12 - Life-history adaptations to polar and alpine environments  pp. 297-322

Life-history adaptations to polar and alpine environments

By Peter Convey

Image View Previous Chapter Next Chapter



Introduction: extremes in the terrestrial environment

This chapter is concerned with the life-history features of terrestrial invertebrates inhabiting the cold regions of the world. It predominantly focuses on the Antarctic continent and the Arctic elements of the large northern continents, also drawing parallels with the alpine regions of the world's major mountain ranges. To human perception, these polar and montane regions of the planet are clearly challenging regions in which to live. They face environmental stresses that operate on a range of timescales, for example from chronic exposure to low temperature, high winds, freezing, or desiccation, to extreme or short-term acute events. At northern or southern latitudes beyond the polar circles, the sun remains permanently below the horizon for a period of days to months, depending on latitude, each winter, inevitably imposing considerable seasonality on organisms and ecosystems.

Focusing simply on temperature, in the absence of solar-energy input, terrestrial habitats of both regions face comparable extremely low air temperatures during winter. But the two regions are far from identical, with the Antarctic also enduring much lower typical summer temperatures than those of the Arctic (Convey, 1996a; Danks, 1999); hence lack of available energy provides a major constraint on biological activity here. However, the biological impacts of temperature are not well described simply by standard meteorological measures of mean air temperature, and scales and patterns of physical and temporal variation are also important.

12

Reference Title: References

Reference Type: reference-list

Acker, J. P. and McGann, L. E. (2003). Protective effect of intracellular ice during freezing? Cryobiology 46, 197–202.
Anderson, J. B. and Brower, L. P. (1996). Freeze-protection of overwintering monarch butterflies in Mexico: critical role of the forest as a blanket and an umbrella. Ecological Entomology 21, 107–116.
Angell, A. (1982). Supercooled water. In Water: A Comprehensive Treatise, ed. F. Franks, vol. 7. New York: Plenum Press, pp. 1–81.
Bennett, V. A. and Lee, R. E. (1997). Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology 200, 185–192.
Bennett, V. A., Sformo, T., Walters, K., Toien, O., Jeannet, K., Hochstrasser, R., Pan, Q., Serianni, A. S., Barnes, B. M., and Duman, J. G. (2005). Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): role of antifreeze proteins, polyols, dehydration and diapause. Journal of Experimental Biology 208, 4467–4477.
Bokor, M., Csizmok, V., Kovacs, D., Banki, P., Friedrich, P., Tompa, P., and Tompa, K. (2005). NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophysical Journal 88, 2030–2037.
Borgnia, M., Nielsen, S., Engel, A., and Agre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry 68, 425–458.
Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V., and Voinikov, V. K. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biology 2, 5–12.
Campbell, E. M., Ball, A., Hoppler, S., and Bowman, A. (2008). Invertebrate aquaporins: a review. Journal of Comparative Physiology B 178, 935–955.
Castrillo, L. A., Lee, R. E., Lee, M. R., and Rutherford, S. T. (2000). Identification of ice-nucleating active Pseudomonas fluorescens strains for biological control of overwintering Colorado potato beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology 93, 226–233.
Castrillo, L. A., Lee, R. E., Wyman, J. A., Lee, M. R., and Rutherford, S. T. (2001). Field persistence of ice-nucleating bacteria in overwintering Colorado potato beetles. Biological Control 21, 11–18.
Chen, C. P. and Denlinger, D. L. (1992). Reduction of cold injury in flies using an intermittent pulse of high temperature. Cryobiology 29, 138–143.
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology: Mechanisms and Patterns. New York: Oxford University Press.
Chown, S. L., Sorensen, J. G., and Sinclair, B. J. (2008). Physiological variation and phenotypic plasticity: a response to ‘Plasticity in arthropod cryotypes’ by Hawes and Bale. Journal of Experimental Biology 211, 3353–3357.
Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology 33, 50–152.
Clarke, C. J., Buckley, S. L., and Lindner, N. (2002). Ice structuring proteins: a new name for antifreeze proteins. CryoLetters 23, 89–92.
Colinet, H., Nguyen, T. T. A., Cloutier, C., Michaud, D., and Hance, T. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology 37, 1177–1188.
Colinet, H., Renault, D., Hance, T., and Vernon, P. (2006). The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani. Physiological Entomology 31, 234–240.
Costanzo, J. P., Humphreys, T. L., Lee, R. E., Moore, J. B., Lee, M. R., and Wyman, J. A. (1998a). Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology 44, 1173–1180.
Costanzo, J. P. and Lee, R. E. (2005). Cryoprotection by urea in a terrestrially hibernating frog. Journal of Experimental Biology 208, 4079–4089.
Costanzo, J. P., Litzgus, J. D., Iverson, J. B., and Lee, R. E. (1998b). Soil hydric characteristics and environmental ice nuclei influence supercooling capacity of hatchling turtles Chrysemys picta. Journal of Experimental Biology 201, 3105–3112.
Costanzo, J. P., Moore, J. B., Lee, R. E., Kaufman, P. E., and Wyman, J. A. (1997). Influence of soil hydric parameters on the winter cold hardiness of a burrowing beetle, Leptinotarsa decemlineata (Say). Journal of Comparative Physiology B 167, 169–176.
Crowe, J. H., Carpenter, J. F., and Crowe, L. M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology 60, 73–103.
Crowe, L. M. (2002). Lessons from nature: the role of sugars in anhydrobiosis. Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology 131, 505–513.
Dahlhoff, E. P., Fearnley, S. L., Bruce, D. A., Gibbs, A. G., Stoneking, R., McMillan, D. M., Deiner, K., Smiley, J. T., and Rank, N. E. (2008). Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change. Physiological and Biochemical Zoology 81, 718–732.
Danks, H. V. (1971). Overwintering of some north temperate and arctic Chironomidae. II. Chironomid biology. Canadian Entomologist 103, 1875–1910.
Danks, H. V. (2000). Dehydration in dormant insects. Journal of Insect Physiology 46, 837–852.
Danks, H. V. (2007). How aquatic insects live in cold climates. Canadian Entomologist 139, 443–471.
Davis, D. J. and Lee, R. E. (2001). Intracellular freezing, viability, and composition of fat body cells from freeze-intolerant larvae of Sarcophaga crassipalpis. Archives of Insect Biochemistry and Physiology 48, 199–205.
Denlinger, D. L. and Lee, R. E. (1998). Physiology of cold sensitivity. In Temperature Sensitivity in Insects and Application in Integrated Pest Management, ed. G. J. Hallman, and D. L. Denlinger. Boulder: Westview Press, pp. 55–95.
Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology 63, 327–357.
Duman, J. G. (2002). The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. Journal of Comparative Physiology B 172, 163–168.
Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R., and Barnes, B. M. (2004). Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology 50, 259–266.
Dure, L., III (1993). Structural motifs in LEA proteins of higher plants. In Response of Plants to Cellular Dehydration during Environmental Stress, ed. T. J. Close and E. A. Bray. Rockville, MD: American Society of Plant Physiologists, pp. 91–103.
Edashige, K., Yamaji, Y., Kleinhans, F.W., and Kasai, M. (2003). Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biology of Reproduction 68, 87–94.
Egerton-Warburton, L. M., Balsamo, R. A., and Close, T. J. (1997). Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiologia Plantarum 101, 545–555.
Elnitsky, M. A., Hayward, S. A. L., Rinehart, J. P., Denlinger, D. L., and Lee, R. E. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211, 524–530.
Fields, P. G. (1990). The cold-hardiness of Cryptolestes ferrugineus and the use of ice nucleation-active bacteria as a cold-synergist. Proceedings of the Fifth International Working Conference on Stored-Product Protection, pp. 1183–1191.
Fields, P. G. (1993). Reduction of cold tolerance of stored-product insects by ice-nucleating-active bacteria. Environmental Entomology 22, 470–476.
Frisbie, M. P. and Lee, R. E. (1997). Inoculative freezing and the problem of winter survival for freshwater macroinvertebrates. Journal of the North American Benthological Society 16, 635–650.
Fujiwara, Y. and Denlinger, D. L. (2007). p38 MAP kinase is a likely component of the signal transduction pathway triggering rapid cold-hardening in the flesh fly, Sarcophaga crassipalpis. Journal of Experimental Biology 210, 3295–3300.
Fuller, B. J., Lane, N., and Benson, E. E. (eds.) (2004). Life in the Frozen State, Boca Raton: CRC Press.
Gehrken, U. and Southon, T. E. (1992). Supercooling in a freeze-tolerant cranefly larva, Tipula sp. Journal of Insect Physiology 38, 131–137.
Gehrken, U., Stromme, A., Lundheim, R., and Zachariassen, K. E. (1991). Inoculative freezing in overwintering tenebrionid beetle, Bolitophagus reticulatus Panz. Journal of Insect Physiology 37, 683–687.
Hallman, G. J. and Denlinger, D. L. (1998). Introduction: temperature sensitivity and integrated pest management. In Temperature Sensitivity in Insects and Application in Integrated Pest Management, ed. G. J. Hallman and D. L. Denlinger. Boulder: Westview Press, pp. 1–5.
Hawes, T. C. and Bale, J. S. (2007). Plasticity in arthropod cryotypes. Journal of Experimental Biology 210, 2585–2592.
Heinrich, B. (1993). The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation. Cambridge, MA: Harvard University Press.
Hirsh, A. G., Williams, R. J., and Meryman, H. T. (1985). A novel method of natural cryoprotection. Plant Physiology 79, 41–56.
Holmstrup, M. (1995). Polyol accumulation in earthworm cocoons induced by dehydration. Comparative Biochemistry and Physiology A 111, 251–255.
Holmstrup, M., Bayley, M., and Ramlov, H. (2002). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences, USA 99, 5716–5720.
Holmstrup, M., Costanzo, J. P., and Lee, R. E. (1999). Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. Journal of Comparative Physiology B 169, 207–214.
Holmstrup, M. and Sømme, L. (1998). Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology B 168, 197–203.
Holmstrup, M. and Westh, P. (1994). Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. Journal of Comparative Physiology B 164, 312–315.
Irwin, J. T., Bennett, V. A., and Lee, R. E. (2001). Diapause development in frozen larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae). Journal of Comparative Physiology B 171, 181–188.
Irwin, J. T. and Lee, R. E. (2002). Energy and water conservation in frozen vs. supercooled larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae). Journal of Experimental Zoology 292, 345–350.
Izumi, Y., Sonoda, S., and Tsumuki, H. (2007). Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. Journal of Insect Physiology 53, 685–690.
Izumi, Y., Sonoda, S., Yoshida, H., Danks, H. V., and Tsumuki, H. (2006). Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Insect Physiology 52, 215–220.
Jepsen, J. U., Hagen, S. B., Ims, R. A., and Yoccoz, N. G. (2008). Climate change and outbreaks of geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology 77, 257–264.
Kaneko, J., Kita, K., and Tanno, K. (1991a). INA bacteria isolated from diamondback moth, Plutella xylostella L. pupae (Lepidoptera: Yponomeutidae). Japanese Journal of Applied Entomology and Zoology 35, 7–11.
Kaneko, J., Toyohira-ku, H., Owada, T., and Tanno, K. (1991b). Erwinia herbicola: ice nucleation active bacteria isolated from diamondback moth, Plutella xylostella L. pupae. Japanese Journal of Applied Entomology and Zoology 35, 247–251.
Karow, A. M. (1991). Chemical cryoprotection of metazoan cells. BioScience 41, 155–160.
Kayukawa, T., Chen, B., Hoshizaki, S., and Ishikawa, Y. (2007). Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochemistry and Molecular Biology 37, 1160–1167.
Kelty, J. D. and Lee, R. E. (2000). Diapausing pupae of the flesh fly Sarcophaga crassipalpis (Diptera: Sarcophagidae) are more resistant to inoculative freezing than non-diapausing pupae. Physiological Entomology 25, 120–126.
Kikawada, T., Nakahara, Y., Kanamori, Y., Iwata, K., Watanabe, M., McGee, B., Tunnacliffe, A., and Okuda, T. (2006). Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research Communications 348, 56–61.
Kikawada, T., Saito, A., Kanamori, Y., Nakahara, Y., Iwata, K., Tanaka, D., Watanabe, M., and Okuda, T. (2007). Trehalose transporter 1, a facilitated and high-capacity trehalose transporter allows exogenous trehalose uptake into cells. Proceedings of the National Academy of Sciences, USA 104, 11585–11590.
Kohshima, S. (1984). A novel cold-tolerant insect found in a Himalayan glacier. Nature 310, 225–227.
Kostal, V., Slachta, M., and Simek, P. (2001). Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta). Comparative Biochemistry and Physiology Part B 130, 365–374.
Kostal, V., Vambera, J., and Bastl, J. (2004). On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in adults of Pyrrhocoris apterus. Journal of Experimental Biology 207, 1509–1521.
Kostal, V., Renault, D., Mehrabianová, A., and Bastl, J. (2007). Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comparative Biochemistry and Physiology, Part A 147, 231–238.
Kostal, V., Yanagimoto, M., and Bastl, J. (2006). Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comparative Biochemistry and Physiology B 143, 173–179.
Lacoume, S., Bressac, C., and Chevrier, C. (2007). Sperm production and mating potential of males after a cold shock on pupae of the parasitoid wasp Dinarmus basalis. Journal of Insect Physiology 53, 1008–1015.
Larcher, W. (2001). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th edn. New York: Springer.
Larsen, K. J. and Lee, R. E. (1994). Cold tolerance including rapid cold-hardening and inoculative freezing in migrant monarch butterflies in Ohio. Journal of Insect Physiology 40, 859–864.
Layne, J. R., Lee, R. E., and Huang, J. L. (1990). Inoculation triggers at high subzero temperatures in a freeze-tolerant frog (Rana sylvatica) and insect (Eurosta solidaginis). Canadian Journal of Zoology 68, 506–510.
Lee, M. R., Lee, R. E., Strong-Gunderson, J. M., and Minges, S. R. (1995a). Isolation of ice-nucleating active bacteria from the freeze tolerant frog, Rana sylvatica. Cryobiology 32, 358–365.
Lee, R. R. (1989). Insect cold-hardiness: to freeze or not to freeze. BioScience 39, 308–313.
Lee, R. E. (1991). Principles of insect low temperature tolerance. In Insects at Low Temperature, ed. R. E. Lee and D. L. Denlinger. New York and London: Chapman and Hall, pp. 17–46.
Lee, R. E., Castrillo, L. A., Lee, M. L., Wyman, J., and Costanzo, J. P. (2001). Using ice-nucleating bacteria to reduce winter survival of Colorado potato beetles: development of a novel strategy for biological control. In Insect Timing: Circadian Rhythmicity to Seasonality, ed. D. L. Denlinger, J. M. Giebultowicz and D. S. Saunders. Amsterdam: Elsevier, pp. 213–227.
Lee, R. E. and Costanzo, J. P. (1998). Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annual Review of Physiology 60, 55–72.
Lee, R. E., Costanzo, J. P., Kaufman, P. E., Lee, M. R., and Wyman, J. A. (1994). Ice-nucleating active bacteria reduce the cold-hardiness of the freeze-intolerant Colorado potato beetle (Coleoptera, Chrysomelidae). Journal of Economic Entomology 87, 377–381.
Lee, R. E., Damodaran, K., Yi, S.-X., and Lorigan, G. A. (2006). Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459–463.
Lee, R. E. and Denlinger, D. L. (eds.) (1991). Insects at Low Temperature. New York: Chapman and Hall.
Lee, R. E., Lee, M. L., and Strong-Gunderson, J. M. (1993a). Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. Journal of Insect Physiology 39, 1–12.
Lee, R. E., Lee, M. R., and Strong-Gunderson, J. M. (1995b). Biological control of insect pests using ice-nucleating microorganisms. In Biological Ice Nucleations and its Applications, ed. R. E. Lee, G. J. Warren and L. V. Gusta. St. Paul: APS Press, pp. 257–269.
Lee, R. E. and Lewis, E. A. (1985). Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae). CryoLetters 6, 24–34.
Lee, R. E., McGrath, J. J., Morason, R. T., and Taddeo, R. M. (1993b). Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat-body cells of the freeze-tolerant gall fly Eurosta solidaginis. Journal of Insect Physiology 39, 445–450.
Lee, R. E., Steigerwald, K. A., Wyman, J. A., Costanzo, J. P., and Lee, M. R. (1996). Anatomic site of application of ice-nucleating active bacteria affects supercooling in the Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology 25, 465–469.
Lee, R. E., Strong-Gunderson, J. M., Lee, M. R., and Davidson, E. C. (1992). Ice-nucleating active bacteria decrease the cold-hardiness of stored grain insects. Journal of Economic Entomology 85, 371–374.
Lee, R. E., Strong-Gunderson, J. M., Lee, M. R., Grove, K. S., and Riga, T. J. (1991). Isolation of ice nucleating active bacteria from insects. Journal of Experimental Zoology 257, 124–127.
Lee, R. E., Warren, G. J., and Gusta, L. V. (eds.) (1995c). Biological Ice Nucleation and its Applications. St. Paul: APS Press.
Leopold, R. A., Rojas, R. R., and Atkinson, P. W. (1998). Post pupariation cold storage of three species of flies: increasing chilling tolerance by acclimation and recurrent recovery periods. Cryobiology 36, 213–224.
Levitt, J. (1980). Responses of Plants to Environmental Stresses, 2nd edn. New York: Academic Press, Inc.
Lindow, S. E. (1983). The role of bacterial ice nucleation in frost injury to plants. Annual Review of Phytopathology 21, 363–384.
Lovelock, J. E. (1953). The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochimica et Biophysica Acta 11, 28–36.
Mazur, P. (2004). Principles of cryobiology. In Life in the Frozen State, ed. B. J. Fuller, N. Lane and E. E. Benson. Boca Raton: CRC Press, pp. 3–66.
McMullen, D. C. and Storey, K. B. (2008). Suppression of Na+K+-ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect. Journal of Insect Physiology 54, 1023–1027.
Meryman, H. T. (1968). Modified model for the mechanism of freezing injury in erythrocytes. Nature 218, 333–336.
Moore, M. V. and Lee, R. E. (1991). Surviving the big chill: overwintering strategies of aquatic and terrestrial insects. American Entomologist Summer 111–118.
Morason, T. R., Allenspach, A., and Lee, R. E. (1994). Comparative ultrastructure of fat body cells of freeze-susceptible and freeze-tolerant Eurosta solidaginis larvae after chemical fixation and high pressure freezing. Journal of Insect Physiology 40, 155–164.
Mugnano, J. A., Lee, R. E., and Taylor, R. T. (1996). Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze-tolerant larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology 199, 465–471.
Muldrew, K., Acker, J. P., Elliott, J. A., and McGann, L. E. (2004). The water to ice transition: implications for living cells. In Life in the Frozen State, ed. B. Fuller, N. Lane and E. Benson. Boca Raton: CRC Press, pp. 67–108.
Nedved, O. (2000). Snow White and the Seven Dwarfs: a multvariate approach to classification of cold tolerance. CryoLetters 21, 339–348.
Neufeld, D. S. and Leader, J. P. (1997). Freezing survival by isolated Malpighian tubules of the New Zealand alpine weta Hemideina maori. Journal of Experimental Biology 201, 227–236.
Oberhauser, K. and Peterson, A. (2003). Modeling current and future potential wintering distributions of eastern North American monarch butterflies. Proceedings of the National Academy of Sciences, USA 100, 14063–14068.
Olsen, T. M., Sass, S. J., Li, N., and Duman, J. G. (1998). Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). Journal of Experimental Biology 201, 1585–1594.
Oswood, M. W., Miller, L. K., and Irons, J. G. (1991). Overwintering of freshwater benthic marcoinvertebrates. In Insects at Low Temperature, ed. R. E. Lee and D. L. Denlinger. New York: Chapman and Hall, pp. 360–375.
Philip, B. N., Yi, S.-X., Elnitsky, M. A., and Lee, R. E. (2008). Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. Journal of Experimental Biology 211, 1114–1119.
Pruitt, N. L., Moqueet, N., and Shapiro, C. A. (2007). Evidence for a novel cryoprotective protein from freeze-tolerant larvae of the goldenrod gall fly Eurosta solidaginis. Cryobiology 54, 125–128.
Qi, X.-L., Wang, X.-H., Xu, H.-F., and Kang, L. (2007). Influence of soil moisture on egg cold hardiness in the migratory locust Locusta migratoria (Orthoptera: Acrididae). Physiological Entomology 32, 219–224.
Ramlov, H. (1998). Letter to editor. CryoLetters 19, 4.
Ramlov, H. and Lee, R. E. (2000). Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera: Tephritidae). Journal of Experimental Biology 203, 983–789.
Régnière, J. and Bentz, B. (2007). Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology 53, 559–572.
Renault, D., Nedved, O., Hervant, F., and Vernon, P. (2004). The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology 29, 139–145.
Rinehart, J. P., Hayward, S. A. L., Einitsky, M. A., Sandro, L. H., Lee, R. E., and Denlinger, D. L. (2006). Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of the National Academy of Sciences, USA 103, 14223–14227.
Rinehart, J. P., Li, A., Yocum, G. D., Robich, R. M., Hayward, S. A. L., and Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences, USA 104, 11130–11137.
Ring, R. A. and Tesar, D. (1980). Cold-hardiness of the arctic beetle, Pytho americanus Kirby Coleoptera, Pythidae (Salpingidae). Journal of Insect Physiology 26, 763–774.
Ring, R. A. and Tesar, D. (1981). Adaptations to cold in Canadian Arctic insects. Cryobiology 18, 199–211.
Rojas, R. R. and Leopold, R. A. (1996). Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33, 447–458.
Sakurai, M., Furuki, T., Akao, K., Tanaka, D., Nakahara, Y., Kikawada, T., Watanabe, M., and Okuda, T. (2008). Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proceedings of the National Academy of Sciences, USA 105, 5093–5098.
Salt, R. W. (1959). Survival of frozen fat body cells in an insect. Nature 184, 1426.
Salt, R. W. (1961). Principles of insect cold-hardiness. Annual Review of Entomology 6, 55–74.
Salt, R. W. (1962). Intracelluar freezing in insects. Nature 193, 1207–1208.
Scholander, P. F., Flagg, W., Hock, R. J., and Irving, L. (1953). Studies on the physiology of frozen plants and animals in the Arctic. Journal of Cellular Comparative Physiology 42, 1–56.
Shimada, K. and Riihimaa, A. (1988). Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). CryoLetters 9, 5–10.
Sinclair, B. J. (1999). Insect cold tolerance: how many kinds of frozen? European Journal of Entomology 96, 157–164.
Sinclair, B., Addo-Bediako, A., and Chown, S. L. (2003). Climatic variability and the evolution of insect freeze tolerance. Biological Reviews 78, 181–195.
Sinclair, B. and Wharton, D. A. (1997). Avoidance of intracellular freezing by the freezing-tolerant New Zealand Alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Journal of Insect Physiology 43, 621–625.
Somero, G. N. (1992). Adapting to water stress: convergence on common solutions. In Water and Life, ed. G. N. Somero, C. B. Osmond, and C. L. Bolis. London: Springer-Verlag, pp. 3–18.
Sømme, L. (1982). Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology 73A, 519–543.
Steigerwald, K. A., Lee, M. R., Lee, R. E., and Marshall, J. C. (1995). Effect of biological ice nucleators on insect supercooling capacity varies with anatomic site of application. Journal of Insect Physiology 41, 603–608.
Steponkus, P. L. and Lynch, D. V. (1989). Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. Journal of Bioenergetics and Biomembranes 21, 21–41.
Storey, K. B., Baust, J. G., and Storey, J. M. (1981). Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. Journal of Comparative Physiology B 144, 183–190.
Storey, K. B. and Storey, J. M. (1988). Freeze tolerance in animals. Physiological Reviews 68, 27–84.
Storey, K. B. and Storey, J. M. (1991). Biochemistry of cryoprotectants. In Insects at Low Temperature, ed. R. E. Lee, and D. L. Denlinger. New York and London: Chapman and Hall, pp. 64–93.
Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Annual Review of Ecology and Systematics 27, 365–386.
Strong-Gunderson, J. M., Lee, R. E., Lee, M. R., and Riga, T. J. (1990). Ingestion of ice-nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens. Journal of Insect Physiology 36, 153–157.
Tanaka, K. and Watanabe, M. (2003). Transmission of ice-nucleating active bacteria from a prey reduces cold hardiness of a predator (Araneae: Theridiidae). Naturwissenschaften 90, 449–451.
Tanghe, A., Van Dijck, P., Dumortier, F., Teunissen, A., Hohmann, S., and Thevelein, J. M. (2002). Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Applied and Environmental Microbiology 68, 5981–5989.
Taylor, M. J., Song, Y. C., and Brockbank, K. G. (2007). Vitrification in tissue preservation: new developments. In Life in the Frozen State, ed. B. J. Fuller, N. Lane and E. E. Benson. Boca Raton: CRC Press, pp. 603–642.
Teets, N. M., Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L., and Lee, R. E. (2008). Rapid cold-hardening in larvae of the Antarctic midge, Belgica antarctica: cellular cold-sensing and a role for calcium. American Journal of Physiology 294, R1938–R1946.
Tran, K., Ylioja, T., Billings, R. F., Regniere, J., and Ayres, M. P. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications 17, 882–899.
Tsumuki, H., Konno, H., Maeda, T., and Okamoto, Y. (1992). An ice-nucleating active fungus isolated from the gut of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Insect Physiology 38, 119–125.
Turnock, W. J. and Bodnaryk, R. P. (1993). The reversal of cold injury and its effect on the response to subsequent cold exposures. CryoLetters 14, 251–256.
Turnock, W. J. and Fields, P. G. (2005). Winter climates and cold hardiness in terrestrial insects. European Journal of Entomology 102, 561–576.
Tursman, D., Duman, J. G., and Knight, C. A. (1994). Freeze tolerance adaptations in the centipede, Lithobius forficatus. Journal of Experimental Zoology 268, 347–353.
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W., and Hoffmann, A. A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.
Vali, G. (1995). Principles of ice nucleation. In Biological Ice Nucleation and its Applications, ed. R. E. Lee, G. J. Warren and L. V. Gusta. St. Paul: APS Press, pp. 1–28.
Vernon, P. and Vannier, G. (2002). Evolution of freezing susceptibility and freezing tolerance in terrestial arthropods. Comptes Rendus Biologies 325, 1185–1190.
Voituron, Y., Mouquet, N., de Mazancourt, C., and Clobert, J. (2002). To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. American Naturalist 160, 255–270.
Walters, K. R., Sformo, T., Barnes, B. M., and Duman, J. G. (2009). Freeze tolerance in an Alaska stonefly. Journal of Experimental Biology 212, 305–312.
Wharton, D. A. and Ferns, D. J. (1995). Survival of intracellular freezing by the antarctic nematode Panagrolaimus davidi. Journal of Experimental Biology 198, 1381–1387.
Wharton, D. A., Goodall, G., and Marshall, C. J. (2003). Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. Journal of Experimental Biology 206, 215–221.
Wilson, P. W., Heneghan, A. F., and Haymet, A. D. J. (2003). Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46, 88–98.
Worland, M. R., Grubor-Lajsic, G., and Montiel, P. O. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.
Worland, M. R., Wharton, D. A., and Byars, S. G. (2004). Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. Journal of Insect Physiology 50, 225–232.
Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cryoprotectants in high osmolarity and other stresses. Journal of Experimental Biology 208, 2819–2830.
Yi, S.-X. and Lee, R. E. (2004). In vivo and in vitro rapid cold hardening protects cells from cold-shock injury in the flesh fly. Journal of Comparative Physiology B 174, 611–615.
Yi, S.-X. and Lee, R. E. (2005). Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis. Journal of Experimental Biology 208, 1895–1904.
Yi, S.-X., Moore, C. W., and Lee, R. E. (2007). Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12, 1183–1193.
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65, 799–832.
Zachariassen, K. E. (1991). The water relations of terrestrial arthropods. In Insects at Low Temperature, ed. R. E. Lee and D. L. Denlinger. New York and London: Chapman and Hall, pp. 47–63.
Zachariassen, K. E. (1992). Ice nucleating agents in cold-hardy insects. In Water and Life, ed. G. N. Somero, C. B. Osmond and C. L. Bolis. Berlin: Springer-Verlag, pp. 261–281.
Zachariassen, K. E. and Hammel, H. T. (1976). Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262, 285–287.
Zachariassen, K. E. and Husby, J. A. (1982). Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298, 865–867.
Zachariassen, K. E., Kristiansen, E., Perdersen, S. A., and Hammel, H. T. (2004). Ice nucleation in solutions and freeze-avoiding insects: homogeneous or heterogeneous? Cryobiology 48, 309–321.

