11 - The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance  pp. 329-358


By R. John Parkes and Henrik Sass

Reference Title: References

Reference Type: reference-list

Akagi, J. M. (1995). Respiratory sulphate reduction. In L. L. Barton (ed.), Sulphate-Reducing Bacteria, Vol. 8. New York: Plenum Press. pp. 89–111.
Badziong, W. and Thauer, R. K. (1978). Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulphate and hydrogen plus thiosulphate as the sole energy sources. Arch Microbiol, 117, 209–14
Bak, F. and Cypionka, H. (1987). A novel type of energy-metabolism involving fermentation of inorganic sulfur-compounds. Nature, 326, 891–2
Baron, E. J., Summanen, P., Downes, J. et al. (1989). Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol, 135, 3405–11
Beijerinck, M. W. (1895). Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralbl Bakteriol Parasitkd Infekt Abt II, 1, 49–59
Bottcher, M. E., Thamdrup, B., Gehre, M. and Theune, A. (2005). S-34/S-32 and O-18/O-16 fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geomicrobiol J, 22, 219–26
Broco, M., Rousset, M., Oliveira, S. and Rodrigues-Pousada, C. (2005). Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulphate reduction. FEBS Lett, 579, 4803–7
Castro, H., Reddy, K. R. and Ogram, A. (2002). Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol, 68, 6129–37
Castro, H. F., Williams, N. H. and Ogram, A. (2000). Phylogeny of sulphate-reducing bacteria. FEMS Microbiol Ecol, 31, 1–9
Conrad, R., Phelps, T. J. and Zeikus, J. G. (1985). Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol, 50, 595–601
Crane, B. R., Siegel, L. M. and Getzoff, E. D. (1997). Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry, 36, 12101–19
Cypionka, H. (1987). Uptake of sulphate, sulfite and thiosulphate by proton-anion symport in Desulfovibrio desulfuricans. Arch Microbiol, 148, 144–9
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 54, 827–48
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic-compounds and inorganic sulfur-compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158, 93–9
Dehning, I. and Schink, B. (1989). Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol, 151, 427–33
Dimroth, P. and Cook, G. M. (2004). Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol, 49, 175–218
Dolla, A., Pohorelic, B. K. J., Voordouw, J. K. and Voordouw, G. (2000). Deletion of the hmc operon of Desulfovibrio vulgaris subsp vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol, 174, 143–51
Ehrenreich, A. and Widdel, F. (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism. Appl Environ Microb, 60, 4517–26
Ehrlich, H. L. (1999). Microbes as geologic agents: their role in mineral formation. Geomicrobiol J, 16, 135–53
Fareleira, P., Santos, B. S., Antonio, C. et al. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiolog-SGM, 149, 1513–22
Farquhar, J. and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 213, 1–13
Finster, K., Liesack, W. and Thamdrup, B. (1998). Elemental sulfur and thiosulphate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol, 64, 119–25
Fitz, R. M. and Cypionka, H. (1990). Formation of thiosulphate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans. Arch Microbiol, 154, 400–6
Forzi, L., Koch, J., Guss, A. M. et al. (2005). Assignment of the 4Fe-4S clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS J, 272, 4741–53
Frederiksen, T. M. and Finster, K. (2003). Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulphate and elemental sulfur. Biodegradation, 14, 189–98
Fricke, W. F., Seedorf, H., Henne, A. et al. (2006). The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol, 188, 642–58
Friedrich, M. W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J Bacteriol, 184, 278–89
Fritz, G., Roth, A., Schiffer, A. et al. (2002). Structure of adenylylsulphate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc Natl Acad Sci USA, 99, 1836–41
Galouchko, A. S. and Rozanova, E. P. (1996). Sulfidogenic oxidation of acetate by a syntrophic association of anaerobic mesophilic bacteria. Microbiology, 65, 134–9
Garrity, G. M., Bell, J. A. and Lilburn, T. G. (2003). Taxonomic outline of the procaryotes. Bergey's Manual of Systematic Bacteriology. Second Edition. Release 5.0, New York: Springer Verlag 401 pages. DOI: 10.1007/bergeysoutline200405 (http://dx.doi.org/10.1007/bergeysoutline200405) New York: Springer-Verlag.
Ghiorse, W. C. (1984). Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol, 38, 515–50
Goenka, A., Voordouw, J. K., Lubitz, W., Gartner, W. and Voordouw, G. (2005). Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans, 33, 59–60
Hamilton, W. A. (2003). Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 19, 65–76
Hansen, T. A. (1994). Metabolism of sulphate-reducing prokaryotes. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 66, 165–85
Haveman, S. A., Brunelle, V., Voordouw, J. K. et al. (2003). Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J Bacteriol, 185, 4345–53
Haynes, T. S., Klemm, D. J., Ruocco, J. J. and Barton, L. L. (1995). Formate dehydrogenase activity in cells and outer-membrane blebs of Desulfovibrio gigas. Anaerobe, 1, 175–82
Hedderich, R. (2004). Energy-converting NiFe hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr, 36, 65–75
Hedderich, R., Klimmek, O., Kroeger, A. et al. (1998). Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev, 22, 353–81
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol, 22, 554–9
Hemme, C. L. and Wall, J. D. (2004). Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. Omics, 8, 43–55
Hines, M. E., Evans, R. S., Sharak Genthner, B. R. et al. (1999). Molecular phylogenetic and biogeochemical studies of sulphate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol, 65, 2209–16
Hoehler, T., Alperin, M. J., Albert, D. B. and Martens, C. S. (2001). Apparent minimum free energy requirements for methanogenic Archaea and sulphate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol, 38, 33–41
Holmer, M. and Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biol, 46, 431–51
Houwen, F. P., Dijkema, C., Stams, A. J. M. and Zehnder, A. J. B. (1991). Propionate metabolism in anaerobic bacteria – determination of carboxylation reactions with C-13-NMR spectroscopy. Biochim Biophys Acta, 1056, 126–32
Johnston, D. T., Wing, B. A., Farquhar, J. et al. (2005). Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 310, 1477–9
Jonkers, H. M., van der Maarel, M. J. E. C., van Gemerden, H. and Hansen, T. A. (1996). Dimethylsulfoxide reduction by marine sulphate-reducing bacteria. FEMS Microbiol Lett, 136, 283–7
Jorgensen, B. B. (1982). Ecology of the bacteria of the sulfur cycle with special reference to anoxic oxic interface environments. Philo Trans Roy Soc Ser B, 298, 543–61
Keon, R. G. and Voordouw, G. (1996). Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe, 2, 231–8
Klenk, H. P., Clayton, R. A., Tomb, J. F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70
Kobayashi, K., Morisawa, Y., Ishituka, T. and Ishimoto, M. (1975). Biochemical studies on sulphate-reducing bacteria. 14. Enzyme levels of adenylylsulphate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase, and adenosine-triphosphatase in cells grown on sulphate, sulfite, and thiosulphate. J Biochem (Tokyo), 78, 1079–85
Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. and Nash, C. Z. (2005). The paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA, 102, 11131–6
Koizumi, Y., Kelly, J. J., Nakagawa, T. et al. (2002). Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl Environ Microbiol, 68, 3215–25
Kramer, M. and Cypionka, H. (1989). Sulphate formation via ATP sulfurylase in thiosulphate-disproportionating and sulfite-disproportionating bacteria. Arch Microbiol, 151, 232–7
Kreke, B. and Cypionka, H. (1992). Proton motive force in fresh-water sulphate-reducing bacteria, and its role in sulphate accumulation in Desulfobulbus propionicus. Arch Microbiol, 158, 183–7
Kreke, B. and Cypionka, H. (1994). Role of sodium-ions for sulphate transport and energy-metabolism in Desulfovibrio salexigens. Arch Microbiol, 161, 55–61
Krekeler, D. and Cypionka, H. (1995). The preferred electron-acceptor of Desulfovibrio desulfuricans Csn. FEMS Microbiol Ecol, 17, 271–7
Kremer, D. R. and Hansen, T. A. (1988). Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett, 49, 273–7
Larsen, O., Lien, T. and Birkeland, N. K. (1999). Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles, 3, 63–70
Leaphart, A. B., Friez, M. J. and Lovell, C. R. (2003). Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol, 69, 693–6
Le, M. J. and Zinder, S. H. (1988). Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol, 54, 124–9
Lemos, R. S., Gomes, C. M., Santana, M. et al. (2001). The “strict” anaerobe Desulfovibrio gigas contains a membrane-bound oxygen respiratory chain. J Inorg Biochem, 86, 314
Liu, M. Y. and Legall, J. (1990). Purification and characterization of 2 proteins with inorganic pyrophosphatase activity from Desulfovibrio vulgaris – rubrerythrin and a new, highly-active,enzyme. Biochem Biophys Res Commun, 171, 313–18
Lopez-Cortes, A., Bursakov, S., Figueiredo, A. et al. (2005). Purification and preliminary characterization of tetraheme cytochrome c(3) and adenylylsulphate reductase from the peptidolytic sulphate-reducing bacterium Desulfovibrio aminophilus DSM 12254. Bioinorg Chem Appl, 3, 81–91
Lovley, D. R., Holmes, D. E. and Nevin, K. P. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 49, 221–86
Lovley, D. R., Roden, E. E., Phillips, E. J. P. and Woodward, J. C. (1993). Enzymatic iron and uranium reduction by sulphate-reducing bacteria. Mar Geol, 113, 41–53
Malki, S., DeLuca, G., Fardeau, M. L. et al. (1997). Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol, 167, 38–45
Mander, G. J., Duin, E. C., Linder, D., Stetter, K. O. and Hedderich, R. (2002). Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem, 269, 1895–904
Mander, G. J., Pierik, A. J., Huber, H. and Hedderich, R. (2004). Two distinct heterodisulfide reductase-like enzymes in the sulphate-reducing archaeon Archaeoglobus profundus. Eur J Biochem, 271, 1106–16
Matias, P. M., Pereira, I. A. C., Soares, C. M. and Carrondo, M. A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol, 89, 292–329
McOrist, S., Gebhart, C. J., Boid, R. and Barns, S. M. (1995). Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol, 45, 820–5
Meier, T., Polzer, P., Diederichs, K., Welte, W. and Dimroth, P. (2005). Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science, 308, 659–62
Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. and Metcalf, W. W. (2002). Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA, 99, 5632–7
Molitor, M., Dahl, C., Molitor, I. et al. (1998). A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology-SGM, 144, 529–41
Monster, J., Appel, P. W. U., Thode, H. G. et al. (1979). Sulfur isotope studies in early archaean sediments from Isua, West Greenland – implications for the antiquity of bacterial sulphate reduction. Geochim Cosmochim Acta, 43, 405–13
Mori, K., Kim, H., Kakegawa, T. and Hanada, S. (2003). A novel lineage of sulphate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp nov., a new thermophilic isolate from a hot spring. Extremophiles, 7, 283–90
Mueller, V. (2004). An exceptional variability in the motor of archaeal A(1)A(0) ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. J Bioenerg Biomembr, 36, 115–25
Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. and Walker, J. E. (2005). Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science, 308, 654–9
Myers, C. R. and Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science, 240, 1319–21
Nealson, K. H. and Saffarini, D. (1994). Iron and manganese in anaerobic respiration – environmental significance, physiology, and regulation. Annu Rev Microbiol, 48, 311–43
Nielsen, P. H., Lee, W., Lewandowski, Z., Morrison, M. and Characklis, W. G. (1993). Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling, 7, 267–84
Odom, J. M. and Peck, H. D. (1984). Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacteria Desulfovibrio. Annu Rev Microbiol, 38, 551–92
Ogata, M., Arihara, K. and Yagi, T. (1981). D-Lactate dehydrogenase of Desulfovibrio vulgaris. J Biochem (Tokyo), 89, 1423–31
Pankhania, I. P., Spormann, A. M., Hamilton, W. A. and Thauer, R. K. (1988). Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch Microbiol, 150, 26–31
Paulsen, J., Kröger, A. and Thauer, R. K. (1986). ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol, 144, 78–83
Peck, H. D. (1993). Bioenergetic strategies of the sulphate-reducing bacteria. In J. M. Odom and J. Rivers Singleton (eds.), The Sulphate-Reducing Bacteria: Contemporary Perspectives. New York, London: Springer-Verlag. pp. 41–76.
Pires, R. H., Lourenco, A. I., Morais, F. et al. (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta-Bioenergetics, 1605, 67–82
Pohorelic, B. K. J., Voordouw, J. K., Lojou, E. et al. (2002). Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol, 184, 679–86
Rabus, R., Fukui, M., Wilkes, H. and Widdel, F. (1996). Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulphate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol, 62, 3605–13
Rabus, R., Hansen, T., and Widdel, F. (2001). An evolving electronic resource for the microbiological community. In S. Dworkin, M. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The Prokaryotes. New York: Springer-Verlag. pp. release 3.3, http://link.springer-ny.com/link/service/books/10125.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902
Reed, D. W. and Hartzell, P. L. (1999). The Archaeoglobus fulgidus D-lactate dehydrogenase is a Zn2+ flavoprotein. J Bacteriol, 181, 7580–7
Reguera, G., McCarthy, K. D., Mehta, T. et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435, 1098–101
Rodrigues, R., Valente, F. M. A., Pereira, I. A. C., Oliveira, S. and Rodrigues-Pousada, C. (2003). A novel membrane-bound Ech NiFe hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun, 306, 366–75
Rossi, M., Pollock, W. B. R., Reij, M. W. et al. (1993). The Hmc operon of Desulfovibrio vulgaris Subsp vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol, 175, 4699–711
Sapra, R., Bagramyan, K. and Adams, M. W. W. (2003). A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA, 100, 7545–50
Sass, H., Steuber, J., Kroder, M., Kroneck, P. M. H. and Cypionka, H. (1992). Formation of thionates by fresh-water and marine strains of sulphate-reducing bacteria. Arch Microbiol, 158, 418–21
Sato, K., Nishina, Y., Setoyama, C., Miura, R. and Shiga, K. (1999). Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J Biochem (Tokyo), 126, 668–75
Schiffers, A. and Jorgensen, B. B. (2002). Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta, 66, 85–92
Schink, B. (1992). The genus Pelobacter. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (eds.), The Prokaryotes. New York: Springer-Verlag. pp. 3393–9.
Schink, B. and Stams, A. J. (2002). Syntrophism among Prokaryotes. In M. Dworkin (ed.), The Prokaryotes (electronic version). New York: Springer Verlag. pp. 309–35.
Shen, Y. N. and Buick, R. (2004). The antiquity of microbial sulphate reduction. Earth-Science Reviews, 64, 243–72
Shigematsu, T., Tang, Y. Q. Kobayashi, T. et al. (2004). Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol, 70, 4048–52
Shima, S. and Thauer, R. K. (2005). Methyl-coenzyme M reductase (MCR) and the anaerobic oxidation of methane (AOM) in methanotrophic archaea. Curr Opin Microbiol, 8, 643–8
Soboh, B., Linder, D. and Hedderich, R. (2002). Purification and catalytic properties of a CO-oxidizing: H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem, 269, 5712–21
Sperling, D., Kappler, U., Wynen, A., Dahl, C. and Truper, H. G. (1998). Dissimilatory ATP sulfurylase from the hyperthermophilic sulphate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett, 162, 257–64
Stackebrandt, E. (1995). Origin and evolution of prokaryotes. In A. J. Gibbs, C. H. Calisher and F. Garcia-Arenal (eds.), Molecular Basis of Virus Evolution. Cambridge: Cambridge University Press, pp. 224–52.
Stackebrandt, E. (2004). The phylogeny and classification of anaerobic bacteria. In M. M. Nakano and P. Zuber (eds.), Strict and Facultative Anaerobes. Medical and Environmental Aspects. Wymondham, UK: Horizon Bioscience. pp. 1–25.
Steger, J. L., Vincent, C., Ballard, J. D. and Krumholz, L. R. (2002). Desulfovibrio sp genes involved in the respiration of sulphate during metabolism of hydrogen and lactate. Appl Environ Microbiol, 68, 1932–7
Taguchi, Y., Sugishima, M. and Fukuyama, K. (2004). Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8. Biochemistry, 43, 4111–18
Thamdrup, B. and Canfield, D. E. (1996). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr, 41, 1629–50
Thamdrup, B., Fossing, H. and Jorgensen, B. B. (1994). Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta, 58, 5115–29
Thauer, R. K. (1988). Citric acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem., 176, 497–508
Thauer, R. K., Jungermann, K. and Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–80
Thauer, R. K. and Kunow, J. (1995). Sulphate reducing Archaea. In N. Clark (ed.), Biotechnology Handbook. London: Plenum Publishing. pp. 33–48.
Thauer, R. K., Möller-Zinkhan, D. and Spormann, A. (1989). Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol., 43, 43–67
Thauer, R. K. and Morris, J. G. (1984). Metabolism of chemotrophic anaerobes: old views and new aspects. In D. P. Kelly and N. G. Carr (eds.), The Microbe: 1984 Part II: Prokaryotes and Eukaryotes. Society for General Microbiology Symposium 36. Cambridge: Cambridge University Press. pp. 123–68.
Tomei, F. A., Barton, L. L., Lemanski, C. L. et al. (1995). Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol, 14, 329–36
Venter, J. C., Remington, K., Heidelberg, J. F. et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74
Voordouw, G. (2002). Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 184, 5903–11
Voordouw, G., Armstrong, S. M., Reimer, M. F. et al. (1996). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulphate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microb, 62, 1623–9
Wächtershäuser, G. (1992). Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol, 58, 85–201
Ware, D. A. and Postgate, J. R. (1971). Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol, 67, 145–60
Weinberg, M. V., Jenney, F. E., Cui, X. Y. and Adams, M. W. W. (2004). Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol, 186, 7888–95
Widdel, F. and Bak, F. (1992). Gram-negative mesophilic sulphate-reducing bacteria. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (eds.), The Prokaryotes. New York: Springer-Verlag. pp. 3352–78.
Widdel, F. and Pfennig, N. (1982). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty-acids. 2. Incomplete oxidation of propionate by Desulfobulbus propionicus Gen-Nov, Sp-Nov. Arch Microbiol, 131, 360–5
Widdel, F. and Pfennig, N. (1984). Dissimilatory sulphate- and sulfur-reducing bacteria. In N. R. Krieg and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology. Baltimore, MD: Williams and Wilkins. pp. 663–79.
Winogradsky, S. (1890). Recherches sur les organismes de la nitrification. Compt Rendue, 110, 1013–16. In T. D. Brock (ed.), Milestones in Microbiology: 1556 to 1940. ASM Press: Washington DC (1998). pp. 231–33.
Yagi, T. and Ogata, M. (1996). Catalytic properties of adenylylsulphate reductase from Desulfovibrio vulgaris Miyazaki. Biochimie, 78, 838–46
Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W. and Widdel, F. (1999). Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 401, 266–9
Zverlov, V., Klein, M., Lucker, S. et al. (2005). Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol, 187, 2203–8

