chem. Lett. 2008, 18, 1598.
Crozier, P. S. ; Stevens, M. J. ; Forrest, L. R. ; Woolf, T. B. Molecular Dynamics Simulation of Dark-adapted Rhodopsin in an Explicit Membrane Bilayer: Coupling between Local Retinal and Larger Scale Conformational Change. J. Mol. Biol. 2003, 333, 493.
Spijker, P. ; Vaidehi, N. ; Freddolino, P. L. ; Hilbers, P. A. ; Goddard, W. A. Dynamic behavior of fully solvated β2-adrenergic receptor, embedded in the membrane with bound agonist or antagonist. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 4882.
Henin, J. ; Maigret, B. ; Tarek, M. ; Escrieut, C. ; Fourmy, D. ; Chipot, C. Probing a Model of a GPCR/Ligand Complex in an Explicit Membrane Environment: The Human Cholecystokinin-1 Receptor. Biophys. J. 2006, 90, 1232.
Trent, J. O. ; Wang, Z. ; Murray, J. L. ; Shao, W. ; Tamamura, H. ; Fuji, N. ; Peiper, S. C. Lipid Bilayer Simulations of CXCR4 with Inverse Agonists and Weak Partial Agonists. J. Biol. Chem. 2003, 278, 47136.
Spassov, V. ; Yan, L. ; Szalma, S. Introducing an Implicit Membrane in Generalized Born/Solvent Accessibility Continuum Solvent Models. J. Phys. Chem. B 2002, 106, 8726.
Im, W. ; Feig, M. ; Brooks, C. L. An Implicit Membrane Generalized Born Theory for the Study of Structure, Stability, and Interactions of Membrane Proteins. Biophys. J. 2003, 85, 2900.
Still, W. C. ; Tempczyk, A. ; Hawley, R. C. ; Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990, 112, 6127.
Gouldson, P. R. ; Kidley, N. J. ; Bywater, R. P. ; Psaroudakis, G. ; Brooks, H.D. ; Diaz, C. ; Shire, D. ; Reynolds, C.A. Toward the Active Conformations of Rhodopsin and the β2-Adrenergic Receptor. Proteins 2004, 56, 67.
Niv, M. Y. ; Skrabanek, L. ; Filizola, M. ; Weinstein, H. Modeling activated states of GPCRs: the rhodopsin template. J. Comput. Aided Mol. Des. 2006, 20, 437.
Salom, D. ; Lodowski, D. T. ; Stenkamp, R. E. ; Le Trong, I. ; Golczak, M. ; Jastrzebska, B. ; Harris, T. ; Ballesteros, J. A. ; Palczewski, K. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16123.
Erlanson, D. A. ; Wells, J. A .; Braisted, A. C. TETHERING: Fragment-Based Drug Discovery. Annu. Rev. Biophys. Struct. 2004, 33, 199.
Zartler, E. R. ; Shapiro, M. J. Fragonomics: fragment-based drug discovery. Curr. Opin. Chem. Biol. 2005, 9, 366.