Reference Title: References

Reference Type: reference-list

Bahrndorff, S., Loeschcke, V., Pertoldi, C., Beier, C., and Holmstrup, M. (2009). The rapid cold hardening response of Collembola is influenced by thermal variability of the habitat. Functional Ecology 23, 340–347
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357, 849–861.
Baust J. M., Van Buskirk, R., and Baust, J. G. (2002). Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preservation Technology 1, 63–80.
Broufas, G. D. and Koveos, D. S. (2001). Rapid cold hardening in the predatory mite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae). Journal of Insect Physiology 47, 699–708.
Burks, C. S. and Hagstrum, D. W. (1999). Rapid cold hardening capacity in five species of coleopteran pests of stored grain. Journal of Stored Products Research 35, 65–75.
Burton, V., Mitchell, H. K., Young, P., and Petersen, N. S. (1988). Heat shock protection against cold stress of Drosophila melanogaster. Molecular and Cellular Biology 8, 3550–3552.
Chen, C.-P. and Walker, V. K. (1994). Cold-shock and chilling tolerance in Drosophila. Journal of Insect Physiology 40, 661–669.
Chen, C. P., Denlinger, D. L., and Lee, R. E. (1987). Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology 60, 297–304.
Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology 33, 50–152.
Coulson, S. J. and Bale, J. S. (1990). Characterization and limitations of the rapid cold-hardening response in the house fly Musca domestica (Diptera: Muscidae). Journal of Insect Physiology 36, 207–211.
Coulson, S. J. and Bale, J. S. (1991). Anoxia induces rapid cold hardening in the house fly Musca domestica (Diptera: Muscidae). Journal of Insect Physiology 37, 497–501.
Coulson, S. C. and Bale, J. S. (1992). Effect of rapid cold hardening on reproduction and survival of offspring in the house fly Musca domestica. Journal of Insect Physiology 38, 421–424.
Coulson, S. J., Fisher, J., and Bale, J. S. (1992). A 31P NMR investigation of the energy charge of the house fly Musca domestica (Diptera: Muscidae) during rapid cold hardening and cold shock. CryoLetters 13, 183–192.
Crockett, E. L. (1998). Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperatures. American Zoologist 38, 291–304.
Czajka, M. C. and Lee, R. E. (1990). A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. Journal of Experimental Biology 148, 245–254.
David, J. R., Gibert, P., Moreteau, B., Gilchrist, G. W., and Huey, R. B. (2003). The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Functional Ecology 17, 425–430.
David, R. J., Gibert, P., Pla, E., Petavy, G., Karan, D., and Moreteau, B. (1998). Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. Journal of Thermal Biology 23, 291–299.
Denlinger, D. L., Joplin, K. H., Chen, C. P., and Lee, R. E. (1991). Cold shock and heat shock. In Insects at Low Temperature, ed. R. E. Lee, and D. L. Denlinger. New York: Chapman and Hall, pp. 131–148.
Drobnis, E. Z., Crowe, L. M., Berger, T., Anchordoguy, T. J., Overstreet, J. W., and Crowe, J. H. (1993). Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. Journal of Experimental Zoology 265, 432–437.
Elnitsky, M. A., Hayward, S. A. L., Rinehart, J. P., Denlinger, D. L., and Lee, R. E. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211, 524–530.
Feder, M. E., Bedford, T. C., Albright, D. R., and Michalak, P. (2002). Evolvability of Hsp70 expression under artificial selection for inducible thermotolerance in independent populations of Drosophila melanogaster. Physiological and Biochemical Zoology 75, 325–334.
Fuchs, B. C. and Bode, B. P. (2006). Stressing out over survival: glutamine as an apoptotic modulator. Journal of Surgical Research 131, 26–40.
Fujiwara, Y. and Denlinger, D. L. (2007). p38 MAP kinase is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Journal of Experimental Biology 210: 3295–3300.
Grout, B. W. (1987). Direct chilling injury. In The Effects of Low Temperatures on Biological Systems, ed. B. W. Grout. and G. J. Morris. London: Edward Arnold, pp. 120–146.
Hazel, J. R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology 57, 19–42.
Jagdale, G. B., Parwinder, S. G., and Salmnen, S. O. (2005). Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. Journal of Parasitology 91, 988–994.
Joplin, K. H. and Denlinger, D. L. (1990). Developmental and tissue specific control of the heat shock induced 70kDa related proteins in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 36, 239–249.
Kelty, J. (2007). Rapid cold-hardening of Drosophila melanogaster in a field setting. Physiological Entomology 32, 343–350.
Kelty, J. D., Killian, K. A., and Lee, R. E. (1996). Cold shock and rapid cold-hardening of pharate adult flesh flies (Sarcophaga crassipalpis): effects on behaviour and neuromuscular function following eclosion. Physiological Entomology 21, 283–288.
Kelty, J. D. and Lee, R. E. (1999). Induction of rapid cold-hardening by cooling at ecologically relevant rates in Drosophila melanogaster. Journal of Insect Physiology 45, 719–726.
Kelty, J. D. and Lee, R. E. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology 204, 1659–1666.
Kim, Y. and Kim, N. (1997). Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology 26, 1117–1123.
Kim, Y.-S., Denlinger, D. L., and Smith, B. (2005). Spatial conditioning in the flesh fly, Sarcophaga crassipalpis: disruption of learning by cold shock and protection by rapid cold hardening. Journal of Asia-Pacific Entomology 8, 345–351.
Klok, C. J., Chown, S. L., and Gaston, K. J. (2003). The geographical range structure of the holly leaf-miner. III. Cold-hardiness physiology. Functional Ecology 17, 858–868.
Koveos, D. S. (2001). Rapid cold hardening in the olive fruit fly Bactrocera oleae under laboratory and field conditions. Entomologia Experimentalis et Applicata 101, 257–263.
Larsen, K. J. and Lee, R. E. (1994). Cold tolerance including rapid cold-hardening and inoculative freezing in migrant monarch butterflies in Ohio. Journal of Insect Physiology 40, 859–864.
Larsen, K. J., Lee, R. E., and Nault, L. R. (1993). Influence of developmental conditions on cold-hardiness of adult Dalbulus leafhoppers – implications for overwintering. Entomologia Experimentalis et Applicata 67, 99–108.
Lee, R. E., Chen, C. P., and Denlinger, D. L. (1987). A rapid cold-hardening process in insects. Science 238, 1415–1417.
Lee, R. E. and Denlinger, D. L. (1991). Insects at Low Temperature. New York: Chapman and Hall.
Lee, R. E., Damodaran, K., Yi, S.-X., and Lorigan, G. A. (2006). Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459–463.
Leopold, R. A. (1998). Cold storage of insects for integrated pest management. In Temperature Sensitivity in Insects and Application in Integrated Pest Management, ed. G. J. Hallman and D. L. Denlinger. Boulder: Westview Press, pp. 235–267.
Li, A. and Denlinger, D. L. (2008). Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Insect Molecular Biology 17, 565–572.
Li, Y., Gong, H., and Park, H. Y. (1999). Characterization of rapid cold-hardiness response in the overwintering mature larvae of pine needle gall midge, Thecodiplosis japonensis. CryoLetters 20, 383–392.
Mangan, R. L. and Hallman, G. J. (1998). Temperature treatments for quarantine security: new approaches for fresh commodities. In Temperature Sensitivity in Insects and Application in Integrated Pest Management, ed. G. J. Hallman and D. L. Denlinger. Boulder: Westview Press, pp. 201–234.
Massip, A., Leibo, S. P., and Blesbios, E. (2004). Cryobiology of gametes and the breeding of domestic animals. In Life in the Frozen State, ed. B. J. Fuller, N. Lane and E. E. Benson. Boca Raton: CRC Press, pp. 371–392.
McDonald, J. R., Bale, J. S., and Walters, K. A. (1997). Rapid cold hardening in the western flower thrips Frankliniella occidentalis. Journal of Insect Physiology 43, 759–766.
McElhaney, R. N. (1974). The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. Journal of Molecular Biology 84, 145–157.
Michaud, M. R. and Denlinger, D. L. (2006). Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 52, 1073–1082.
Michaud, M. R. and Denlinger, D. L. (2007). Shifts in carbohydrate, polyol, and amino acid pools during rapid cold hardening and diapause-associated cold hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. Journal of Comparative Physiology B 177, 753–763.
Monroy, A. F. and Dhindsa, R. S. (1995). Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7, 321–331.
Murakami, M., Kondo, T., Sato, S., Li, Y., and Chan, P. H. (1997). Occurrence of apoptosis following cold injury-induced brain edema in mice. Neuroscience 81, 231–237.
Murata, N. and Los, D. A. (1997). Membrane fluidity and temperature perception. Plant Physiology 115, 875–879.
Nunamaker, R. A. (1993). Rapid cold-hardening in Culicoides variipennis sonorensis (Diptera: Ceratopogonidae). Journal of Medical Entomology 30, 913–917.
Orvar, B. L., Sangwan, V., Omann, F., and Dhindsa, R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal 23, 785–794.
Overgaard, J., Malmendal, A., Sørenson, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C., and Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53, 1218–1232.
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V., and Holmstrup, M. (2005). Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology 51, 1173–1182.
Overgaard, J. and Sørensen, J. G. (2008). Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology 56, 159–162.
Phanvijhitsiri, K., Musch, M. W., Ropeleski, M. J., and Chang, E. B. (2005). Molecular mechanisms of L-glutamine modulation of heat stimulated Hsp25 production. FASEB Journal 19, A1496–A1497.
Powell, S. J. and Bale, J. S. (2004). Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Journal of Insect Physiology 50, 277–284.
Powell, S. J. and Bale, J. S. (2005). Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Journal of Experimental Biology 208, 2615–2620.
Powell, S. J. and Bale, J. S. (2006). Effect of long-term and rapid cold-hardening on the cold torpor temperature of an aphid. Physiological Entomology 31, 348–352.
Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T., and Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology 14, 607–613.
Rako, L. and Hoffman, A. A. (2006). Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology 52, 94–104.
Rinehart, J. P., Yocum, G. D., and Denlinger, D. L. (2000). Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 25, 330–336.
Rosales, A. L., Krafsur, E. S., and Kim, Y. (1994). Cryobiology of the face fly and house fly (Diptera: Muscidae). Journal of Medical Entomology 31, 671–680.
Shintani, Y. and Ishikawa, Y. (2007). Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. Journal of Insect Physiology 53, 1055–1062.
Shreve, S. M., Kelty, J. D., and Lee, R. E. (2004). Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. Journal of Experimental Biology 207, 1797–1802.
Shreve, S. M., Yi, S.-X., and Lee, R. E. (2007) Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. CryoLetters 28, 33–37.
Sinclair, B. J. and Chown, S. L. (2006). Rapid cold-hardening in a Karoo beetle, Afrinus sp. Physiological Entomology 31, 98–101.
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S., and Chown, S. L. (2003). Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049–1061.
Smallwood, M. and Bowles, D. J. (2002). Plants in a cold climate. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357, 831–846.
Teets, N. M., Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L., and Lee, R. E. (2008). Rapid cold-hardening in larvae of the Antarctic midge, Belgica antarctica: Cellular cold-sensing and a role for calcium. American Journal of Physiology 294, R1938–R1946.
Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., and Chown, S. L. (2008). Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology 54, 114–127.
Terblanche, J. S., Marais, E., and Chown, S. L. (2007). Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Journal of Insect Physiology 53, 455–462.
Thompson Jr., G. A. (1983). Mechanisms of homeoviscous adaptation in membranes. In Cellular Acclimatisation to Environmental Change, ed. A. R. Cossins and P. Sheterline. Cambridge: Cambridge University Press, pp. 33–54.
Wang, X. and Kang, L. (2003). Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera: Acridiidae). CryoLetters 24, 331–340.
Watanabe, M., Kikawada, T., Minagawa, N., Yukuhiro, F., and Okuda, T. (2002). Mechanism allowing an insect to survive complete dehydration and extreme temperatures. Journal of Experimental Biology 205, 2799–2802.
Worland, M. R. and Convey, P. (2001). Rapid cold hardening in Antarctic microarthropods. Functional Ecology 15, 515–524.
Worland, M. R., Convey, P., and Lukešovà, A. (2000). Rapid cold hardening: a gut feeling. CryoLetters 21, 315–324.
Worland, M. R., Hawes, T. C., and Bale, J. S. (2007). Temporal resolution of cold acclimation and de-acclimation in the Antarctic collembolan, Cryptopygus antarcticus. Physiological Entomology 32, 233–239.
Yi, S.-X. and Lee, R. E. (2004). In vivo and in vitro rapid cold hardening protects cells from cold-shock injury in the flesh fly. Journal of Comparative Physiology B 174, 611–615.
Yi, S.-X., Yin, C. M., and Nordin, J. H. (1987). The in vitro biosynthesis and secretion of glycerol by larval fat bodies of chilled Ostrinia nubilalis. Journal of Insect Physiology 33, 523–528.
Yi, S.-X., Moore, C. W., and Lee, R. E. (2007). Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12, 1183–1193.
Yocum, G. D. and Denlinger, D. L. 1994. Anoxia blocks thermotolerance and the induction of rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 19, 152–158.
Yoder, J., Benoit, J. B., Denlinger, D. L., and Rivers, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology 52, 202–214.

Reference Title: References

Reference Type: reference-list

Amornwittawat, N., Wang, S., Duman, J. G., and Wen, X. (2008) Polycarboxylates enhance beetle antifreeze protein activity. Biochimica et Biophysica Acta, Proteins and Proteomics 1784, 1942–1948.
Amornwittawat, N., Wang, S., Banatlao, J., Chung, M., Velasco, E., Duman, J. G., and Wen, X. (2009). Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochimica et Biophysica Acta, Proteins, and Proteomics 1794, 341–346.
Andorfer, C. A. and Duman, J. G. (2000). Isolation and characterization of cDNA clones endcoding antifreeze proteins of the pyrochroid beetle Dendroides canadensis. Journal of Insect Physiology 46, 365–372.
Bale, J. S., Hansen, T. N., and Baust, J. G. (1989). Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). Journal of Insect Physiology 35, 291–298.
Bale, J. S., Worland, M. R., and Block, W. (2000). Thermal tolerance and acclimation response of the subAntarctic beetle Hydromedion sparsutum. Polar Biology 23, 77–84.
Bennett, V. A., Sformo, T., Walters, K., Toien, O., Jeannet, K., Hochstrasser, R., Pan, Q., Serianni, A. S., Barnes, B. M., and Duman, J. G. (2005). Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricus): Roles of antifreeze proteins, polyols, dehydration, and diapause. Journal of Experimental Biology 208: 4467–4477.
Bigg, E. K. (1953). The supercooling of water. The Physical Society 66, 688–691.
Block, W. and Duman, J. G. (1989). The presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite, Alaskozetes antarcticus. Journal of Experimental Zoology 250, 229–231.
Brown, C. L., Bale, J. S., and Walters, K. F. A. (2004). Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society, Series B 271, 1507–1511.
Cannon, R. J. C. and Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews of the Cambridge Philosophical Society 63, 23–77.
DeVries, A. L. (1971). Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172, 1152–1155.
DeVries, A. L. (1986). Antifreeze glycopeptides and peptides: Interactions with ice and water. Methods in Enzymology 127, 293–303.
DeVries, A. L. and Cheng, C.-H. C. (1992). The role of antifreeze glycopeptides and peptides in the survival of cold-water fishes. In Water and Life, ed. G. N. Somero, C. B. Osmond and C. L. Bolis. Berlin, Heidelberg: Springer-Verlag, pp. 301–315.
DeVries, A. L., Komatsu, S. K., and Feeney, R. E. (1970). Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. Journal of Biological Chemistry 245, 2901–2913.
DeVries, A. L. and Wohlschlag (1969) Freezing resistance in some Antarctic fishes. Science 163, 1073–1075.
Doucet, D., Tyshenko, M. G., Davies, P. L., and Walker, V. K. (2001). A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. European Journal of Biochemistry 269, 38–46.
Duman, J, G. (1977a). The role of macromolecular antifreeze in the darkling beetle, Meracantha contracta. Journal of Comparative Physiology B 115, 279–286.
Duman, J. G. (1977b). Variations in macromolecular antifreeze levels in larvae of the darkling beetle, Meracantha contracta. Journal of Experimental Zoology, 85–93.
Duman, J. G. (1979a). Thermal hysteresis factors in overwintering insects. Journal of Insect Physiology 25, 805–810.
Duman, J. G. (1979b). Subzero temperature tolerance in spiders: The role of thermal hysteresis factors. Journal of Comparative Physiology B 131, 347–352.
Duman, J. G. (1984). Thermal hysteresis antifreeze proteins in the midgut fluid of overwintering larvae of the beetle Dendroides canadensis. Journal of Experimental Zoology 230, 355–361.
Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology 63, 327–355.
Duman, J. G. (2002). The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. Journal of Comparative Physiology B 172, 163–168.
Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R., and Barnes, B. M. (2004a). Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology 50, 259–266.
Duman, J. G., Bennett, V. A., Li, N., Wang, L., Huang, L., Sformo, T., and Barnes, B. M. (2004b). Antifreeze proteins in terrestrial arthropods. In Life in the Cold, ed. B. M. Barnes and H. V. Carey. University of Alaska Press, pp. 527–542.
Duman, J. G. and DeVries, A. L. (1974). Freezing resistance in winter flounder, Pseudopleuronectes americanus. Nature 247, 237–238.
Duman, J. G. and DeVries, A. L. (1975). The role of macromolecular antifreeze in cold water fishes. Comparative Biochemistry and Physiology 52A, 193–199.
Duman, J. G. and DeVries, A. L. (1976) The isolation, characterization and physical properties of protein antifreeze from winter flounder, Pseudopleuronectes americanus. Comparative Biochemistry and Physiology 54B, 375–380.
Duman, J. G., Neven, L. G., Beals, J. M., Olson, K. R., and Castellino, F. J. (1985). Freeze tolerance adaptations, including haemolymph protein and lipoprotein ice nucleators, in larvae of the cranefly Tipula trivittata. Journal of Insect Physiology 31, 1–9.
Duman, J. G., Parmalee, D., Goetz, F. W., Li, N., Wu, D. W., and Benjamin, T. (1998). Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. Journal of Comparative Physiology B 168, 225–232.
Duman, J. G. and Patterson, J. L. (1978). The role of ice nucleators in the frost tolerance of queens of the bald-faced hornet Vespula maculata. Comparative Physiology and Biochemistry 59A, 69–72.
Duman, J. G. and Serianni, A. S. (2002). The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis. Journal of Insect Physiology 48, 103–111.
Duman, J. G., Wu, D. W., Yeung, K. L., and Wolf, E. E. (1992). Hemolymph proteins involved in the cold tolerance of terrestrial arthropods; Antifreeze and ice nucleator proteins. In Water and Life, ed. G. N. Somero and C. B. Osmond. Berlin: Springer-Verlag, pp. 282–300.
Duman, J. G., Wu, D. W., Olsen T. M., Urrutia, M., and Tursman, D. (1993). Thermal hysteresis proteins. Advances in Low Temperature Biology 2, 131–182.
Duman, J. G., Xu, L. X., Neven, L. G., Tursman, D., and Wu, D. W. (1991). Hemolymph proteins involved in insect subzero temperature tolerance: Ice nucleators and antifreeze proteins. In Insects at Low Temperatures, ed. R. E. Lee and D. L. Denlinger. New York and London: Chapman and Hall, pp. 94–127.
Duman, J. G., Verleye, D., and Li, N. (2002). Site specific forms of antifreeze proteins in the beetle Dendroides canadensis. Journal of Comparative Physiology B 172, 547–552.
Fields, P. G. and McNeil, J. N. (1986). Possible dual cold-hardiness strategies in Cisseps fulvicolis (Lepidoptera: Arctiidae). Canadian Journal of Entomology 118, 1309–1311.
Gauthier, S. Y., Kay, C. M., Sykes, B. D., Walker, V. K., and Davies, P. L. (1998). Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. European Journal of Biochemistry 258, 445–453.
Govindarajan, A. G. and Lindow, S. E. (1988). Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro. Journal of Biological Chemistry 263, 9333–9338.
Graether, S. P., Kuiper, M. J., Gagne, S. M., Walker, V. K., Jia, Z., Sykes, B. D., and Davies, P. L. (2000). Beta-helix structure of a hyperactive antifreeze protein from an insect. Nature 406, 325–328.
Graether, S. P. and Sykes, B. D. (2004). Cold survival of freeze intolerant insects: The structure and function of beta-helical antifreeze proteins. European Journal of Biochemistry 271, 3285–3296.
Graether, S. P., Ye, Q. L., Davies, P. L., and Sykes, D. B. (1999). Crystallization and preliminary x-ray crystallographic analysis of spruce budworm antifreeze protein. Journal of Structural Biology 126, 72–75.
Graham, L. A. and Davies, P. L. (2005). Glycine-rich antifreeze proteins from snow fleas. Science 310, 461.
Graham, L. A., Liou, Y.-C., Walker, V. K., and Davies, P. L. (1997). Hyperactive antifreeze proteins from beetles. Nature 188, 727–728.
Graham, L. A., Walker, V. K., and Davies P. L. (2000). Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor. European Journal of Biochemistry 267, 6452–6458.
Green, R. L. and Warren, G. J. (1985). Physical and functional repetition in a bacterial ice nucleation gene. Nature 317, 645–648.
Griffith, M. and Yaish, M. W. (2004). Antifreeze proteins in overwintering plants: A tale of two activities. Trends in Plant Sciences 9, 399–405.
Grimstone, A. V., Mullinger, A. M., and Ramsay, J. A. (1968). Further studies on the rectal complex of the mealworm, Tenebrio molitor. Philosophical Transactions of the Royal Society of London, Series B 248, 344–282.
Hansen, T. N. and Baust, J. G. (1988). Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor. Biochimica and Biophysica Acta-Protein Structure and Molecular Enzymology 957, 217–221.
Hansen, T. N. and Baust, J. G. (1989). Differential scanning calorimetric analysis of Tenebrio molitor antifreeze protein activity. Cryobiology 26, 383–388.
Horwath, K. L. and Duman, J. G. (1982). Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. Journal of Experimental Zoology 219, 267–270.
Horwath, K. L. and Duman, J. G. (1983a). Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. Journal of Insect Physiology 29, 907–917.
Horwath, K. L. and Duman, J. G. (1983b). Induction of antifreeze production by juvenile hormone in larvae of the beetle Dendroides canadensis. Journal of Comparative Physiology B 151, 233–240.
Horwath, K. L. and Duman, J. G. (1984a). Yearly variations in the overwintering mechanism of the cold hardy beetle, Dendroides canadensis. Physiological Zoology 57, 40–45.
Horwath, K. L. and Duman, J. G. (1984b). Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. Journal of Insect Physiology 30, 947–955.
Horwath, K. L. and Duman, J. G. (1986). Thermoperiodic involvement in antifreeze protein production in the cold hardy beetle Dendroides canadensis: Implications for photoperiodic timer measurement. Journal of Insect Physiology 32, 799–806.
Huang, T. and Duman, J. G. (2002). Cloning and characterization of a thermal hysteresis/antifreeze protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Molecular Biology 48, 339–350.
Huang, T., Nicodemus, J., Zarka, D. G., Thomashow, M. F., and Duman, J. G. (2002). Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Molecular Biology 50, 333–344.
Husby, J. A. and Zachariassen, K. E. (1980). Antifreeze agents in the body fluid of winter active insects and spiders. Experientia 36, 963–964.
Jia, X. and Davies P. L. (2002). Antifreeze proteins: An unusual receptor-ligand interaction. Trends in Biochemical Sciences 27, 101–106.
Knight, C. A. (1967). The Freezing of Supercooled Liquids. New York: VanNostrand.
Knight, C. A., Cheng, C. C., and DeVries, A. L. (1991). Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophysical Journal 59, 409–418.
Knight, C. A., DeVries, A. L., and Oolman, L. D. (1984). Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308, 295–296.
Knight, C. A. and Duman, J. G. (1986). Inhibition of recrystallization of ice by insect thermal hysteresis proteins: A possible cryoprotective role. Cryobiology 23, 256–262.
Knight, C. A., Wen, D., and Laursen, R. A. (1995). Non-equilibrium antifreeze proteins and the recrystallization of ice. Cryobiology 32, 23–34.
Kristainsen, E., Pedersen, S. L., Ramlov, H., and Zachariassen, K. E. (1999). Antifreeze activity in the cerambycid beetle Rhagium inquisitor. Journal of Comparative Physiology B 160, 55–60.
Kristiansen, E., Ramlov, H., Hagen, L., Pedersen, S. L., Andersen, R. A., and Zachariassen, K. E. (2005). Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L). Comparative Biochemistry and Physiology B 142, 90–97.
Kristiansen, E. and Zachariassen, K. E. (2005). The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51, 262–280.
Kukal, O., Serianni, A. S., and Duman, J. G. (1988). Glycerol production in a freeze tolerant arctic insect, Gynaephora groenlandica: An in vivo 13C NMR study. Journal of Comparative Physiology B 158, 175–183.
Lee, R. E., Costanzo, J. P., and Mugnano, J. A. (1996). Regulation of supercooling and ice nucleation in insects. European Journal of Entomology 93, 405–418.
Leinala, E. K., Davies, P. L., Doucet, D., Tyshenko, M. G., Walker, V. K., and Jia, Z. (2002). A beta-helical antifreeze protein isoform with increased activity: Structural and functional insights. Journal of Biological Chemistry 277, 33349–33352.
Li, N., Andorfer, C. A., and Duman, J. G. (1998b). Enhancement of insect antifreeze protein activity by low molecular mass solutes. Journal of Experimental Biology 201, 2243–2251.
Li, N., Chibber, B. A. K., Castellino, F. J., and Duman, J. G. (1998a). Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Biochemistry 37, 6343–6350.
Li, Y., Gong, H., and Park, H. Y. (2000). Purification and partial characterization of thermal hysteresis proteins from overwintering larvae the pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomiidae) CryoLetters 21, 117–124.
Lin, F.- H., Graham, L. A., Campbell, R. L., and Davies, P. L. (2007). Structural modeling of snow flea antifreeze protein. Biophysical Journal 92, 1717–1723.
Lin, Y., Duman, J. G., and DeVries, A. L. (1972). Studies on the structure and activity of low molecular weight glycoproteins from an Antarctic fish. Biochemical Biophysical Research Communications 46,87–92.
Lindow, S. E. (1983). The role of bacterial ice nucleation in frost injury to plants. Annual Review of Phytopathology 21, 363–384.
Lindow, S. E. (1995). Control of epiphytic ice-nucleation-active bacteria for management of plant frost injury. In Biological Ice Nucleation and Its Applications, ed. R. E. Lee, L. G. J. Warren, and L. V. Gusta. Saint Paul: APS Press, pp. 239–256.
Liou, Y.-C., Thibault, P., Walker, V. K., Davies, P. L., and Graham, L. A. (1999). A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38, 11415–11424.
Liu, X. Y. and Du, N. (2004). Zero-sized effect of nano-particles and inverse homogeneous nucleation. The Journal of Biological Chemistry 279, 6124–6131.
Lundheim, R. (1996). Adaptive and Incidental Ice Nucleators. Doctorate Thesis, Norwegian University of Science and Technology, Trondheim.
Lu, M., Wang, B., Li, Z., Fei, Y., Wei, L., and Gao, S. (2002). Differential scanning calorimetric and circular dicroistic studies on plant antifreeze proteins. Journal of Thermal Analysis and Calorimetry 67, 689–698.
Mazur, P. (1984). Freezing of living cells: mechanisms and implications. American Journal of Physiology 247, C125–C142.
Meier, P. and Zettel, J. (1999). Cold hardiness in Entomobrya nivalis (Collembola, Entomobryidae): Annual cycle of polyols and antifreeze proteins, and antifreeze triggering by temperature and photoperiod. Journal of Comparative Physiology B 167, 297–304.
Meyer, K., Keil, M., and Naldrett, M. J. (1999). A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Letters 447, 171–178.
Miller, L. K. (1969). Freezing tolerance of an adult insect. Science 166, 105–106.
Miller, L. K. (1982). Cold hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comparative Physiology and Biochemistry 73A, 595–604.
Miller, L. K. and Werner, R. (1987). Extreme supercooling as an overwintering strategy in three species of willow gall insects from interior Alaska. Oikos 49, 253–260.
Mueller, G. M., Wolber, P. K., and Warren, G. J. (1990). Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology 27, 416–422.
Mugnano, J. A., Lee, R. E., and Taylor, R. T. (1996). Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze tolerant larvae of the gall fly Eurosta solidaginis (Fitch). Journal of Experimental Biology 199, 465–471.
Neven, L. G., Duman, J. G., Beals, J. M., and Castellino, F. J. (1986). Overwintering adaptations of the stag beetle Ceruchus piceus: Removal of ice nucleators in winter to promote supercooling. Journal of Comparative Physiology B 156, 707–716.
Neven, L. G., Duman, J. G., Low, M. G., Sehl, L. C., and Castellino, F. J. (1989). Purification and characterization of an insect lipoprotein ice nucleator: Evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. Journal of Comparative Physiology B 159, 71–82.
Nicodemus, J., O'Tousa, J. E., and Duman, J. G. (2006). Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster. Journal of Insect Physiology 52, 888–896.
Olsen, T. M. and Duman, J. G. (1997a). Maintenance of the supercooled state in overwintering pyrochroid beetle larvae Dendroides canadensis: Role of hemolymph ice nucleators and antifreeze proteins. Journal of Comparative Physiology B 167, 105–113.
Olsen, T. M. and Duman, J. G. (1997b). Maintenance of the supercooled state in the gut of overwintering pyrochroid beetle larvae, Dendroides canadensis: role of gut ice nucleators and antifreeze proteins. Journal of Comparative Physiology B, 167, 114–122.
Olsen, T. M., Sass, S. J., Li, N., and Duman, J. G. (1998). Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). Journal of Experimental Biology 201, 1585–1594.
Patterson, J. L. and Duman, J. G. (1978). The role of thermal hysteresis producing proteins in the low temperature tolerance and water balance of the mealworm, Tenebrio molitor. Journal of Experimental Biology 74, 37–45.
Pertaya, N., Marshall, C. B., Celik, Y., Davies, P. L., and Braslovsky, I. (2008). Direct visualization of spruce budworm antifreeze protein interacting with ice: Basal plane affinity confers hyperactivity. Biophysical Journal 95, 333–341.
Ramlov, H., DeVries, A. L., and Wilson, P. W. (2005). Antifreeze glycoproteins from the Antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanoliter osmometry. CryoLetters 26, 73–84.
Ramsay, R. A. (1964). The rectal complex of the mealworm, Tenebrio molitor L. Coleoptera, Tenebrionidae. Philosophical Transactions of the Royal Society of London, Series B 248, 279–214.
Raymond, J. A. and DeVries, A. L. (1977). Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceedings of the National Academy of Sciences, USA 74, 2589–2593.
Raymond, J. A., Wilson, P. W., and DeVries, A. L. (1989). Inhibition of growth on nonbasal planes in ice by fish antifreeze. Proceedings of the National Academy of Sciences, USA 86, 881–885.
Ring, R. A. and Tesar, D. (1980). Cold-hardiness of the arctic beetle Pytho americanus Kirby Coleoptera, Pythidae (Salpingidae). Journal of Insect Physiology 26, 763–777.
Salt, R. W. (1953). The influence of food on cold-hardiness in insects. Canadian Entomologist 85, 261–269.
Sformo, T., Kohl, F., McIntyre, P., Duman, J. G., and Barnes, B. M. (2009). Simultaneous freeze tolerance and avoidance in individual fungus gnats, Exechia nugatoria. Journal of Comparative Physiology B, 179, 897–902.
Sicheri, F. and Yang, D. S. C. (1995). Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427–431.
Sinclair, B. J. and Chown, S. L. (2002). Haemolymph osmolality and thermal hysteresis activity in 17 species of arthropods from subAntarctic Marion Island. Polar Biology 25, 928–933.
Sinclair, B. J., Terblanche, J. S., Scott, M. B., Blatch, G. L., Klok, C. J., and Chown, S. L. (2006). Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology 52, 29–50.
Sjursen, H. and Sømme, L. (2000). Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari, Oribatidae) from Finse, Norway. Journal of Insect Physiology 46, 1387–1396.
Smallwood, M., Worrall, D., Byass, L., Ashford, D., Doucet, C. J., Holt, C., Telford, J., Lilliford, P., and Bowles, D. J. (1999). Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) Biochemical Journal 340, 385–391.
Sømme, L. (1978). Nucleating agents in the haemolymph of the third instar larvae of Eurosta solidaginis (Fitch) (Diptera: Tephritidae). Norwegian Journal of Entomology 25, 187–188.
Sømme, L. (1982). Supercooling and winter survival in terrestrial arthropods. Comparative Physiology and Biochemistry 73A, 519–543.
Southworth, M. W., Wolber, P. K., and Warren, G. J. (1988). Nonlinear relationship between concentration and activity of a bacterial ice nucleation protein. Journal of Biological Chemistry 263, 15211–15216.
Thomas, M. C. (2002). Cucujidae (Latreille 1802). In American Beetles Volume 2, eds. R. H. Arnett, M. C. Thomas, P. E. Skelley, and J. H. Howard. Boca Raton, London, New York, Washington, D.C.: CRC Press, pp. 329–330.
Tomczak, M. M. and Crowe, J. H. (2002). The interaction of antifreeze proteins with model membranes and cells. In Fish Antifreeze Proteins, ed. K. V. Ewart and C. L. Hew, London: World Scientific, pp. 187–212.
Tursman, D. and Duman, J. G. (1995). Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze tolerant centipede Lithobius forficatus. Journal of Experimental Zoology 272, 249–257.
Tursman, D., Duman, J. G., and Knight, C. A. (1994). Freeze tolerance adaptations in the centipede Lithobius forficatus. Journal of Experimental Zoology 268, 347–353.
Tyshenko, M. G., Doucet, D., Davies, P. L., and Walker, V. K. (1997). The antifreeze potential of spruce budworm thermal hysteresis protein. Nature Biotechnology 15, 887–890.
Urrutia, M. E., Duman, J. G., and Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica et Biophysica Acta 1121, 199–206.
Vanketesh, S. and Dayanada, C. (2008). Properties, potentials and prospects of antifreeze proteins. Critical Reviews of Biotechnology 28, 57–82.
Walters, K. R., Serianni, A. S., Sformo, T., Barnes, B. M., and Duman, J. G. (2009). A novel thermal hysteresis-producing xylomannan antifreeze in a freeze tolerant Alaskan beetle. Proceedings of the National Academy of Sciences, USA (in press).
Walters, K. R., Sformo, T., Barnes, B. M., and Duman, J. G. (2009). Freeze tolerance of an Arctic Alaska stonefly. Journal of Experimental Biology 212, 305–312.
Wang, L. and Duman, J. G. (2005). Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities. Biochemistry 44, 10305–10312.
Wang, L. and Duman, J. G. (2006). A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemistry 45, 1278–1284.
Wharton, D. A., Pow, B., Kristensen, M., Ramlov, H. R., and Marshall, C. J. (2009). Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach Celatoblatta quinquemaculata. Journal of Insect Physiology 55, 27–31.
Wilson, P. W. (1993). Explaining thermal hysteresis by the Kelvin effect. CryoLetters 14, 31–36.
Wolber, P. K. and Warren, G. J. (1989). Bacterial ice nucleating proteins. Trends in Biochemical Sciences 14, 179–182.
Worral, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lilliford, P., Telford, J., Holt, C., and Bowles, D. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282, 115–117.
Wu, D. W. and Duman, J. G. (1991). Activation of antifreeze proteins from the beetle Dendroides canadensis. Journal of Comparative Physiology B, 161, 279–283.
Wu, D. W., Duman, J. G., and Xu, L. (1991). Enhancement of insect antifreeze protein activity by antibodies. Biochimica et Biophysica Acta 1076, 416–420.
Xu, L. and Duman, J. G. (1991) Involvement of juvenile hormone in the induction of antifreeze protein production by fat body in larvae of the beetle Dendroides canadensis. Journal of Experimental Zoology 258, 288–293.
Xu, L., Duman, J. G., Goodman, W. G., and Wu, D. W. (1992) A role for juvenile hormone in the induction of antifreeze protein production by the fat body in the beetle Tenebrio molitor. Comparative Biochemistry and Physiology 101B, 105–109.
Yeung, K. L., Wolf, E. E., and Duman, J. G. (1991). A scanning tunneling microscopy study of an insect lipoprotein ice nucleator. Journal of Vacuum Science and technology B 9, 1197–1201.
Zachariassen, K. E. (1982). Nucleating agents in cold-hardy insects. Comparative Physiology and Biochemistry 73A, 557–562.
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65, 799–832.
Zachariassen, K. E., DeVries, A. L., Hunt, B., and Kristiansen, E. (2002). Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology 44, 132–141.
Zachariassen, K. E. and Hammel, H. T. (1976). Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262, 285–287.
Zachariassen K. E. and Husby, J. A. (1982). Antifreeze effects of thermal hysteresis agents protect highly supercooled insects. Nature 298, 865–867.
Zachariassen, K. E., Kristansen, E., Pedersen, S. A., and Hammel, H. T. (2004). Ice nucleation in solutions and freezing in insects – homogeneous or heterogeneous? Cryobiology 48, 309–321.
Zachariassen, K. E., Li, N. G., Laugsand, A. E., Kristiansen, E., and Pedersen, S. A. (2008). Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. Journal of Comparative Physiology B 178, 977–984.
Zettel, J. (1984). Cold hardiness strategies and thermal hysteresis in Collembola. Revue d'Ecologie de Biologie du Sol 21, 189–203.
Zhang, D. Q., Liu, B., Feng, D. R., He, Y. M., and Wang, J. F. (2004). Expression and purification of antifreeze activity of carrot antifreeze protein and its mutants. Protein Expression and Purification 35, 257–263.