Reference Title: References

Reference Type: reference-list

Adamczyk, J., Hesselsoe, M., Iversen, N. et al. (2003). The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol., 69, 6875–87
Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. and Raskin, L. (1996). The oligonucleotide probe database. Appl. Environ. Microbiol., 62, 3557–9
Alm, E. W. and Stahl, D. A. (2000). Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments. J. Microbiol. Methods, 40, 153–62
Alm, E. W., Zheng, D. and Raskin, L. (2000). The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl. Environ. Microbiol., 66, 4547–54
Amann, R. and Schleifer, K.-H. (2001). Nucleic acid probes and their application in environmental microbiology. In G. M. Garrity (ed.), Bergey's Manual of Systematic Bacteriology. 2nd edn. New York: Springer.
Amann, R. I., Binder, B. J., Olson, R. J. et al. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol., 56, 1919–25
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992). Molecular and microscopic identification of sulphate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol., 58, 614–23
Baker, B. J., Moser, D. P., MacGregor, B. J. et al. (2003). Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol., 5, 267–77
Beller, H. R., Chain, P. S., Letain, T. E. et al. (2006). The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol., 188, 1473–88
Blazejak, A., Erseus, C., Amann, R. and Dubilier, N. (2005). Coexistence of bacterial sulfide oxidizers, sulphate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl. Environ. Microbiol., 71, 1553–61
Bodrossy, L. and Sessitsch, A. (2004). Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol., 7, 245–54
Boetius, A., Ravenschlag, K., Schubert, C. J. et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6
Brosius, J., Dull, T. L., Sleeter, D. D. and Noller, H. F. (1981). Gene organization and primary structure of a ribosomal operon from Escherichia coli. J. Mol. Biol., 148, 107–27
Castro, H., Newman, S., Reddy, K. R. and Ogram, A. (2005). Distribution and stability of sulphate-reducing prokaryotic and hydrogenotrophic methanogenic assemblages in nutrient-impacted regions of the Florida Everglades. Appl. Environ. Microbiol., 71, 2695–704
Castro, H., Reddy, K. R. and Ogram, A. (2002). Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol., 68, 6129–37
Chang, Y. J., Peacock, A. D., Long, P. E. et al. (2001). Diversity and characterization of sulphate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol., 67, 3149–60
Chhabra, S. R., He, Q., Huang, K. H. et al. (2006). Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J. Bacteriol., 188, 1817–28
Dahl, C., Engels, S., Pott-Sperling, A. S. et al. (2005). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J. Bacteriol., 187, 1392–404
Daims, H., Nielsen, P. H., Nielsen, J. L., Juretschko, S. and Wagner, M. (2000). Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Wat. Sci. Tech., 41, 85–90
Daims, H., Stoecker, K. and Wagner, M. (2005). Fluorescence in situ hybridization for the detection of prokaryotes. In Osborn, A. M. and Smith C. J. (eds) Advanced Methods in Molecular Microbial Ecology. Abingdon, UK: BIOS Scientific Publishers.
Daly, K., Sharp, R. J. and McCarthy, A. J. (2000). Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulphate-reducing bacteria. Microbiology, 146, 1693–705
Dar, S. A., Kuenen, J. G. and Muyzer, G. (2005). Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulphate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol., 71, 2325–30
Davies, M. J., Shah, A. and Bruce, I. J. (2000). Synthesis of fluorescently labelled oligonucleotides and nucleic acids. Chem. Soc. Rev., 29, 97–107
de Bok, F. A., Harmsen, H. J., Plugge, C. M. et al. (2005). The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol., 55, 1697–703
Deplancke, B., Hristova, K. R., Oakley, H. A. et al. (2000). Molecular ecological analysis of the succession and diversity of sulphate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol., 66, 2166–74
Detmers, J., Strauss, H., Schulte, U. et al. (2004). FISH shows that Desulfotomaculum spp. are the dominating sulphate-reducing bacteria in a pristine aquifer. Microb. Ecol., 47, 236–42
Devereux, R., Delaney, M., Widdel, F. and Stahl, D. A. (1989). Natural relationships among sulphate-reducing eubacteria. J. Bacteriol., 171, 6689–95
Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A. (1992). Genus- and group-specific hybridization probes for determinative and environmental studies of sulphate-reducing bacteria. Syst. Appl. Microbiol., 15, 601–9
Devereux, R., Winfrey, M. R., Winfrey, J. and Stahl, D. A. (1996). Depth profile of sulphate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol., 20, 23–31
Dhillon, A., Goswami, S., Riley, M., Teske, A. and Sogin, M. (2005). Domain evolution and functional diversification of sulfite reductases. Astrobiology, 5, 18–29
Dhillon, A., Teske, A., Dillon, J., Stahl, D. A. and Sogin, M. L. (2003). Molecular characterization of sulphate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol., 69, 2765–72
Dubilier, N., Mulders, C., Ferdelman, T. et al. (2001). Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature, 411, 298–302
Eisen, J. A., Nelson, K. E., Paulsen, I. T. et al. (2002). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc. Natl. Acad. Sci. USA, 99, 9509–14
Fishbain, S., Dillon, J. G., Gough, H. L. and Stahl, D. A. (2003). Linkage of high rates of sulphate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulphate respiration pathway. Appl. Environ. Microbiol., 69, 3663–7
Fitz-Gibbon, S. T., Ladner, H., Kim, U. J. et al. (2002). Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA, 99, 984–9
Friedrich, M. W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol., 184, 278–89
Fukui, M., Suwa, Y. and Urushigawa, Y. (1996). High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation. FEMS Microbiol. Ecol., 19, 17–25
Fukui, M., Teske, A., Assmus, B., Muyzer, G. and Widdel, F. (1999). Physiology, phylogenetic relationships, and ecology of filamentous sulphate-reducing bacteria (genus Desulfonema). Arch. Microbiol., 172, 193–203
Geets, J., Borremans, B., Diels, L. et al. (2006). DsrB gene-based DGGE for community and diversity surveys of sulphate-reducing bacteria. J. Microbiol. Methods, 66, 194–205
Gibson, A. H., Jenkins, B. D., Wilkerson, F. P., Short, S. M. and Zehr, J. P. (2006). Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiol. Ecol., 55, 391–402
Greene, E. A. and Voordouw, G. (2003). Analysis of environmental microbial communities by reverse sample genome probing. J. Microbiol. Methods, 53, 211–19
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol., 22, 554–9
Hipp, W. M., Pott, A. S., Thum-Schmitz, N. et al. (1997). Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulphate-reducing and sulfur-oxidizing prokaryotes. Microbiology, 143, 2891–902
Hristova, K. R., Mau, M., Zheng, D. et al. (2000). Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ. Microbiol., 2, 143–59
Imachi, H., Sekiguchi, Y., Kamagata, Y. et al. (2002). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol., 52, 1729–35
Imachi, H., Sekiguchi, Y., Kamagata, Y. et al. (2006). Non-sulphate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl. Environ. Microbiol., 72, 2080–91
Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. and Harada, H. (2000). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol., 66, 3608–15
Ito, T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002). Phylogenetic identification and substrate uptake patterns of sulphate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl. Environ. Microbiol., 68, 356–64
Kane, M. D., Poulsen, L. K. and Stahl, D. A. (1993). Monitoring the enrichment and isolation of sulphate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol., 59, 682–6
Karkhoff-Schweizer, R. R., Huber, D. P. and Voordouw, G. (1995). Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl. Environ. Microbiol., 61, 290–6
Karnachuk, O. V., Pimenov, N. V., Yusupov, S. K. et al. (2006). Distribution, diversity, and activity of sulphate-reducing bacteria in the water column in Gek-Gel Lake, Azerbaijan. Microbiologiya, 75, 101–9
Kjeldsen, K. U., Loy, A., Thomsen, T. R., et al. (2007). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah, USA). FEMS Microbiol. Ecol., in press.
Kleikemper, J., Schroth, M. H., Sigler, W. V. et al. (2002). Activity and diversity of sulphate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., 68, 1516–23
Klein, M., Friedrich, M., Roger, A. J. et al. (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulphate-reducing prokaryotes. J. Bacteriol., 183, 6028–35
Klenk, H.-P., Clayton, R. A., Tomb, J.-F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70
Koizumi, Y., Kojima, H. and Fukui, M. (2004). Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Appl. Environ. Microbiol., 70, 4930–40
Küsel, K., Pinkart, H. C., Drake, H. L. and Devereux, R. (1999). Acetogenic and sulphate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl. Environ. Microbiol., 65, 5117–23
Larsen, O., Lien, T. and Birkeland, N. K. (1999). Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles, 3, 63–70
Laue, H., Friedrich, M., Ruff, J. and Cook, A. M. (2001). Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulphate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol, 183, 1727–33
Lie, T. J., Godchaux, W. and Leadbetter, E. R. (1999). Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulphate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl. Environ. Microbiol., 65, 4611–17
Lin, C., Flesher, B., Capman, W. C., Amann, R. I. and Stahl, D. A. (1994). Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst. Appl. Microbiol., 17, 418–24
Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63, 4516–22
Llobet-Brossa, E., Rabus, R., Bottcher, M. E. et al. (2002). Community structure and activity of sulphate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquatic Microbial Ecology, 29, 211–26
Loy, A. and Bodrossy, L. (2006). Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin. Chim. Acta, 363, 106–19
Loy, A., Horn, M. and Wagner, M. (2003). probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res., 31, 514–16
Loy, A., Küsel, K., Lehner, A., Drake, H. L. and Wagner, M. (2004). Microarray and functional gene analyses of sulphate-reducing prokaryotes in low sulphate, acidic fens reveal co-occurence of recognized genera and novel lineages. Appl. Environ. Microbiol., 70, 6998–7009
Loy, A., Lehner, A., Lee, N., Adamczyk, J. et al. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulphate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 68, 5064–81
Loy, A., Taylor, M. W., Bodrossy, L. and Wagner, M. (2006). Applications of nucleic acid microarrays in soil microbial ecology. In J. E. Cooper and J. R. Rao (eds.), Molecular approaches to soil, rhizosphere and plant microorganism analysis. Wallingford, UK: CABI Publishing.
Lueders, T., Pommerenke, B. and Friedrich, M. W. (2004). Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol., 70, 5778–86
Lümann, H., Arth, I. and Liesack, W. (2000). Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol., 66, 754–62
Mansfield, E. S., Worley, J. M., McKenzie, S. E. et al. (1995). Nucleic-acid detection using nonradioactive labeling methods. Mol. Cell. Probes, 9, 145–56
Manz, W., Eisenbrecher, M., Neu, T. R. and Szewzyk, U. (1998). Abundance and spatial organization of Gram-negative sulphate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol., 25, 43–61
Martin-Laurent, F., Philippot, L., Hallet, S. et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol., 67, 2354–9
Matsui, G. Y., Ringelberg, D. B. and Lovell, C. R. (2004). Sulphate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Appl. Environ. Microbiol., 70, 7053–65
Maukonen, J., Saarela, M. and Raaska, L. (2006). Desulfovibrionales-related bacteria in a paper mill environment as detected with molecular techniques and culture. J. Ind. Microbiol. Biotechnol., 33, 45–54
Minz, D., Fishbain, S., Green, S. J. et al. (1999a). Unexpected population distribution in a microbial mat community: sulphate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol., 65, 4659–65
Minz, D., Flax, J. L., Green, S. J. et al. (1999b). Diversity of sulphate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol., 65, 4666–71
Molitor, M., Dahl, C., Molitor, I. et al. (1998). A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology, 144, 529–41
Mussmann, M., Ishii, K., Rabus, R. and Amann, R. (2005a). Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ. Microbiol., 7, 405–18
Mussmann, M., Richter, M., Lombardot, T. et al. (2005b). Clustered genes related to sulphate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J. Bacteriol., 187, 7126–37
Nakagawa, T., Ishibashi, J., Maruyama, A. et al. (2004). Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl. Environ. Microbiol., 70, 393–403
Neretin, L. N., Schippers, A., Pernthaler, A. et al. (2003). Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ. Microbiol., 5, 660–71
Nielsen, J. L. and Nielsen, P. H. (2002). Quantification of functional groups in activated sludge by microautoradiography. Water Sci. Technol., 46, 389–95
Okabe, S., Itoh, T., Satoh, H. and Watanabe, Y. (1999). Analyses of spatial distributions of sulphate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol., 65, 5107–16
Okabe, S., Santegoeds, C. M., Watanabe, Y. and de Beer, D. (2002). Successional development of sulphate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Biotechnol. Bioengineering, 78, 119–30
Omelchenko, M. V., Makarova, K. S., Wolf, Y. I., Rogozin, I. B. and Koonin, E. V. (2003). Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol., 4, R55.
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–7
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2002). Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA, 99, 7663–8
Overmann, J., Coolen, M. J. L. and Tuschak, C. (1999). Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch. Microbiol., 172, 83–94
Palmer, C., Bik, E. M., Eisen, M. B. et al. (2006). Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res., 34, e5.
Palumbo, A. V., Schryver, J. C., Fields, M. W. et al. (2004). Coupling of functional gene diversity and geochemical data from environmental samples. Appl. Environ. Microbiol., 70, 6525–34
Perez-Jimenez, J. R. and Kerkhof, L. J. (2005). Phylogeography of sulphate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl. Environ. Microbiol., 71, 1004–11
Pernthaler, A. and Amann, R. (2004). Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol., 70, 5426–33
Pernthaler, A., Pernthaler, J. and Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol., 68, 3094–101
Poulsen, L. K., Ballard, G. and Stahl, D. A. (1993). Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol., 59, 1354–60
Rabus, R., Fukui, M., Wilkes, H. and Widdle, F. (1996). Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulphate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol., 62, 3605–13
Rabus, R., Hansen, T. and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The Prokaryotes: An evolving electronic resource for the microbiological community. 3rd ed. New York: Springer-Verlag.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol., 6, 887–902
Ramsing, N. B., Fossing, H., Ferdelman, T. G., Andersen, F. and Thamdrup, B. (1996). Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. Environ. Microbiol., 62, 1391–404
Ramsing, N. B., Kühl, M. and Jørgensen, B. B. (1993). Distribution of sulphate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol., 59, 3840–9
Raskin, L., Capman, W. C., Kane, M. D., Rittmann, B. E. and Stahl, D. A. (1996a). Critical evaluation of membrane supports for use in quantitative hybridizations. Appl. Environ. Microbiol., 62, 300–3
Raskin, L., Rittmann, B. E. and Stahl, D. A. (1996b). Competition and coexistence of sulphate-reducing and methanogenic populations in anaerobic biofilms. Appl. Environ. Microbiol., 62, 3847–57
Raskin, L., Stromley, J. M., Rittmann, B. E. and Stahl, D. A. (1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol., 60, 1232–40
Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B. B. and Amann, R. (2000). Community structure, cellular rRNA content, and activity of sulphate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol., 66, 3592–602
Ricke, P., Kolb, S. and Braker, G. (2005). Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol., 71, 1671–3
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci., 91, 10173–7
Sabehi, G., Loy, A., Jung, K. H. et al. (2005). New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol., 3, e273.
Sahm, K., Knoblauch, C. and Amann, R. (1999). Phylogenetic affiliation and quantification of psychrophilic sulphate-reducing isolates in marine arctic sediments. Appl. Environ. Microbiol., 65, 3976–81
Santegoeds, C. M., Ferdelman, T. G., Muyzer, G. and de Beer, D. (1998). Structural and functional dynamics of sulphate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol., 64, 3731–9
Schadt, C. W., Liebich, J., Chong, S. C. et al. (2005). Design and use of functional gene microarrays (FGAs) for the characterization of microbial communities. Methods Microbiol., 34, 331–68
Schedel, M. and Trüper, H. G. (1980). Anaerobic oxidation of thiosulphate and elemental sulfur in Thiobacillus denitrificans. Arch. Microbiol., 124, 205–10
Scheid, D. and Stubner, S. (2001). Structure and diversity of Gram-negative sulphate-reducing bacteria on rice roots. FEMS Microbiol. Ecol., 36, 175–83
Schwenn, J. D. and Biere, M. (1979). APS-reductase activity in the chromatophores of Chromatium vinosum strain D. FEMS Microbiol. Lett., 6, 19–22
Stackebrandt, E., Sproer, C., Rainey, F. A. et al. (1997). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int. J. Syst. Bacteriol., 47, 1134–9
Stahl, D. A. (2004). High-throughput techniques for analyzing complex bacterial communities. Adv. Exp. Med. Biol., 547, 5–17
Stahl, D. A. and Amann, R. (1991). Development and application of nucleic acid probes. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. Chichester, UK: John Wiley & Sons Ltd.
Stahl, D. A., Flesher, B., Mansfield, H. R. and Montgomery, L. (1988). Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54, 1079–84
Stubner, S. and Meuser, K. (2000). Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol. Ecol., 34, 73–80
Tonolla, M., Bottinelli, M., Demarta, A., Peduzzi, R. and Hahn, D. (2005). Molecular identification of an uncultured bacterium (“morphotype R”) in meromictic Lake Cadagno, Switzerland. FEMS Microbiol. Ecol., 53, 235–44
Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D. and Peduzzi, R. (2000). In situ analysis of sulphate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl. Environ. Microbiol., 66, 820–4
van der Maarel, M. J. E. C., Artz, R. R. E., Haanstra, R. and Forney, L. J. (1998). Association of marine Archaea with the digestive tracts of two marine fish species. Appl. Environ. Microbiol., 64, 2894–8
Wagner, M., Horn, M. and Daims, H. (2003). Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol., 6, 302–9
Wagner, M., Loy, A., Klein, M. et al. (2005). Functional marker genes for identification of sulphate-reducing prokaryotes. Methods Enzymol., 397, 469–89
Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L. and Daims, H. (2006). Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol., 17, 1–9
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A. (1998a). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulphate respiration. J. Bacteriol., 180, 2975–82
Wagner, M., Schmid, M., Juretschko, S. et al. (1998b). In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett., 160, 159–68
Wagner, M., Smidt, H., Loy, A. and Jizhong, Z. (2007). Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb. Ecol., in press.
Watras, C. J., Morrison, K. A., Kent, A. et al. (2005). Sources of methylmercury to a wetland-dominated lake in northern Wisconsin. Environ. Sci. Technol., 39, 4747–58
Wawer, C., Jetten, M. S. and Muyzer, G. (1997). Genetic diversity and expression of the NiFe hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Appl. Environ. Microbiol., 63, 4360–9
Wawer, C. and Muyzer, G. (1995). Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of NiFe hydrogenase gene fragments. Appl. Environ. Microbiol., 61, 2203–10
Wawrik, B., Paul, J. H. and Tabita, F. R. (2002). Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl. Environ. Microbiol., 68, 3771–9
Wieland, A., Kuhl, M., McGowan, L. et al. (2003). Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition. Microb. Ecol., 46, 371–90
Wu, M., Ren, Q., Durkin, A. S. et al. (2005). Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet., 1, e65.
Zhou, J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol., 6, 288–94
Zverlov, V., Klein, M., Lücker, S., Friedrich, M. W., Kellermann, J., Stahl, D. A., Loy, A. and Wagner, M. (2005). Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J. Bacteriol., 187, 2203–8

