12 - Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity  pp. 275-289

Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity

By Sheldon Goldstein and Stefan Teufel

Image View Previous Chapter Next Chapter



Introduction

‘The term “3-geometry” makes sense as well in quantum geometrodynamics as in classical theory. So does superspace. But space-time does not. Give a 3-geometry, and give its time rate of change. That is enough, under typical circumstances to fix the whole time-evolution of the geometry; enough in other words, to determine the entire four-dimensional space-time geometry, provided one is considering the problem in the context of classical physics. In the real world of quantum physics, however, one cannot give both a dynamic variable and its time-rate of change. The principle of complementarity forbids. Given the precise 3-geometry at one instant, one cannot also know at that instant the time-rate of change of the 3-geometry. … The uncertainty principle thus deprives one of any way whatsoever to predict, or even to give meaning to, “the deterministic classical history of space evolving in time”. No prediction of spacetime, therefore no meaning for spacetime, is the verdict of the quantum principle’.

(Misner, Thorne, and Wheeler 1973)

One of the few propositions about quantum gravity that most physicists in the field would agree upon, that our notion of spacetime must, at best, be altered considerably in any theory conjoining the basic principles of quantum mechanics with those of general relativity, will be questioned in this chapter. We will argue, in fact, that most, if not all, of the conceptual problems in quantum gravity arise from the sort of thinking on display in the preceding quotation.