Reference Title: References

Reference Type: reference-list

Bar-Or, C., Czosnek, H., and Koltai, H. (2006). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends in Genetics 23, 200–207.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 57, 289–300.
Burton, V., Mitchell, H. K., Young, P., and Peterson, N. S. (1988). Heat shock protection against cold stress of Drosophila melanogaster. Molecular and Cellular Biology 8, 3550–3552.
Chen, C.-P. and Denlinger, D. L. (1990). Activation of phosphorylase: response to cold and heat stress in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 36, 549–554.
Chen, C.-P. and Denlinger, D. L. (1992). Reduction of cold injury in flies using an intermittent pulse of high temperature. Cryobiology 29, 138–143.
Churchill, T. A. and Storey, K. B. (1989). Intermediary energy metabolism during dormancy and anoxia in the land snail, Otala lactea. Physiological Zoology 62, 1015–1030.
Colinet, H., Nguyen, T. T. A., Cloutier C., Michaud, D., and Hance, T. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology 37, 1177–1188.
Cook, D., Fowler, S., Fiehn, O., and Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences, USA 101, 15243–15248.
Denlinger, D. L., Joplin K. H., Chen, C.-P., and Lee, R. E. (1991). Cold shock and heat shock. In Insects at Low Temperature, ed. Lee, R. E. Jr., and D. L. Denlinger: New York: Chapman and Hall, pp. 131–148.
Denlinger, D. L., Rinehart, J. P., and Yocum, G. D. (2001). Stress proteins: a role in diapause? In Insect Timing: Circadian Rhythmicity to Seasonality, ed. Denlinger, D. L., Giebultowicz J., and Saunders, D. S. Amsterdam: Elsevier Science, pp. 155–171.
Fields, P. G., Fleurt-Lessard, F., Lavenseau, L., Febvay, G., Peypelut, L., and Bonnot, G. (1998). The effect of cold acclimation and deacclimation on cold tolerance, trehalose, and free amino acid levels in Sitophilus granaries and Cryptolestes ferrugineus (Coleoptera). Journal of Insect Physiology 44, 955–965.
Fujiwara, Y. and Denlinger, D. L. (2007). p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Journal of Experimental Biology 210, 3295–3300.
Goto, M., Fujii, M., Suzuki, K., and Sakai, M. (1998). Factors affecting carbohydrate and free amino acid content in overwintering larvae of Enosima leucotaeniella. Journal of Insect Physiology 44, 87–94.
Goto, M., Sekine, Y., Out, H., Hujikura, M., and Suzuki, K. (2001). Relationships between cold hardiness and diapause, and between glycerol and free amino acid contents in overwintering larvae of the oriental corn borer, Ostrinia furncalis. Journal of Insect Physiology 47, 157–165.
Goto, S. G. (2001a). Expression of Drosophila homologue of senescence marker protein-30 during cold acclimation. Journal of Insect Physiology 46, 1111–1120.
Goto, S. G. (2001b). A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene 270, 259–264.
Hayward, S., Pavlides, S. C., Tammariello, S. P., Rinehart, J. P., and Denlinger, D. L. (2005). Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. Journal of Insect Physiology 51, 631–640.
Holden, C. P. and Storey, K. B. (1993). Purification and characterization of glycogen phosphorylase A and B from the freeze-avoiding gall moth larvae Epiblema scudderiana. Journal of Comparative Physiology B 163, 499–507.
Joplin, K. H., Yocum, G. D., and Denlinger, D. L. (1990). Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 36, 825–834.
Kaplan, F., Kopka, J., Sung, D. Y., Zhao, W., Popp, M., Porat, R., and Guy, C. L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant Journal 50, 967–981.
Kelty, J. D. and Lee, R. E. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically-based thermoperiodic cycles. Journal of Experimental Biology 204, 1659–1666.
Kim, M., Robich, R. M., Rinehart, J. P., and Denlinger, D. L. (2006). Up-regulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. Journal of Insect Physiology 52, 1226–1233.
Koštál, V., Zahradníčková, H., Simek, P., and Zelený, J. (2007). Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus. Journal of Insect Physiology 53, 581–586.
Koštál, V. and Tollaroᾓ-Borovanská (2008). The 70kDa heat shock protein assists during the reparation of chilling injury in the insect, Pyrrhocoris apterus. Journal of Insect Physiology 53, 581–586.
Lee, R. E., Chen, C.-P., and Denlinger, D. L. (1987). A rapid cold-hardening process in insects. Science 238, 1415–1417.
Levin, D., Danks, H., and Barber, S. (2003). Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology 12, 281–289.
Li, A. Q., Popova-Butler, A., Dean, D. H., and Denlinger, D. L. (2007). Proteomics of the flesh fly brain reveals an abundance of up-regulated heat shock proteins during pupal diapause. Journal of Insect Physiology 53, 385–391.
Li, A. Q. and Denlinger, D. L. (2008). Rapid cold hardening elicits changes in the brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Insect Molecular Biology, 17, 565–572.
Li, Y-.P., Ding, L., and Goto, M. (2002). Enzyme activities in overwintering larvae of the shonai ecotype of the rice stem borer, Chilo suppressalis Walker. Archives of Insect Biochemistry and Physiology 50, 53–61.
Michaud, M. R. and Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. Journal of Comparative Physiology B 177, 753–763.
Michaud, M. R., Benoit, J. B., Lopez-Martinez., G., Elnitsky, M. A., Lee, R. E., and Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing, and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology 54, 645–655.
Muise, A. M. and Storey, K. B. (1997). Reversible phosphorylation of fructose 1,6-bisphosphatase mediates enzyme role in glycerol metabolism in the freeze-avoiding gall moth Epiblema scudderiana. Insect Biochemistry and Molecular Biology 27, 617–623.
Overgaard, J., Jacob, G., Sorensen, J. G., Nielsen, N. C., Loeschcke, V., and Holmstrup, M. (2005). Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology 291, R205–R212.
Overgaard, J., Malmendal, A., Sorensen, J. G., Bundy, J. G., Loeschcke, V., Niels, N. C., and Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53, 1218–1232.
Pant, R. and Gupta, D. K. (1979). The effect of exposure to low temperature on the metabolism of carbohydrates, lipids and protein in the larvae of Philosamia ricini. Journal of Biosciences 1, 441–446.
Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T., and Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology 14, 607–613.
Rinehart, J. P. and Denlinger D. L. (2000). Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Molecular Biology 9, 641–645.
Rinehart, J. P., Yocum, G. D., and Denlinger, D. L. (2000). Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochemistry and Molecular Biology 30, 515–521.
Rinehart, J. P., Li, A. Q., Yocum, G. D., Robich, R. M., Hayward, S. A. L., and Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences, USA 104, 11130–11137.
Rivers, D. B. and Denlinger, D. L. (1994). Redirection of metabolism in the flesh fly, Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with diapause status of the host. Journal of Insect Physiology 40, 207–215.
Robich, R. M., Rinehart, J. P., Kitchen, L. J., and Denlinger, D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. Journal of Insect Physiology 53, 235–245.
Sinclair, B. J., Gibbs, A. G., and Roberts, S. P. (2007). Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drososphila melanogaster. Insect Molecular Biology 16, 435–443.
Slama, K. and Denlinger, D. L. (1992). Infradian cycles of oxygen consumption in dispausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by scanning microrespirographic method. Archives of Insect Biochemistry and Physiology 20, 135–143.
Sonoda, S., Fukumoto, K., Izumi Y., Yoshida, H., and Tsumuki, H. (2006). Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Archives of Insect Biochemistry and Physiology 63, 36–47.
Storey, K. B. and Storey, J. M. (1981). Biochemical strategies of overwintering in the gall fly larva, Eurosta solidiginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. Journal of Comparative Physiology B 144, 191–199.
Storey, K. B. and Storey, J. M. (1986). Freeze tolerant frogs' cryoprotectants and tissue metabolism during freeze-thaw cycles. Canadian Journal of Zoology 64, 49–56.
Storey, J. M. and Storey, K. B. (1990). Carbon balance and energetics of cryoprotectant synthesis in a freeze-tolerant insect: responses to perturbation by anoxia. Journal of Comparative Physiology B 160, 77–84.
Storey, K. B. and Churchill, T. A. (1995). Metabolic responses to anoxia and freezing by the freeze tolerant marine mussel Geukensia demissus. Journal of Experimental Marine Biology and Ecology 188, 99–114.
Storey, K. B. and McMullen, D. C. (2004). Insect cold hardiness: new advances using gene-screening technology. In Life in the Cold: Evolution, Mechanisms, Adaptation, and Application, ed. Barnes, B. M., Carey, H. V., Biological Papers of the University of Alaska, number 27. Fairbanks, Alaska, USA. pp. 275–281.
Wistow, G. (1985). Domain structure and evolution in alpha-crystallins and small heat shock proteins. FEBS Letters 181, 1–6.
Yocum, G. D. (2000). Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology 47, 1139–1145.