Reference Title: References

Reference Type: reference-list

Alm, E. J., Huang, K. H., Price, M. N. et al. (2005). The MicrobesOnline Web site for comparative genomics. Genome Res, 15, 1015–22
Altschul, S. F., Madden, T. L., Schäffer, A. A. et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–402
Amann, J. (2004). Metabolic regulation and reconstruction of Desulfobacterium autotrophicum. PhD thesis, University of Bremen.
Boucher, Y., Douady, C. J., Papke, R. T. et al. (2003). Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet, 37, 283–328
Boucher, Y., Huber, H., L'Haridon, S., Stetter, K. O. and Doolittle, W. F. (2001). Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol Biol Evol, 18, 1378–88
Brysch, K., Schneider, C., Fuchs, G. and Widdel, F. (1987). Lithoautotrophic growth of sulphate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol, 148, 264–74
Calteau, A., Gouy, M. and Perrière, G. (2005). Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol, 60, 557–65
Chang, I. S., Groh, J. L., Ramsey, M. M., Ballard, J. D. and Krumholz, L. R. (2004). Differential expression of Desulfovibrio vulgaris genes in response to Cu(II) and Hg(II) toxicity. Appl Environ Microbiol, 70, 1847–51
Chhabra, S. R., He, Q., Huang, K. H. et al. (2006). Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol, 188, 1817–28
Conway, T. and Schoolnik, G. K. (2003). Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol, 47, 879–89
Coppi, M. V. (2005). The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology, 151, 1239–54
Dear, S. and Staden, R. (1991). A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res, 19, 3907–11
Deppenmeier, U., Johann, A., Hartsch, T. et al. (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 4, 453–61
Devereux, R., He, S.-H., Doyle, C. L. et al. (1990). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol, 172, 3609–19
Ewing, B., Hillier, L. D., Wendl, M. C. and Green, P. (1998). Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res, 8, 175–85
Fenchel, T. M. and Jørgensen, B. B. (1977). Detritus food chains of aquatic ecosystems: the role of bacteria. In M. Alexander (ed.), Advances in Microbial Ecology, vol I. Plenum Press. pp. 1–58.
Fleischmann, R. D., Adams, M. D., White, O. et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512
Fournier, M., Aubert, C., Dermoun, Z. et al. (2006). Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie, 88, 85–94
Fournier, M., Zhang, Y., Wildschut, J. D. et al. (2003). Function of oxygen resistance proteins in the anaerobic sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol, 185, 71–9
Fraser, C. M., Eisen, J. A. and Salzberg, S. L. (2000). Microbial genome sequencing. Nature, 406, 799–803
Fraser, C. M. and Fleischmann, R. D. (1997). Strategies for whole microbial genome sequencing and analysis. Electrophoresis, 18, 1207–16
Friedrich, M. W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J Bacteriol, 184, 278–89
Gaasterland, T. and Sensen, C. W. (1996). Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie, 78, 302–10
Gade, D., Thiermann, J., Markowsky, D. and Rabus, R. (2003). Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol, 5, 240–51
Galagan, J. E., Nusbaum, C., Roy, A. et al. (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res, 12, 532–42
Galperin, M. Y. (2006). The molecular biology database collection: 2006 update. Nucleic Acids Res, 34, D3–D5
Gene Ontology Consortium. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32, D258–D261
Grahame, D. A., Gencic, S. and DeMoll, E. (2005). A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol, 184, 32–40
Groh, J. L., Luo, Q., Ballard, J. D. and Krumholz, L. R. (2005). A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl Environ Microbiol, 71, 7064–74
Hattori, S., Galushko, A. S., Kamagata, Y. and Schink, B. (2005). Operation of the CO dehydrogenase/acetyl-coenzyme. A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol, 187, 3471–6
Haveman, S. A., Brunelle, V., Voordouw, J. K. et al. (2003). Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role of alcohol dehydrogenase. J Bacteriol, 185, 4345–53
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol, 186, 7944–50
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol, 7, 1461–5
He, Q., Huang, K. H., He, Z. et al. (2006). Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough inferred from global transcriptional analysis. Appl Environ Microbiol, in press.
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnol, 22, 554–9
Hemme, C. L. and Wall, J. D. (2004). Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. OMICS, 8, 43–55
Hufnagel, P. and Rabus, R. (2006). Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying “Aromatoleum” sp. strain EbN1. J Mol Microbiol Biotechnol, 11, 53–81
Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature, 296, 643–5
Kaiser, O., Bartels, D., Bekel, T. et al. (2003). Whole genome shotgun sequencing guided by bioinformatics pipelines – an optimized approach for an established technique. J Biotechnol, 106, 121–33
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res, 32, D277–D280
Klein, M., Friedrich, M., Roger, A. J. et al. (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulphate-reducing prokaryotes. J Bacteriol, 183, 6028–35
Klenk, H.-P., Clayton, R. A., Tomb, J.-F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70
Knoblauch, C., Sahm, K. and Jørgensen, B. B. (1999). Psychrophilic sulphate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Inter J Syst Bacteriol, 49, 1631–43
Kremer, D. R., Nienhuis-Kuiper, H. E. and Hansen, T. A. (1988). Ethanol dissimilation in Desulfovibrio. Arch Microbiol, 150, 552–7
Kuever, J., Rainey, F. A. and Widdel, F. (2005). Class IV. Deltaproteobacteria class nov. In D. J. Brenner, N. R. Krieg, J. T. Staley (eds.), Bergey's manual of systematic bacteriology, Vol 2, Part C. (2nd edn.). New York: Springer, p. 922.
Lander, E. S. and Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics, 2, 231–9
Llobet-Brossa, E., Rabus, R., Böttcher, M. E. et al. (2002). Community structure and activity of sulphate-reducing bacteria in an intertidal surface-sediment: a multi-methods approach. Aquat Microb Ecol, 29, 211–26
Mann, M., Hendrickson, R. C. and Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem, 70, 437–73
Matias, P. M., Pereira, I. A. C., Soares, C. M. and Carrondo, M. A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol, 89, 292–329
Methé, B. A., Nelson, K. E., Eisen, J. A. et al. (2003). The genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science, 302, 1967–9
Metzker, M. L. (2005). Emerging technologies in DNA sequencing. Genome Res, 15, 1767–76
Meyer, F., Goesmann, A., McHardy, A. C. et al. (2003). GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res, 31, 2187–95
Mukhopadhyay, A., He, Z., Yen, H.-C. et al. (2006). Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. Proc Natl Acad Sci USA, (in press).
Mulder, N. J., Apweiler, R., Attwood, T. K. et al. (2005). InterPro, progress and status in 2005. Nucleic Acids Res, 33, D201–D205
Mussmann, M., Richter, M., Lombardot, T., et al. (2005). Clustered genes related to sulphate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol, 187, 7126–37
Nie, L., Wu, G. and Zhang, W. (2006). Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun, 339, 603–10
Overbeek, R., Begley, T., Butler, R. M. et al. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res, 33, 5691–702
Overbeek, R., Larsen, N., Walunas, T. et al. (2003). The ERGOTM genome analysis and discovery system. Nucleic Acids Res, 31, 164–71
Peterson, J. D., Umayam, L. A., Dickinson, T., Hickey, E. K. and White, O. (2001). The Comprehensive Microbial Resource. Nucleic Acids Res, 29, 123–5
Pires, R. H., Lourenço, A. I., Morais, F. et al. (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta, 1605, 67–82
Pires, R. H., Venceslau, S. S., Morais, F. et al. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulphate respiratory pathway. Biochemistry, 45, 249–62
Postgate, J. R. and Campbell, L. L. (1966). Classification of Desulfovibrio species, the nonsporulating sulphate-reducing bacteria. Bacteriol Rev, 30, 732–8
Rabus, R., Brüchert, V., Amann, J. and Könneke, M. (2002). Physiological response to temperature changes of the marine, sulphate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol, 42, 409–17
Rabus, R., Hansen, T. A., and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The prokaryotes: an evolving electronic resource for the microbiological community. Heidelberg: Springer Science Online (http://www.prokaryotes.com).
Rabus, R., Kube, M., Heider, J. et al. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol, 183, 27–36
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902
Rendulic, S., Jagtap, P., Rosinus, A. et al. (2004). A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science, 303, 689–92
Riley, M. L., Schmidt, T., Wagner, C., Mewes, H.-W. and Frishman, D. (2005). The PEDANT genome database in 2005. Nucleic Acids Res, 33, D308–D310
Rodionov, D. A., Dubchak, I., Arkin, A., Alm, E. and Gelfand, M. S. (2004). Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol, 5, R90.
Rohlin, L., Trent, J. D., Salmon, K. et al. (2005). Heat shock response of Archaeoglobus fulgidus. J Bacteriol, 187, 6046–57
Schauder, R., Preuß, A., Jetten, M. and Fuchs, G. (1989). Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol, 151, 84–9
Schmidt, A., Kellermann, J. and Lottspeich, F. (2005). A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics, 5, 4–15
Shen, Y., Buick, R. and Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81
Stetter, K. O. (1988). Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol, 10, 172–3
Steuber, J. (2001). Na+ translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta, 1505, 45–56
Tech, M. and Merkl, R. (2003). YACOP: enhanced gene prediction obtained by a combination of existing methods. In Silico Biol, 3, 441–51
Tech, M., Pfeifer, N., Morgenstern, B. and Meinicke, P. (2005). TICO: a tool for improving predictions of prokaryotic translation initiation sites. Bioinformatics, 21, 3568–9
Van den Berg, W. A. M., Stokkermans, J. P. W. G. and van Dongen, W. M. A. M. (1993). The operon for the Fe-hydrogenase in Desulfovibrio vulgaris (Hildenborough): Mapping of the transcript and regulation of expression. FEMS Microbiol Lett, 110, 85–90
Vignais, P. M., Billoud, B. and Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Micobiol Rev, 25, 455–501
Voordouw, G. and Wall, J. D. (1993). Genetics and molecular biology of sulphate-reducing bacteria. In M. Sebald (ed.), Genetics and Molecular Biology of Anaerobic Bacteria. New York: Springer-Verlag, pp. 456–73.
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A. (1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulphate respiration. J Bacteriol, 180, 2975–82
Washburn, M. P., Wolters, D. and Yates 3rd, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol, 19, 242–7
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. New York: John Wiley & Sons, pp. 469–585.
Widdel, F., and Bak, F. (1992). Gram-negative mesophilic sulphate-reducing bacteria. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (eds.), The Prokaryotes. Vol IV. (2nd edn.). New York: Springer-Verlag, pp. 3352–78.
Widdel, F. and Pfennig, N. (1981). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. I. Isolation of new sulphate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol, 129, 395–400
Wu, G., Nie, L. and Zhang, W. (2006). Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance. Biochem Biophys Res Commun, 344, 114–21
Yan, B., Methé, B. A., Lovley, D. R. and Krushkal, J. (2004). Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae. J Theoret Biol, 230, 133–44
Zhang, W., Culley, D. E., Wu, G. and Brockman, F. J. (2006). Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs. J Mol Evol, 62, 473–87