Reference Title: References

Reference Type: reference-list

Diabetes, World Health Organization. Fact Sheet No. 312, 2006.
Diabetes overview, National Diabetes Statistics. Fact Sheet, 2005.
Talor, S. I. Deconstructing type 2 diabetes. Cell 1999, 97, 9–12.
Treadway, J. L. ; Mendys, P. ; Hoover, D. J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes melltus. Exp. Opin. Invest. Drugs 2001, 10, 439–454.
Jakobsen, P. ; Lundbeck, J. M. ; Kristiansen, M. ; Breinholt, J. ; Demuth, H. ; Pawlas, J. ; Torres Candela, M. P. ; Anderson, B. ; Westergaard, N. ; Lundgren, K. ; Asano N. Iminosugars: potential inhibitors of liver glycogen phosphorylase. Bioorg. Med. Chem. 2001, 9, 733–744.
Martin, W. H. ; Hoover, D. J. ; Armento, S. J. ; Stock, I. A. ; McPherson, R. K. ; Danley, D. E. ; Stevenson, R. W. ; Barrett, E. J. ; Treadway, J. L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1776–1781.
Johnson, L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992, 6, 2274–2282.
Rath, V. L. ; Ammirati, M. ; LeMotte, P. K. ; Fennell, K. F. ; Mansour M. N. ; Damley, D. E. ; Hynes, T. R. ; Schulte, G. K. ; Wasilko, D. J. Pandit, Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol. Cell 2000, 6, 139–148.
Oikonomakos, N. G. ; Tsitsanou, K. E. ; Zographos, S. E. ; Skamnaki, V. T. ; Goldmann, S. ; Bischoff, H. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarboxylate. Protein Sci. 1999, 8, 1930–1945.
Zographos, S. E. ; Oikonomakos, N. G. ; Tsitsanou, K. E. ; Leonidas, D. D. ; Chrysina, E. D. ; Skamnaki, V. T. ; Bischoff, H. ; Goldmann, S. ; Watson, K. A. ; Johnson L. N. The structure of glycogen phosphorylase b with an alkyl-dihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 1997, 5, 1413–1425.
Oikonomakos, N. G. ; Schnier, J. B. ; Zographos, S. E. ; Skamnaki, V. T. ; Tsitsanou, K. E. ; Johnson, L. N. Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site. J. Biol. Chem. 2000, 275, 34566–34573.
Hoover, D. J. ; Lefkowitz-Snow, S. ; Burgess-Henry, J. L. ; Martin, W. H. ; Armento, S. J. ; Stock, I. A. ; McPherson, R. K. ; Genereux, P. E. ; Gibbs, E. M. ; Treadway, J. L. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J. Med. Chem. 1998, 41, 2934–2938.
Oikonomakos, N. G. ; Skamnaki, V. T. ; Tsitsanou, K. E. ; Gavalas, N. G. ; Johnson, L. N. A New allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 2000, 8, 575–584.
Rath, V. L. ; Ammirati, M. ; Danley, D. E. ; Ekstrom, J. L. ; Gibbs, E. M. ; Hynes, T. R. ; Mathiowetz, A. M. ; McPherson, R. K. ; Olson, T. V. ; Treadway, J. L. ; Hoover, D. J. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem. Biol. 2000, 7, 677–682.
Oikonomakos, N. G. ; Zographos, S. E. ; Skamnaki, V. T. ; Archontis, G. The 1.76Å resolution crystal structure of glycogen phosphorylase B complexed with glucose, and CP320626, a potential antidiabetic drug. Bioorg. Med. Chem. 2002, 10, 1313–1319.
Miller, M. D. ; Sheridan, R. P. ; Kearsley, S. K. SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions. J. Med. Chem. 1999, 42, 1505–1514.
ICM-Pro 2.8 docking module. San-Diego: Molsoft LLC.
Miller, M. D. ; Kearley, S. K. ; Underwood, D. J. ; Sheridan, R. P. J. FLOG: a system to select ‘quasi-flexible' ligands complementary to a receptor of known three-dimensional structure. Comput. Aided Mol. Des. 1994, 8, 153–174.
Crippen, C. M. ; Havel, T. F. Distance Geometry and Molecular Conformation. New York, NY: Wiley; 1988.
Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 1996, 17, 490–519.
Halgren, T. A. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comp. Chem. 1996, 17, 520–552.
Halgren, T. A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comp. Chem. 1996, 17, 553–586.
Halgren, T. A. ; Nachbar, R. B. Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comp. Chem. 1996, 17, 587–615.
Halgren, T. A. Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comp. Chem. 1996, 17, 616–641.
Halgren, T. A . MMFF VI. MMFF94s option for energy minimization studies J. Comp. Chem. 1999, 20, 720–729.
Halgren, T. A. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comp. Chem. 1999, 20, 730–748.
Thompson, J. D. ; Higgins, D. G. ; Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680.
Lu, Z. ; Bohn, J. ; Bergeron, R. ; Deng, Q. ; Ellsworth, K. P. ; Geissler, W. M. ; Harris G. ; McCann, P. E. ; McKeever, B. ; Myers, R. W. ; Saperstein, R. ; Willoughby, C. A. ; Yao, J. ; Chapman, K. A. A New class of glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 4125–4128.
Deng, Q. ; Lu, Z. ; Bohn, J. ; Ellsworth, K. P. ; Myers, R. W. ; Geissler, W. M. ; Harris, G .; Willoughby, C. A. ; Chapman, K. ; Mckeever, B. ; Mosley, R. Modeling aided design of potent glycogen phosphorylase inhibitors. J. Mol. Graph. Model. 2005, 23, 457–464.
Kristiansen, M. ; Anderson, B. ; Iversen, L. F. ; Westergaard, N. Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site. J. Med. Chem. 2004, 47, 3537–3545.