Reference Title: References

Reference Type: reference-list

Aitchison, C. W. (1979a). Winter-active subnivean invertebrates in Southern Canada. II. Coleoptera. Pedobiologia 19, 1121–128.
Aitchison, C. W. (1979b). Winter-active subnivean invertebrates in Southern Canada. IV. Diptera and Hymenoptera. Pedobiologia 19, 176–182.
Allakhverdiev, S. I., Nishiyama, Y., Suzuki, I., Tasaka, Y., and Murata, N. (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of National Academy of Sciences USA 96, 5862–5867.
Amos, L. A. and Amos, W. G. (1991). Molecules of Cytoskeleton. New York: Guilford Press.
Bahrndorf, S., Petersen, S. O., Loeschke, V., Overgaard, J., and Holmstrup, M. (2007). Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology 55, 315–323.
Bashan, M., Akbas, H., and Yurdakoc, K. (2002). Phospholipid and triacylglycerol fatty acid composition of major life stages of sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae). Comparative Biochemistry and Physiology B 132, 375–380.
Bashan, M. and Cakmak, O. (2005). Changes in composition of phospholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Annals of Entomological Society of America 98, 575–579.
Bayley, M., Petersen, S. O., Knigge, T., Kohler, H.-R., and Holmstrup, M. (2001). Drought acclimation confers cold tolearnce in the soil collembolan Folsomia candida. Journal of Insect Physiology 47, 1197–1204.
Behan-Martin, M. K., Jones, G. R., Bowler, K., and Cossins, A. R. (1993). A near perfect temperature adaptation of bilayer order in vertebrate brain membranes. Biochimica & Biophysica Acta 1151, 216–222.
Bennett, V. A., Pruitt, N. L., and Lee Jr., R. E. (1997). Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. Journal of Comparative Physiology B 167, 249–255.
Block, W. (1996). Cold or drought – the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93, 325–339.
Blomquist, G. J., Borgeson, C. E., and Vundla, M. (1991). Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry 21, 99–106.
Brooks, S., Clark, G. T., Wright, S. M., Trueman, R. J., Postle, A. D., Cossins, A. R., and Maclean, N. M. (2002). Electrospray ionisation mass spectrometric analysis of lipid restructuring in the carp (Cyprinus carpio L.) during cold acclimation. Journal of Experimental Biology 205, 3989–3997.
Browse, J., Miquel, M., McConn, M., and Wu, J. (1994). Arabidopsis mutants and genetic approaches to the control of lipid composition. In Temperature Adaptations of Biological Membranes, ed. A. R. Cossins. London and Chapel Hill: Portland Press, pp. 141–154.
Canavoso, L. E., Jouni, Z. E., Karnas, K. J., Pennington, J. E., and Wells, M. A. (2001). Fat metabolism in insects. Annual Review of Nutrition 21, 23–46.
Chamberlain, P. M. and Black, H. I. J. (2005). Fatty acid compositions of Collembola: unusually high proportions of c05-88635 polyunsaturated fatty acids in a terrestrial invertebrate. Comparative Biochemistry and Physiology B 140, 299–307.
Chapman, D. (1975). Phase transitions and fluidity characteristics of lipids and cell membranes. Quarterly Reviews of Biophysics 8, 185–235.
Clegg, J. S. (2001). Cryptobiosis – a peculiar state of biological organization. Comparative Biochemistry and Physiology B 128, 613–624.
Colinet, H., Nguyen, T. T. A., Cloutier, C., Michaud, D., and Hance, T. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology 37, 1177–1188.
Cook, H. W. and McMaster C. R. (2002). Fatty acid desaturation and chain elongation in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, ed. D. E. Vance and J. E. Vance. Amsterdam: Elsevier, pp. 181–204.
Cossins, A. R. (1977). Adaptations of biological membranes to temperature – the effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes. Biochimica & Biophysica Acta 470, 395–411.
Cossins, A. R. ed. (1994). Temperature Adaptation of Biological Membranes. London and Chapel Hill: Portland Press.
Cossins, A. R. and Bowler, K. (1987). The Temperature Biology of Animals. London: Chapman and Hall.
Cossins, A. R. and Macdonald, A. G. (1989). The adaptation of biological membranes to temperature and pressure: Fish from the deep and cold. Journal of Bioenergetics and Biomembranes 21, 115–135.
Cossins, A. R., Murray P. A. Gracey, A. Y., Logue, J., Polley, S., Caddick, M., Brooks, S., Postle, T., and Maclean, N. (2002). The role of desaturases in cold-induced lipid restructuring. Biochemical Society Transactions 30, 1082–1086.
Cossins, A. R. and Prosser, C. L. (1978). Evolutionary adaptation of membranes to temperature. Proceedings of National Academy of Sciences USA 75, 2040–2043.
Cossins, A. R. and Sinensky, M. (1984). Adaptations of membranes to temperature, pressure and exogenous lipids. In Physiology of Membrane Fluidity, 2nd edn, ed. M. Shinitzky. Boca Raton: CRC Press, pp. 1–20.
Coyne, J. A. and Elwyn, S. (2006). Does the desaturase-2 locus in Drosophila melanogaster cause adaptation and sexual isolation? Evolution 60, 279–291.
Crockett, E. L. and Hazel, J. R. (1995). Cholesterol levels explain inverse compensation of membrane order in brush border but not homeoviscous adaptation in basolateral membranes from the intestinal epithelia of rainbow trout. Journal of Experimental Biology 198, 1105–1113.
Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L., and Wicker-Thomas, C. (2000). A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proceedings of National Academy of Sciences USA 97, 9449–9454.
Dowhan, W. (1997). Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annual Reviews of Biochemistry 66, 199–232.
Downer, R. G. H. and Kallapur, V. L. (1981). Temperature-induced changes in lipid composition and transition temperature of flight muscle mitochondria of Schistocerca gregaria. Journal of Thermal Biology 6, 189–194.
Egiersdorff, S. and Kacperska, A. (2001). Low temperature effects on growth and actin cytoskeleton organization in suspension cells of winter oilseed rape. Plant Cell and Tissue Organ Cultures 40, 17–25.
Eigenheer, A. L., Young, S., Blomquist, G. J., Borgeson, C. E., Tillman, J. A., and Tittiger, C. (2002). Isolation and molecular characterization of Musca domestica delta-9 desaturase sequences. Insect Molecular Biology 11, 533–542.
Garlick, K. M. and Robertson, R. M. (2007). Cytoskeletal stability and heat-shock mediated thermoprotection of central pattern generation in Locusta migratoria. Comparative Biochemistry and Physiology A 147, 344–348.
Gonzales, M. S. and Brenner, R. R. (1999). Fatty acid Δ9-desaturation in the Triatoma infestans fat body: Response to food and trehalose administration. Lipids 34, 1199–1205.
Greenberg, A. J., Moran, J. R., Coyne, J. A., and Wu, C.-I. (2003). Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302, 1754–1757.
Haines, T. H. (2001). Do sterols reduce proton and sodium leaks through lipid bilayers? Progress in Lipid Research 40, 299–324.
Hanson, B. J., Cummins, K. W., Cargill, A. S., and Lowry, R. R. (1985). Lipid content, fatty acid composition, and the effect of diet on fats of aquatic insects. Comparative Biochemistry and Physiology B, 80, 257–276.
Harwood, J. L., Jones, A. L., Perry, H. J., Rutter, A. J., Smith, K. L., and Williams, M. (1994). Changes in plant lipids during temperature adaptation. In Temperature Adaptation of Biological Membranes. London and Chapel Hill: Portland Press, pp. 107–118.
Hazel, J. R. (1989). Cold adaptation in ectotherms: Regulation of membrane function and cellular metabolism. Advances in Comparative and Environmental Physiology 4, 1–50.
Hazel, J. R. (1995). Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annual Reviews of Physiology 57, 19–42.
Hazel, J. R. and Williams, E. E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research 29, 167–227.
Hayward, S. A. L., Murray, P. A., Gracey, A. Y., and Cossins, A. R. (2007). Beyond the lipid hypothesis: Mechanisms underlying phenotypic plasticity in inducible cold tolerance. In Molecular Aspects of the Stress Response: Chaperons, Membranes and Networks, ed. P. Csermely and L. Vigh. Austin: Landes Bioscience, pp. 132–142.
Henriques, V. and Hansen, C. (1901). Vergleichende Untersuchungen über die chemische Zusammenstzung des tierishen Fettes. Skandinawischen Archive für Physiologie 11, 151–165.
Hodková, M., Berková, P., and Zahradníčková, H. (2002). Photoperiodic regulation of the phospholipid molecular species composition in thoracic muscles and fat body of Pyrrhocoris apterus (Heteroptera) via an endocrine gland, corpus allatum. Journal of Insect Physiology 48, 1009–1019.
Hodková, M., Šimek, P., Zahradníčková, H., and Nováková, O. (1999). Seasonal changes in the phospholipid composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology 29, 367–376.
Holmstrup, M., Hedlund, K., and Boriss, H. (2002). Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology 48, 961–970.
Huang, C.-H., Lin, H., Li, S., and Wang, G. (1997). Influence of the positions of cis double bonds in the sn-2 acyl chain of phosphatidylethanolamine on the bilayer's melting behavior. Journal of Biological Chemistry 272, 21917–21926.
Jurenka, R. A., de Renobales, M., and Blomquist, G. J. (1987). De novo synthesis of polyunsaturated fatty acids in the cockroach Periplaneta americana. Archives of Biochemistry and Biophysics 255, 184–193.
Kayukawa, T., Chen, B., Hoshizaki, S., and Ishikawa, Y. (2007). Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochemistry and Molecular Biology 37, 1160–1167.
Kayukawa, T., Chen, B., Miyazaki, S., Itoyama, K., Shinoda, T., and Ishikawa, Y. (2005). Expression of mRNA for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress & Chaperones 10, 204–210.
Kim, M., Robich, R. M., Rinehart, J. P., and Denlinger, D. L. (2006). Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. Journal of Insect Physiology 52, 1226–1233.
Kirk, G. L., Gruner, S. M., and Stein, D. L. (1984). A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems. Biochemistry 23, 1093–1102.
Knipple, D. C., Rosenfield, C.-L., Nielsen, R., You, K. M., and Jeong, S. E. (2002). Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 162, 1737–1752.
Koštál, V. (2006). Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113–127.
Koštál, V., Berková, P., and Šimek, P. (2003). Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology B 135, 407–419.
Koštál, V. and Šimek, P. (1998). Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. Journal of Comparative Physiology B 168, 453–460.
Koštál, V., Vambera, J., and Bastl, J. (2004). On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology 207, 1509–1521.
Kristiansen, E. and Zachariassen, K. E. (2001). Effect of freezing on the transmembrane distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera, Xylophagidae). Journal of Insect Physiology 47, 585–592.
Kukal, O., Duman, J. G., and Serianni, A. S. (1989). Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. Journal of Comparative Physiology B 158, 661–671.
Kukal, O. and Kevan, P. G. (1987). The influence of parasitism on the life history of a high arctic insect, Gynaephora groenlandica (Wocke) (Lepidoptera: Lymantridae). Canadian Journal of Zoology 65, 156–163.
Lee, K.-Y., Hiremath, S., and Denlinger, D. L. (1998). Expression of actin in the central nervous system is switched off during diapause in the gypsy moth, Lymantria dispar. Journal of Insect Physiology 44, 221–226.
Lee, R. E. (1991). Principles of insect low temperature tolerance. In Insects at Low Temperature, ed. R. E. Lee and D. L. Denlinger. New York and London: Chapman and Hall, pp. 17–46.
Lee, R. E., Chen, C. P., and Denlinger, D. L. (1987). A rapid cold-hardening process in insects. Science 238, 1415–1417.
Lee, R. E., Damoradan, K., Yi, S.-X., and Lorigan, G. A. (2006). Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459–463.
Levin, D. B., Danks, H. V., and Barber, S. A. (2003). Variations in mitochondrial DNA and gene transcription in freeze-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology 12, 281–289.
Lewis, R. N. A. H., Mannock, D. A., McElhaney, R. N., Turner, D. C., and Gruner, S. M. (1989). Effect of fatty-acyl chain length and structure on the lamellar gel to liquid-crystalline and lamellar to reverse hexagonal phase transitions of aquaeous phosphatidylethanolamine dispersions. Biochemistry 28, 541–548.
Li, A. Q., Popova-Butler, A., Dean, D. H., and Denlinger, D. L. (2007). Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. Journal of Insect Physiology 53, 385–391.
Li, S., Wang, G., Lin, H., and Huang, C.-H. (1998). Calorimetric studies of phosphatidylethanolamines with saturated sn-1 and dienoic sn-2 acyl chains. Journal of Biological Chemistry 273, 19009–19018.
Liang, P. and MacRae. T. H. (1997). Molecular chaperones and cytoskeleton. Journal of Cell Science 110, 1431–1440.
Liu, W., Ma, P. W. K., Marsella-Herrick, P., Rosenfield, C. L., Knipple, D. C., and Roelofs, W. (1999). Cloning and functional expression of a cDNA encoding a metabolic acyl-CoA delta 9-destaurase of the cabbage looper moth, Trichoplusia ni. Insect Biochemistry and Molecular Biology 29, 435–443.
Macartney, A., Maresca, B., and Cossins, A. R. (1994). Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. In The Temperature Biology of Animals. London: Chapman and Hall, pp. 129–139.
McElhaney, R. N. (1984). The relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasms to grow and survive at various temperatures. Biomembranes 12, 249–276.
McMullen, D. C. and Storey, K. B. (2008). Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochemistry and Molecular Biology 38, 367–373.
Michaud, M. R. and Denlinger, D. L. (2006). Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 52, 1073–1082.
Mounier, N. and Arrigo, A. P. (2002). Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress & Chaperones 7, 167–176.
Murata, N. and Yamaya, J. (1984). Temperature-dependent phase behavior of phosphatidylglycerols from chilling sensitive and chilling-resistant plants. Plant Physiology 74, 1016–1024.
Murray, P., Hayward, S. A. L., Govan, G. G., Gracey, A. Y., and Cossins, A. R. (2007). An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proceedings of National Academy of Sciences USA 104, 5489–5494.
Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S. (1974). Studies on Tetrahymena membranes: temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study. Biochemica & Biophysica Acta 367, 134–147.
Ohtsu, T., Kimura, M. T., and Katagiri, C. (1998). How Drosophila species acquire cold tolerance. Qualitative changes of phospholipids. European Journal of Biochemistry 252, 608–611.
Ohtsu, T., Katagiri, C., and Kimura, M. T. (1999). Biochemical aspects of climatic adaptations in Drosophila curviceps, D. immigrans and D. albomicans (Diptera: Drosophilidae). Environmental Entomology 28, 968–972.
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschke, V., and Holmstrup M. (2005). Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology 51, 1173–1182.
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschke, V., and Holmstrup M. (2006). Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology 31, 328–335.
Overgaard, J., Tomčala, A., Sørensen, J. G., Holmstrup, M., Krogh, P. H., Šimek, P., and Koštál, V. (2008). Effects of acclimation temperature on thermal tolerance and membrane phosholipid composition in the fruit fly Drosophila melanogaster. Journal of Insect Physiology 54, 619–629.
Pruitt, N. L. and Lu, C. (2008). Seasonal changes in phospholipid class and class-specific fatty acid composition associated with the onset of freeze tolerance in third-instar larvae of Eurosta solidaginis. Physiological and Biochemical Zoology 81, 226–234.
Pucciarelli, S, Ballarini, P., and Miceli, C. (1997). Cold-adapted microtubules: characterization of tubulin posttranslational modifications in the Antarctic ciliate Euplotes focardii. Cell Motility and Cytoskeleton 38, 329–340.
Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T., and Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology 14, 607–613.
Ramesha, C. S. and Thompson, G. A. (1983). Cold stress induces in situ phospholipid molecular species changes in cell surface membranes. Biochimica & Biophysica Acta 731, 251–260.
Riddervold, M. H., Tittiger, C., Blomquist, G. J., and Borgeson, C. E. (2002). Biochemical and molecular characterization of house cricket (Acheta domesticus, Orthoptera: Gryllidae) delta 9 desaturase. Insect Biochemistry and Molecular Biology 32, 1731–1740.
Rinehart, J. P., Li, A. Q., Yocum, G. D., Robich, R. M., Hayward, S. A. L., and Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of National Academy of Sciences USA 104, 11130–11137.
Robich, R. M., Rinehart, J. P., Kitchen, L. J., and Denlinger, D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. Journal of Insect Physiology 53, 235–245.
Schunke, M. and Wodtke, E. (1983). Cold-induced increase of delta-nine and delta-six desaturase activities in endoplasmic membranes of carp liver. Biochimica and Biophysica Acta 734, 70–75.
Shreve, S. M., Yi, S.-X., and Lee, R. E. (2007). Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. Cryo-Letters 28, 33–37.
Sinensky, M. (1974). Homeoviscous adaptation – a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of National Academy of Sciences USA 71, 522–525.
Singer, M. (1981). Permeability of phosphatidylcholine bilayers. Chemistry and Physics of Lipids 28, 253–267.
Šlachta, M., Berková, P., Vambera, J., and Koštál, V. (2002). Physiology of cold-acclimation in non-diapausing adults of Pyrrhocoris apterus (Heteroptera). European Journal of Entomology 99, 181–187.
Sørensen, P. G. (1993). Changes of the composition of phospholipids, fatty acids and cholesterol from the erythrocyte plasma membrane from flounders (Platichthys flesus L.) which were acclimated to high and low temperatures in aquaria. Comparative Biochemistry and Physiology B 106, 907–912.
Stanley-Samuelson, D. W. and Dadd, R. H. (1983). Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochemistry 13, 549–558.
Stanley-Samuelson, D. W., Jurenka, R. A., Cripps, C., Blomquist, G. J., and de Renobales, M. (1988). Fatty acids in insects: Composition, metabolism and biological significance. Archives of Insect Biochemistry and Physiology 9, 1–33.
Storey, K. B. and Storey, J. M. (2007). Tribute to P. L. Lutz: putting life on “pause” – molecular regulation of hypometabolism. Journal of Experimental Biology 210, 1700–1714.
Suutari, M., Rintamaki, A., and Laakso, S. (1997). Membrane phospholipids in temperature adaptation of Candida utilis: alterations in fatty acid chain length and unsaturation. Journal of Lipid Research 38, 790–794.
Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., and Murata, N. (1996). Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO Journal 15, 6416–6425.
Thompson, S. N. (1973). A review and comparative characterization of the fatty acid composition of seven insect orders. Comparative Biochemistry and Physiology 45, 467–482.
Tiku, P. E., Gracey, A. Y., Macartney, A. I., Beynon, R. J., and Cossins, A. R. (1996). Cold-induced expression of Δ9-desaturase in carp by transcriptional and posttraslational mechanisms. Science 271, 815–818.
Tomčala, A., Tollarová, M., Overgaard, J., Šimek, P., and Koštál, V. (2006). Seasonal acquisition of chill-tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Journal of Experimental Biology 209, 4102–4114.
Wang, G., Li, S., Lin, H., Brumbaugh, E. E., and Huang, C.-H. (1999). Effects of various numbers and positions of cis double bonds in the sn-2 acyl chain of phosphatidylethanolamine on the chain-melting temperature. Journal of Biological Chemistry 274, 12289–12299.
Wicker-Thomas, C., Henriet, C., and Dallerac, R. (1997). Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 27, 963–972.
Wodtke, E. and Cossins, A. R. (1991). Rapid cold-induced changes of membrane order and Δ9-desaturase actitivy in endoplasmic reticulum of carp liver: A time-course study of thermal acclimation. Biochimica and Biophysica Acta 1064, 343–350.
Yi, S.-X. and Lee, R. E. (2005). Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis. Journal of Experimental Biology 208, 1895–1904.
Yocum, G. D., Kemp, W. P., Bosch, J., and Knoblett, J. M. (2005). Temporal variation in overwintering gene expression and respiration in the solitary bee Megachile rotundata. Journal of Insect Physiology 51, 621–629.
Zachariassen, K. E., Kristiansen, E., and Pedersen, S. A. (2004). Inorganic ions in cold-hardiness. Cryobiology 48, 126–133.

Reference Title: References

Reference Type: reference-list

Baird, N. A., Turnbull, D. W. and Johnson, E. A. (2006). Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. Journal of Biological Chemistry 281, 38675–38681.
Bennett, V. V., Pruitt, N. L. and Lee, R. E. (1997). Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. Journal of Comparative Physiology B 167, 249–255.
Burg, M. B. (1995). Molecular basis of osmotic regulation. American Journal of Physiology 268, F983–F996.
Burmester, T. and Hankeln T. (2007). The respiratory proteins of insects. Journal of Insect Physiology 53, 285–294.
Cadenas, E. (1995). Mechanism of oxygen activation and reactive oxygen species detoxification. In Oxidative Stress and Antioxidant Defenses in Biology, ed. S. Ahmad. New York: Chapman & Hall, pp. 1–61.
Chen, B., Kayukawa, T., Monteiro, A. and Ishikawa, Y. (2006). Cloning and characterization of the HSP70 gene and its expression in response to diapauses and thermal stress in the onion maggot, Delia antiqua. Journal of Biochemistry and Molecular Biology 39, 749–58.
Churchill, T. A. and Storey, K. B. (1989). Metabolic consequences of rapid cycles of temperature change for freeze avoiding versus freeze tolerant insects. Journal of Insect Physiology 35, 579–586.
Danks, H. V. (1971). Overwintering in some north temperate and arctic Chironomidae. Canadian Entomologist 103, 1875–1901.
Danks, H. V. (2007). How aquatic insects live in cold climates. Canadian Entomologist 139, 443–447.
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology 47, 93–122.
English, T. E. and Storey, K. B. (2003). Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod, Littorina littorea. Journal of Experimental Biology 206, 2517–2524.
Feng, Q. L., Davey, K. G., Pang, A. S. D., Ladd, T. R., Retnakaran, A., Tomkins, B. L., Zheng, S. and Palli, S. R. (2001). Developmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana: developmental expression and the induction by various stresses. Journal of Insect Physiology 47, 1–10.
Fielenbach, N. and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes and Development 22, 2149–2165.
Fridovich, I. (1998). Oxygen toxicity: a radical explanation. Journal of Experimental Biology 201, 1203–1209.
Furusawa, T., Shikata, M. and Yamashita, O. (1982). Temperature dependent sorbitol utilization in diapause eggs of the silkworm, Bombyx mori. Journal of Comparative Physiology B 147, 21–26.
Gorr, T. A., Gassmann, M. and Wappner, P. (2006). Sensing and responding to hypoxia via HIF in model invertebrates. Journal of Insect Physiology 52, 349–364.
Gulevsky, A. K., Relina, L. I., and Grishchenkova, Y. A. (2006). Variations of the antioxidant system during development of the cold-tolerant beetle, Tenebrio molitor. Cryo-Letters 27, 283–290.
Harrison, J., Frazier, M. R., Henry, J. R., Kaiser, A., Klok, C. J. and Rascón, B. (2006). Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology and Neurobiology 154, 4–17.
Hentze, M. W., Muckenthaler, M. U. and Andrews, N. C. (2004). Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297.
Hermes-Lima, M. (2004). Oxygen in biology and biochemistry: role of free radicals. In Functional Metabolism: Regulation and Adaptation, ed. K. B. Storey. Hoboken, N. J.: Wiley-Liss, pp. 319–368.
Hermes-Lima, M. and Zenteno-Savín, T. (2002). Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comparative Biochemistry and Physiology 133, 537–556.
Hermes-Lima, M., Storey, J. M. and Storey, K. B. (2001). Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In Cell and Molecular Responses to Stress, ed. K. B. Storey and J. M. Storey. vol. 2: Protein Adaptations and Signal Transduction. Amsterdam: Elsevier Press, pp. 263–287.
Hoback, W. W. and Stanley, D. W. (2001). Insects in hypoxia. Journal of Insect Physiology 47, 533–542.
Hochachka, P. W. and Somero, G. N. (1984) Biochemical Adaptation. Princeton, N. J.: Princeton University Press.
Hochachka, P. W., Buck, L. T., Doll, C. J. and Land, S. C. (1996). Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences, USA 93, 9493–9498.
Irwin, J. T. and Lee, R. E. (2002). Energy and water conservation in frozen vs. supercooled larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae). Journal of Experimental Zoology 292, 345–350.
Irwin, J. T., Bennett, V. A. and Lee, R. E. (2001). Diapause development in frozen larvae of the goldenrod gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae). Journal of Comparative Physiology B 171, 181–188.
Joanisse, D. R. and Storey, K. B. (1994). Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochemistry and Molecular Biology 24, 145–150.
Joanisse, D. R. and Storey, K. B. (1996a). Fatty acid content and enzymes of fatty acid metabolism in overwintering cold-hardy gall insects. Physiological Zoology 69, 1079–1095.
Joanisse, D. R. and Storey, K. B. (1996b). Oxidative stress and antioxidants during overwintering in larvae of cold-hardy goldenrod gall insects. Journal of Experimental Biology 199, 1483–1491.
Joanisse, D. R. and Storey, K. B. (1998). Oxidative stress and antioxidants in stress and recovery of cold-hardy insects. Insect Biochemistry and Molecular Biology 28, 23–30.
Jovanovic-Galovic, A., Blagojevic, D. P., Grubor-Lajsic, G., Worland M. R. and Spasic, M. B. (2007). Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hubn.). Archives of Insect Biochemistry and Physiology 64, 111–119.
Kayukawa, T., Chen, B., Hoshizaki, S. and Ishikawa Y. (2007). Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochemistry and Molecular Biology 37, 1160–1167.
Kukal, O., Duman, J. G. and Seriani, A. S. (1989). Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. Journal of Comparative Physiology B 158, 661–671.
Larade, K. and Storey, K. B. (2004). Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. Journal of Experimental Biology 207, 1353–1360
Lavista-Llanos, S., Centanin, L., Irisarri, M., Russo, D. M., Gleadle, J. M. Bocca, S. N., Muzzopappa, M., Ratcliffe, P. J. and Wappner, P. (2002). Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Molecular and Cellular Biology 22, 6842–6853.
Lee, K. S., Kim, B. Y., Kim, H. J., Seo, S. J., Yoon, H. J., Choi, Y. S., Kim, I., Han, Y. S., Je, Y. H., Lee, S. M., Kim, D. H., Sohn, H. D. and Jin, B. R. (2006). Transferrin inhibits stress-induced apoptosis in a beetle. Free Radicals in Biology and Medicine 41, 1151–1161.
Levin, D. B., Danks, H. V. and Barber, S. A. (2003). Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology 12, 281–289.
Lighton, J. R. and Schilman, P. E. (2007). Oxygen reperfusion damage in an insect. PLoS ONE 2(12):e1267.
Lundheim, R. and Zachariassen, K. E. (1993). Water balance of overwintering beetles in relation to strategies for cold tolerance. Journal of Comparative Physiology B 163, 1–4.
McMullen, D. C. (2004). Molecular and biochemical adaptations conferring cold hardiness in two gall insects. Ph. D. thesis, Carleton University.
McMullen, D. C. and Storey, K. B. (2008a). Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochemistry and Molecular Biology 38, 367–373.
McMullen, D. C. and Storey, K. B. (2008b). Suppression of Na+K+-ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect. Journal of Insect Physiology 54, 1023–1027.
Michaud, R. M. and Denlinger, D. L. (2006). Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 52, 1073–1082.
Morin, P., McMullen, D. C. and Storey, K. B. (2005). HIF-1α involvement in low temperature and anoxia survival by a freeze tolerant insect. Molecular and Cellular Biochemistry 280, 99–106.
Morin, P. and Storey, K. B. (2008). Mammalian hibernation: differential gene expression and novel application of epigenetic controls. International Journal of Developmental Biology 53, 433–442.
Nambu, J. R., Chen, W., Hu, S. and Crews, S. T. (1996). The Drosophila melanogaster similar bHLH-PAS gene encodes a protein related to human hypoxia inducible factor 1 alpha and Drosophila single-minded. Gene 172, 249–254.
Pedersen, S. A., Kristiansen, E., Andersen, R. A. and Zachariassen, K. E. (2007). Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera). Comparative Biochemistry and Physiology C 145, 457–463.
Pedersen, S. A., Kristiansen, E., Hansen, B. H., Andersen, R. A. and Zachariassen, K. E. (2006). Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. Journal of Insect Physiology 52, 846–853.
Redecker, B. and Zebe, E. (1988). Anaerobic metabolism in aquatic insect larvae – studies on Chironomus thummi and Culex pipiens. Journal of Comparative Physiology B 158, 307–315.
Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S. and Woo, H. A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current Opinion in Cell Biology 17, 183–189.
Rickards, J., Kelleher, M. J. and Storey, K. B. (1987). Strategies of freeze avoidance in larvae of the goldenrod gall moth, Epiblema scudderiana: winter profiles of a natural population. Journal of Insect Physiology 33, 443–450.
Rinehart, J. P., Li, A., Yocum, G. D., Robich, R. M., Hayward, S. A. and Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences, USA 104, 11130–11137.
Roelofs, D., Aarts, M. G. M., Schat, H. and van Straalen, N. M. (2008). Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Functional Ecology 22, 8–18.
Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews on Cancer 3, 721–732.
Sim, C. and Denlinger, D. L. (2008). Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proceedings of the National Academy of Sciences, USA 105, 6777–6781.
Sonoda, S., Fukumoto, K., Izumi, Y., Yoshida, H. and Tsumuki, H. (2006). Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Archives of Insect Biochemistry and Physiology 63, 36–47.
Storey, K. B. (2004). Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48, 134–145.
Storey, K. B. (2006). Reptile freeze tolerance: metabolism and gene expression. Cryobiology 52, 1–16.
Storey, J. M. and Storey, K. B. (1985). Freezing and cellular metabolism in the gall fly larva, Eurosta solidaginis. Journal of Comparative Physiology B 155, 333–337.
Storey, K. B. and Storey, J. M. (1990a). Carbon balance and energetics of cryoprotectant synthesis in a freeze-tolerant insect: responses to perturbation by anoxia. Journal of Comparative Physiology B 160, 77–84.
Storey, K. B. and Storey, J. M. (1990b). Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Quarterly Review of Biology 65, 145–174.
Storey, K. B. and Storey, J. M. (1991). Biochemistry of cryoprotectants. In Insects at Low Temperature, ed. R. E. Lee and D. Denlinger. New York: Chapman and Hall, pp. 64–93.
Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Annual Review of Ecology and Systematics 27, 365–386.
Storey, K. B. and Storey, J. M. (2004). Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews of the Cambridge Philosophical Society 79, 207–233.
Storey, K. B. and Storey, J. M. (2007). Putting life on “pause” – molecular regulation of hypometabolism. Journal of Experimental Biology 210, 1700–1714.
Storey, K. B. and Storey, J. M. (1981). Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. Journal of Comparative Physiology B 144, 191–199.
Viarengo, A., Burlando, B., Cavaletto, M., Marchi, B., Ponzano, E. and Blasco, J. (1999). Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. American Journal of Physiology 277, R1612–R1619.
Woodman, J. D., Cooper, P. D. and Haritos, V. S. (2007). Cyclic gas exchange in the giant burrowing cockroach, Macropanesthia rhinoceros: effect of oxygen tension and temperature. Journal of Insect Physiology 53, 497–504.
Zachariassen, K. E., Kristiansen, E. and Pedersen, S. A. (2004). Inorganic ions in cold-hardiness. Cryobiology 48, 126–133.
Zachariassen, K. E., Li, N. G., Laugsand, A. E., Kristiansen, E., and Pedersen, S. A. (2008). Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. Journal of Comparative Physiology B 178, 977–984.
Zhang, G. J. (2006). Protein chaperones and winter cold hardiness in insects: heat shock proteins and glucose regulated proteins in freeze-tolerant and freeze-avoiding species. M.Sc. thesis, Department of Chemistry, Carleton University.