Reference Title: References

Reference Type: reference-list

Birrell, G. W., Brown, J. A., Wu, H. I. et al. (2002). Transcription response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. PNAS, 99, 8778–83.
Blankenhorn, D., Phillips, J. and Slonczowski, J. L. (1999). Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol., 181, 2209–16.
Bremer, E. and Kramer, R. (2000). Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress reponses. Washington, DC: ASM Press. pp. 79–97.
Cases, I., Ussery, D. W. and de Lorenzo, V. (2003). The sigma54 regulon (sigmulon) of Pseudomonas putida. Environ. Microbiol., 5, 1281–93.
Cheung, K. J., Badarinarayana, V., Selinger, D. W., Janse, D. and Church, G. M. (2003). A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res., 13, 206–15.
Chhabra, S. R., He, Q., Huang, K. H. et al. (2006). Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J. Bacteriol., 188, 1817–28.
Colantuoni, C., Henry, G., Zeger, S. and Pevsner, J. (2002). Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. Biotechniques, 32, 1316–20.
Csonka, L. N. and Epstein, W. (1996). Osmoregulation. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al. (eds.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. Washington, DC: ASM Press. pp. 1210–23.
Cypionka, H. (1995). Solute transport and cell energetics. In L. L. Barton (ed.), Sulphate-reducing bacteria. New York: Plenum Press. pp. 151–84.
Foster, J. W. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol., 11, 898–907.
Giaever, G., Chu, A. M., Ni, L. et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418, 387–91.
Gorby, Y. A. and Lovley, D. R. (1992). Enzymatic uranium precipitation. Environ. Sci. Technol., 26, 205–7.
Graumann, P. L. and Marahiel, M. A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci., 23, 286–90.
Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E. and Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing sulfide-oxidizing bacteria. Environ. Microbiol., 5, 607–17.
Gross, C. A. (1996). Function and regulation of the heat shock proteins. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C.C. et al. (eds.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. Washington, D.C.: ASM Press. pp. 1382–99.
Hantke, K. and Braun, V. (2000). The art of keeping low and high iron concentrations in balance. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress reponses. Washington, DC: ASM Press. pp. 275–88.
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J. Bacteriol., 186, 7944–50.
He, Q., Huang, K. H., He, Z. et al. (2006). Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough inferred from global transcriptional analysis. Appl. Environ. Microbiol., 72, 4370–81.
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genomic sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol., 22, 554–9.
Hengge-Aronis, R. (2000). The general stress response in Escherichia coli. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress reponses. Washington, DC: ASM Press. pp. 161–78.
Jones, P. G. and Inouye, M. (1996). RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol. Microbiol., 21, 1207–18.
Kammler, M., Schon, C. and Hantke, K. (1993). Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol., 175, 6212–9.
Karatan, E., Duncan, T. R. and Watnick, P. I. (2005). NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J. Bacteriol., 187, 7434–43.
Klenk, H. P., Clayton, R. A., Tomb, J. F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70.
Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. and Landa, E. (1991). Microbial reduction of uranium. Nature, 350, 413–16.
McFall, E. and Newman, E. B. (1996). Amino acids as carbon sources. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham (eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Washington, DC: ASM Press. pp. 358–79.
Minder, A. C., Fischer, H.-M., Hennecke, H. and Narberhaus, F. (2000). Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J. Bacteriol., 182, 14–22.
Moura, I., Bursakov, S., Costa, C. and Moura, J. J. G. (1997). Nitrate and nitrite utilization in sulphate-reducing bacteria. Anaerobe, 3, 279–90.
Mukhopadhyay, A., He, Z., Yen, H.-C. (2006). Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J. Bacteriol., 188, 4068–78.
Nies, D. H. (2004). Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch. Microbiol., 181, 255–68.
Pereira, I. A. C., LeGall, J., Zavier, A. V. and Teixeira, M. (2000). Characterization of heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim. Biophys. Acta, 1481, 119–30.
Phadtare, S., Yamanaka, K. and Inouye, M. (2000). The cold shock response. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress responses. Washington, DC: ASM Press. pp. 33–45.
Postgate, J. R. (1984). The sulphate reducing bacteria (2nd edn). Cambridge and London: Cambridge University Press.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Artic sediments. Environ. Microbiol., 6, 887–902.
Raivio, T. L. and Silhavy, T. J. (2000). Sensing and responding to envelope stress. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress reponses. Washington, DC: ASM Press. pp. 19–32.
Roberts, R. C., Toochinda, C., Avedissian, M. et al. (1996). Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription and the chaperone gene grpE. J. Bacteriol., 178, 1829–41.
Robey, M. and Cianciotto, N. P. (2002). Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect. Immun., 70, 5659–69.
Rodionov, D. A., Dubchak, I., Arkin, A. P., Alm, E. J. and Gelfand, M. S. (2004). Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol., 5, R90.
Stanik, L. M., Stanik, D. M., Schmid, B. et al. (2002). pH-Dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol., 184, 4246–58.
Vila-Sanjurjo, A., Schuwirth, B. S., Hau, C. W. and Cate, J. H.D. (2004). Structural basis for the control of translation initiation during stress. Nature Struc. Mol. Bio., 11, 1054–9.
Wolfe, B. M., Lui, S. M. and Cowan, J. A. (1994). Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris Hildenborough purification, characterization, kinetics and EPR studies. Eur. J. Biochem., 223, 79–89.
Yura, T. K., Kanemori, M. and Morita, M. T. (2000). The heat shock response: regulation and function. In G. Storz and R. Hengge-Aronis (eds.), Bacterial stress reponses. Washington, DC: ASM Press. pp. 3–18.
Zuber, U. and Schumann, W. (1994). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol., 176, 1359–63.