Reference Title: References

Reference Type: reference-list

Atkinson, T. C., Briffa, K. R., and Coope, G. R. (1987). Seasonal temperatures in Britain during the past 22 000 years, reconstructed using beetle remains. Nature 325, 587–592.
Bahrndorff, S., Petersen, S. O., Loeschcke, V., Overgaard, J., and Holmstrup, M. (2007). Differences in cold and drought tolerance of high arctic and subarctic populations of Megaphorura arctica (Collembola). Cryobiology 55, 315–323.
Bahrndorff, S., Tunnacliffe, A., Wise, M. J., McGee, B., Holmstrup, M., and Loeschcke, V. (2009). Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. Journal of Insect Physiology, 55, 210–217.
Bayley, M. and Holmstrup, M. (1999). Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Science 285, 1909–1911.
Bayley, M., Petersen, S. O., Knigge, T., Köhler, H. R., and Holmstrup, M. (2001). Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. Journal of Insect Physiology 47, 1197–1204.
Bennett, V. A., Sformo, T., Walters, K., Toien, O., Jeannet, K., Hochstrasser, R., Pan, Q. F., Serianni, A. S., Barnes, B. M., and Duman, J. G. (2005). Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause. Journal of Experimental Biology 208, 4467–4477.
Bindesbøl, A. M., Holmstrup, M., Damgaard, C., and Bayley, M. (2005). Stress synergy between environmentally realistic levels of copper and frost in the earthworm Dendrobaena octaedra. Environmental Toxicology and Chemistry 24, 1462–1467.
Bindesbøl, A. M., Bayley, M., Damgaard, C., Hedlund, K., and Holmstrup, M. (2009). Changes in membrane phospholipids as a mechanistic explanation for decreased freeze tolerance in earthworms exposed to sublethal copper concentrations. Environmental Science and Technology, 43, 5495–5500.
Block, W. (1996). Cold or drought – the lesser of two evils for terrestrial arthropods. European Journal of Entomology 93, 325–339.
Browne, J., Tunnacliffe, A., and Burnell, A. (2002). Plant desiccation gene found in a nematode. Nature 416, 38.
Chaisuksant, Y., Yu, Q. M., and Connell, D. W. (1999). The internal critical level concept of nonspecific toxicity. Reviews of Environmental Contamination and Toxicology 162, 1–41.
Clark, M. S., Thorne, M. A. S., Purac, J., Grubor-Lasjic, G., Kube, M., Reinhardt, R., and Worland, M. R. (2007). Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics 8, 475.
Crowe, J. H. and Crowe, L. M. (1986). Stabilization of membranes in anhydrobiotic organisms. In Membranes, Metabolism and Dry Organisms, ed. C. A. Leopold, London: Comstock Publishing Association, pp. 188–209
Crowe, J. H., Hoekstra, F., and Crowe, L. M. (1992). Anhydrobiosis. Annual Review of Physiology 54, 579–599.
Danks, H. V. (1971). Overwintering of some north temperate and Arctic Chironomidae. II. Chironomid biology. Canadian Entomologist 103, 1875–1910.
Elnitsky, M. A., Hayward, S. A. L., Rinehart, J. P., Denlinger, D. L., and Lee, R. E. (2008a). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211, 524–530.
Elnitsky, M. A., Benoit, J. B., Denlinger, D. L., and Lee Jr., R. E. (2008b) Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology 54, 1432–1439.
Gehrken, U. (1989). Supercooling and thermal hysteresis in the adult bark beetle, Ips acuminatus Gyll. Journal of Insect Physiology 35, 347–352.
Gehrken, U. (1992). Inoculative freezing and thermal hysteresis in the adult beetles Ips acuminatus and Rhagium inquisitor. Journal of Insect Physiology 38, 519–524.
Goto, S., Yoshida, K., and Kimura, M. (1998). Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. Journal of Insect Physiology 44, 1009–1015.
Hadley, N. (1994). Water Relations of Terrestrial Arthropods. San Diego, CA: Academic Press.
Hawes, T. C. and Bale, J. S. (2007). Plasticity in arthropod cryotypes. Journal of Experimental Biology 210, 2585–2592.
Hayward, S. A. L., Rinehart, J. P., and Denlinger, D. L. (2004). Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. Journal of Experimental Biology 207, 963–971.
Hayward, S. A. L., Rinehart, J. P., Sandro, L. H., Lee, R. E., and Denlinger, D. L. (2007). Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica. Journal of Experimental Biology 210, 836–844.
Hazel, J. R. and Williams, E. E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research 29, 167–227.
Hetz, S. K. and Bradley, T. J. (2005). Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519.
Hoffmann, A. A. and Parsons, P. A. (1991). Evolutionary Genetics and Environmental Stress. Oxford: Oxford University Press.
Højer, R., Bayley, M., Damgaard, C. F., and Holmstrup, M. (2001). Stress synergy between drought and a common environmental contaminant: studies with the collembolan Folsomia candida. Global Change Biology 7, 485–494.
Holmstrup, M. and Westh, P. (1994). Dehydration of earthworm cocoons exposed to cold: A novel cold hardiness mechanism. Journal of Comparative Physiology B 164, 312–315.
Holmstrup, M., Petersen, B. F., and Larsen, M. M. (1998). Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons. Environmental Toxicology and Chemistry 17, 897–901.
Holmstrup, M. and Sømme, L. (1998). Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology B 168, 197–203.
Holmstrup, M., Bayley, M., and Ramløv, H. (2002). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences, USA 99, 5716–5720.
Holmstrup, M., Aubail, A., and Damgaard, C. (2008). Mercury reduces cold tolerance in the springtail Folsomia candida. Comparative Biochemistry and Physiology C 148, 172–177.
Horton, D. R., Lewis, T. M., and Neven, L. G. (1996). Reduced cold-hardiness of pear psylla (Homoptera: Psyllidae) caused by exposure to external water and surfactants. Canadian Entomologist 128, 825–830.
Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., Yamaguchi, Y., Gojobori, T., and Marumo, F. (1994). Molecular-cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proceedings of the National Academy of Sciences, USA 91, 6269–6273.
Izumi, Y., Sonoda, S., Yoshida, H., Danks, H. V., and Tsumuki, H. (2006). Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Insect Physiology 52, 215–220.
Kanwisher, J. W. (1959). Histology and metabolism of frozen intertidal animals. Biological Bulletin 116, 258–264.
Kikawada, T., Nakahara, Y., Kanamori, Y., Iwata, K. I., Watanabe, M., McGee, B., Tunnacliffe, A., and Okuda, T. (2006). Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research Communications 348, 56–61.
Kosova, K., Vitamvas, P., and Prasil, I. T. (2007). The role of dehydrins in plant response to cold. Biologia Plantarum 51, 601–617.
Lee, R. E. Jr. (1991). Principles of insect low temperature tolerance. In Insects at Low Temperature, ed. R. E. Lee Jr. and D. L. Denlinger. New York: Chapman and Hall, pp. 17–46.
Lighton, J. (1994). Discontinous ventilation in terrestrial insects. Physiological Zoology 67, 142–162.
Lovelock, J. E. (1953). The mechanism of the cryoprotective effect of glycerol against freezing and thawing. Biochimica et Biophysica Acta 11, 28–36.
Lundheim, R. and Zachariassen, K. E. (1993). Water balance of over-wintering beetles in relation to strategies for cold tolerance. Journal of Comparative Physiology B 163, 1–4.
Mazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14, 251–272.
McLaughlin, S. and Percy, K. (1999). Forest health in North America: Some perspectives on actual and potential roles of climate and air pollution. Water, Air and Soil Pollution 116, 151–197.
Miller, K. (1982). Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comparative Biochemistry and Physiology 73A, 595–604.
Olsen, T. M., Sass, S. J., Li, N., and Duman, J. G. (1998). Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). Journal of Experimental Biology 201, 1585–1594.
Pedersen, P. G. and Holmstrup, M. (2003). Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli. Journal of Comparative Physiology B 173, 601–609.
Pedersen, S. A., Kristiansen, E., Hansen, B. H., Andersen, R. A., and Zachariassen, K. E. (2006). Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. Journal of Insect Physiology 52, 846–853.
Philip, B. N., Yi, S. X., Elnitsky, M. A., and Lee, R. E. (2008). Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. Journal of Experimental Biology 211, 1114–1119.
Preston, G. M., Carroll, T. P., Guggino, W. B., and Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red-cell chip28 protein. Science 256, 385–387.
Ring, R. (1982). Freezing-tolerant insects with low supercooling points. Comparative Biochemistry and Physiology 73A, 605–612.
Ring, R. and Danks, H. (1994). Desiccation and cryoprotection: Overlapping adaptations. Cryo-Letters 15, 181–190.
Ring, R. and Danks, H. (1998). The role of trehalose in cold-hardiness and desiccation. Cryo-Letters 19, 275–282.
Schmidt-Nielsen, K. (1997). Animal Physiology. New York: Cambridge University Press.
Scholander, P. F., Flagg, W., Hock, R. J., and Irving, L. (1953). Studies on the physiology of frozen plants and animals in the Arctic. Journal of Cellular and Comparative Physiology 42, 1–56.
Skovlund, G., Damgaard, C., Bayley, M., and Holmstrup, M. (2006). Does lipophilicity of toxic compounds determine effects on drought tolerance of the soil collembolan Folsomia candida? Environmental Pollution 144, 808–815.
Sømme, L. and Birkemoe, T. (1997). Cold tolerance and dehydration in Enchytraeidae from Svalbard. Journal of Comparative Physiology B 167, 264–269.
Sømme, L. and Conradi-Larsen, E.-M. (1977). Cold-hardiness of collembolans and oribatid mites from wind-swept mountain ridges. Oikos 29, 118–126.
Tammariello, S., Rinehart, J., and Denlinger, D. L. (1999). Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. Journal of Insect Physiology 45, 933–938.
Thurberg, F. P., Dawson, M. A., and Collier, R. S. (1973). Effects of copper and cadmium on osmoregulation and oxygen-consumption in two species of estuarine crabs. Marine Biology 23, 171–175.
Tunnacliffe, A., Lapinski, J., and McGee, B. (2005). A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546, 315–321.
Van Der Laak, S. (1982). Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comparative Biochemistry and Physiology 73A, 613–620.
Van Gestel, C. A. M. (1997). Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. In Ecological Risk Assessment of Contaminants in Soil, ed. N. M. Van Straalen and H. Løkke. London: Chapman and Hall, pp. 25–50.
Valko, M., Morris, H., and Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12, 1161–1208.
Wang, L. and Duman, J. G. (2005). Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities. Biochemistry 44, 10305–10312.
Weast, R. C. (1989). Handbook of Chemistry and Physics. Cleveland: CRC Press.
Wharton, D. A., Goodall, G., and Marshall, C. J. (2003). Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. Journal of Experimental Biology 206, 215–221.
Worland, M., Grubor-Lajsic, G., and Montiel, P. (1998). Partial desiccation induced by subzero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.
Wu, D. W. and Duman, J. G. (1991). Activation of antifreeze proteins from larvae of the beetle Dendroides canadensis. Journal of Comparative Physiology 161B, 279–281.
Wu, D. W., Duman, J. G., Cheng, C.-H. C., and Castellino, F. J. (1991). Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. Journal of Comparative Physiology 161B, 271–278.
Zachariassen, K. E. (1979). The mechanism of the cryoprotective effect of glycerol in beetles tolerant to freezing. Journal of Insect Physiology 25, 29–32.
Zachariassen, K. E. (1980). The role of polyols and nucleating agents in cold-hardy beetles. Journal of Comparative Physiology 140, 227–234.
Zachariassen, K. E. (1985). Physiology of cold tolerance of insects. Physiological Reviews 65, 799–832.
Zachariassen, K. E. (1991). The water relations of overwintering insects. In Insects at Low Temperature, ed. R. E. Lee Jr., and D. L. Denlinger. New York: Chapman and Hall, pp. 47–63.
Zachariassen, K. E. and Hammel, H. T. (1976). Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262, 285–287.
Zachariassen, K. E., Hammel, H. T., and Schmidek, W. (1979). Osmotically inactive water in relation to tolerance to freezing in Eleodes blanchardi beetles. Comparative Biochemistry and Physiology 63A, 203–206.
Zachariassen, K. E., Andersen, J., Maloiy, G. M. O., and Kamau, J. M. Z. (1987). Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comparative Biochemistry and Physiology 68A, 403–408.
Zachariassen, K. E. and Maloiy, G. M. O. (1989). Water balance of beetles as an indicator of environmental humidity. Fauna Norvegica 36B, 27–31.
Zachariassen, K. E. and Einarson, S. (1993). Regulation of body fluid compartments during dehydration of the tenebrionid beetle Rhytinota praelonga. Journal of Experimental Biology 182, 283–289.
Zachariassen, K. E., Kristiansen, E., and Pedersen, S. A. (2004). Inorganic ions in cold-hardiness. Cryobiology 48, 126–133.
Zelenina, M., Tritto, S., Bondar, A. A., Zelenin, S., and Aperia, A. (2004). Copper inhibits the water and glycerol permeability of aquaporin-3. Journal of Biological Chemistry 279, 51939–51943.

Reference Title: References

Reference Type: reference-list

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society, Series B 267, 739–745.
Andrewartha, H. G. and Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago: University of Chicago Press.
Angilletta, M. J., Bennett, A. F., Guderley, H., Navas, C. A., Seebacher, F. and Wilson, R. S. (2006). Coadaptation: a unifying principle in evolutionary thermal biology. Physiological and Biochemical Zoology 79, 282–294.
Angilletta, M. J., Niewiarowski, P. H. and Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27, 249–268.
Anonymous. (2007). Biodiversity-Climate Interactions: Adaptation, Mitigation and Human Livelihoods. Summary of an International Meeting held at the Royal Society 12–13 June 2007. UNEP/CBD/SBSTTA/12/INF/19, Paris.
Ayrinhac, A., Debat, V., Gibert, P., Kister, A. G., Legout, H., Moreteau, B., Vergilino, R. and David, J. R. (2004). Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Functional Ecology 18, 700–706.
Bahrndorff, S., Holmstrup, M., Petersen, H. and Loeschcke, V. (2006). Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. Journal of Insect Physiology 52, 951–959.
Bale, J. S. (1987). Insect cold hardiness: freezing and supercooling – an ecophysiological perspective. Journal of Insect Physiology 33, 899–908.
Bale, J. S. (1993). Classes of insect cold hardiness. Functional Ecology 7, 751–753.
Bale, J. S. (1996). Insect cold hardiness: A matter of life and death. European Journal of Entomology 93, 369–382
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London B 357, 849–861.
Bale, J. S., Worland, M. R. and Block, W. (2001). Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology 47, 1161–1167.
Baust, J. G. and Nishino, M. (1991). Freezing tolerance in the goldenrod gall fly (Eurosta solidaginis). In Insects at Low Temperatures, ed. R. E. Lee and D. L. Denlinger, New York: Chapman and Hall, pp. 260–275.
Baust, J. G. and Rojas, R. R. (1985). Insect cold hardiness: facts and fancy. Journal of Insect Physiology 31, 755–759.
Bonan, G. B. (2002). Ecological Climatology. Concepts and Applications. Cambridge: Cambridge University Press.
Botkin, D. B., Saxe, H., Araújo, M. B., Betts, R., Bradshaw, R. H. W., Cedhagen, T., Chesson, P., Dawson, T. P., Etterson, J. R., Faith, D. P., Ferrier, S., Guisan, A., Hansen, A. S., Hilbert, D. W., Loehle, C., Margules, C., New, M., Sobel, M. J. and Stockwell, D. R. B. (2007). Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236.
Brattstrom, B. H. (1968). Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology 24, 93–111.
Brown, C. L., Bale, J. S. and Walters, K. F. A. (2004). Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society, Series B 271, 1507–1511.
Bubliy, O. A. and Loeschcke, V. (2005). Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Journal of Evolutionary Biology 18, 789–803.
Calosi, P., Bilton, D. J. Spicer, J. I. and Atfield, A. (2008). Thermal tolerance and geographical range size in the Agrabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). Journal of Biogeography 35, 295–305.
Cannon, R. J. C. and Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews 63, 23–77.
Chatfield, C. (2004). The Analysis of Time Series. An Introduction. 6th edn. Boca Raton: Chapman and Hall/CRC.
Chown, S. L. (2001). Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology 47, 649–660.
Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2002). Physiological variation in insects: large-scale patterns and their implications. Comparative Biochemistry and Physiology B 131, 587–602.
Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2003). Physiological diversity: listening to the large-scale signal. Functional Ecology 17, 568–572.
Chown, S. L. and Gaston, K. J. (1999). Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews 74, 87–120.
Chown, S. L. and Gaston, K. J. (2008) Macrophysiology for a changing world. Proceedings of the Royal Society, Series B 275, 1469–1478.
Chown, S. L., Gaston, K. J. and Robinson, D. (2004). Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Functional Ecology 18, 159–167.
Chown, S. L., Jumbam, K. R., Sørensen, J. G. and Terblanche, J. S. (2009). Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology 23, 133–140.
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.
Chown, S. L., Slabber, S., McGeoch, M. A., Janion, C. and Leinaas, H. P. (2007). Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proceedings of the Royal Society, Series B 274, 2661–2667.
Chown, S. L., Sørensen, J. G. and Sinclair, B. J. (2008). Physiological variation and phenotypic plasticity – A response to ‘Plasticity in arthropod cryotypes’ by Hawes and Bale. Journal of Experimental Biology 211, 3353–3357.
Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology 33, 50–152.
Convey, P., Block, W. and Peat, H. J. (2003). Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology 9, 1718–1730.
Crozier, L. (2004). Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 85, 231–241.
Davis, M. B. and Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679.
Dawson, W. R. (2005). George A. Bartholomew's contributions to integrative and comparative biology. Integrative and Comparative Biology 45, 219–230.
Deere, J. A. and Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. American Naturalist 168, 630–644.
Deere, J. A., Sinclair, B. J., Marshall, D. J. and Chown, S. L. (2006). Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology 52, 693–700.
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology 47, 93–122.
Denny, M. and Gaines, S. (2000). Chance in Biology. Using Probability to Explore Nature. Princeton: Princeton University Press.
Deutsch, C. A., Tewskbury, J. A., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105, 6668–6672.
Dillon, M. E., Cahn, L. R. Y. and Huey, R. B. (2007). Life history consequences of temperature transients in Drosophila melanogaster. Journal of Experimental Biology 210, 2897–2904.
Duman, J. G., Wu, D. W., Xu, L., Tursman, D. and Olsen, T. M. (1991). Adaptations of insects to subzero temperatures. Quarterly Review of Biology 66, 387–410.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074.
Feder, M. E. (1987). The analysis of physiological diversity: the prospects for pattern documentation and general questions in ecological physiology. In New Directions in Ecological Physiology, ed. M. E. Feder, A. F. Bennett, W. W. Burggren and R. B. Huey, Cambridge: Cambridge University Press, pp. 38–75.
Feder, M. E., Bennett, A. F. and Huey, R. B. (2000). Evolutionary physiology. Annual Review of Ecology and Systematics 31, 315–341.
Ferguson, S. H. and Messier, F. (1996). Ecological implications of a latitudinal gradient in inter-annual climatic varibility: a test using fractal and chaos theories. Ecography 19, 382–392.
Fields, P. G. and McNeil, J. N. (1986). Possible dual cold-hardiness strategies in Cisseps fulvicollis (Lepidoptera: Arctiidae). Canadian Entomologist 118, 1309–1311.
Gaines, S. D. and Denny, M. W. (1993). The largest, smallest, highest, lowest, longest and shortest: extremes in ecology. Ecology 74, 1677–1692.
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.
Gaston, K. J., Blackburn, T. M. and Spicer, J. I. (1998). Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution 13, 70–74.
Gaston, K. J. and Chown, S. L. (1999). Elevation and climatic tolerance: a test using dung beetles. Oikos 86, 584–590.
Gehrken, U., Strømme, A., Lundheim, R. and Zachariassen, K. E. (1991). Inoculative freezing in overwintering tenebrionid beetle, Bolitophagus reticulatus Panz. Journal of Insect Physiology 37, 683–687.
Ghalambor, C. K., McKay, J. K., Carroll, S. P. and Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21, 394–407.
Gilbert, N. (1980). Comparative dynamics of a single-host aphid. I. The evidence. Journal of Animal Ecology 49, 351–369.
Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. American Naturalist 146, 252–270.
Grimaldi, D. and Engel, M. S. (2005). Evolution of the Insects. Cambridge: Cambridge University Press.
Gutschick, V. P. and BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist 160, 21–42.
Halley, J. M. (1996). Ecology, evolution and 1/f-noise. Trends in Ecology and Evolution 11, 33–37.
Hawes, T. C. and Bale, J. S. (2007). Plasticity in arthropod cryotypes. Journal of Experimental Biology 210, 2585–2592.
Hawes, T. C., Bale, J. S., Worland, M. R. and Convey, P. (2007a). Moulting reduces freeze susceptibility in the Antarctic mite Alaskozetes antarcticus (Michael). Physiological Entomology 32, 301–304.
Hawes, T. C., Bale, J. S., Worland, M. R. and Convey, P. (2007b). Plasticity and superplasticity in the acclimation potential of the Antarctic mite Halozetes belgicae (Michael). Journal of Experimental Biology 210, 593–601.
Hawes, T. C., Couldridge, C. E., Bale, J. S., Worland, M. R. and Convey, P. (2006). Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer). Ecological Entomology 31, 450–459.
Hayward, S. A. L., Rinehart, J. P. and Denlinger, D. L. (2004). Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. Journal of Experimental Biology 207, 963–971.
Helmuth, B., Kingsolver, J. G. and Carrington, E. (2005). Biophysics, physiological ecology, and climate change: does mechanism matter? Annual Review of Physiology 67, 177–201.
Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation. New York: Oxford University Press.
Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. Functional Ecology 17, 562–567.
Hoffmann, A. A., Anderson, A. and Hallas, R. (2002). Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecology Letters 5, 614–618.
Hoffmann, A. A., Hallas, R., Anderson, A. R. and Telonis-Scott, M. (2005). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology 18, 804–810.
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28, 175–216.
Holmstrup, M., Bayley, M. and Ramløv, H. (2002b). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable Arctic invertebrates. Proceedings of the National Academy of Sciences, USA 99, 5716–5720.
Holmstrup, M., Hedlund, K. and Boriss, H. (2002a). Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology 48, 961–970.
Holt, R. D., Lawton, J. H., Gaston, K. J. and Blackburn, T. M. (1997). On the relationship between range size and local abundance: back to the basics. Oikos 78, 183–190.
Huey, R. B. (1991). Physiological consequences of habitat selection. American Naturalist Supplement 137, 91–115.
Huey, R. B., Hertz, P. E. and Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: a null model approach. American Naturalist 161, 357–366.
Inchausti, P. and Halley, J. (2003). On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology 72, 899–908.
IPCC (1990). Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press.
Irwin, J. T. and Lee, R. E. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100, 71–78.
Joss, F. and Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years. Proceedings of the National Academy of Sciences, USA 105, 1425–1430.
Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos 115, 186–191.
Kelty, J. D. and Lee, R. E. (1999). Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. Journal of Insect Physiology 45, 719–726.
Kelty, J. D. and Lee, R. E. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology 204, 1659–1666.
Kingsolver, J. G. and Huey, R. B. (1998). Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. American Zoologist 38, 545–560.
Klok, C. J. and Chown, S. L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni Viette (Lepidoptera: Tineidae). Journal of Insect Physiology 43, 685–694.
Klok, C. J. and Chown, S. L. (1998). Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology 44, 615–628.
Klok, C. J. and Chown, S. L. (2003). Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society 78, 401–414.
Klok, C. J., Sinclair, B. J. and Chown, S. L. (2004). Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology 207, 2361–2370.
Koštál, V. and Šimcek, P. (1996). Biochemistry and physiology of aestivo-hibernation in the adult apple blossom weevil, Anthonomus pomorum (Coleoptera: Curculionidae). Journal of Insect Physiology 42, 727–733.
Koštál, V., Vambera, J. and Bastl, J. (2004). On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology 207, 1509–1521.
Kristensen, T. N., Hoffmann, A. A., Overgaard, J., Sorensen, J. G., Hallas, R. and Loeschcke, V. (2008). Costs and benefits of cold acclimation in field-released Drosophila. Proceedings of the National Academy of Sciences, USA 105, 216–221.
Lee, R. E., Chen, C.-P. and Denlinger, D. L. (1987). A rapid cold-hardening process in insects. Science 238, 1415–1417.
Lee, R. E., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and Denlinger, D. L. (2006). Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology 209, 399–406.
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. and Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613.
Levins, R. (1968). Evolution in Changing Environments. Some Theoretical Explorations. Princeton: Princeton University Press.
Loeschcke, V. and Sǿrensen, J. G. (2005). Acclimation, heat shock and hardening – a response from evolutionary biology. Journal of Thermal Biology 30, 255–257.
Lomolino, M. V. and Heaney, L. R. (2004). Frontiers of Biogeography. New Directions in the Geography of Nature. Sunderland: Sinauer Associates.
Lynch, M. and Gabriel, W. (1987). Environmental tolerance. American Naturalist 129, 283–303.
Lundheim, R. and Zachariassen, K. E. (1993). Water balance of over-wintering beetles in relation to strategies for cold tolerance. Journal of Comparative Physiology B 163, 1–4.
Makarieva, A. M., Gorshkov, V. G., Li, B.-L. and Chown, S. L. (2006). Size- and temperature-independence of minimum life-supporting metabolic rates. Functional Ecology 20, 83–96.
Marais, E. and Chown, S. L. (2008). Beneficial acclimation and the Bogert effect. Ecology Letters 11, 1027–1036.
Marais, E., Terblanche, J. S. and Chown, S. L. (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology 55, 336–343.
McArdle, B. H. and Gaston, K. J. (1995). The temporal variability of densities: back to basics. Oikos 74, 165–171.
Michaud, M. R. and Denlinger, D. L. (2005). Molecular modalities of insect cold survival: current understanding and future trends. In Animals and Environments, ed. S. Morris and A. Vosloo. Amsterdam: Elsevier International Congress Series 1275, pp. 32–46.
Miller, L. K. (1978). Freezing tolerance in relation to cooling rate in an adult insect. Cryobiology 15, 345–349.
Moon, I., Fujikawa, S. and Shimada, K. (1996). Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at –196 °C with extracellular freezing. Cryo-Letters 17, 105–110.
Myers, A. A. and Giller, P. S. (1988). Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions. London: Chapman and Hall.
Nedvěd, O. (1998). Modelling the relationship between cold injury and accumulated degree days in terrestrial arthropods. CryoLetters 19, 267–274.
Osovitz, C. J. and Hofmann, G. (2007). Marine macrophysiology: studying physiological variation across large spatial scales in marine systems. Comparative Biochemistry and Physiology A 147, 821–827.
Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C. and Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53, 1218–1232.
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. and Holmstrup, M. (2005). Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology 51, 1173–1182.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.
Parmesan, C., Root, T. L. and Willig, M. R. (2000). Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81, 443–450.
Petchey, O. L., Gonzales, A. and Wilson, H. B. (1997). Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space. Proceedings of the Royal Society, Series B 264, 1841–1847.
Pimm, S. L. and Redfearn, A. (1988). The variability of animal populations. Nature 334, 613–614.
Porter, W. P., Sabo, J. L., Tracy, C. R. Reichman, O. J. and Ramankutty, N. (2002). Physiology on a landscape scale: plant-animal interactions. Integrative and Comparative Biology 42, 431–453.
Pörtner, H. O. (2001). Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146.
Prosser, C. L. (1986). Adaptational Biology. Molecules to Organisms. New York: John Wiley & Sons.
Pullin, A. S. (1996). Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence? European Journal of Entomology 93, 121–129.
Rako, L., Blacket, M. J., McKechnie, S. W. and Hoffmann, A. A. (2007). Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Molecular Ecology 16, 2948–2957.
Ramløv, H. (2000). Aspects of natural cold tolerance in ectothermic animals. Human Reproduction 15, 26–46.
Renault, D., Nedved, O., Hervant, F. and Vernon, P. (2004). The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology 29, 139–145.
Ring, R. A. and Danks, H. V. (1994). Desiccation and cryoprotection: overlapping adaptations. Cryoletters 15, 181–190.
Roff, D. A. (2002). Life History Evolution. Sunderland: Sinauer Associates.
Roff, D. A. and Fairbairn, D. J. (2007). The evolution of trade-offs: where are we? Journal of Evolutionary Biology 20, 433–447.
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. and Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357.
Ruel, J. J. and Ayres, M. P. (1999). Jensen's inequality predicts effects of environmental variation. Trends in Ecology and Evolution 14, 361–366.
Ruokolainen, L. and Fowler, M. S. (2008). Community extinction in coloured environments. Proceedings of the Royal Society, Series B 275, 1775–1783.
Salt, R. W. (1966). Effect of cooling rate on the freezing temperatures of supercooled insects. Canadian Journal of Zoology 44, 655–659.
Salt, R. W. and James, H. G. (1947). Low temperature as a factor in the mortality of eggs of Mantis religiosa L. Canadian Entomologist 79, 33–36.
Scheiner, S. M. (1993). Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24, 35–68.
Schliess, F. and Haüssinger, D. (2002). The cellular hydration state: a critical determinant for cell death and survival. Biological Chemistry 383, 577–583.
Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford: Oxford University Press.
Scholander, P. F., Flagg, W., Walters, V. and Irving, L. (1953). Climatic adaptation in arctic and tropical poikilotherms. Physiological Zoology 26, 67–92.
Schwager, M., Johst, K. and Jeltsch, F. (2006). Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. American Naturalist 167, 879–888.
Shelford, V. E. (1913). Animal Communities in Temperate America. Chicago: Chicago University Press.
Sinclair, B. J. (1997). Seasonal variation in freezing tolerance of the New Zealand alpine cockroach Celatoblatta quinquemaculata. Ecological Entomology 22, 462–467.
Sinclair, B. J. (1999). Insect cold tolerance: how many kinds of frozen? European Journal of Entomology 96, 157–164.
Sinclair, B. J. (2001a). Biologically relevant environmental data: macros to make the most of microclimate recordings. Cryoletters 22, 125–134.
Sinclair, B. J. (2001b). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286–293.
Sinclair, B. J., Addo-Bediako, A. and Chown, S. L. (2003a). Climatic variability and the evolution of insect freeze tolerance. Biological Reviews 78, 181–195.
Sinclair, B. J. and Chown, S. L. (2003). Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology 49, 45–52.
Sinclair, B. J. and Chown, S. L. (2005). Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology 208, 969–879.
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S. and Chown, S. L. (2003b). Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049–1061.
Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. and Gibbs, A. G. (2007). The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiological Entomology 32, 322–327.
Sinclair, B. J., Vernon, P., Klok, C. J. and Chown, S. L. (2003c). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution 18, 257–262.
Slabber, S., Worland, M. R., Leinaas, H. P. and Chown, S. L. (2007). Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. Journal of Insect Physiology 53, 113–125.
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10, 1115–1123.
Sømme, L. (1982). Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology A 73, 519–543.
Sømme, L. (1996). The effect of prolonged exposures at low temperatures in insects. CryoLetters 17, 341–346.
Sømme, L. and Zachariassen, K. E. (1981). Adaptations to low temperature in high altitude insects from Mount Kenya. Ecological Entomology 6, 119–204.
Spicer, J. I. and Gaston, K. J. (1999). Physiological Diversity and its Ecological Implications. Oxford: Blackwell Science.
Stige, L. C., Chan, K.-S., Zhang, Z. Frank, D. and Stenseth, N. C. (2007). Thousand-year- long Chinese time series reveals climatic forcing of decadal locust dynamics. Proceedings of the National Academy of Sciences, USA 104, 16188–16193.
Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Annual Review of Ecology and Systematics 27, 365–386.
Terblanche, J. S. and Chown, S. L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology 209, 1064–1073.
Terblanche, J. S., Deere, J. A., Clusella Trullas, S., Janion, C. and Chown, S. L. (2007). Critical thermal limits depend on methodological context. Proceedings of the Royal Society, Series B 274, 2935–2942.
Terblanche, J. S., Clusella-Trullas, S., Deere, J. A. and Chown, S. L. (2008). Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology 54, 114–127.
Torrence, C. and Campo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 61–78.
Turnock, W. J. and Fields, P. G. (2005). Winter climates and cold hardiness in terrestrial insects. European Journal of Entomology 102, 561–576.
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. and Hoffmann, A. A. (2005). A rapid shift in a clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.
Van Der Laak, S. (1982). Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comparative Biochemistry and Physiology A 73, 613–620.
Vasseur, D. A. and Yodzis, P. (2004). The color of environmental noise. Ecology 85, 1146–1152.
Vernon, P. and Vannier, G. (2002). Evolution of freezing susceptibility and freezing tolerance in terrestrial arthropods. Comptes Rendus Biologies 325, 1185–1190.
Virtanen, T., Neuvonen, S. and Nikula, A. (1998). Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a geographical information system: predictions for current climate and warmer climate scenarios. Journal of Applied Ecology 35, 311–322.
Voituron, Y., Mouquet, N., de Mazancourt, C. and Clobert, J. (2002). To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. American Naturalist 160, 255–270.
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York: Oxford University Press.
Williams, J. B., Ruehl, N. C. and Lee, R. E. (2004). Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Journal of Experimental Biology 207, 4407–4414.
Worland, M. R. (2005). Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. Journal of Insect Physiology 51, 881–894.
Worland, M. R., Block, W. and Grubor-Lajsic, G. (2000). Survival of Heleomyza borealis (Diptera, Heleomyzidae) larvae down to –60 °C. Physiological Entomology 25, 1–5.
Worland, M. R. and Convey, P. (2001). Rapid cold hardening in Antarctic microarthropods. Functional Ecology 15, 515–524.
Worland, M. R., Grubor-Lajsic, G. and Montiel, P. O. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.
Worland, M. R., Leinaas, H. P. and Chown, S. L. (2006). Supercooling point frequency distributions in Collembola are affected by moulting. Functional Ecology 20, 323–329.
Yoder, J. A., Benoit, J. B., Denlinger, D. L. and Rivers, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology 52, 202–214.
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65, 799–837.