Reference Title: References

Reference Type: bibliography

Abdollahi, H. and Wimpenny, J. W. T. (1990). Effects of oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol, 136, 1025–30.
Aller, R. C. and Rude, P. D. (1988). Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta, 52, 751–65.
Bade, K., Manz, W. and Szewzyk, U. (2000). Behavior of sulphate-reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water. FEMS Microbiol Ecol, 32, 215–23.
Battersby, N. S., Malcolm, S. J., Brown, C. M. and Stanley, S. O. (1985). Sulphate reduction in oxic and suboxic North East Atlantic sediments. FEMS Microbiol Ecol, 31, 225–8.
Baughn, A. D. and Malamy, M. H. (2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature, 427, 441–4.
Baumgarten, A., Redenius, I., Kranczoch, J. and Cypionka, H. (2001). Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol, 176, 306–9.
Beijerinck, M. W. (1893). Über Atmungsfiguren beweglicher Bakterien. Zentralbl Bakteriol Parasitenkunde, 14, 827–45.
Beijerinck, M. W. (1895). Ueber Spirillum desulfuricans als Ursache von Sulfatreduction. Centralbl Bakteriol II Abt, 1, 1–9, 49–59, 104–14.
Berchtold, M., Chatzinotas, A., Schönhuber, W., et al. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol, 172, 407–16.
Blaabjerg, V., Mouritsen, K. N. and Finster, K. (1998). Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat Microb Ecol, 15, 97–102.
Canfield, D. E. and DesMarais, D. J. (1991). Aerobic sulphate reduction in microbial mats. Science, 251, 1471–3.
Chen, L., Liu, M. Y., LeGall, J. et al. (1993). Purification and characterization of a NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem, 216, 443–8.
Cohn, F. (1867). Beiträge zur Physiologie der Phycochromaceen und Florideen. Arch Mikroskopie Anatomie, 3, 1–60.
Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. and Pye, K. (1993). Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361, 436–8.
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 54, 827–48.
Cypionka, H. and Meyer, O. (1982). Influence of carbon monoxide on growth and respiration of carboxydotrophic and other aerobic organisms. FEMS Microbiol Lett, 15, 209–14.
Cypionka, H., Widdel, F. and Pfennig, N. (1985). Survival of sulphate-reducing bacteria after oxygen stress, and growth in sulphate-free oxygen-sulfide gradients. FEMS Microbiol Ecol, 27, 189–93.
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158, 93–9.
Das, A., Silaghi-Dumitrescu, R., Ljungdahl, L. G. and Kurtz, D. M. Jr. (2005). Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol, 187, 2020–9.
Dilling, W. and Cypionka, H. (1990). Aerobic respiration in sulphate-reducing bacteria. Arch Microbiol, 71, 123–8.
Eschemann, A., Kühl, M. and Cypionka, H. (1999). Aerotaxis in Desulfovibrio. Environ Microbiol, 1, 489–94.
Fareleira, P., Santos, B. S., António, C. et al. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology, 149, 1513–22.
Fenchel, T. (1994). Motility and chemosensory behaviour of the sulphur bacterium Thiovulum majus. Microbiology, 140, 3109–16.
Fischer, J. P. and Cypionka, H. (2005). Analysis of aerotactic band formation by Desulfovibrio desulfuricans in a stopped-flow diffusion chamber. FEMS Microbiol Ecol, 55, 186–94.
Fitz, R. M. and Cypionka, H. (1991). Generation of a proton gradient in Desulfovibrio vulgaris. Arch Microbiol, 155, 444–8.
Fournier, M., Zhang, Y., Wildschut, J. D. et al. (2003). Function of oxygen resistance proteins in the anaerobic sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol, 185, 71–9.
Fröhlich, J., Sass, H., Babenzien, H.-D. et al. (1999). Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol, 45, 145–52.
Fründ, C. and Cohen, Y. (1992). Diurnal cycles of sulphate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol, 58, 70–7.
Fu, R. and Voordouw, G. (1997). Targeted gene-replacement mutagenesis of dcrA encoding an oxygen sensor of the sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology, 143, 1815–26.
Fu, R., Wall J. D. and Voordouw, G. (1994). DcrA a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol, 176, 344–50.
Fukui, M. and Takii, S. (1990). Colony formation of free-living and particle-associated sulphate-reducing bacteria. FEMS Microbiol Ecol, 73, 85–90.
Fukui, M. and Takii, S. (1994). Kinetics of sulphate respiration by free-living and particle-associated sulphate-reducing bacteria. FEMS Microbiol Ecol, 13, 241–7.
Gomes, C. M., Silva, G., Oliveira, S. et al. (1997). Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem, 272, 22502–8.
Gottschal, J. C. and Szewzyk, R. (1985). Growth of a facultative anaerobe under oxygen-limiting conditions in pure culture and in co-culture with a sulphate-reducing bacterium. FEMS Microbiol Ecol, 31, 159–70.
Hardy, J. A. and Hamilton, W. A. (1981). The oxygen tolerance of sulphate-reducing bacteria isolated from North Sea waters. Curr Microbiol, 6, 259–62.
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 22, 554–9.
Hoppe-Seyler, F. (1886). Ueber die Gährung der Cellulose mit Bildung von Methan und Kohlensäure. II. Der Zerfall der Cellulose durch Gährung unter Bildung von Methan und Kohlensäure und die Erscheinungen, welche dieser Process veranlasst. Z Physiol Chem, 10, 401–40.
Imlay, J. A. (2002). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol, 46, 111–53.
Ito, T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002). Phylogenetic identification and substrate uptake patterns of sulphate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl Environ Microbiol, 68, 356–64.
Johnson, M. S., Zhulin, I. G., Gapuzan, M. E. R. and Taylor, B. L. (1997). Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol, 179, 5598–601.
Jonkers, H. M., Koh, I. O., Behrend, P., Muyzer, G. and de Beer, D. (2005). Aerobic organic carbon mineralization by sulphate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb Ecol, 49, 291–300.
Jørgensen, B. B. (1977). Bacterial sulphate reduction within reduced microniches of oxidized marine sediments. Mar Biol, 41, 7–17.
Jørgensen, B. B. (1994). Sulphate reduction and thiosulphate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol, 13, 303–12.
Jørgensen, B. B. and Bak, F. (1991). Pathways and microbiology of thiosulphate transformations and sulphate reduction in a marine sediment (Kattegatt, Denmark). Appl Environ Microbiol, 57, 847–56.
Kjeldsen, K. U., Joulian, C. and Ingvorsen, K. (2004). Oxygen tolerance of sulphate-reducing bacteria in activated sludge. Environ Sci Technol, 38, 2038–43.
Kolb, S., Seeliger, S., Springer, N., Ludwig, W. and Schink, B. (1998). The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulphate reducers. System Appl Microbiol, 21, 340–5.
Krekeler, D. and Cypionka, H. (1995). The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol, 17, 271–8.
Krekeler, D., Teske, A. and Cypionka, H. (1998). Strategies of sulphate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol, 25, 89–96.
Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H. and König, H. (1996). A feasible role of sulphate-reducing bacteria in the termite gut. System Appl Microbiol, 19, 139–49.
Laanbroek, H. J. and Pfennig, N. (1981). Oxidation of short-chain fatty acids by sulphate-reducing bacteria in freshwater and marine sediments. Arch Microbiol, 128, 330–5.
LeGall, J. and Xavier, A. V. (1996). Anaerobes response to oxygen: the sulphate-reducing bacteria. Anaerobe, 2, 1–9.
Lemos, R. S., Gomes, C. M., Santana, M. et al. (2001). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett, 496, 40–3.
Marschall, C., Frenzel, P. and Cypionka, H. (1993). Influence of oxygen on sulphate reduction and growth of sulphate-reducing bacteria. Arch Microbiol, 159, 168–73.
Meyer, L. (1864). Chemische Untersuchungen der Thermen zu Landeck in der Grafschaft Glatz. J Prakt Chem, 91, 1–15.
Minz, D., Fishbain, S., Green, S. J. et al. (1999a). Unexpected population distribution in a microbial mat community: sulphate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol, 65, 4659–65.
Minz, D., Flax, J. L., Green, S. J. et al. (1999b). Diversity of sulphate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol, 65, 4666–71.
Mogensen, G. L., Kjeldsen, K. U. and Ingvorsen, K. (2005). Desulfovibrio aerotolerans sp. nov., an oxygen-tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe, 11, 339–49.
Okabe, S., Ito, T. and Satoh, H. (2003). Sulphate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Appl Microbiol Biotechnol, 63, 322–34.
Ploug, H., Kühl, M., Buchholz-Cleven, B. and Jørgensen, B. B. (1997). Anoxic aggregates – an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol, 13, 285–94.
Ramsing, N. B., Fossing, H., Ferdelmann, T. G., Andersen, F. and Thamdrup, B. (1996). Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol, 62, 1391–404.
Ramsing, N. B., Kühl, M. and Jørgensen, B. B. (1993). Distribution of sulphate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol, 59, 3840–9.
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA, 91, 10173–7.
Sass, A. M., Eschemann, A., Kühl, M. et al. (2002). Growth and chemosensory behavior of sulphate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiol Ecol, 40, 47–54.
Sass, H. (1997). Vorkommen und Aktivität sulfatreduzierender Bakterien in der Chemokline limnischer Sedimente. PhD thesis, University of Oldenburg.
Sass, H., Berchtold, M., Branke, J. et al. (1998a). Psychrotolerant sulphate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. System Appl Microbiol, 21, 212–19.
Sass, H., Cypionka, H. and Babenzien, H.-D. (1996). Sulphate-reducing bacteria from the oxic layers of the oligotrophic Lake Stechlin. Arch Hydrobiol – Spec Iss Adv Limnol, 48, 241–6.
Sass, H., Cypionka, H. and Babenzien, H.-D. (1997). Vertical distribution of sulphate-reducing bacteria at the oxic–anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol, 22, 245–55.
Sass, H., Wieringa, E., Cypionka, H., Babenzien, H.-D. and Overmann, J. (1998b). High genetic and physiological diversity of sulphate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol, 170, 243–51.
Schippers, A. and Jørgensen, B. B. (2001). Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochim Cosmochim Acta, 65, 915–22.
Schramm, A., Santegoeds, C. M., Nielsen, H. K. et al. (1999). On the occurrence of anoxic microniches, denitrification, and sulphate reduction in aerated activated sludge. Appl Environ Microbiol, 65, 4189–96.
Schulz, H. N. and Jørgensen, B. B. (2001). Big bacteria. Annu Rev Microbiol, 55, 105–37.
Seitz, H. J. and Cypionka, H. (1986). Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol, 146, 63–7.
Sigalevich, P., Meshorer, E., Helman, Y. and Cohen, Y. (2000). Transition from anaerobic to aerobic growth conditions for the sulphate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl Environ Microbiol, 66, 5005–12.
Stams, A. J. M. and Hansen, T. A. (1982). Oxygen-labile L(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett, 13, 389–94.
Tebo, B. M. and Obraztsova, A. Y. (1998). Sulphate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett, 162, 193–8.
Teske, A., Ramsing, N. B., Habicht, K. et al. (1998). Sulphate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol, 64, 2943–51.
Teske, A., Wawer, C., Muyzer, G. and Ramsing, N. B. (1996). Distribution of sulphate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol, 62, 1405–15.
Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D. and Peduzzi, R. (2000). In situ analysis of sulphate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol, 66, 820–4.
Van den Ende, F. P., Meier, J. and van Gemerden, H. (1997). Syntrophic growth of sulphate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol Ecol, 23, 65–80.
Van Niel, E. W. J. and Gottschal, J. C. (1998). Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol, 64, 1034–9.
Van Niel, E. W. J., Pedro Gomez, T. M., Willems, A. et al. (1996). The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens. FEMS Microbiol Ecol, 21, 243–53.
Visscher, P. T., Prins, R. A. and van Gemerden, H. (1992). Rates of sulphate reduction and thiosulphate consumption in a marine microbial mat. FEMS Microbiol Ecol, 86, 283–94.
Voordouw, J. K. and Voordouw, G. (1998). Deletion of the rbo gene increases the oxygen sensitivity of the sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol, 64, 2882–7.
Widdel, F. (1988). Microbiology and ecology of sulphate-reducing and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms, New York, NY: John Wiley and Sons. pp. 469–585.
Widdel, F. and Hansen, T. A. (1992). Dissimilatory sulphate- and sulfur-reducing bacteria. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer (eds.), The prokaryotes, vol. 1, 2nd edn. New York, NY: Springer. pp. 583–24.
Widdel, F. and Pfennig, N. (1982). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol, 131, 360–5.
Wieringa, E. B. A., Overmann, J. and Cypionka, H. (2000). Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ Microbiol, 2, 417–27.
Wind, T. and Conrad, R. (1995). Sulfur compounds, potential turnover of sulphate and thiosulphate, and numbers of sulphate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol, 18, 257–66.

Reference Title: References

Reference Type: reference-list

Abdollahi, H. and Wimpenny, J. W. T. (1990). Effects of the oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol, 136, 1025–30.
Abreu, I. A., Xavier, A. V., LeGall, J., Cabelli, D. E. and Teixeira, M. (2002). Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes. J Biol Inorg Chem, 7, 668–74.
Alban, P. S. and Krieg, N. R. (1998). A hydrogen peroxide resistant mutant of Spirillum volutans has NADH peroxidase activity but no increased oxygen tolerance. Can J Microbiol, 44, 87–91.
Alves, T., Besson, S., Duarte, L. C. et al. (1999). A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization. Biochim Biophys Acta, 1434, 248–59.
Barynin, V. V., Whittaker, M. M., Antonyuk, S. V. et al. (2001). Crystal structure of manganese catalase from Lactobacillus plantarum. Structure (Camb.), 9, 725–38.
Baumgarten, A., Redenius, I., Kranczoch, J. and Cypionka, H. (2001). Periplasmic reduction by Desulfovibrio species. Arch Microbiol, 176, 306–9.
Bramlett, R. N. and Peck, H. D., Jr. (1975). Some physical and kinetic properties of adenylyl sulphate reductase from Desulfovibrio vulgaris. J Biol Chem, 250, 2979–86.
Brioukhanov, A. L. and Netrusov, A. I. (2004). Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc), 69, 949–62.
Brumlik, M. J. and Voordouw, G. (1989). Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris (Hildenborough). J Bacteriol, 171, 4996–5004.
Canfield, D. E. and Des Marais, D. J. (1991). Aerobic sulphate reduction in microbial mats. Science, 251, 1471–3.
Carmel-Harel, O. and Storz, G. (2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol, 54, 439–61.
Caumette, P., Matheron, R., Raymond, N. and Relexans, J.-C. (1994). Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins de Giraud, France). FEMS Microbiol Ecol, 13, 273–86.
Chen, L., Liu, M.-Y., LeGall, J. et al. (1993a). Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem, 216, 443–8.
Chen, L., Liu, M.-Y., LeGall, J. et al. (1993b). Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun, 193, 100–5.
Chen, L., Sharma, P., Le Gall, J. et al. (1994). A blue non-heme iron protein from Desulfovibrio gigas. Eur J Biochem, 226, 613–18.
Choudhury, S. B., Lee, J. W., Davidson, G. et al. (1999). Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry, 38, 3744–52.
Coulter, E. D. and Kurtz, D. M., Jr. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys, 394, 76–86.
Coulter, E. D., Shenvi, N. V. and Kurtz, D. M., Jr. (1999). NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun, 255, 317–23.
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 54, 827–48.
da Costa, P. N., Romão, C. V., LeGall, J. et al. (2001). The genetic organization of Desulfovibrio desulfuricans ATCC 27774 bacterioferritin and rubredoxin-2 genes. Involvement of rubredoxin in the iron metabolism. Mol Microbiol, 41, 217–29.
Das, A., Coulter, E. D., Kurtz, D. M., Jr. and Ljungdahl, L. G. (2001). Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase-rubredoxin and rubrerythrin-type A flavoprotein-high-molecular-weight rubredoxin. J Bacteriol, 183, 1560–7.
deMaré, F., Kurtz, D. M., Jr. and Nordlund, P. (1996). The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nature Struct Biol, 3, 539–46.
Dos Santos, W. G., Pacheco, I., Liu, M. Y. et al. (2000). Purification and characterization of an iron superoxide dismutase and a catalase from the sulphate-reducing bacterium Desulfovibrio gigas. J Bacteriol, 182, 796–804.
Emerson, J. P., Coulter, E. D., Phillips, R. S. and Kurtz, D. M., Jr. (2003). Kinetics of the superoxide reductase catalytic cycle. J Biol Chem, 278, 39662–8.
Eschemann, A., Kèuhl, M. and Cypionka, H. (1999). Aerotaxis in Desulfovibrio. Environ Microbiol, 1, 489–94.
Frazão, C., Silva, G., Gomes, C. M. et al. (2000). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nature Struct Biol, 7, 1041–5.
Fournier, M., Aubert, C., Dermoun, Z. et al. (2006). Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie, 88, 85–94.
Fournier, M., Dermoun, Z., Durand, M. C. and Dolla, A. (2004). A new function of the Desulfovibrio vulgaris Hildenborough Fe hydrogenase in the protection against oxidative stress. J Biol Chem, 279, 1787–93.
Fournier, M., Zhang, Y., Wildschut, J. D. et al. (2003). Function of oxygen resistance proteins in the anaerobic, sulphate-reducing bacterium, Desulfovibrio vulgaris Hildenborough. J Bacteriol, 185, 71–9.
Fritz, G., Bèuchert, T. and Kroneck, P. M. (2002). The function of the 4Fe-4S clusters and FAD in bacterial and archaeal adenylylsulphate reductases. Evidence for flavin-catalyzed reduction of adenosine 5′-phosphosulphate. J Biol Chem, 277, 26066–73.
Fu, R. and Voordouw, G. (1997). Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology, 143, 1815–26.
Gardner, A. M., Helmick, R. A. and Gardner, P. R. (2002). Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem, 277, 8172–7.
Gomes, C. M., Giuffrè, A., Forte, E. et al. (2002). A novel type of nitric oxide reductase: Escherichia coli flavorubredoxin, J Biol Chem, 277, 25273–6.
Hatchikian, E. C. and Henry, Y. A. (1977). An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie, 59, 153–61.
Hatchikian, C. E., LeGall, J. and Bell, G. R. (1977). Significance of superoxide dismutase and catalase activities in the strict anaerobes, sulphate-reducing bacteria. In A. M. Michael, J. M. McCord and I. Fridovich (eds.), Superoxide and superoxide dismutase. New York: Academic Press. pp. 159–72.
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol, 22, 554–9.
Imlay, J. A. (2002a). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol, 46, 111–53.
Imlay, J. A. (2002b). What biological purpose is served by superoxide reductases? J Biol Inorg Chem, 7, 659–63.
Imlay, J. A. (2003). Pathways of oxidative damage. Annu Rev Microbiol, 57, 395–418.
Imlay, J. A. and Fridovich, I. (1991). Assay of metabolic superoxide production in Escherichia coli. J Biol Chem, 266, 6957–65.
Imlay, K. R. C. and Imlay, J. A. (1996). Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol, 178, 2564–71.
Iyer, R. B., Silaghi-Dumitrescu, R., Kurtz, D. M., Jr. and Lanzilotta, W. N. (2005). High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. J Biol Inorg Chem, 10, 407–16.
Jin, S., Kurtz, D. M., Jr., Liu, Z.-J., Rose, J. and Wang, B.-C. (2002). X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc, 124, 9845–55.
Justino, M. C., Vicente, J. B., Teixeira, M. and Saraiva, L. M. (2005). New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem, 280, 2636–43.
Kawasaki, S., Ishikura, J., Watamura, Y. and Niimura, Y. (2004). Identification of O2-induced peptides in an obligatory anaerobe, Clostridium acetobutylicum. FEBS Lett, 571, 21–5.
Kawasaki, S., Watamura, Y., Ono, M. et al. (2005). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Appl Environ Microbiol, 71, 8442–50.
Kirschvink, J. L., Gaidos, E. J., Bertani, L. E. et al. (2000). Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA, 97, 1400–5.
Kitamura, M., Mizugai, K., Taniguchi, M. et al. (1995). A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c-553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki F). Microbiol Immunol, 39, 75–80.
Kjeldsen, K. U., Joulian, C. and Ingvorsen, K. (2005). Effects of oxygen exposure on respiratory activities of Desulfovibrio desulfuricans strain DvO1 isolated from activated sludge. FEMS Microbiol Ecol, 53, 275–84.
Krekeler, D., Sigalevich, P., Teske, A., Cypionka, H. and Cohen, Y. (1997). Sulphate-reducing bacterium form the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol, 167, 369–75.
Kumagai, H., Fujiwara, T., Matsubara, H. and Saeki, K. (1997). Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry, 36, 5509–21.
Kurtz, D. M., Jr. (2004). Microbial detoxification of superoxide: The non-heme iron reductive paradigm for combating oxidative stress. Acc Chem Res, 37, 902–8.
LeGall, J., Prickril, B. C., Moura, I. et al. (1988). Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry, 27, 1636–42.
Lemos, R. S., Gomes, C. M., LeGall, J., Xavier, A. V., Teixeira, M. (2002). The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomemb, 34, 21–30.
Lemos, R. S., Gomes, C. M., Santana, M. et al. (2001). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett, 496, 40–3.
Liochev, S. I. and Fridovich, I. (1997). A mechanism for complementation of the sodA sodB defect in Escherichia coli by overproduction of the rbo gene product (desulfoferrodoxin) from Desulfoarculus baarsii. J Biol Chem, 272, 25573–5.
Liochev, S. I. and Fridovich, I. (2000). Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase. J Biol Chem, 275, 38482–5.
Loewen, P. C., Klotz, M. G. and Hassett, D. J. (2000). Catalase – an “old” enzyme that continues to surprise us. ASM News, 66, 76–82.
Lombard, M., Fontecave, M., Touati, D. and Nivière, V. (2000). Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem, 275, 115–21.
Lumppio, H. L., Shenvi, N. V., Garg, R. P., Summers, A. O. and Kurtz, D. M., Jr. (1997). A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). J Bacteriol, 179, 4607–15.
Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G. and Kurtz, D. M., Jr. (2001). Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris. A novel oxidative stress protection system. J Bacteriol, 183, 101–8, and correction 2970.
Macedo, S., Romão, C. V., Mitchell, E. et al. (2003). The nature of the diiron site in the bacterioferritin from Desulfovibrio desulfuricans. Nature Struct Biol, 10, 285–90.
Marschall, C., Frenzel, P. and Cypionka, H. (1993). Influence of oxygen on sulphate reduction and growth of sulphate-reducing bacteria. Arch Microbiol, 159, 168–73.
May, A., Hillmann, F., Riebe, O., Fischer, R. J. and Bahl, H. (2004). A rubrerythrin-like oxidative stress protein of Clostridium acetobutylicum is encoded by a duplicated gene and identical to the heat shock protein Hsp21. FEMS Microbiol Lett, 238, 249–54.
McCord, J. M., Keele, B. B., Jr. and Fridovich, I. (1971). An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA, 68, 1024–7.
Miller, A.-F. (2004). Superoxide Processing. In L. Que, Jr. and W. B. Tolman (eds.), Comprehensive coordination chemistry II – from biology to nanotechnology, Oxford, UK: Elsevier. pp. 479–506.
Moura, I., Tavares, P., Moura, J. J. et al. (1990). Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. J Biol Chem, 265, 21596–602.
Moura, I., Tavares, P. and Ravi, N. (1994). Characterization of 3 proteins containing multiple iron sites – rubrerythrin, desulfoferrodoxin, and a protein containing a six-iron cluster. Methods Enzymol, 243, 216–40.
Nakanishi, T., Inoue, H. and Kitamura, M. (2003). Cloning and expression of the superoxide dismutase gene from the obligate anaerobic bacterium Desulfovibrio vulgaris (Miyazaki F). J Biochem (Tokyo), 133, 387–93.
Park, S., You, X. and Imlay, J. A. (2005). Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx-mutants of Escherichia coli. Proc Natl Acad Sci USA, 102, 9317–22.
Parsonage, D., Youngblood, D. S., Sarma, G. N. et al. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry, 44, 10583–92.
Pereira, M. M. and Teixeira, M. (2004). Proton pathways, ligand binding and dynamics of the catalytic site haem-copper superfamily of oxygen reductases. Biochim Biophys Acta, 1655, 340–6.
Pereira, M. M., Bandeiras, T. M., Fernandes, A. S. et al. (2004). Respiratory chains from aerobic thermophilic prokaryotes. J Bioenerg Biomemb, 36, 93–105.
Pereira, M. M., Carita, J. N. and Teixeira, M. (1999). Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 38, 1268–75.
Pereira, M. M., Santana, M. and Teixeira, M. (2001). A novel scenario for the evolution of haem-copper oxidases. Biochim Biophys Acta, 1505, 185–208.
Pianzzola, M. J., Soubes, M. and Touati, D. (1996). Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol, 178, 6736–42.
Pierik, A. J., Wolbert, R. B. G., Portier, G. L., Verhagen, M. F. J. M. and Hagen, W. R. (1993). Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem, 212, 237–45.
Pütz, S., Gelius-Dietrich, G., Piotrowski, M. and Henze, K. (2005). Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol, 142, 212–23.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902.
Ravenschlag, K., Sahm, K., Knoblauch, C., Jorgensen, B. B. and Amann, R. (2000). Community structure, cellular rRNA content, and activity of sulphate-reducing bacteria in marine arctic sediments. Appl Environ Microbiol, 66, 3592–602.
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA, 91, 10173–7.
Rodrigues, J. V., Abreu, I. A., Saraiva, L. M. and Teixeira, M. (2005). Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus. Biochem Biophys Res Commun, 329, 1300–5.
Romão, C. V., Louro, R., Timkovich, R. et al. (2000a). Iron-coproporphyrin III is a natural cofactor in bacterioferritin from the anaerobic bacterium Desulfovibrio desulfuricans. FEBS Lett, 480, 213–16.
Romão, C. V., Regalla, M., Xavier, A. V. et al. (2000b). A bacterioferritin from the strict anaerobe Desulfovibrio desulfuricans ATCC 27774. Biochemistry, 39, 6841–9.
Salvador, A., Sousa, J. and Pinto, R. E. (2001). Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment. Free Radic Biol Med, 31, 1208–15.
Saraiva, L. M., Vicente, J. B. and Teixeira, M. (2004). The role of the flavodiiron proteins in microbial nitric oxide detoxification. Advances in Microbial Physiology, 49, 77–129.
Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science, 283, 1488–93.
Sass, H., Berchtold, M., Branke, J. et al. (1998). Psychrotolerant sulphate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol, 21, 212–19.
Sass, H., Cypionka, H. and Babenzien, H.-D. (1997). Vertical distribution of sulphate-reducing bacteria at the oxic–anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol, 22, 245–55.
Seaver, L. C. and Imlay, J. A. (2001). Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol, 183, 7182–19.
Sigalevich, P. and Cohen, Y. (2000). Oxygen dependent growth of the sulphate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in a aerated sulphate-depleted chemostat. Appl Environ Microbiol, 66, 5019–23.
Silaghi-Dumitrescu, R., Coulter, E. D., Das, A. et al. (2003). A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry, 42, 2806–15.
Silaghi-Dumitrescu, R., Ng, K. Y., Viswanathan, R. and Kurtz, D. M., Jr. (2005). A flavodiiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities. Evidence for an in vivo nitric oxide scavenging function. Biochemistry, 44, 3572–9.
Silva, G., LeGall, J., Xavier, A. V., Teixeira, M. and Rodrigues-Pousada, C. (2001). Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol, 183, 4413–20.
Srinivasan, V., Rajendran, C., Sousa, F. L. et al. (2005). Structure at 1.3A resolution of Rhodothermus marinus caa3 cytochrome c domain. J Mol Biol, 345, 1047–57.
Storz, G. and Imlay, J. A. (1999). Oxidative stress. Curr Opin Microbiol, 2, 188–94.
Sztukowska, M., Bugno, M., Potempa, J., Travis, J. and Kurtz, D. M., Jr. (2002). Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol, 44, 479–88.
Teske, A., Ramsing, N. B., Habicht, K. et al. (1998). Sulphate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Env Microbiol, 64, 2943–51.
van Vliet, A. H., Baillon, M. L., Penn, C. W. and Ketley, J. M. (1999). Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol, 181, 6371–6.
Vance, C. K. and Miller, A. F. (1998). A simple proposal that can explain the inactivity of metal-substituted superoxide dismutases. J Am Chem Soc, 120, 461–7.
Voordouw, G. (2002). Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 184, 5903–11.
Weinberg, M. V., Jenney, F. E., Cui, X. Y. and Adams, M. W. W. (2004). Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol, 186, 7888–95.
Wood, Z. A., Schröder, E., Robin Harris, J. and Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci, 28, 32–40.
Yoder, D. W., Hwang, J., and Penner-Hahn, J. E. (2000). Manganese catalases. In A. Sigel and H. Sigel. (eds.), Metal Ions in Biological Systems, Vol. 37. New York: Marcel Dekker, Inc. pp. 527–57.
Zámocky, M. and Koller, F. (1999). Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol, 72, 19–66.
Zou, P.-J., Borovok, I., Ortiz de Orué Lucana, D., Müller, D. and Schrempf, H. (1999). The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology, 145, 549–59.

Reference Title: References

Reference Type: bibliography

Aubert, C., Brugna, M., Dolla, A., Bruschi, M. and Giudici-Orticoni, M. T. (2000). A sequential electron transfer from hydrogenases to cytochromes in sulphate-reducing bacteria. Biochim Biophys Acta, 1476, 85–92.
Berks, B. C., Page, M. D., Richardson, D. J. et al. (1995). Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol, 15, 319–31.
Bruschi, M. (1994). Cytochrome c3 (Mr 26,000) isolated from sulphate-reducing bacteria and its relationship to other polyhemic cytochromes from Desulfovibrio. Methods Enzym, 243, 140–55.
Casalot, L., Hatchikian, C. E., Forget, N. et al. (1998). Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructosovorans. Anaerobe, 4, 45–55.
Casalot, L., De Luca, G., Dermoun, Z., Rousset, M. and De Philip, P. (2002a). Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol, 184, 853–6.
Casalot, L., Valette, O., De Luca, G. et al. (2002b). Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett, 214, 107–12.
Cort, J. R., Mariappan, S. V. S., Kim, C.-Y. et al. (2001). Solution structure of Pyrobaculum aerophilum DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. Eur J Biochem, 268, 55842–50.
Curatti, L., Brown, C. S., Ludden, P. W. and Rubio, L. M. (2005). Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA, 102, 6291–6.
Czjzek, M., Guerlesquin, F., Bruschi, M. and Haser, R. (1996). Crystal structure of a dimeric octaheme cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway. Structure, 4, 395–404.
Czjzek, M., Elantak, L., Zamboni, V. et al. (2002). The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c3. Structure, 10, 1677–86.
Dahl, C., Engels, S., Pott-Sperling, A. S. et al. (2005). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol, 187, 1392–404.
De Lacey, A. L., Fernandez, V. M. and Rousset, M. (2005). Native and mutant nickel-iron hydrogenases: unravelling structure and function. Coordin Chem Rev, 249, 1596–608.
De Luca, G., Asso, M., Belaich, J. P. and Dermoun, Z. (1998). Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli. Biochemistry, 37, 2660–5.
Di Paolo, R. E., Pereira, P. M., Gomes, I. et al. (2006). Resonance Raman fingerprinting of multiheme cytochromes from the cytochrome c3 family. J Biol Inorg Chem, 11, 217–24
Dolla, A., Pohorelic, B. K. J., Voordouw, J. K. and Voordouw, G. (2000). Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol, 174, 143–51.
Duin, E. C., Madadi-Kahkesh, S., Hedderich, R., Clay, M. D. and Johnson, M. K. (2002). Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site 4Fe-4S cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett, 512, 263–8.
Elantak, L., Dolla, A., Durand, M. C., Bianco, P. and Guerlesquin, F. (2005). Role of the tetrahemic subunit in Desulfovibrio vulgaris Hildenborough formate dehydrogenase. Biochemistry, 44, 14828–34.
Frazao, C., Sieker, L., Sheldrick, G. et al. (1999). Ab initio structure solution of a dimeric cytochrome c3 from Desulfovibrio gigas containing disulfide bridges. J Biol Inorg Chem, 4, 162–5.
Goenka, A., Voordouw, J. K., Lubitz, W., Gartner, W. and Voordouw, G. (2005). Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans, 33, 59–60.
Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E. and Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidising bacteria. Environ Microbiol, 5, 607–17.
Hatchikian, C. E., Traore, A. S., Fernandez, V. M. and Cammack, R. (1990). Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans. Eur J Biochem, 187, 635–43.
Haveman, S. A., Brunelle, V., Voordouw, J. K. et al. (2003). Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J Bacteriol, 195, 4345–53.
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol, 186, 7944–50.
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol, 7, 1461–5.
He, Q., Huang, K. H., He, Z. et al., (2006). Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Appl Environ Microbiol, 72, 4370–81.
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol, 22, 554–9.
Huynh, B. H., Czechowski, M. H., Kruger, H. J. et al. (1984). Desulfovibrio vulgaris hydrogenase – a nonheme iron enzyme lacking nickel that exhibits anomalous electron-paramagnetic-res and Mossbauer-spectra. Proc Natl Acad Sci-Biol, 81, 3728–32.
Iverson, T. M., Hendrich, M. P., Arciero, D. M., Hooper, A. B. and Rees, D. C. (2001). Cytochrome c554. In A. Messerschmidt, R. Huber, T. Poulos and K. Wieghardt (eds.), New York: Wiley. pp. 136–46.
Jeong, H. S. and Jouanneau, Y. (2000). Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol, 182, 1208–14.
Keon, R. G. and Voordouw, G. (1996). Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe, 2, 231.
Keon, R. G., Fu, R. and Voordouw, G. (1997). Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch Microbiol, 167, 376–83.
Klenk, H. P., Clayton, R. A., Tomb, J. F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70.
Koo, M. S., Lee, J. H., Rah, S. Y. et al. (2003). A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J, 22, 2614–22.
Kumagai, H., Fujiwara, T., Matsubara, H. and Saeki, K. (1997). Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry, 36, 5509–21.
Kunkel, A., Vaupel, M., Heim, S., Thauer, R. K. and Hedderich, R. (1997). Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur J Biochem, 244, 226–34.
Madadi-Kahkesh, S., Duin, E. C., Heim, S. et al. (2001). A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. Eur J Biochem, 268, 2566–77.
Malki, S., Deluca, G., Fardeau, M. L. et al. (1997). Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol, 167, 38–45.
Mander, G. J., Duin, E. C., Linder, D., Stetter, K. O. and Hedderich, R. (2002). Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem, 269, 1895–904.
Matias, P. M., Coelho, R., Pereira, I. A. et al. (1999a). The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure, 7, 119–30.
Matias, P. M., Saraiva, L. M., Soares, C. M. et al. (1999b). Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774: primary sequence determination, crystallographic refinement at 1.8 and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem, 4, 478–94.
Matias, P. M., Coelho, A. V., Valente, F. M. A. et al. (2002). Sulphate respiration in Desulfovibrio vulgaris Hildenborough: structure of the 16-heme cytochrome c HmcA at 2.5A resolution and a view of its role in transmembrane electron transfer. J Biol Chem, 277, 47907–16.
Matias, P. M., Pereira, I. A., Soares, C. M. and Carrondo, M. A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol, 89, 292–329.
Menon, N. K., Chatelus, C. Y., Dervartanian, M. et al. (1994). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol, 176, 4416–23.
Mizuno, N., Voordouw, G., Miki, K., Sarai, A. and Higuchi, Y. (2003). Crystal structure of dissimilatory sulfite reductase D (DsrD) protein – possible interaction with B- and Z-DNA by its winged helix motif. Structure, 11, 1133–40.
Norager, S., Legrand, P., Pieulle, L., Hatchikian, C. and Roth, M. (1999). Crystal structure of the oxidised and reduced acidic cytochrome c3 from Desulfovibrio africanus. J Mol Biol, 290, 881–902.
Odom, J. M. and Peck Jr., H. D. (1981). Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett, 12, 47–50.
Pereira, I. A. C., Romão, C. V., Xavier, A. V., Legall, J. and Teixeira, M. (2000). Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta, 1481, 119–30.
Pereira, I. A. C. and Xavier, A. V. (2005). Multi-Heme c cytochromes and enzymes. In R. B. King (ed.), Encyclopedia of inorganic chemistry, 2nd edn. John Wiley & Sons.
Pereira, P. M., Teixeira, M., Xavier, A. V. et al., (2006). The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Biochemistry, 45, 10359–67.
Pierik, A. J., Duyvis, M. G., van Helvoort, J. M. L. M., Wolbert, R. B. G. and Hagen, W. R. (1992). The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem, 205, 111–15.
Pieulle, L., Morelli, X., Gallice, P. et al. (2005). The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulphate reduction pathway. J Mol Biol, 354, 73–90.
Pires, R. H., Lourenco, A. I., Morais, F. et al. (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta, 1605, 67–82.
Pires, R. H., Venceslau, S., Morais, F. et al. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulphate respiratory pathway. Biochemistry, 45, 249–62.
Pohorelic, B. K., Voordouw, J. K., Lojou, E. et al. (2002). Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol, 184, 679–686.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902.
Rodrigues, R., Valente, F. M., Pereira, I. A. C., Oliveira, S. and Rodrigues-Pousada, C. (2003). A novel membrane-bound Ech NiFe hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun, 306, 366–75.
Romao, C. V., Pereira, I. A., Xavier, A. V., Legall, J. and Teixeira, M. (1997). Characterization of the NiFe hydrogenase from the sulphate reducer Desulfovibrio vulgaris Hildenborough. Biochem Biophys Res Commun, 240, 75–9.
Rossi, M., Pollock, W. B., Reij, M. W. et al. (1993). The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol, 175, 4699–711.
Rousset, M., Dermoun, Z., Hatchikian, C. E. and Belaich, J. P. (1990). Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic Nife hydrogenase from Desulfovibrio fructosovorans. Gene, 94, 95–101.
Saraiva, L. M., Da Costa, P. N., Conte, C., Xavier, A. V. and Legall, J. (2001). In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774, the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells. Biochim Biophys Acta, 1520, 63–70.
Schmehl, M., Jahn, A., Vilsendorf, A. M. Z. et al. (1993). Identification of a new class of nitrogen-fixation genes in Rhodobacter capsulatus – a putative membrane complex involved in electron-transport to nitrogenase. Mol Gen Genet, 241, 602–15.
Sebban, C., Blanchard, L., Bruschi, M. and Guerlesquin, F. (1995). Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett, 133, 143–9.
Shokes, J. E., Duin, E. C., Bauer, C. et al. (2005). Direct interaction of coenzyme M with the active-site Fe-S cluster of heterodisulfide reductase. FEBS Lett, 579, 1741–4.
Stams, A. J. M. and Hansen, T. A. (1982). Oxygen-labile lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett, 13, 389–94.
Teixeira, V. H., Baptista, A. M. and Soares, C. M. (2004). Modeling electron transfer thermodynamics in protein complexes: interaction between two cytochromes c(3). Biophys J, 86, 2773–85.
Umhau, S., Fritz, G., Diederichs, K. et al. (2001). Three-dimensional structure of the nonaheme cytochrome c from Desulfovibrio desulfuricans Essex in the Fe(III) state at 1.89 A resolution. Biochemistry, 40, 1308–16.
Valente, F. M. A., Saraiva, L. M., Legall, J. et al. (2001). A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough. Chembiochem, 2, 895–905.
Valente, F. M. A., Oliveira, A. S. F., Gnadt, N. et al. (2005). Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound NiFeSe hydrogenase. J Biol Inorg Chem, 10, 667–82.
Valente, F. M. A., Almeida, C. C., Pacheco, I. et al., (2006). Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol, 188, 3228–35.
Van der Westen, H. M., Mayhew, S. G. and Veeger, C. (1978). Separation of hydrogenase from intact cells of Desulfovibrio vulgaris – purification and properties. FEBS Lett, 86, 122–6.
Vignais, P. M. and Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Curr Issues Mol Biol, 6, 159–88.
Volbeda, A., Charon, M. H., Piras, C. et al. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373, 580–7.
Volbeda, A. and Fontecilla-Camps, J. C. (2005). Structure-function relationships of nickel-iron sites in hydrogenase and a comparison with the active sites of other nickel-iron enzymes. Coordin Chem Rev, 249, 1609–19.
Voordouw, G., Niviere, V., Ferris, F. G., Fedorak, P. M. and Westlake, D. W. S. (1990). Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol, 56, 3748–54.
Voordouw, G. (2002). Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 184, 5903–11.
Xavier, A. V. (2004). Thermodynamic and choreographic constraints for energy transduction by cytochrome c oxidase. Biochim Biophys Acta, 1658, 23–30.