Reference Title: References

Reference Type: reference-list

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society, Series B 267, 739–745.
Angilletta, M. J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford, U.K.: Oxford University Press.
Angilletta, M. J., Jr., Bennett, A. F., Guderley, H., Navas, C. A., Seebacher, F. and Wilson, R. S. (2006). Coadapation: a unifying principle in evolutionary thermal biology. Physiological and Biochemical Zoology 79, 282–294.
Angilletta, M. J., Jr., Hill, T. and Robson, M. A. (2002). Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. Journal of Thermal Biology 27, 199–204.
Bakken, G. S. (1992). Measurement and application of operative and standard operative temperatures in ecology. American Zoologist 32, 194–216.
Beck, S. D. (1980). Insect Photoperiodism. New York: Academic Press.
Bennett, A. F. (1987). Evolution of the control of body temperature: is warmer better? In Comparative Physiology: Life in Water and on Land, ed. P. Dejours, C. R. Taylor and E. R. Weibel. Padova, Italy: Liviana Press, pp. 421–431.
Bennett, A. F., Lenski, R. E. and Mittler, J. E. (1992). Evolutionary adaptation to temperature. I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution 46, 16–30.
Bogert, C. M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211.
Bradshaw, W. E. and Holzapfel, C. M. (2001). Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences, USA 98, 14509–14511.
Bradshaw, W. E. and Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 1477–1478.
Bradshaw, W. E., Zani, P. A. and Holzapfel, C. M. (2004). Adaptation to temperate climates. Evolution 58, 1748–1762.
Brett, J. R. (1970). Temperature, fishes. In Marine Ecology vol. 1, ed. O. Kinne. New York, NY: John Wiley & Sons, pp. 515–560.
Carey, J. R. (1993). Applied Demography for Biologists. Oxford: Oxford University Press.
Charlesworth, B. (1994). Evolution in Age-structured Populations, 2nd edn. Cambridge, UK: Cambridge University Press.
Chen, C.-P., Lee, R. E., Jr. and Denlinger, D. L. (1990). A comparison of the responses of tropical and temperate flies (Diptera: Sarcophagidae) to cold and heat stress. Journal of Comparative Physiology B 160, 543–547.
Chown, S. L., Gaston, K. J. and Robinson, D. (2004). Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Functional Ecology 18, 159–167.
Chown, S. L., Jumbam, K. R., Sørensen, J. G. and Terblanche, J. S. (2008). Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology 22, 1–8.
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.
Clarke, A. (2006). Temperature and the metabolic theory of ecology. Functional Ecology 20, 405–412.
Cossins, A. R. and Bowler, K. (1987). Temperature Biology of Animals. New York, NY: Chapman & Hall.
Crozier, L. and Dwyer, G. (2006). Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. American Naturalist 167, 853–866.
Davis, A., Lawton, J., Shorrocks, B. and Jenkinson, L. (1998). Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology 67, 600–612.
Denlinger, D. L., Giebultowicz, J. M. and Saunders, D. S. (eds.) (2001). Insect Timing: Circadian Rhythmicity to Seasonality. Amsterdam: Elsevier.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA. 105, 6668–6672.
Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. American Naturalist 168, 512–520.
Garland, T., Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Lizard Ecology: Historical and Experimental Perspectives, ed. L. J. Vitt and E. R. Pianka. Princeton, NJ: Princeton University Press, pp. 237–259.
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. and Wang, G. (2006). Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46, 5–17.
Gibert, P., Moreteau, B., Pla, E., Petavy, G., Karan, D. and David, J. R. (2001). Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55, 1063–1068.
Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. American Naturalist 146, 252–270.
Gilchrist, G. W. (1996). Quantitative genetic analysis of the thermal sensitivity of locomotory performance curve of Aphidius ervi. Evolution 50, 1560–1572.
Goto, S. G. and Kimura, M. T. (1988). Heat- and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. Journal of Insect Physiology 44, 1233–1239.
Gould, S. J. and Lewontin, R. C. (1979). The spandrels of San Marcos and the Panglossian paradigm – a critique of the adaptationist program. Proceedings of the Royal Society, Series B 205, 581–598.
Hamilton, W. J., III (1973). Life's Color Code. New York, NY: McGraw Hill.
Heinrich, B. (1981). Insect Thermoregulation. New York: John Wiley & Sons, Inc.
Helmuth, B., Kingsolver, J. G. and Carrington, E. (2005). Biophysics, physiological ecology and climate change: does mechanism matter? Annual Review of Physiology 67, 177–201.
Hertz, P. E., Huey, R. B. and Nevo, E. (1983). Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075–1084.
Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford University Press.
Hoffmann, A. A. and Blows, M. W. (1993). Evolutionary genetics and climate change: will animals adapt to global warming? In Biotic Interactions and Global Change, ed. P. M. Kareiva, J. G. Kingsolver and R. B. Huey. Sunderland., MA: Sinauer Assoc., pp. 165–178.
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 26, 175–216.
Hoffmann, A. A. and Watson, M. (1993). Geographical variation in the acclimation responses of Drosophila to temperature extremes. American Naturalist 142, S93–S113.
Huey, R. B. (1987). Phylogeny, history and the comparative method. In New Directions in Ecological Physiology, ed. M. E. Feder, A. F. Bennett, W. W. Burggren and R. B. Huey. Cambridge, UK: Cambridge University Press, pp. 76–98.
Huey, R. B. and Bennett, A. F. (1987). Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41, 1098–1115.
Huey, R. B. and Berrigan, D. (2001). Temperature, demography and ectotherm fitness. American Naturalist 158, 204–210.
Huey, R. B. and Hertz, P. E. (1984). Is a jack-of-all-temperatures a master of none? Evolution 38, 41–50.
Huey, R. B., Hertz, P. E. and Sinervo, B. (2003). Behavioral drive versus behavioral inertia: a null model approach. American Naturalist 161, 357–366.
Huey, R. B. and Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology and Evolution 4, 131–135.
Huey, R. B. and Rosenzweig, F. (2009). Laboratory evolution meets Catch 22: balancing simplicity and realism. In Experimental Evolution: Concepts, Methods and Applications, ed. T. Garland, Jr. and M. R. Rose. Berkeley: University of California Press, pp. 671–701.
Huey, R. B. and Slatkin, M. (1976). Costs and benefits of lizard thermoregulation. Quarterly Review of Biology 51, 363–384.
Huey, R. B. and Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist 19, 357–366.
IPPC (2007). Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press.
Irwin, J. T. and Lee, R. E., Jr. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100, 71–78.
Izem, R. and Kingsolver, J. G. (2005). Variation in continuous reaction norms: quantifying directions of biological interest. American Naturalist 166, 277–289.
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. American Naturalist 101, 233–249.
Kingsolver, J. G. and Gomulkiewicz, R. (2004). Environmental variation and selection on performance curves. Integrative and Comparative Biology 43, 470–477.
Kingsolver, J. G. and Huey, R. B. (1998). Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. American Zoologist 38, 323–336.
Kingsolver, J. G. and Huey, R. B. (2008). Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10, 251–268.
Kingsolver, J. G. and Nagle, A. M. (2007). Rapid divergence of thermal sensitivity and diapause in field and laboratory populations of Manduca sexta. Physiological and Biochemical Zoology 80, 473–479.
Kingsolver, J. G., Ragland, G. J. and Shlichta, J. G. (2004). Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates. Evolution 58, 1521–1529.
Klok, C. J. and Chown, S. L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni Viette (Lepidoptera: Tineidae). Journal of Insect Physiology 43, 685–694.
Lee, R. E. and Denlinger, D. L. (1991). Insects at Low Temperature. New York: Chapman & Hall.
Lee, R. E. and Denlinger, D. L. (2006). Entomology on the Antarctic Peninsula: the southernmost insect. American Entomologist 52, 84–89.
Levins, R. (1968). Evolution in Changing Environments. Princeton, NJ: Princeton University Press.
MacArthur, R. H. (1984). Geographical Ecology: Patterns in the Distribution of Species. Princeton, NJ: Princeton University Press.
Palaima, A. and Spitze, K. (2004). Is a jack-of-all temperatures a master of none? An experimental test with Daphnia pulicaria (Crustacea: Cladocera). Evolutionary Ecology Research 6, 215–225.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics 37, 637–669.
Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: tradeoffs in muscle design and performance in polar ectotherms. Journal of Experimental Biology 205, 2217–2254.
Pörtner, H. O., Peck, L. and Somero, G. (2007). Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philosophical Transactions of the Royal Society B 362, 2233–2258.
Price, P. W., Fernandes, G. W., Lara, A. C. F. and Brawn, J. (1998). Global patterns in the local number of insect galling species. Journal of Biogeography 25, 581–591.
Ragland, G. J. and Kingsolver, J. G. (2008). Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution 62, 1345–1357.
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. and Pounds, J. L. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 37–42.
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004). Effects of body size and temperature on population growth. American Naturalist 163, 429–441.
Tewksbury, J. J., Huey, R. B. and Deutsch, C. A. (2008). Putting the heat on tropical animals. Science 320, 1296–1297.
van Asch, M. and Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review of Entomology 52, 37–55.
van Berkum, F. H. (1988). Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. American Naturalist 132, 327–343.
Williams, J. B., Shorthouse, J. D. and Lee, R. E., Jr. (2003). Deleterious effects of mild simulated overwintering temperatures on survival and potential fecundity of rose-galling Diplolepis wasps (Hymenoptera: Cynipidae). Journal of Experimental Zoology 298A, 23–31.
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. and Langham, G. (2008). Toward an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, 2621–2626.
Wilson, B. S. and Cooke, D. E. (2001). Latitudinal variation in rates of overwinter mortality in the lizard Uta stansburiana. Ecology 85, 3406–3417.
Zani, P. A. (2008). Climate-change trade-offs in the side-blotched lizard (Uta stansburiana): effects of growing-season length and mild temperatures on winter survival. Physiological and Biochemical Zoology 81, 797–809.
Zani, P. A., Swanson, S. E. T., Corbin, D., Cohnstaedt, L. W., Agotsch, M. D., Bradshaw, W. E. and Holzapfel, C. M. (2005). Geographic variation in tolerance of transient thermal stress in the mosquito Wyeomyia smithii. Ecology 86, 1206–1211.

Reference Title: References

Reference Type: reference-list

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society, Series B 267, 739–745.
Andrewartha, H. G. (1952). Diapause in relation to the ecology of insects. Biological Reviews 27, 50–107.
Ansart, A., Vernon, P. and Daguzan, J. (2001). Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Cryobiology 42, 266–273.
Armbruster, P. A., Bradshaw, W. E. and Holzapfel, C. M. (1998). Effects of postglacial range expansion on allozyme and quantitative genetic variation in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 52, 1697–1704.
Ayala, F. J., Serra, L. L. and Prevosti, A. (1989). A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31, 246–255.
Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. and Serra, L. (2006). Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775.
Baudry, E., Viginier, B. and Veuille, M. (2004). Non-African populations of Drosophila melanogaster have a unique origin. Molecular Biology and Evolution 21, 1482–1491.
Bellemin, J., Adest, G. and Gorman, G. C. (1978). Genetic uniformity in northern populations of Thamnophis sirtalis (Serpentes: Colubridae). Copeia 1978, 150–151.
Benfey, P. N. and Mitchell-Olds, T. (2008). From genotype to phenotype: systems biology meets natural variation. Science 320, 495–497.
Bergland, A. O., Agotsch, M., Mathias, D., Bradshaw, W. E. and Holzapfel, C. M. (2005). Factors influencing the seasonal life history of the pitcher-plant mosquito, Wyeomyia smithii. Ecological Entomology 30, 129–137.
Biro, P. A., Post, J. R. and Booth, D. J. (2007). Mechanisms for climate-induced mortality of fish populations in whole-lake experiments. Proceedings of the National Academy of Sciences, USA 104, 9715–9719.
Bradshaw, W. E. (1973). Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54, 1247–1259.
Bradshaw, W. E. (1976). Geography of photoperiodic response in a diapausing mosquito. Nature 262, 384–386.
Bradshaw, W. E., Fujiyama, S. and Holzapfel, C. M. (2000). Adaptation to the thermal climate of North America by the pitcher-plant mosquito, Wyeomyia smithii. Ecology 81, 1262–1272.
Bradshaw, W. E., Haggerty, B. P. and Holzapfel, C. M. (2005). Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169, 485–488.
Bradshaw, W. E. and Holzapfel, C. M. (1977). Interaction between photoperiod, temperature, and chilling in dormant larvae of the tree-hole mosquito, Toxorhynchites rutilus Coq. Biological Bulletin 152, 147–158.
Bradshaw, W. E. and Holzapfel, C. M. (2001a). Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences, USA 98, 14509–14511.
Bradshaw, W. E. and Holzapfel, C. M. (2001b). Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. Journal of Insect Physiology 47, 809–820.
Bradshaw, W. E. and Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 1477–1478.
Bradshaw, W. E. and Holzapfel, C. M. (2007). Tantalizing timeless. Science 316, 1851–1852.
Bradshaw, W. E. and Holzapfel, C. M. (2008). Genetic response to rapid climate change: it's seasonal timing that matters. Molecular Ecology 17, 157–166.
Bradshaw, W. E., Holzapfel, C. M. and Mathias, D. (2006). Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock? The American Naturalist 167, 601–605.
Bradshaw, W. E., Quebodeaux, M. C. and Holzapfel, C. M. (2003). Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment? The American Naturalist 161, 735–748.
Bradshaw, W. E., Zani, P. A. and Holzapfel, C. M. (2004). Adaptation to temperate climates. Evolution 58, 1748–1762.
Bromage, N., Porter, M. and Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197, 63–98.
Bünning, E. (1936). Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Beriche der Deutschen botanischen Gesellschaft 54, 590–607.
Campbell, M. D. and Bradshaw, W. E. (1992). Genetic coordination of diapause in the pitcherplant mosquito, Wyeomyia smithii (Diptera: Culicidae). Annals of the Entomological Society of America 85, 445–451.
Ceriani, M. F., Hogenesch, J. B., Yanovsky, M., Panda, S., Straume, M. and Kay, S. A. (2002). Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. The Journal of Neuroscience 22, 9305–9319.
Claridge-Chang, A., Wijnen, H., Nacef, F., Boothroyd, C., Rajewsky, N. and Young, M. W. (2001). Circadian regulation of gene expression systems in the Drosophila head. Neuron 37, 657–671.
Clausen, J., Keck, D. D., and Hiesey, W. M. (1940). Experimental Studies on the Nature of Species. 1. Effect of Varied Environments on Western North American Plants. Washington, DC: Carnegie Institute of Washington.
Critchfield, H. J. (1974). General Climatology. Englewood Cliffs, NJ: Prentice-Hall.
Cuellar, H. S. and Cuellar, O. (1977). Evidence for endogenous rhythmicity in the reproductive cycle of the parthenogenetic lizard Cnemidophorus uniparens (Reptilia: Teiidae). Copeia 1977, 554–557.
Cwynar, L. C. and MacDonald, G. M. (1987). Geographical variation in lodgepole pine in relation to population history. The American Naturalist 129, 463–469.
Danilevskii, A. S. (1965). Photoperiodism and Seasonal Development in Insects. Edinburgh: Oliver and Boyd.
Danks, H. V. (1987). Insect Dormancy: an Ecological Perspective. Ottawa: Biological Survey of Canada (Terrestrial Arthropods).
Danks, H. V. (2005). How similar are daily and seasonal biological clocks? Journal of Insect Physiology 51, 609–619.
David, J. R. and Capy, P. (1988). Genetic variation of Drosophila melanogaster natural popualtions. Trends in Genetics 4, 106–111.
Dawson, A. (2002). Photoperiodic control of the annual cycle in birds and comparison with mammals. Ardea 90, 355–367.
Dawson, A., King, V. M., Bentley, G. E. and Ball, G. F. (2001). Photoperiodic control of seasonality in birds. Journal of Biological Rhythms 16, 365–380.
Denlinger, D. L. (1986). Dormancy in tropical insects. Annual Review of Entomology 31, 239–264.
Deutsch, C. A., Tewksbury, J. L., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105, 6668–6672.
Dobzhansky, T. (1948). Genetics of natural populations. XVI. Altitudinal and seasonal changes produced by natural selection in certain populations of Drosophila pseudoobscura and Drosophila persimilis. Genetics 33, 158–176.
Duffield, G. E. (2003). DNA microarray analyses of circadian timing: the genomic basis of biological time. Journal of Neuroendocrinology 15, 991–1002.
Etterson, J. R. and Shaw, R. G. (2001). Constraint to adaptive evolution in response to global warming. Science 294, 151–154.
Emerson, K. J., Dake, S. J., Bradshaw, W. E. and Holzapfel, C. M. (2009a). Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Comparative Physiology A 195, 385–391.
Emerson, K. J., Bradshaw, W. E. and Holzapfel, C. M. (2009b). Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics 25, 217–225.
Fenster, C. B. and Galloway, L. F. (2000). Population differentiation in an annual legume: genetic architecture. Evolution 54, 1157–1172.
Fochs, D. A., Linda, S. B., Craig Jr., G. B., Hawley, W. A. and Pumpuni, C. B. (1994). Aedes albopictus (Diptera: Culicidae): a statistical model of the role of temperature, photoperiod, and geography in the induction of egg diapause. Journal of Medical Entomology 31, 278–286.
Fong, P. P. and Pearse, J. S. (1992). Evidence for a programmed circannual life cycle modulated by increasing daylengths in Neanthes limnicola (Polychaeta: Nereidae) from central California. Biological Bulletin 182, 289–297.
Forister, M. L. and Shapiro, A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology 9, 1130–1135.
Fox, W. and Dessauer, H. C. (1957). Photoperiodic stimulation of appetite and growth in the male lizard, Anolis carolinensis. Journal of Experimental Zoology 134, 557–575.
Franks, S. J., Sim, S. and Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to climate fluctuation. Proceedings of the National Academy of Sciences, USA 104, 1278–1282.
Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. The American Naturalist 168, 512–520.
Goldman, B. D. (2001). Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. Journal of Biological Rhythms 16, 283–301.
Gomi, T., Nagasaka, M., Fukuda, T. and Hagihara, H. (2007). Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomologia Experimentalis et Applicata 125, 179–184.
Goto, S. G. and Denlinger, D. L. (2002). Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. Journal of Insect Physiology 48, 803–816.
Goto, S. G., Han B. and Denlinger, D. L. (2006). A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. Journal of Insect Physiology 52, 1213–1218.
Green, D. M., Sharbel, T. F., Kearsley, J. and Kaiser, H. (1996). Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex, Rana pretiosa. Evolution 50, 374–390.
Halberg, F., Shankaraiah, K., Giese, A. C. and Halberg, F. (1987). The chronobiology of marine invertebrates: Methods of analysis. In Reproduction of Marine Invertebrates, ed. A. C. Giese, J. S. Pearse and V. B. Pearse. Palo Alto, CA: Blackwell. pp. 331–384.
Hard, J. J., Bradshaw, W. E. and Holzapfel, C. M. (1993a). The genetic basis of photoperiodism and evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. The American Naturalist 142, 457–473.
Hard, J. J., Bradshaw, W. E. and Holzapfel, C. M. (1993b). Genetic coordination of demography and phenology in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Evolutionary Biology 6, 707–723.
Helmuth, B., Kingsolver, J. G. and Carrington, E. (2005). Biophysics, physiological ecology, and climate change: Does mechanism matter? Annual Review of Physiology 67, 177–201.
Highton, R. and Webster, T. P. (1976). Geographic protein variation and divergence in populations of the salamander Plethodon cinereus. Evolution 30, 33–45.
Hofman, M. A. (2004). The brain's calendar: neural mechanisms of seasonal timing. Biological Reviews 79, 61–77.
Hommay, G., Kienlen, J. C., Gertz, C. and Hill, A. (2001). Growth and reproduction of the slug Limax ventianus Férussac in experimental conditions. Journal of Molluscan Studies 67, 191–207.
Hoy, M. A. (1978). Variability in diapause attributes of insects and mites: some evolutionary and practical implications. In Evolution of Insect Migration and Diapause, ed. H. Dingle. New York, NY.: Springer-Verlag. pp. 101–126.
Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15, 56–61.
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
IPCC (2007). Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC Secretariat.
Istock, C. A., Zisfein, J. and Vavra, K. J. (1976). Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness. Evolution 30, 535–547.
Joosse, J. (1984). Photoperiodicity, rhythmicity and endocrinology of reproduction in the snail Lymnaea stagnalis. In Photoperiodic Regulation of Insect and Molluscan Hormones, ed. R. Porter and G. M. Collins. London: Pitman. pp. 204–220.
Kemp, A. (1984). Spawning of the Australian lungfish, Neoceratodus fosteri (Krefft) in the Brisbane River and Enoggera Reservoir, Queensland. Memoirs of the Queensland Museum 21, 391–399.
Koštál, V. (2006). Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113–127.
Lachaise, D. and Silvain, J.-F. (2004). How two Afrotrpoical endemics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120, 17–39.
Lachaise, G., Cariou, M. L. D. J. R., Lemeunier, F., Tsacas, L. and Ashburner, M. (1988). Historical biogeography of the Drosophila melanogaster species subgroup. Evolutionary Biology 22, 159–225.
Lair, K. P., Bradshaw, W. E. and Holzapfel, C. M. (1997). Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147, 1873–1883.
Lankinen, P. (1986a). Genetic correlation between circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis. Journal of Biological Rhythms 1, 101–118.
Lankinen, P. (1986b). Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. Journal of Comparative Physiology A 159, 123–142.
Lankinen, P. and Forsman, P. (2006). Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Journal of Biological Rhythms 21, 3–12.
Last, K. S. and Olive, P. J. W. (1999). Photoperiodic control of growth and segment proliferation by Nereis (Neanthes) virens in relation to state of maturity and season. Marine Biology 134, 191–199.
Last, K. S. and Olive, P. J. W. (2004). Interaction between photoperiod and an endogenous seasonal factor influencing the diel locomotor activity of the benthic polychaete Nereis virens Sars. Biological Bulletin 206, 103–112.
Laurila, A. Pakkasmaa, S. M. J. and Merilä, J. (2001). Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos 95, 451–460.
Leather, S. R., Walters, K. F. A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge, UK: Cambridge University Press.
Lees, A. D. (1955). Physiology of Diapause in Arthropods. Cambridge, UK: Cambridge at the University Press.
Levitan, M. (2003). Climatic factors and increased frequencies of ‘southern’ chromosome forms in natural populations of Drosophila robusta. Evolutionary Ecology Research 5, 597–604.
Levitan, M. and Etges, W. J. (2005). Climate change and recent genetic flux in populations of Drosophila robusta. BMC Evolutionary Biology 5, 4.
Licht, P. (1973). Influence of temperature and photoperiod on the annual ovarian cycle in the lizard Anolis carolinensis. Copeia 1973, 465–472.
Lounibos, L. P., Escher, R. L. and Lorenço-De-Oliveira, R. (2003). Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96, 512–518.
MacArthur, R. H. 1972. Geographical Ecology. New York, NY: Harper & Row.
Mathias, D., Jacky, L., Bradshaw, W. E. and Holzapfel, C. M. (2005). Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Insect Physiology 51, 661–667.
Mathias, D., Jacky, L., Bradshaw, W. E. and Holzapfel, C. M. (2007). Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176, 391–402.
McDonald, M. J. and Rosbash, M. (2001). Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578.
Menaker, M. (1971). Biochronometry. Washington, DC: National Academy of Sciences.
Norris, M. J. (1965). The influence of constant and changing photoperiods on imaginal diapause in the red locus (Nomadacris septemfasciata Serv.). Journal of Insect Physiology 11, 1105–1119.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37, 637–669.
Parmesan, C. (2007). Influences of species, latitudes and methodologies in estimates of phenological response to global warming. Global Change Biology 13, 1860–1872.
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
Pearse, J. S., Eernisse, D. J., Pearse, V. B. and Beauchamp, K. A. (1986). Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. American Zoologist 26, 417–431.
Peñuelas, J. and Filella, I. (2001). Response to a warming world. Science 294, 793–795.
Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia in Quantitative Biology 25, 159–184.
Pittendrigh, C. S. (1981). Circadian organization and the photoperiodic phenomena. In Biological Clocks in Seasonal Reproductive Cycles, ed. B. K. Follett and D. E. Follett. Bristol, UK: John Wright. pp. 1–35.
Pittendrigh, C. S. and Takamura, T. (1993). Homage to Sinzo Masaki: Circadian components in the photoperiodic responses of Drosophila auraria. In Seasonal Adaptation and Diapause in Insects (in Japanese), ed. M. Takeda and S. Tanaka. Tokyo: Bun-ichi Sôgô Shuppan. pp. 288–305.
Pourriot, R. and Clément, P. (1975). Influence de la durée de l'éclairement quotidien sur le taux de femelles mictiques chez Notommata copeus Ehr. (Rotifère). Oecologia (Berlin) 22, 67–77.
Prevosti, A., Ribo, G., Serra, L., Aguade, M., Balanyá, J., Monclus, M. and Mestres, F. (1988). Colonization of America by Drosophila subobscura: Experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proceedings of the National Academy of Sciences, USA 85, 5597–5600.
Rodríguez-Trelles, F. and Rodríguez, Á. (2007). Comment on “Global genetic change tracks global climate warming in Drosophila subobscura”. Science 315, 1497a.
Rodríguez-Trelles, F. and Rodríguez, M. A. (1998). Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to global warming. Evolutionary Ecology 12, 829–838.
Roff, D. (1992). The Evolution of Life Histories. New York: Chapman & Hall.
Roff, D. (2002). Life History Evolution. Sunderland, MA: Sinauer Associates.
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. and Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.
Rose, M. R. (1991). Evolutionary Biology of Aging. New York: Oxford University Press.
Roy, D. B. and Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology 6, 407–416.
Sandrelli, F., Tauber, E., Pegoraro, M., Mazzotta, G., Cisotto, P., Landskrom, J., Stanewsky, R., Piccin, A., Rosato, E., Zordan, M., Costa, R. and Kyriacou, C. P. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898–1900.
Saunders, D. S. (1990). The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement? Journal of Biological Rhythms 5, 315–331.
Saunders, D. S. (2002). Insect Clocks. Amsterdam: Elsevier.
Saunders, D. S. and Gilbert, L. I. (1990). Regulation of ovarian diapause in Drosophila melanogaster by photoperiod and moderately low temperature. Journal of Insect Physiology 36, 195–200.
Saunders, D. S., Henrich, V. C. and Gilbert, L. I. (1989). Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutants on time measurement. Proceedings of the National Academy of Sciences, USA 86, 3748–3752.
Schierwater, B. and Hauenschild, C. (1990). A photoperiod determined life-cycle in an oligochate worm. Biological Bulletin 178, 111–117.
Schmidt, P. S., Matzkin, L. M., Ippolito, M. and Eanes, W. F. (2005). Geographic variation in diapause incidence, life history traits and climatic adaptation in Drosophila melanogaster. Evolution 59, 1721–1732.
Schwaegerle, K. E. and Schaal, B. A. (1979). Genetic variability and founder effect in the pitcher plant Sarracenia purpurea L. Evolution 33, 1210–1218.
Schwartz, M. D., Ahas, R. and Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12, 343–351.
Stearns, S. C. (1976). Life history tactics: A review of the ideas. Quarterly Review of Biology 51, 3–47.
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford, UK: Oxford University Press.
Stehlík, J., Závodská, S. K., Šauman, I. and Koštál, V. (2008). Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. Journal of Biological Rhythms 23, 129–139.
Stinchcombe, J. R. and Hoekstra, H. E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100, 158–170.
Stone, G. N. and Sunnuck, P. (1993). Genetic consequences of an invasion through a patchy environment – the cynipid gallwasp Andrecus quercuscalicis. Molecular Ecology 2, 251–268.
Takeda, M. and Skopik, S. D. (1997). Photoperiodic time measurement and related physiological mechanisms in insects and mites. Annual Review of Entomology 42, 323–349.
Tatar, M., Chien, S. A. and Priest, N. K. (2001). Negligible senescence during reproductive dormancy in Drosophila melanogaster. The American Naturalist 158, 248–258.
Tauber, E. and Kyriacou, C. P. (2001). Insect photoperiodism and circadian clocks: models and mechanisms. Journal of Biological Rhythms 16, 381–390.
Tauber, E. and Kyriacou, C. P. (2008). Genomic approaches for studying biological clocks. Functional Ecology 22, 19–29.
Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., Daga, A., Selmin, A., Monger, K., Benna, C., Rosato, E., Kyriacou, C. P. and Costa, R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895–1898.
Tauber, M. J., Tauber, C. A. and Masaki, S. (1986). Seasonal Adaptations of Insects. New York, NY: Oxford University Press.
Taylor, F. (1980). Optimal switching to diapause in relation to the onset of winter. Theoretical Population Biology 18, 125–133.
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. and Hoffmann, A. A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.
Vaz Nunes, M. and Saunders, D. (1999). Photoperiodic time measurement in insects: a review of clock models. Journal of Biological Rhythms 14, 84–104.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological response to recent climate change. Nature 416, 389–395.
Warren, R. (2006). Impacts of global climate change at different annual mean global temperature increases. In Avoiding Dangerous Climate Change, ed. H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley and G. Yohe. Cambridge, UK: Cambridge University Press. pp. 93–131.
Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475–482.
Withrow, R. B. (1959). Photoperiodism and Related Phenomena in Plants and Animals. Washington, DC: American Association for the Advancement of Science.
Wolda, H. and Denlinger, D. L. (1984). Diapause in a large aggregation of a tropical beetle. Ecological Entomology 9, 217–230.
Zani, P., Swanson, S. E. T., Corbin, D., Cohnstaedt, L. W., Agotsh, M. D., Bradshaw, W. E. and Holzapfel, C. M. (2005). Geographic variation in tolerance of transient thermal stress in the mosquito Wyeomyia smithii. Ecology 86, 1206–1211.