Reference Title: References

Reference Type: reference-list

Almeida, M. G., Macieira, S., Gonçalves, L. L. et al. (2003). The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties. European Journal of Biochemistry, 270, 3904–15
Arnoux, P., Sabaty, M., Alric, J. et al. (2003). Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nature Structural Biology, 10, 928–34
Bamford, V. A., Angove, H. C., Seward, H. E. et al. (2002). Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry, 41, 2921–31
Barton, L. L., LeGall, J., Odom, J. M. and Peck, H. D. Jr. (1983). Energy coupling to nitrite respiration in the sulphate-reducing bacterium Desulfovibrio gigas. Journal of Bacteriology, 153, 867–71
Berks, B. C., Richardson, D. J., Robinson, C. et al. (1994). Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. European Journal of Biochemistry, 220, 117–24
Bursakov, S. A., Carneiro, C., Almendra, M. J. et al. (1997). Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochemical and Biophysical Research Communications, 239, 816–22
Bursakov, S. A., Liu, M., Payne, W. J. et al. (1995). Isolation and preliminary characterization of a soluble nitrate reductase from the sulphate reducing organism Desulfovibrio desulfuricans ATCC 27774. Anaerobe, 1, 55–60
Butler, C. S., Charnock, J. M., Bennett, B. et al. (1999). Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry, 38, 9000–12
Butler, C. S., Fairhurst, S. A., Ferguson, S. J. et al. (2002). Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Biochemical Journal, 363, 817–23
Costa, C., Macedo, A., Moura, I. et al. (1990a). Regulation of the hexahaem nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometry study. FEBS Letters, 276, 67–70
Costa, C., Moura, J. J. G., Moura, I. et al. (1990b). Hexahaem nitrite reductase from Desulfovibrio desulfuricans. Mössbauer and EPR characterization of the haem groups. Journal of Biological Chemistry, 254, 14382–7
Costa, C., Moura, J. J. G., Moura, I. et al. (1996). Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Chemistry, 271, 23191–6
Cunha, C. A., Macieira, S., Dias, J. M. et al. (2003). Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). Journal of Biological Chemistry, 278, 17455–65
Cypionka, H. (1995). Solute transport and cell energetics. In L. L. Barton (ed.), Biotechnology handbooks, volume 8, Sulphate-reducing bacteria, New York: Plenum Press. pp. 151–84.
Dalsgaard, T. and Bak, F. (1994). Nitrate reduction in a sulphate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Applied and Environmental Microbiology, 60, 291–7
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Archives of Microbiology, 158, 93–9
Darwin, A., Hussain, H., Griffiths, L. et al. (1993). Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Molecular Microbiology, 9, 1255–65
Dias, J. M., Than, M. E., Humm, A. et al. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure, 7, 65–79
Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P. M. H. and Neese, F. (2002a). Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. Journal of American Chemical Society, 124, 11737–45
Einsle, O., Messerschmidt, A., Stach, P. et al. (1999). Structure of cytochrome c nitrite reductase. Nature, 400, 476–80
Einsle, O., Stach, P., Messerschmidt, A. et al. (2002b). Crystallization and preliminary X-ray analysis of the membrane-bound cytochrome c nitrite reductase complex (NrfHA) from Wolinella succinogenes. Acta Crystallographica Section D, 58, 341–2
Einsle, O., Stach, P., Messerschmidt, A. et al. (2000). Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and haem-packing motifs. Journal of Biological Chemistry, 275, 39608–16
Fauque, G. D. (1995). Ecology of sulphate-reducing bacteria. In L. L. Barton (ed.), Biotechnology handbooks, volume 8, Sulphate-reducing bacteria, New York: Plenum Press. pp. 217–41.
Fauque, G., LeGall, J. and Barton, L. L. (1991). Sulphate-reducing and sulfur-reducing bacteria. In J. M. Shively and L. L. Barton (eds.), Variations in autotrophic life. London: Academic Press Limited. pp. 271–337.
Fauque, G. and Ollivier, B. (2004). Anaerobes: the sulphate-reducing bacteria as an example of metabolic diversity. In A. T. Bull (ed.), Microbial diversity and bioprospecting. Washington, DC: ASM Press. pp. 169–76.
Frangioni, B., Arnoux, P., Sabaty, M. et al. (2004). In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. Journal of the American Chemical Society, 126, 1328–9
Fuseler, K., Krekeler, D., Sydow, U. and Cypionka, H. (1996). A common pathway of sulfide oxidation by sulphate-reducing bacteria. FEMS Microbiology Letters, 144, 129–34
González, P. J., Correia, C., Moura, I., Brondino, C. D. and Moura, J. J. G. (2006a). Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. Journal of Inorganic Biochemistry, 100, 1015–23
Gonzalez, P. J., Rivas, M. G., Bursakov, S. A. et al. (2006b). EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Inorganic Chemistry, 11, 609–16
Greene E. A., Hubert, C., Nemati, M., Jenneman, G. E. and Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environmental Microbiology, 5, 607–17
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. Journal of Bacteriology, 186, 7944–50
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environmental Microbiology, 7, 1461–5
Hille, R. (1996). The mononuclear molybdenum enzymes. Chemical Reviews, 96, 2757–816
Hubert, C., Nemati, M., Jenneman, G. and Voordouw, G. (2005). Corrosion risk associated with microbial souring control using nitrate or nitrite. Applied Microbiology and Biotechnology, 68, 272–82
Jenneman, G. E., McInerney, M. J. and Knapp, R. M. (1986). Effect of nitrate on biogenic sulfide production. Applied and Environmental Microbiology, 51, 1205–11
Kajie, D. and Anraku, Y. (1986). Purification of a hexahaem cytochrome c552 from Escherichia coli K12 and its properties as a nitrite reductase. European Journal of Biochemistry, 154, 457–63
Keith, S. M. and Herbert, R. A. (1983). Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiology Letters, 18, 55–9
Kennedy, M. L. and Gibney, B. R. (2001). Metalloprotein and redox protein design. Current Opinions in Structural Biology, 11, 485–90
Krekeler, D. and Cypionka, H. (1995). The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiology Ecology, 17, 271–8
LeGall, J. and Fauque, G. (1988). Dissimilatory reduction of sulfur compounds. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganims. New York: John Wiley and Sons, Inc. pp. 587–639.
Lie, T. J., Clawson, M. L., Godchaux, W. and Leadbetter, E. R. (1999). Sulfdidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulphate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Applied and Environmental Microbiology, 65, 3328–34
Liu, M.-C., Bakel, B. W., Liu, M.-Y. and Dao, T. N. (1988). Purification of Vibrio fischeri nitrite reductase and its characterization as a hexahaem c-type cytochrome. Archives of Biochemistry and Biophysics, 262, 259–65
Liu, M.-C., Liu, M.-Y., Payne, W. J., Peck, H. D. Jr. and LeGall, J. (1983). Wolinella succinogenes nitrite reductase: purification and properties. FEMS Microbiology Letters, 19, 201–6
Liu, M.-C., Liu, M.-Y., Payne, W. J. et al. (1987). Comparative EPR studies on the nitrite reductases from Escherichia coli and Wolinella succinogenes. FEBS Letters, 218, 227–30
Liu, M. C. and Peck, H. D. Jr. (1981). The isolation of a hexahaem cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. Journal of Biological Chemistry, 256, 13159–64
Lopez-Cortès, A., Fardeau, M.-L., Fauque, G., Joulian, C. and Ollivier, B. (2006). Reclassification of the sulphate-, nitate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov.comb. nov. International Journal of Systematic and Evolutionary Microbiology, 56, 1495–9
Loubinoux, J., Bronowicki, J.-P., Pereira, I. A. C., Mougenel, J.-L. and LeFaou, A. E. (2002). Sulphate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiology Ecology, 40, 107–12
Marietou, A., Richardson, D. J., Cole, J. and Mohan, S. (2005). Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetrahaem c-type cytochrome, NapM. FEMS Microbiology Letters, 248, 217–25
McCready, R. G. L., Gould, W. D. and Cook, F. D. (1983). Respiratory nitrate reduction by Desulfovibrio sp. Archives of Microbiology, 135, 182–5
Mitchell, G. J., Jones, J. G. and Cole, J. A. (1986). Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Archives of Microbiology, 144, 35–40
Mori, K., Kim, H., Kakegawa, T. and Hanada, S. (2003). A novel lineage of sullate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles, 7, 283–90
Moura, J. J. G., Brondino, C. D., Trincao, J. and Romao, M. J. (2004). Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. Journal of Biological Inorganic Chemistry, 9, 791–9
Moura, I., Bursakov, S., Costa, C. and Moura, J. J. G. (1997). Nitrate and nitrite utilization in sulphate-reducing bacteria. Anaerobe, 3, 279–290
Parekh, M., Drake, H. L. and Daniel, S. L. (1996). Bidirectional transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions. Letters in Applied Microbiology, 22, 115–20
Pereira, I. C., Abreu, I. A., Xavier, A. V. M., LeGall, J. and Teixeira, M. (1996). Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774) – a heterooligomer haem protein with sulfite reductase activity. Biochemical and Biophysical Research Communications, 224, 611–18
Pereira, I. A. C., LeGall, J., Xavier, A. V. and Teixeira, M. (2000). Characterization of a haem c nitrite reductase from a non-ammonifiying microorganism, Desulfovibrio vulgaris Hildenborough. BBA – Protein Structure and Molecular Enzymology, 1481, 119–30
Plugge, C. M., Balk, M. and Stams, A. J. M. (2002). Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 391–9
Potter, L. C., Millington, P., Griffiths, L., Thomas, G. H. and Cole, J. A. (1999). Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochemical Journal, 344, 77–84
Rajagopal, B. S. and LeGall, J. (1989). Utilization of cathodic hydrogen by hydrogen-oxidizing bacteria. Applied Microbiology and Biotechnology, 31, 406–12
Rehr, B. and Klemme, J.-H. (1986). Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species. FEMS Microbiology Letters, 35, 325–8
Reyes, F., Roldan, M. D., Klipp, W., Castillo, F. and Moreno-Vivian, C. (1996). Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Molecular Microbiology, 19, 1307–18
Schumacher, W., Hole, U. and Kroneck, P. M. H. (1994). Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetrahaem protein: new aspects of the molecular composition and spectroscopic properties. Biochemical and Biophysical Research Communications, 205, 911–16
Schumacher, W. and Kroneck, P. M. H. (1991). Dissimilatory hexahaem c nitrite reductase of ‘Spirillum’ strain 5175: purification and properties. Archives of Microbiology, 156, 70–4
Seitz, H.-J. and Cypionka, H. (1986). Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Archives of Microbiology, 146, 63–7
Senez, J. C. and Pichinoty, F. (1958). Reduction of nitrite at the expense of molecular hydrogen by Desulfovibrio desulfuricans and other bacterial species. Bulletin de la Société Chimique et Biologique de Paris, 40, 2099–17
Siddiqui, R. A., Warnecke-Eberz, U., Hengsberger, A. et al. (1993). Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. Journal of Bacteriology, 175, 5867–76
Sonne-Hansen, J. and Ahring, B. K. (1999). Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulphate-reducing bacteria isolated from an Icelandic hot spring. Systematic and Applied Microbiology, 22, 559–64
Steenkamp, D. J. and Peck, H. D. Jr. (1981). Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. Journal of Biological Chemistry, 256, 5450–8
Stolz, J. F. and Basu, P. (2002). Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem, 3, 198–206
Tezcan, F. A., Winkler, J. R. and Gray, H. B. (1998). Effects of ligation and folding on reduction potentials of haem proteins. Journal of American Chemical Society, 120, 13383–8
Thomas, G., Potter, L. and Cole, J. A. (1999). The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site. FEMS Microbiology Letters, 174, 167–71
Trinkerl, M., Breunig, A., Schauder, R. and Konig, H. (1990). Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulphate-reducing bacterium from the hindgut of a termite. Systematic and Applied Microbiology, 13, 372–7
Walker, F. A., Huynh, B. H., Scheidt, W. R. and Osvath, S. R. (1986). Models of the cytochromes b. Effect of axial ligand plane orientation on the EPR and Mössbauer spectra of low-spin ferrihaems. Journal of American Chemical Society, 108, 5288–97
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganims. New York: John Wiley and Sons, Inc. pp. 469–585.