Reference Title: References

Reference Type: reference-list

Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E. and Richards, S. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.
Allen, M. J. (2007). What makes a fly enter diapause? Fly 1, 307–310.
Anderson, A. R., Hoffmann, A. A. and McKechnie, S. W. (2005). Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genetical Research 85, 15–22.
Ayrinhac, A., Debat, V., Gibert, P., Kister, A. G., Legout, H., Moreteau, B., Vergilino, R. and David, J. R. (2004). Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Functional Ecology 18, 700–706.
Azevedo, R. B.R., French, V. and Partridge, L. (1996). Thermal evolution of egg size in Drosophila melanogaster. Evolution 50, 2338–2345.
Azevedo, R. B.R., James, A. C., McCabe, J. and Partridge L. (1998). Latitudinal variation of wing:thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 52, 1353–1362.
Balanya, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. and Serra, L. (2006). Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775.
Bale, J. S. (1993). Classes of insect cold hardiness. Functional Ecology 7, 751–753.
Bettencourt, B. R., Kim, I., Hoffmann, A. A. and Feder, M. E. (2002). Response to natural and laboratory selection at the Drosophila hsp70 genes. Evolution 56, 1796–1801.
Bouletreaumerle, J., Fouillet, P. and Terrier, O. (1992). Clinal and seasonal variations in initial retention capacity of virgin Drosophila melanogaster females as a strategy for fitness. Evolutionary Ecology 6, 223–242.
Bubliy, O. A. and Loeschcke, V. (2005). Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Journal of Evolutionary Biology 18, 789–803.
Capy, P., Pla, E. and David, J. R. (1993). Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. 1. Geographic variations. Genetics Selection Evolution 25, 517–536.
Chen, C. P. and Walker, V. K. (1993). Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecological Entomology 18, 184–190.
Chen, C. P. and Walker, V. K. (1994). Cold-shock and chilling tolerance in Drosophila. Journal of Insect Physiology 40, 661–669.
Chen, C. P., Lee, R. E. and Denlinger, D. L. (1991). Cold shock and heat shock – a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiological Entomology 16, 19–26.
Chown, S. L. (2001). Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology 47, 649–660.
Clark, A. G., Eisen, M. B., Smith, D. R., Bergman, C. M., Oliver, B., Markow, T. A. et al. (2007). Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218.
Cossins, A. R. and Bowler, K. (1987). Temperature Biology of Animals. New York: Chapman and Hall.
Dahlhoff, E. P. and Rank, N. E. (2000). Functional and physiological consequences of genetic variation at phosphoglucose isomerase: Heat shock protein expression is related to enzyme genotype in a montane beetle. Proceedings of the National Academy of Sciences, USA 97, 10056–10061.
David, J. R., Allemand, R., Capy, P., Chakir, M., Gibert, P., Pétavy, G. and Moreteau, B. (2004). Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans. Genetica 120, 151–163.
David, J. R., Allemand, R., Van Herrewege, J. and Cohet, Y. (1983). Ecophysiology: abiotic factors. In The Genetics and Biology of Drosophila, ed. Ashburner, M., Carson, H. L. and Thompson, J. N. London: Academic Press, pp. 105–170.
David, J. R. and Bocquet, C. (1975). Evolution in a cosmopolitan species – Genetic latitudinal clines in Drosophila melanogaster wild populations. Experientia 31, 164–166.
Davidson, J. K. (1990). Non-parallel geographic pattern for tolerance to cold and desiccation in Drosophila melanogaster and D. simulans. Australian Journal of Zoology 38, 155–161.
Deere, J. A., Sinclair, B. J., Marshall, D. J. and Chown, S. L. (2006). Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology 52, 693–700.
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology 47, 93–122.
Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology 63, 327–357.
Endler, J. A. (1977). Geographic Variation, Speciation and Clines. Princeton, NJ: Princeton University Press.
Felsenstein, J. (1995). Phylogenies and the comparative method. American Naturalist 125, 1–15.
Frydenberg, J., Hoffmann, A. A. and Loeschcke, V. (2003). DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster. Molecular Ecology 12, 2025–2032.
Gabriel, W. (2005). How stress selects for reversible phenotypic plasticity. Journal of Evolutionary Biology 18, 873–883.
Garland, T., Bennett, A. F. and Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology 208, 3015–3035.
Gaston K. J. and Chown S. L. (1999). Elevation and climatic tolerance: a test using dung beetles. Oikos 86, 584–590.
Gibert, P. and Huey, R. B. (2001). Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiological and Biochemical Zoology 74, 429–434.
Gibert, P., Moreteau, B., Petavy, G., Karan, D. and David, J. R. (2001). Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55, 1063–1068.
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. and Merila, J. (2008) Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology 17, 167–178.
Goto, S. G. (2001). A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene 270, 259–264.
Goto, S. G., Yoshida, K. M. and Kimura, M. T. (1998). Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. Journal of Insect Physiology 44, 1009–1015.
Goto, S. G. and Kimura, M. T. (1998). Heat- and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. Journal of Insect Physiology 44, 1233–1239.
Goto, S. G., Yoshida, T., Beppu, K. and Kimura, M. T. (1999). Evolution of overwintering strategies in Eurasian species of the Drosophila obscura species group. Biological Journal of the Linnean Society 68, 429–441.
Goto, S. G., Kitamura, H. W. and Kimura, M. T. (2000). Phylogenetic relationships and climatic adaptations in the Drosophila takahashii and montium species subgroups. Molecular Phylogenetics and Evolution 15, 147–156.
Hallas, R., Schiffer, M. and Hoffmann, A. A. (2002). Clinal variation in Drosophila serrata for stress resistance and body size. Genetical Research 79, 141–148.
Hanski, I. and Saccheri, I. (2006). Molecular-level variation affects population growth in a butterfly metapopulation. PloS Biology 4, 719–726.
Hoffmann, A. A. and Parsons, P. A. (1988). The analysis of quantitative variation in natural populations with isofemale strains. Genetics Selection Evolution 20, 87–98.
Hoffmann, A. A., Anderson, A. and Hallas, R. (2002). Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecology Letters 5, 614–618.
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. (2003a). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28, 175–216.
Hoffmann, A. A., Scott, M., Partridge, L. and Hallas, R. (2003b). Overwintering in Drosophila melanogaster: outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. Journal of Evolutionary Biology 16, 614–623.
Hoffmann, A. A., Hallas, R., Anderson, A. R. and Telonis-Scott, M. (2005a). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology 18, 804–810.
Hoffmann, A. A., Shirriffs, J. and Scott, M. (2005b). Relative importance of plastic vs. genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Functional Ecology 19, 222–227.
Hoffmann, A. A. and Loeschcke, V. (2006). Are fitness effects of density mediated by body size? Evidence from Drosophila field releases. Evolutionary Ecology Research 8, 813–828.
Hoffmann A. A. and Weeks, A. R. (2007). Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 129, 133–147.
Hoffmann, A. A., Ratna, E., Sgro, C. M., Barton, M., Blacket, M., Hallas, R., De Garis, S. and Weeks, A. R. (2007). Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. Journal of Evolutionary Biology 20, 2219–2227.
Hughes, J. M. and Zalucki, M. P. (1993). The relationship between the pgi locus and the ability to fly at low temperature in the monarch butterfly Danaus plexippus. Biochemical Genetics 31, 521–532.
James, A. C., Azevedo, R. B. and Partridge, L. (1997). Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 146, 881–90
Jenkins, N. L. and Hoffmann, A. A. (1994). Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137, 783–789.
Jenkins, N. L. and Hoffmann, A. A. (1999). Limits to the southern border of Drosophila serrata: Cold resistance, heritable variation and trade-offs. Evolution 53, 1823–1834.
Jenkins, N. L. and Hoffmann, A. A. (2001). Distribution of Drosophila serrata Malloch (Diptera: Drosophilidae) in Australia with particular reference to the southern border. Australian Journal of Entomology 40, 41–48.
Jensen, D., Overgaard, J. and Sørensen, J. G. (2007). The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. Journal of Insect Physiology 53, 179–186.
Kayukawa, T. Chen, B. Hoshizaki, S. and Ishikawa, Y. (2007). Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochemistry and Molecular Biology 37, 1160–1167.
Kimura, M. T. (1982). Inheritance of cold hardiness and sugar contents in 2 closely related species, Drosophila takahashii and Drosophila lutescens. Japanese Journal of Genetics 57, 575–580.
Kimura, M. T. (1988). Adaptations to temperate climates and evolution of overwintering strategies in the Drosophila melanogaster species group. Evolution 42, 1288–1297.
Kimura, M. T. and Beppu, K. (1993). Climatic adaptations in the Drosophila immigrans species group – seasonal migration and thermal tolerance. Ecological Entomology 18, 141–149.
Kimura, M. T. (2004). Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449.
Koštál, V., Berkoᾓ, P. and Šimek, P. (2003). Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology B 135, 407–419.
Kristensen, T. N., Loeschcke, V. and Hoffmann, A. A. (2007). Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society, Series B 274, 771–778.
Kristensen, T. N., Hoffmann, A. A., Overgaard, J., Sørensen, J. G., Hallas, R. and Loeschcke, V. (2008a). Costs and benefits of cold acclimation in field-released Drosophila. Proceedings of the National Academy of Sciences, USA 105, 216–221.
Kristensen, T. N., Barker, J. S.F., Pedersen, K. S. and Loeschcke, V. (2008b). Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proceeding of the Royal Society B 275, 2055–2061.
Laayouni, H., Garcia-Franco, F., Chavez-Sandoval, B. E., Trotta, V., Beltran, S., Corominas, M. and Santos, M. (2007). Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evolutionary Biology 7, 42.
Laine, A. L. (2007). Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach. Journal of Evolutionary Biology 20, 1665–1673.
Lee, R. E. and Denlinger, D. L. (1985). Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 10, 309–315.
Lee, R. E. (1991). Principles of insect low temperature tolerance. In Insects at Low Temperature, ed. Lee, R. E. and Denlinger, D. L. New York: Chapman and Hall, pp. 17–47.
Loeschcke, V. and Hoffmann, A. A. (2007). Heat hardening benefits and costs on field fitness of Drosophila depend on environmental temperature. American Naturalist 169, 175–183.
McColl, G. and McKechnie, S. W. (1999). The Drosophila heat shock hsr-omega gene: An allele frequency cline detected by quantitative PCR. Molecular Biology and Evolution 16, 1568–1574.
McMullen, D. C. and Storey, K. B. (2008). Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochemistry and Molecular Biology 38, 367–373.
Morgan, T. J. and Mackay, T. F.C. (2006). Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredity 96, 232–242.
Nedved, O. (2000). Snow white and the seven dwarfs: A multivariate approach to classification of cold tolerance. CryoLetters 21, 339–348.
Nicodemus, J., O'Tousa, J. E. and Duman, J. G. (2006). Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster. Journal of Insect Physiology 52, 888–896.
Norry, F. M. and Loeschcke, V. (2002). Longevity and resistance to cold stress in cold- stress selected lines and their controls in Drosophila melanogaster. Journal of Evolutionary Biology 15, 775–783.
Norry, F. M., Gomez, F. H. and Loeschcke, V. (2007). Knock down resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Molecular Ecology 16, 3274–3284.
Ohtsu, T., Kimura, M. T. and Katagiri, C. (1998). How Drosophila species acquire cold tolerance – Qualitative changes of phospholipids. European Journal of Biochemistry 252, 608–611.
Ohtsu, T., Katagiri, C. and Kimura, M. T. (1999). Biochemical aspects of climatic adaptations in Drosophila curviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae). Environmental Entomology 28, 968–972.
Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C. and Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53, 1218–1232.
Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T. and Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology 14, 607–613.
Rako, L., Anderson, A. R., Sgro, C. M., Stocker, A. J. and Hoffmann, A. A. (2006). The association between inversion In(3R)Payne and clinally varying traits in Drosophila melanogaster. Genetica 128, 373–384.
Rako, L., Blacket, M. J., McKechnie, S. W. and Hoffmann, A. A. (2007). Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Molecular Ecology 16, 2948–2957.
Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., Sandro, L. H., Lee, R. E. and Denlinger, D. L. (2006). Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of the National Academy of Sciences, USA 103, 14223–14227.
Schmidt, P. S., Matzkin, L., Ippolito, M. and Eanes, W. F. (2005). Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59, 1721–1732.
Schmidt, P. S. and Conde, D. R. (2006). Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution 60, 1602–1611.
Schmidt, P. S. and Paaby, A. B. (2008). Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution 62, 1204–1215.
Sezgin, E., Duvernell, D. D., Matzkin, L. M., Duan, Y. H., Zhu, C. T., Verrelli, B. C. and Eanes, W. F. (2004). Single-locus latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster. Genetics 168, 923–931.
Simmons, G. M., Kreitman, M. E., Quattlebaum, W. F. and Miyashita, N. (1989). Molecular analysis of the alleles of alcohol dehydrogenase along a cline in Drosophila melanogaster. 1. Maine, North Carolina, and Florida. Evolution 43, 393–409.
Sinclair, B. J., Vernon, P., Klok, C. J. and Chown, S. L. (2003a). Insects at low temperatures: an ecological perspective. Trends in Ecology & Evolution 18, 257–262.
Sinclair, B. J., Addo-Bediako, A. and Chown, S. L. (2003b). Climatic variability and the evolution of insect freeze tolerance. Biological Reviews 78, 181–195.
Sinclair, B. J. and Chown, S. L. (2005). Climatic variability and hemispheric differences in insect cold tolerance: support from southern Africa. Functional Ecology 19, 214–221.
Sinclair, B. J., Gibbs, A. G. and Roberts, S. P. (2007a). Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology 16, 435–443.
Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. and Gibbs, A. G. (2007b). The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiological Entomology 32, 322–327.
Sørensen, J. G., Nielsen, M. M. and Loeschcke, V. (2007). Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Journal of Evolutionary Biology 20, 1624–1636.
Sørensen, J. G., Norry, F. M., Scannapieco, A. C. and Loeschcke, V. (2005). Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology 18, 829–837.
Stanley, S. M. and Parsons, P. A. (1981). The response of the cosmopolitan species, Drosophila melanogaster, to ecological gradients. Proceedings of the Ecological Society of Australia 11, 121–130.
Tucic, N. (1979). Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358.
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. and Hoffmann, A. A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.
Vera, J. C., Wheat, C. W., Fescemyer, H. W., Frilander M. J., Crawford, D. L., Hanski, I. and Narden, J. H. (2008). Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology 17, 1636–1647.
Watson, M. J. O. and Hoffmann, A. A. (1996). Acclimation, cross-generation effects, and the response to selection for increased cold resistance in Drosophila. Evolution 50, 1182–1192.
Watt, W. B. (1977). Adaptation at specific loci. 1. Natural selection on phosphoglucose isomerase of Colias butterflies – Biochemical and population aspects. Genetics 87, 177–194.
Watt, W. B. (1983). Adaptation at specific loci. 2. Demographic and biochemical elements in the maintenance of the Colias polymorphism. Genetics 103, 691–724.
Watt, W. B., Cassin, R. C. and Swan, M. S. (1983). Adaptation at specific loci. 3. Field behaviour and survivorship differences among Colias genotypes are predictable from in vitro biochemistry. Genetics 103, 725–739.
Watt, W. B. (1992). Eggs, enzymes and evolution – natural genetic variants change insect fecundity. Proceedings of the National Academy of Sciences, USA 89, 10608–10612.
Weeks, A. R., McKechnie, S. W. and Hoffmann, A. A. (2002). Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecology Letters 6, 756–763.
Wheat, C. W., Watt, W. B., Pollock, D. D. and Schulte, P. M. (2006). From DNA to fitness differences: Sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Molecular Biology and Evolution 23, 499–512.
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65, 799–832.

Reference Title: References

Reference Type: reference-list

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. Functional Ecology 16, 332–338.
Andrássy, I. (1998). Nematodes in the sixth continent. Journal of Nematode Systematics and Morphology 1, 107–186.
Arnold, R. J. and Convey, P. (1998). The life history of the diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: Dytiscidae), on sub-Antarctic South Georgia. Polar Biology 20, 153–160.
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London, Series B 357, 849–862.
Bale, J. S., Hodkinson, I. D., Block, W., Webb, N. R., Coulson, S. J. and Strathdee, A. T. (1997). Life history strategies of Arctic terrestrial arthropods. In The Ecology of Arctic Environments, ed. Woodin, S. J. and Marquis, M. British Ecological Society Special Publication No. 13, Oxford: Blackwell, pp. 137–165.
Bale, J. S., Worland, M. R., and Block, W. (2001). Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology 47, 1161–1167.
Barendse, J. and Chown, S. L. (2000). The biology of Bothrometopus elongatus (Coleoptera, Curculionidae) in a mid-altitude fellfield on sub-Antarctic Marion Island. Polar Biology 23, 346–351.
Barendse, J. and Chown, S. L. (2001). Abundance and seasonality of mid-altitude fellfield arthropods from Marion Island. Polar Biology 24, 73–82.
Bellido, A. and Cancela da Fonseca, J. P. (1988). Spatio-temporal organization of the oribatid mite community in a littoral turf of the Kerguelen archipelago. Pedobiologia 31, 239–246.
Bennett, V. A., Kukal, O., and Lee, R. E. (2000). Seasonal metabolic depression and mitochondrial degradation in Arctic woollybear caterpillars, Gynaephora groenlandica. American Zoologist 40, 942.
Bergstrom, D., Hodgson, D. A. and Convey, P. (2006). The physical setting of the Antarctic. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L. Dordrecht: Springer, pp. 15–33.
Bertolani, R. (2001). Evolution of the reproductive mechanisms in tardigrades – a review. Zoologischer Anzeiger 240, 247–252.
Block, W. (1990). Cold tolerance of insects and other arthropods. Philosophical Transactions of the Royal Society of London, Series B 326, 613–633.
Block, W. (1996). Cold or drought – the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93, 325–339.
Block, W., Burn, A. J. and Richard, K. J. (1984). An insect introduction to the maritime Antarctic. Biological Journal of the Linnean Society 23, 33–39.
Brown, C. L., Bale, J. S. and Walters, K. F.A. (2004). Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society, Series B 271, 1507–1511.
Caldwell, M. M., Björn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H. and Tevini, M. (1998). Effects of increased solar radiation on terrestrial ecosystems. Journal of Phytochemistry and Photobiology B: Biology 46, 40–52.
Callaghan, T. V. and Jonasson, S. (1995). Arctic terrestrial ecosystems and environmental change. Philosophical Transactions of the Royal Society of London, Series A 352, 259–276.
Cannon, R. J.C. and Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews 63, 23–77.
Chen, C.-P., Denlinger, D. L. and Lee, R. E. (1987). Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology 60, 297–304.
Chown, S. L. (1992). A preliminary analysis of weevil assemblages in the sub-Antarctic: local and regional patterns. Journal of Biogeography 19, 87–98.
Chown, S. L. and Convey, P. (2007). Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society of London, Series B 362, 2307–2331.
Chown, S. L., Greenslade, P. and Marshall, D. J. (2006). Terrestrial invertebrates of Heard Island. In Heard Island: Southern Ocean Sentinel, ed. Green, K. and Woehler, E. J. Chipping Norton: Surrey & Beatty, pp. 91–104.
Chown, S. L. and Klok, C. J. (2003). Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455.
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.
Chown, S. L. and Scholtz, C. H. (1989). Biology and ecology of the Dusmoecetes Jeannel (Col. Curculionidae) species complex on Marion Island. Oecologia 80, 93–99.
Convey, P. (1994). Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17, 97–107.
Convey, P. (1996a). Overwintering strategies of terrestrial invertebrates in Antarctica – the significance of flexibility in extremely seasonal environments. European Journal of Entomology 93, 489–505.
Convey, P. (1996b). The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews 71, 191–225.
Convey, P. (1997). How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? Journal of Thermal Biology 22, 429–440.
Convey, P. (1998). Latitudinal variation in allocation to reproduction by the Antarctic oribatid mite, Alaskozetes antarcticus. Applied Soil Ecology 9, 93–99.
Convey, P. (2000). How does cold constrain life cycles of terrestrial plants and animals? Cryo-Letters 21, 73–82.
Convey, P. (2001a). Terrestrial ecosystem response to climate changes in the Antarctic. In “Fingerprints” of Climate Change – Adapted Behaviour and Shifting Species Ranges, ed. Walther, G.-R., Burga, C. A., and Edwards, P. J. New York: Kluwer, pp. 17–42.
Convey, P. (2001b). Antarctic ecosystems. In Encyclopedia of Biodiversity, ed. Levin, S. A. San Diego: Academic Press, vol. 1, pp. 171–184.
Convey, P. (2006). Antarctic climate change and its influences on terrestrial ecosystems. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H.L. Dordrecht: Springer, pp. 253–272.
Convey, P. (2007). Antarctic ecosystems. In Encyclopedia of Biodiversity, 2nd (online) edition, ed. Levin, S. A. San Diego: Elsevier. doi:10.1016/B0–12–226865–2/00014–6.
Convey, P. and Block, W. (1996). Antarctic Diptera: ecology, physiology and distribution. European Journal of Entomology 93, 1–13.
Convey. P., Chown, S. L., Wasley, J. and Bergstrom, D. M. (2006a). Life history traits. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L. Dordrecht: Springer, pp. 101–127.
Convey, P., Frenot, Y., Gremmen, N. and Bergstrom, D. M. (2006b). Biological invasions. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L. Dordrecht: Springer, pp. 193–220.
Convey, P. and McInnes, S. J. (2005). Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology 86, 519–527.
Convey, P., Scott, D. and Fraser, W. R. (2003). Biophysical and habitat changes in response to climate alteration in the Arctic and Antarctic. In Climate Change and Biodiversity: Synergistic Impacts, ed. Lovejoy, T. E. and Hannah, L. Arlington, VA: Conservation International, Center for Applied Biodiversity Science. Advances in Applied Biodioversity Science 4, 79–84.
Coulson, S. J. (2007). The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448, 41–58.
Crafford, J. E. (1986). A case study of an alien invertebrate (Limnophyes pusillus, Diptera, Chironomidae) introduced on Marion Island: selective advantages. South African Journal of Antarctic Research 16, 115–117.
Crafford, J. E., Scholtz, C. H. and Chown, S. L. (1986). The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. South African Journal of Antarctic Research 16, 41–84.
Danks, H. V. (1981). Arctic Arthropods, a Review of Systematics and Ecology with Particular Reference to the North American Fauna. Ottowa: Entomological Society of Canada.
Danks, H. V. (1992). Long life cycles in insects. Canadian Entomologist 124, 167–187.
Danks, H. V. (1999). Life cycles in polar arthropods – flexible or programmed? European Journal of Entomology 96, 83–102.
Danks, H. V. (2004). Seasonal adaptations in Arctic insects. Integrative & Comparative Biology 44, 85–94.
Danks, H. V. (2005). Key themes in the study of seasonal adaptations in insects I. Patterns of cold hardiness. Applied Entomology and Zoology 40, 199–211.
Davies, L. (1987). Long adult life, low reproduction and competition in two sub-Antarctic carabid beetles. Ecological Entomology 12, 149–162.
Davis, R. C. (1981). Structure and function of two Antarctic moss communities. Ecological Monographs 5, 125–143.
Delettre, Y. R. and Tréhen, P. (1977). Introduction à la dynamique des populations de Limnophyes pusillus Eaton dans les sols des Iles Australes Antarctiques Françaises. Ecological Bulletins 25, 80–89.
Duckhouse, D. A. (1985). Psychodidae (Diptera, Nematocera) of the subantarctic islands with observations on the incidence of parthenogenesis. International Journal of Entomology 27, 173–184.
Elnitsky, M. A., Hayward, S. A.L, Rinehart, J. P., Denlinger, D. L. and Lee, E. E. Jr. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211, 524–530.
Farman, J. C., Gardiner, B. G. and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/Nox interaction. Nature 315, 207–210.
Fogg, G., Thomas, D. N., Convey, P., Fritsen, C., Gilli, J.-M., Gradinger, R., Laybourne-Parry, J., Reid, K. and Walton, D. W.H. (2008). The Biology of Polar Habitats. Oxford: Oxford University Press.
Freckman, D. W. and Virginia, R. A. (1997). Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369.
Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M. and Bergstrom, D. (2005). Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80, 45–72.
Gaines, S. D. and Denny, M. W. (1993). The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692.
Gillespie, M., Hodkinson, I. D., Cooper, E. J., Bird, I.M and Jonsdottir, I. S. (2007). Life history and host-plant relationships of the rare endemic Arctic aphid Acyrthosiphon calvulus in a changing environment. Entomologia Experimentalis et Applicata 123, 229–237.
Greenslade, P. J. M. (1983). Adversity selection and the habitat templet. American Naturalist 122, 352–365.
Gressitt, J. L. (ed.). (1970). Subantarctic entomology, particularly of South Georgia and Heard Island. Pacific Insects Monograph 23, 374.
Grime, J. P. (1988). The C-S-R model of primary plant strategies – origins, implications and tests. In Population Dynamics, ed. Anderson, R. M., Turner, B. D. and Taylor, L. R. Oxford: Blackwell, pp. 123–139.
Heal, O. W. and Ineson, P. (1984). Carbon and energy flow in terrestrial ecosystems: relevance to the microflora. In Current Perspectives in Microbial Ecology, ed. Klug, M. J. and Reddy, C. A. Washington DC: American Society for Microbiology, pp. 394–404.
Hennion, F., Huiskes, A., Robinson, S. and Convey, P. (2006). Physiological traits of organisms in a changing environment. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L. Dordrecht: Springer, pp. 129–159.
Hodkinson, I. D. (2005a). Adaptations of invertebrates to terrestrial Arctic environments. Det Konelige Norske Videnskabers Selskab, Skrifter, 45 pp.
Hodkinson, I. D. (2005b). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80, 489–513.
Hodkinson, I. D, Coulson, S. J., Harrison, J. A. and Webb, N. R. (2001). What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic – some counter intuitive ideas on community assembly. Oikos 95, 349–352.
Hodkinson, I. D., Webb, N. R., Bale, J. S., Block, W., Coulson, S. J. and Strathdee, A. T. (1998). Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arctic and Alpine Research 30, 306–313.
Hodkinson, I. D., Webb, N. R., Bale, J. S. and Block, W. (1999). Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas? Global Change Biology 5, 359–369.
Hodkinson, I. D., Webb, N. R. and Coulson, S. J. (2002). Primary community assembly on land – the missing stages: why are the heterotrophic organisms always there first? Journal of Ecology 90, 569–577.
Hodkinson, I. D. and Wookey, P. A. (1999). Functional ecology of soil organisms in tundra ecosystems: towards the future. Applied Soil Ecology 11, 111–126.
Hogg, I. D., Cary, S. C., Convey, P., Newsham, K., O'Donnell, T., Adams, B. J., Aislabie, J., Frati, F. F., Stevens, M. I. and Wall, D. H. (2006). Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology and Biochemistry 38, 3035–3040.
Holmstrup, M. and Sømme, L. (1998). Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology series B 168, 197–203.
Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research 25, 308–315.
Kevan, P. G. and Kukal, O. (1993). A balanced life table for Gynaephora groenlandica (Lepidoptera, Lymantriidae), a long-lived High Arctic insect, and implications for the stability of its populations. Canadian Journal of Zoology 71, 1699–1701.
Kukal, O., Duman, J. G. and Serianni, S. (1989). Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. Journal of Comparative Physiology B 158, 661–671.
Lawton, J. H. (1999). Are there general laws in ecology? Oikos 84, 177–192.
Leather, S. R., Walters, K. F.A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge: Cambridge University Press.
Lee, R. E. Jr., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and Denlinger, D. L. (2006). Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology 209, 399–406.
Levin, D. B., Danks, H. V. and Barber, S. A. (2003). Variations in mitochondrial DNA and gene transcription in freezing tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology 12, 281–289.
Lister, A. (1984). Studies on the Antarctic Terrestrial Mite Gamasellus racovitzai. PhD thesis, University of York.
Lister, A., Block, W. and Usher, M. B. (1988). Arthropod predation in an Antarctic terrestrial community. Journal of Animal Ecology 57, 957–971.
Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. Jr. and Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxidedismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology 38, 796– 804.
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton: Princeton University Press.
McDonald, J. R., Bale, J. S. and Walters, K. F.A. (1997). Rapid cold hardening in the western flower thrips Frankliniella occidentalis. Journal of Insect Physiology 43, 759–766.
McDonald, J. R., Head, J., Bale, J. S. and Walters, K. F.A. (2000). Cold tolerance, overwintering and establishment potential of Thrips palmi. Physiological Entomology 25, 159–166.
Moorhead, D. L., Wall, D. H., Virginia, R. A. and Parsons, A. N. (2002). Distribution and life-cycle of Scottnema lindsayae (Nematoda) in Antarctic soils: a modeling analysis of temperature responses. Polar Biology 25, 118–125.
Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In Ecological and Evolutionary Analyses of Life-History Patterns, ed. Houck, M. New York: Chapman & Hall, pp. 99–135.
Panikov, N. S. (1995). Microbial Growth Kinetics. London: Chapman & Hall.
Peck, L. S., Convey, P. and Barnes, D. K. A. (2006). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews 81, 75–109.
Ricklefs, R. E. and Wikelski, M. (2002). The physiology/life-history nexus. Trends in Ecology and Evolution 17, 462–468.
Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., Sandro, L. H., Lee, R. E. Jr. and Denlinger, D. L. (2006). Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of the National Academy of Sciences, USA 103, 14227–14227.
Ring, R. A. and Danks, H. V. (1994). Desiccation and cryoprotection: overlapping adaptations. Cryo-Letters 15, 181–190.
Rozema, J. (ed.) (1999). Stratospheric Ozone Depletion, the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Leiden: Backhuys.
Simon, J.-C., Bonhomme, J., Blackman, R. L. and Hulle, M. (2008). Winged morph of the high arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae): abundance, reproductive status, and ecological significance. Canadian Entomologist 140, 385–387.
Sinclair, B. J. (2001). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286–293.
Sinclair, B. J. and Chown, S. L. (2005a). Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology 208, 869–879.
Sinclair, B. J. and Chown, S. L. (2005b). Caterpillars benefit from thermal ecosystem engineering by Wandering Albatrosses on sub-Antarctic Marion Island, Biology Letters, doi: 10.1098/rsbl.(2005).0384.
Sinclair, B. J., Vernon, P., Klok, C. J. and Chown, S. L. (2003a). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution 18, 257–262.
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S. and Chown, S. L. (2003b). Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049–1061.
Smith, R. I. L. (1984). Terrestrial plant biology of the sub-Antarctic and Antarctic. In Antarctic Ecology, ed. Laws, R. M. London: Academic Press, pp. 61–162.
Smith R. I. L. (1988). Recording bryophyte microclimate in remote and severe environments. In Methods in Bryology, ed. Glime, J. M. Nichnan: Hattori Botanical Laboratory.
Sømme, L. (1986). Ecology of Cryptopygus sverdrupi (Insecta: Collembola) from, Dronning Maud Land, Antarctica. Polar Biology 6, 179–184.
Sømme, L. (1989). Adaptations of terrestrial arthropods to the alpine environment. Biological Reviews 64, 367–407.
Sømme, L. (1995). Invertebrates in Hot and Cold Arid Environments. Berlin: Springer.
Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies. Journal of Animal Ecology 46, 337–365.
Southwood, T. R. E. (1988). Tactics, strategies and templets. Oikos 52, 3–18.
Søvik, G. and Leinaas, H. P. (2003). Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari, Oribatida) from Svalbard. Polar Biology 26, 500–508.
Søvik, G., Leinaas, H. P., Ims, R. A. and Solhoy, T. (2003). Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari, Oribatida) on the High Arctic archipelago of Svalbard. Pedobiologia 47, 257–271.
Strathdee, A. T., Bale, J. S., Block, W. C., Coulson, S. J., Hodkinson, I. D. and Webb, N. R. (1993a). Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia 96, 457–465.
Strathdee, A. T., Bale, J. S., Block, W. C., Webb, N. R., Hodkinson, I. D. and Coulson, S. J. (1993b). Extreme adaptive life cycle in a High Arctic aphid, Acyrthosiphon svalbardicum. Ecological Entomology 18, 254–258.
Strathdee, A. T., Bale, J. S., Strathdee, F. C., Block, W., Coulson, S. J., Hodkinson, I. D. and Webb, N. R. (1995). Climatic severity and the response to warming of Arctic aphids. Global Change Biology 1, 23–28.
Sugg, P., Edwards, J. S. and Baust, J. (1983). Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecological Entomology 8, 105–113.
Usher, M. B., Block, W. and Jumeau, P. J. A. M. (1989). Predation by arthropods in an Antarctic terrestrial community. In University Research in Antarctica (Antarctic Special Topic), ed. Heywood, R. B. Cambridge: British Antarctic Survey, pp. 123–129.
Vasseur, D. A. and Yodzis, P. (2004). The color of environmental noise. Ecology 85, 1146–1152.
Walther, G.-R., Post, E., Convey, P., Parmesan, C., Menzel, M., Beebee, T. J.C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
West, C. (1982). Life histories of three species of sub-Antarctic oribatid mite. Pedobiologia 23, 59–67.
Worland, M. R. and Convey, P. (2001). Rapid cold hardening in Antarctic microarthropods. Functional Ecology 15, 515–525.
Worland, M. R. and Convey, P. (2008). The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology 54, 1281–1285.
Worland, M. R., Grubor-Lajsic, G. and Montiel, P. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.
Worland, M. R. and Lukesová, A. (2000). The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biology 23, 766–774.

Reference Title: References

Reference Type: reference-list

Allen, M. L., Handler, A. M., Berkebile, D. R. and Skoda, S. R. (2004). piggyBac transformation of the New World screwworm Cochliomyia hominivorax, produces multiple distinct mutant strains. Journal of Medical and Veterinary Entomology 18, 1–9.
Berkebile, D. R., Chirico, R. J. and Leopold, R. A. (2000). Permeabilization of Cochliomyia hominivorax (Diptera: Calliphoridae) embryos. Journal of Medical Entomology 37, 968–972.
Bishopp, F. C. (1915). Flies which cause myiasis in man and animals – some aspects of the problem. Journal of Economic Entomology 8, 317–329.
Galvin, T. J. and Wyss, J. H. (1996). Screwworm eradication program in Central America. Annals of the New York Academy of Sciences 791, 233–240.
Heacox, A. E., Leopold, R. A. and Brammer, J. D. (1985). Survival of house fly embryos cooled in the presence of dimethyl sulfoxide. CryoLetters 6, 305–312.
Jutte, N. H., Heyse, P., Jansen, H. G., Bruining, G. J. and Zeilmaker, G. H. (1987). Vitrification of human islets of Langerhans. Cryobiology 24, 403–411.
Isachenko, V. V., Isachenko, E. F., Ostashko, F. I. and Grishchenko, V. I. (1997). Ultrarapid freezing of rat embryos with rapid dilution of permeable cryoprotectants. Cryobiology 34, 157–164.
Isachenko, V., Montage, M., Isachenko, E., Nawroth, F., Dessole, S. and Van Der Ven, H. (2004). Developmental rate and ultrastructure of vitrified human pronuclear oocytes after step-wise versus direct rehydration. Human Reproduction 19, 660–665.
Leopold, R. A. (1991). Cryopreservation of insect germplasm: cells, tissues and organisms. In Insects at Low Temperature, ed. R. E. Lee and D. L. Denlinger. New York, NY: Chapman and Hall, pp. 379–407.
Leopold, R. A. (2007). Cryopreservation of nonmammalian metazoan systems. In Advances in Biopreservation, ed. J. G. Baust and J. M. Baust. Boca Raton, FL: CRC Taylor and Francis Group, pp. 271–298.
Leopold, R. A., Rajamohan, A., Shelly, T. E. and Handler, A. M. (2010). Quality testing of three species of tephritid fruit flies after embryo cryopreservation. Annals of Entomological Society of America (in press).
Leopold, R. A., Wang, W. B., Berkebile, D. R. and Freeman, T. P. (2001) Cryopreservation of embryos of the New World Screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Annals of Entomological Society of America 94, 695–701.
Mazur, P. (1990). Equilibrium, quasi-equilibrium and nonequilibrium freezing of mammalian embryos. Cell Biophysics 17, 53–92.
Mazur, P. (2004). Principles of cryobiology. In Life in the Frozen State, ed. B. J. Fuller, N. Lane and E. E. Benson. Boca Raton, FL: CRC Taylor Francis Group, pp. 3–65.
Mazur, P., Cole, K. W., Hall, J. W., Schreuders, P. D. and Mahowald, A. P. (1992). Cryobiological preservation of Drosophila embryos. Science 258, 1932–1935.
Mazur, P., Cole, K. W., Schreuders, P. D. and Mahowald, A. P. (1993) Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to −205 °C. Cryobiology 30, 45–73.
Meryman, H. T. (1971). Cryoprotective agents. Cryobiology 8, 173–183.
Meryman, H. T. (2007). Cryopreservation of living cells: principles and practice. Transfusion 47, 935–945.
Miles, J. E. and Bale, J. S. (1995). Analysis of chilling injury in Aphidoletes aphidimyza. Cryobiology 32, 45–73.
Moon, I., Fujikawa, S. and Horie, Y. (1996). Cryopreservation of Chymomyza costata larvae (Diptera: Drosophilidae) at −196 °C with extracellular freezing. CryoLetters 17, 105–110.
Nelson, D. R. and Leopold, R. A. (2003). Composition of the surface hydrocarbons from the vitelline membrane of dipteran embryos. Comparative Biochemistry and Physiology 136, 210–308.
Nishizawa, S., Sakai, A. Amano, Y. and Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus officinalis L.): embryogenic suspension, cells and subsequent plant regeneration by vitrification. Plant Science 91, 67–73.
Nunamaker, R. A. and Lockwood, J. A. (2001). Cryopreservation of embryos of Culicoides sonorensis (Diptera: Ceratopogonidae). Journal of Medical Entomology 38, 55–58.
Ogawa, Y. Suzuki, H., Sakurai, N. Aoki, K., Saito, K.and Shibata, D.. (2008) Cryopreservation and metabolic profiling analysis of Arabidopsis T87 suspension-cultured cells. CryoLetters 29, 427–436.
Rajamohan, A. and Leopold, R. A. (2007). Cryopreservation of Mexican fruit flies by vitrification: stage selection and avoidance of thermal stress. Cryobiology 54, 44–54.
Rajamohan, A., Leopold, R. A., Wang, W. B., Harris, M., McCombs, S. D., Peabody, N. C. and Fisher, K. (2003). Cryopreservation of Mediterranean fruit fly embryos. CryoLetters 24, 125–132.
Rajamohan, A., Yocum, G. D. and Leopold, R. A. (2005). Differential gene expression in Mexican fruit flies after cryopreservation. Cryobiology 51, 406.
Rall, W. F. (1987). Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24, 387–402.
Rall, W. F. and Fahy, G. M. (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313, 573–575.
Schneider, I. (1964). Differentiation of larval Drosophila eye-antennal discs in vitro. Journal of Experimental Zoology 156, 91–104.
Sømme, L. (1964). Effects of glycerol on cold hardiness in insects. Canadian Journal of Zoology 42, 87–101.
Steponkus, P. L. and Caldwell, S. (1993). An optimized procedure for the cryopreservation of Drosophila melanogaster embryos. CryoLetters 14, 377–380.
Suszkiw, J. (2005) Frozen flies safeguard research, screwworm eradication efforts. Agricultural Research 53, No. 2, 14–15.
Takahashi, T., Hirsh, A., Erbe, E. F., Bross, J. B., Steere, R. L. and Williams, R. J. (1986). Vitrification of human monocytes. Cryobiology 23, 103–115.
Van Wagtendonk-De Leeuw, A. M., Den Daas, J. H. G., Kruip, Th. A. M. and Rall, W. F. (1997). Comparison of the efficacy of conventional slow freezing and rapid cryopreservation methods for bovine embryos. Cryobiology 32, 157–167.
Wang, W. B., Leopold, R. A., Nelson, D. R. and Freeman, T. P. (2000). Cryopreservation of Musca domestica (Diptera: Muscidae) embryos. Cryobiology 41, 153–166.
Wessel, M. T. and Ball, B. A. (2004). Step-wise dilution for removal of glycerol from fresh and cryopreserved equine spermatozoa. Animal Reproduction Science 84, 147–156.
Wusteman, M. C., Simmonds, J., Vaughan, D. and Pegg, D. E. (2008). Vitrification of rabbit tissues with propylene glycol and trehalose. Cryobiology 56, 62–71.
Wyss, J. H. (2000). Screwworm eradication in the Americas. Annals of the New York Academy of Sciences 916, 186–193.
Yildiz, C., Ottaviani, P., Law, N., Ayearst, R., Liu, L. and McKerlie, C. (2007). Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction 133, 585–595.

Reference Title: References

Reference Type: reference-list

Babendreier D., Bigler F. and Kuhlmann U. (2005). Methods used to assess non-target effects of invertebrate biological control agents of arthropod pests. BioControl 50, 821–870.
Bale, J. S., Harrington, R. and Clough, M. S. (1988). Low temperature mortality of the peach potato aphid Myzus persicae. Ecological Entomology 13, 121–129.
Bale, J. S. (2005). Effects of temperature on the establishment of non-native biocontrol agents: the predictive power of laboratory data. Second International Symposium on Biological Control of Arthropods (IBSCA) Vol. II, 593–602.
Bale, J. S. and Walters K. F. A. (2001). Overwintering biology as a guide to the establishment potential of non-native arthropods in the UK. In Environment and Animal Development: Genes, Life Histories and Plasticity, ed. D. A. Atkinson and M. Thorndyke. Oxford, UK: Bios, pp. 343–354.
Bale, J. S., Masters, G. J, Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J. E. L., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. and Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperatures on insect herbivores. Global Change Biology 8, 1–16.
Bale, J. S., van Lenteren, J. C. and Bigler, F. (2008) Biological control. In Sustainable Agriculture, special issue of Philosophical Transactions of the Royal Society 363, 761–776.
Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A. and Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications 15, 2084–2096.
Battisti, A., Stastny, M., Buffo, E. and Larsson, S. (2006). A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology 12, 662–671.
Bentz, B. J. and Mullins, D. E. (1999). Ecology of mountain pine beetle (Coleoptera: Scolytidae) cold hardening in the intermountain West. Environmental Entomology 28, 577–587.
Bentz, B. J., Logan, J. A. and Amman, G. D. (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Canadian Entomologist 123, 1083–1094.
Bigler, F. (1986). Mass production of Trichogramma maidis Pint. Et Voeg. and its field application against Ostrinia nubilalis Hbn in Switzerland. Journal of Applied Entomology 101, 23–29.
Bigler, F., Bale, J. S., Cock, M. J. W., Dreyer, H., Greatrex, R., Kuhlmann, U., Loomans, A. J. M. and van Lenteren, J. C. (2005). Guidelines on information requirements for import and release of invertebrate biological control agents in European countries. Biocontrol News and Information 26, 115–123.
Bigler, F., Babendreier, D. and Kuhlmann, U. (eds.) (2006). Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment, Wallingford, UK: CABI.
Brown, P. M. J., Adriaens, T., Bathon, H., Cuppen, J., Goldarazena, A., Hagg, T., Kenis, M., Klausnitzer, B. E. M., Kovar, I., Loomans, A. J. M., Majerus, M. E. N., Nedved, O., Pedersen, J., Rabitsch, W., Roy, H. E., Ternois, V., Zacharov, I. A. and Roy, D. B. (2008). Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. BioControl 53, 5–21.
Buffo, E., Battisti, A., Stastny, M. and Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology 9, 65–72.
Cannon, R. J. C. (1998). The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology 4, 785–796.
Carroll, A. L., Régnière, J., Logan, J. A., Taylor, S. W., Bentz, B. J. and Powell, J. A. (2006). Impacts of climate change on range expansion by mountain pine beetle. Mountain Pine Beetle Initiative Working Paper 2006–14 ISBN 0-662-44349-7 Cat. No. Fo143–3/2006–14E.
Chapman, J. W., Reynolds, D. R., Smith, A. D., Riley, J. R., Pedgley, D. E. and Woiwod, I. P. (2002). High-altitude migration of the diamondback moth Plutella xylostella to the UK: a study using radar, aerial netting and ground trapping. Ecological Entomology 27, 641–650.
Chapman, J. W., Reynolds, D. R., Mouritsen, H., Hill, J. K., Riley, J. R., Sivell, D., Smith, A. D. and Woiwod, I. P. (2008). Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Current Biology 18, 514–518.
Clough, M. S., Bale, J. S. and Harrington, R. (1990). Differential cold hardiness in adults and nymphs of the peach-potato aphid Myzus persicae. Annals of Applied Biology 116, 1–9.
Cole, W. A. (1981). Some risks and causes of mortality in mountain pine beetle populations: a long-term analysis. Researches in Populations Ecology 23, 116–144.
Collier, R. H. and Finch, S. (1983a). Completion of diapause in field populations of the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 34, 186−192.
Collier, R. H. and Finch, S. (1983b). Effects of intensity and duration of low temperatures in regulating diapause development of the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 34, 193−200.
Collier, R. H. and Finch, S. (1986). Accumulated temperatures for predicting cabbage root fly, Delia radicum (L.), (Diptera: Anthomyiidae) emergence in the spring. Bulletin of Entomological Research 75, 395−404.
Collier, R. H. and Finch, S. (1988). Thermal requirements for cabbage root fly, Delia radicum, development. In Progress on Pest Management in Field Vegetables, ed. R. Cavalloro, C. Pelerents and P. P. Rotondo – D. G. XIII – Luxembourg No. EUR 10514. Rotterdam: Balkema, pp. 21−26.
Collier, R. H., Finch, S. and Anderson, M. (1989). Laboratory studies on late emergence in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 50, 233−240.
Collier, R. H., Finch, S., Phelps, K. and Thompson, A. R. (1991). Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Annals of Applied Biology 118, 261–271.
Coulson, S. J. (2000). A review of the terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Norwegian Journal of Entomology 47, 41–63.
DeBach, P. and Rosen, D. (1991). Biological Control by Natural Enemies, 2nd edn., Cambridge: Cambridge University Press.
Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. 2nd edn., New York: J. Wiley & Sons, Inc.
Finch, S. and Collier, R. H. (1985). Laboratory studies on aestivation in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 38, 137−143.
Foster, S. P., Harrington, R., Devonshire, A. L., Denholm, I., Devine, G. J., Kenward, M. G. and Bale, J. S. (1996). Overwintering success of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae) Bulletin of Entomological Research 86, 17–27.
Foster, S. P., Harrington, R., Devonshire, A. L., Denholm, I., Clark, S. J. and Mugglestone, M. A. (1997) Evidence for a possible fitness trade-off between insecticide resistance and low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera:Aphididae). Bulletin of Entomological Research 87, 573–579.
Foster, S. P., Harrington, R., Dewar, A. M., Denholm, I. and Devonshire, A. L. (2002). Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Sulzer). Pest Management Science 58, 895–907.
Foster, S. P., Devine, G. J. and Devonshire, A. L. (2007). Insecticide resistance. In Aphids as Crop Pests, ed. H. F. van Emden and R. Harrington. Wallingford, UK: CABI Publishing.
Greathead, D. J. (1976). A Review of Biological Control in Western and Southern Europe. Technical Communication No. 7. Commonwealth Institute of Biological Control, Farnham Royal, Slough, UK, 182 pp.
Gurr, G. M., Wratten, S. D. and Barbosa, P. (2000) Success in conservation biological control of arthropods. In Measures of Success in Biological Control, ed. G. Gurr and S. Wratten. Dordrecht: Kluwer Academic Publishers, pp. 105–132.
Gutierrez, A. P., D'Oultremont, T., Ellis, C. K. and Ponti, L. (2006). Climatic limits of pink bollworm in Arizona and California: effects of climate warming. Acta Oecologica 30, 353–364.
Gutierrez, A. P., Ponti, L., D'Oultremont, T. and Ellis, C. K. (2008). Climate change effects on poikilothermic tritrophic interactions. Climatic Change 87, 167–192.
Harrington, R., Tatchell, G. M. and Bale, J. S. (1990). Weather, life cycle strategy and spring populations of aphids. Acta Phytopathologica & Entomologica Hungarica 25, 423–432.
Harrington, R., Clark, S. J., Welham, S. J., Verrier, S. J., Denholm, C. H., Hullé, M., Maurice, D., Rounsevell, M. D. A., Cocu, N. and EU EXAMINE Consortium (2007). Environmental change and the phenology of European aphids. Global Change Biology 13, 1550–1564.
Harrington, R., Dewar, A. M., and George, B. (1989). Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology 114, 459–469.
Hart, A. J., Bale, J. S., Tullett, A. G., Worland, M. R. and Walters, K. F. A. (2002a). Effects of temperature on the establishment potential of the predatory mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. Journal of Insect Physiology 48, 593–600.
Hart, A. J., Tullett, A. G. Bale, J. S. and Walters, K. F. A. (2002b). Effects of temperature on the establishment potential in the UK of the non-native glasshouse biocontrol agent Macrolophus caliginosus. Physiological Entomology 27, 112–123.
Hatherly, I. S., Hart, A. J., Tullett, A. G. T. and Bale, J. S. (2005). Use of thermal data as a screen for the establishment potential of non-native biocontrol agents in the UK. BioControl 50, 687–698.
Hatherly, I. S., Pedersen, B. P. and Bale, J. S. (2009). Effect of host plant, prey species and intergenerational changes on the prey preferences of the predatory mirid Macrolophus caliginosus. BioControl 54, 35–45.
Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. and Bale, J. S. (2008). A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiological Entomology 33, 389–394.
Heather, N. and Hallman, G. J. (2008). Pest Management and Phytosanitary Trade Barriers. Wallingford, UK: CABI.
Hill, J. K. and Gatehouse, A. G. (1993). Phenotypic plasticity and geographical variation in the pre-reproductive period of Autographa gamma (Lepidoptera: Noctuidae) and its implications for migration in this species. Ecological Entomology 18, 39–46.
Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A. and Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth, Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology 11, 313–320.
Hughes, R. D. (1960). Induction of diapause in Erioischia brassicae (Bouché) (Dipt., Anthomyiidae). Journal of Experimental Biology 37, 218–223.
Hunt, E., Kuhlmann, U., Sheppard, A., Qin, T. K., Barratt, B. I. P., Harrison, L., Mason, P. G., Parker, D., Flanders, R. V. and Goolsby, J. (2008). Review of invertebrate biological control regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system. Journal of Applied Entomology 132, 89–123.
Jepsen, J. U., Hagen, S. B., Ims, R. A. and Yoccoz, N. G. (2008). Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology 77, 257–264.
Jolly, N. (2000). The predatory mite Neoseiulus californicus: its potential as a biological control agent for the fruit tree red spider mite, Panonychus ulmi. BCPC conference at Brighton, Pests and Diseases, 487–490.
Kiritani, K. (2006). Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48, 5–12.
Kiritani, K. (2007). The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Global Change Biology 13, 1586–1595.
Lapointe, S. L., Borchert, D. M. and Hall, D. G. (2007). Effect of low temperatures on mortality and oviposition in conjunction with climate mapping to predict spread of the root weevil Diaprepes abreviatus and introduced natural enemies. Environmental Entomology 36, 73–82.
Lawton, J. H. (1995). The response of insects to environmental change. In Insects in a Changing Environment, ed. R. Harrington and N. E. Stork. New York: Academic Press, pp. 3–26.
Lenteren, J. C. van and Bueno, V. H. B. P. (2003). Augmentative biological control of arthropods in Latin America. BioControl 48, 123–139.
Lenteren, J. C. van and Woets, J. (1988). Biological and integrated pest control in greenhouses. Annual Review of Entomology 33, 239–269.
Lenteren, J. C. van, Bale J. S., Bigler F., Hokkanen H. M. T., and Loomans A. J. M. (2006). Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology 51, 609–634.
Logan, J. A. and Bentz, B. J. (1999). Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environmental Entomology 28, 924–934.
Musolin, D. H. (2007). Insects in a warmer world: ecological, physiological and life history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13, 1565–1585.
Musolin, D. H. and Numata, H. (2003a). Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridula. Physiological Entomology 28, 65–74.
Musolin, D. H. and Numata, H. (2003b). Timing of diapause induction and its life history consequences in Nezara viridula: is it costly to expand the distribution range? Ecological Entomology 28, 694–703.
Nilssen, A. and Tenow, O. (1990). Diapause, embryo growth and supercooling capacity of Epirrita autumnata eggs from Northern Fennoscandia. Entomologia Experimentalis et Applicata 57, 39–55.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A. and Warren, M. (1999). Polewards shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583.
Phelps, K., Collier, R. H., Reader, R. J. and Finch, S. (1993). Monte Carlo simulation method for forecasting the timing of pest insect attacks. Crop Protection 12, 335–342.
Powell, J. A., Jenkins, J. L., Logan, J. A. and Bentz, B. J. (2000). Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology 62, 977–998.
Powell, S. J. and Bale, J. S. (2004). Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Journal of Insect Physiology 50, 277–284.
Powell, S. J and Bale, J. S. (2005) Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Journal of Experimental Biology 208, 2615–2620.
Powell, S. J and Bale, J. S. (2006) Effect of long term and rapid cold hardening on the cold torpor temperature of an aphid. Physiological Entomology 31, 348–352.
Powell, S. J. and Bale, J. S. (2008). Intergenerational acclimation in aphid overwintering. Ecological Entomology 33, 95–100.
Qi, A., Dewar, A. M. and Harrington, R. (2004). Decision making in controlling virus yellows of sugar beet in the UK. Pesticide Management Science 60, 727–732.
Régnière, J. and Bentz, B. J. (2007). Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology 53, 559–572.
Safranyik, L. (1978). Effect of climate and weather on mountain pine beetle populations. In Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, ed. D. L. Kibbee, A. A. Berryman, G. D. Amman, and R. W. Stark. Conference held at Washington State University, Pullman WA in 1978. Forest, Wildlife and Range Experiment Station, University of Idaho, Moscow ID. 224 pp.
Strathdee, A. T., Howling, G. G. and Bale, J. S. (1995). Cold hardiness of aphid eggs. Journal of Insect Physiology 41, 653–657.
Talekar, N. S. and Shelton, A. M. (1993). Biology, ecology and management of the diamondback moth. Annual Review of Entomology 38, 275–301.
Tenow, O. and Nilssen, A. (1990). Egg cold hardiness and topographical limitations to outbreaks of Epirrita autumnata in Northern Fennoscandia. Journal of Applied Ecology 27, 723–734.
Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M. and Conradt, L. (2001). Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581.
Tran, J. K., Ylioja, T., Billings, R. F., Régnière, J. and Ayres, M. P. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications 17, 882–899.
Tullett, A. G. T., Hart, A. J., Worland, M. R. and Bale, J. S. (2004). Assessing the effects of low temperature on the establishment potential in Britain of the non-native biological control agent Eretmocerus eremicus. Physiological Entomology 29, 363–371.
Ungerer, M. J., Ayres, M. P. and Lombardero, M. J. (1999). Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Journal of Biogeography 26, 1133–1145.
Wäckers F. L. (2003). The parasitoids' need for sweets: sugars in mass rearing and biological control. In Quality Control and Production of Biological Control Agents: Theory and Testing Procedures, ed. J. C. van Lenteren. Wallingford, UK: CABI, pp. 59–72.
Werker, A. R., Dewar, A. M., and Harrington, R. (1998). Modelling the incidence of virus yellows in sugar beet in the UK in relation to numbers of migrating Myzus persicae. Journal of Applied Ecology 35, 811–818.