Reference Title: References

Reference Type: bibliography

Aeckersberg, F., Bak, F. and Widdel, F. (1991). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulphate-reducing bacteria. Arch Microbiol, 156, 5–14
Aeckersberg, F., Rainey, F. A. and Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulphate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol, 170, 361–9
Aitken, C. M., Jones, D. M. and Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431, 291–4
Alperin, M. J. and Reeburgh, W. S. (1985). Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol, 50, 940–5
Annweiler, E., Materna, A., Safinowski, M. et al. (2000). Anaerobic degradation of 2-methylnaphthalene by a sulphate-reducing enrichment culture. Appl Environ Microbiol, 66, 5329–33
Annweiler, E., Michaelis, W. and Meckenstock, R. U. (2002). Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol, 68, 852–8
Bak, F. and Widdel, F. (1986). Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Arch Microbiol, 146, 177–80
Barnes, R. O. and Goldberg, E. D. (1976). Methane production and consumption in anoxic marine sediments. Geology, 4, 297–300
Bastin, E. S., Greer, F. E., Merritt, C. A. and Moulton, G. (1926). The presence of sulphate reducing bacteria in oil field waters. Science, 63, 21–4
Beller, H. R., Reinhard, M. and Grbic'-Galic', D. (1992). Metabolic by-products of anaerobic toluene degradation by sulphate-reducing enrichment cultures. Appl Environ Microbiol, 58, 3192–5
Beller, H. and Spormann, A. (1997). Benzylsuccinate formation as a means of anaerobic toluene activation by sulphate-reducing strain PRTOL1. Appl Environ Microbiol, 63, 3729–31
Beller, H., Spormann, A., Sharma, P., Cole, J. and Reinhard, M. (1996). Isolation and characterization of a novel toluene-degrading, sulphate-reducing bacterium. Appl Environ Microbiol, 62, 1188–96
Boetius, A., Ravenschlag, K., Schubert, C. J. et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6
Boll, M. (2005). Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim Biophys Acta (BBA) – Bioenergetics, 1707, 34–50
Boll, M., Fuchs, G. and Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol, 6, 604–11
Caldwell, M. E. and Suflita, J. M. (2000). Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol, 34, 1216–20
Coates, J., Anderson, R. and Lovley, D. (1996). Oxidation of polycyclic aromatic hydrocarbons under sulphate-reducing conditions. Appl Environ Microbiol, 62, 1099–101
Coates, J. D., Chakraborty, R. and McInerney, M. J. (2002). Anaerobic benzene degradation – a new era. Res Microbiol, 153, 621–8
Coates, J., Woodward, J., Allen, J., Philp, P. and Lovley, D. (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol, 63, 3589–93
Connan, J., Lacrampe-Coulome, G. and Magot, M. (1996). Origin of gases in reservoirs. In D. Dolenc (ed.), Proceedings of the 1995 International Gas Research Conference Vol. 1. Rockville: Government Institutes. pp. 21–62.
Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R. and Hirschler-Rea, A. (2005). Anaerobic n-alkane metabolism by a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol, 71, 3458–67
Cravo-Laureau, C., Hirschler-Rea, A., Matheron, R. and Grossi, V. (2004a). Growth and cellular fatty-acid composition of a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T, grown on n-alkenes. Comptes Rendus Biologies, 327, 687–94
Cravo-Laureau, C., Matheron, R., Cayol, J.-L., Joulian, C. and Hirschler-Rea, A. (2004b). Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulphate-reducing bacterium. Int J Syst Evol Microbiol, 54, 77–83
Cravo-Laureau, C., Matheron, R., Joulian, C., Cayol, J.-L. and Hirschler-Rea, A. (2004c). Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulphate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol, 54, 1639–42
d'Ans, J. and Lax, E. (1983). Taschenbuch für Chemiker und Physiker, Bd. 2 (Ed, Synowietz, C.). Berlin: Springer.
Davico, G. E. B., Veronica, M., DePuy, C. H., Ellison, G. B. and Squires, R. R. (1995). The C–H bond energy of benzene. J Am Chem Soc, 117, 2590–9
Davidova, I. A., Gieg, L. M., Nanny, M. et al., (2005). Stable isotope studies of n-alkane metabolism by a sulphate-reducing bacteria enrichment culture. Appl Environ Microbiol, 71, 8174–82
Davidova, I. A. and Suflita, J. M. (2005). In J. R. Leadbetter (ed.), Methods in enzymology, Vol. 397. Amsterdam and London: Elsevier Academic Press. pp. 17–34.
Dean, J. A. (1992). Lange's handbook of chemistry. New York: McGraw-Hill.
Edwards, E. A. and Grbić-Galić, D. (1992). Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl Environ Microbiol, 58, 2663–6
Elshahed, M. S., Gieg, L. M., McInerney, M. J. and Suflita, J. M. (2001). Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol, 35, 682–9
Elvert, M., Suess, E. and Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 86, 295–300
Fischer-Romero, C., Tindall, B. and Jüttner, F. (1996). Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol, 46, 183–8
Flesher, J. W. and Myers, S. R. (1991). Methyl-substitution of benzene and toluene in preparations of human bone marrow. Life Sci, 48, 843–50
Galushko, A. S., Kiesele-Lang, U. and Kappler, A. (2003). Degradation of 2-methylnaphthalene by a sulphate-reducing enrichment culture of mesophilic freshwater bacteria. Polyc Arom Comp, 23, 207–18
Galushko, A., Minz, D., Schink, B. and Widdel, F. (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol, 1, 415–20
Galushko, A. S. and Rozanova, E. P. (1991). Desulfobacterium cetonicum sp. nov. – a sulphate–reducing bacterium which oxidizes fatty acids and ketones. Microbiol (Engl.Transl. Mikrobiologiya (USSR)), 60, 742–6
Gieg, L. M. and Suflita, J. M. (2002). Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol, 36, 3755–62
Grogan, D. W. and Cronan, J. E., Jr. (1997). Cyclopropane ring formation in membrane lipds of bacteria. Microbiol Mol Biol Rev, 61, 429–41
Girguis, P. R., Cozen, A. E. and DeLong, E. F. (2005). Growth and population dynamics of anaerobic methane-oxidizing archaea and sulphate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol, 71, 3725–33
Groves, J. T. (2006). High-valent iron in chemical and biological oxidations. J Inorg Biochem, 100, 434–47
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D. E. (2002). Calibration of sulphate levels in the Archaean ocean. Science, 298, 2372–4
Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. and DeLong, E. F. (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol, 69, 5483–91
Hallam, S. J., Putnam, N., Preston, C. M. et al. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457–62
Harder, J. (1997). Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Marine Geol, 137, 13–23
Harms, G., Zengler, K., Rabus, R. et al. (1999). Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulphate-reducing bacteria. Appl Environ Microbiol, 65, 999–1004
Hayes, L. A., Nevin, K. P. and Lovley, D. R. (1999). Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem, 30, 937–45
Head, I. M., Jones, D. M. and Larter, S. R. (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–52
Hedderich, R. and Whitman, W. B. (2006). Physiology and biochemistry of the methane-producing archaea. In M. Dworkin, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).
Hinrichs, K. U. and Boetius, A. B. (2002). In G. Wefer, D. Hebbeln, B. B. Jørgensen, M. Schlüter and T. van Weering (eds.), Ocean margin systems, Heidelberg: Springer-Verlag. pp. 457–77.
Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. and DeLong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–5
Hoehler, T. M., Alperin, M. J., Albert, D. B. and Martens, C. S. (1994). Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulphate reducer consortium. Global Biogeochem Cycles, 8, 451–63
Holm, N. G. and Charlou, J. L. (2001). Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett, 191, 1–8
Horng, Y.-C., Becker, D. F. and Ragsdale, S. W. (2001). Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: evidence that coenzyme B participates in cleaving the C–S bond of methyl-coenzyme M. Biochemistry, 40, 12875–85
Hunkeler, D., Höhener, P. and Zeyer, J. (2002). Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. J Contam Hydrol, 59, 231–45
Hylemon, P. B. and Harder, J. (1998). Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev, 22, 475–88
Iversen, N. and Jørgensen, B. B. (1985). Anaerobic methane oxidation rates at the sulphate methane transition in marine-sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr, 30, 944–55
Johnson, H. A. and Spormann, A. M. (1999). In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J Bacteriol, 181, 5662–8
Jones, W. D. (2000). Conquering the carbon–hydrogen bond. Science, 287, 1942–3
Kniemeyer, O., Fischer, T., Wilkes, H., Glöckner, F. O. and Widdel, F. (2003). Anaerobic degradation of ethylbenzene by a new type of marine sulphate-reducing bacterium. Appl Environ Microbiol, 69, 760–8
Kniemeyer, O. and Heider, J. (2001). Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem, 276, 21381–6
Knittel, K., Boetius, A., Lemke, A. et al. (2003). Activity, distribution, and diversity of sulphate reducers and other bacteria in sediments above gas hydrates (Cascadia Margin, Oregon). Geomicrobiol J, 20, 269–94
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005). Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol, 71, 467–79
Kropp, K. G., Davidova, I. A. and Suflita, J. M. (2000). Anaerobic oxidation of n-dodecane by an addition reaction in a sulphate-reducing bacterial enrichment culture. Appl Environ Microbiol, 66, 5393–8
Krüger, M., Meyerdierks, A., Glöckner, F. O. et al. (2003). A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426, 878–81
Kvenvolden, K. A. (1999). Potential effects of gas hydrate on human welfare. PNAS, 96, 3420–6
Lovley, D. R., Coates, J. D., Woodward, J. C. and Phillips, E. J. P. (1995). Benzene oxidation coupled to sulphate reduction. Appl Environ Microbiol, 61, 953–8
Martens, C. S. and Berner, R. A. (1974). Methane production in the interstitial waters of sulphate-depleted marine sediment. Science, 185, 1167–9
Mavrovounoitis, M. L. (1991). Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem, 266, 14440–5
McGillen, D. F. and Golden, D. M. (1982). Hydrocarbon bond dissociation energies. Ann Rev Phys Chem, 33, 493–532
Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H. and Schink, B. (2000). Anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Appl Environ Microbiol, 66, 2743–7
Meckenstock, R. U., Morasch, B., Griebler, C. and Richnow, H. H. (2004). Stable isotope analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol, 75, 215–55
Meckenstock, R. U., Morasch, B., Warthmann, R. et al. (1999). 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol, 1, 409–14
Michaelis, W., Seifert, R., Nauhaus, K. et al. (2002). Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–15
Moran, J. J., House, C., Freeman, K. H. and Ferry, J. J. (2005). Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea, 1, 303–9
Morasch, B. and Meckenstock, R. U. (2005). Anaerobic degradation of p-xylene by a sulphate-reducing enrichment culture. Curr Microbiol, 51, 127–30
Morasch, B., Schink, B., Tebbe, C. and Meckenstock, R. U. (2004). Degradation of o-xylene and m-xylene by a novel sulphate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol, 181, 407–17
Mrowiec, B., Suschka, J. and Keener, T. C. (2005). Formation and biodegradation of toluene in the anaerobic sludge digestion process. Water Environ Res, 77, 274–8
Nauhas, K., Albrecht, M. and Elvert, M. et al. (2007). In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol, 9, 187–96
Nauhaus, K., Boetius, A., Kruger, M. and Widdel, F. (2002). In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol, 4, 296–305
Nauhaus, K., Treude, T., Boetius, A. and Krüger, M. (2005). Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol, 7, 98–106
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2002). Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS, 99, 7663–8
Pancost, R. D., Sinninghe Damste, J. S., de Lint, S., van der Maarel, M. J. E. C., Gottschal, J. C. and The Medinaut Shipboard Scientific Party. (2000). Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria. Appl Environ Microbiol, 66, 1126–32
Paull, C. K., Chanton, J., Neumann, A. C. et al. (1992). Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment. Palaios, 7, 361–75
Pelmenschikov, V., Blomberg, M. R. A., Siegbahn, P. E. M. and Crabtree, R. H. (2002). A mechanism from quantum chemical studies for methane formation in methanogenesis. J Am Chem Soc, 124, 4039–49
Peters, F., Rother, M. and Boll, M. (2004). Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol, 186, 2156–63
Phelps, C. D., Kazumi, J. and Young, L. Y. (1996). Anaerobic degradation of benzene in BTX mixtures dependent on sulphate reduction. FEMS Microbiol Lett, 145, 433–7
Phelps, C. D., Kerkhof, L. J. and Young, L. Y. (1998). Molecular characterization of a sulphate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol, 27, 269–79
Phelps, C. D., Zhang, X. and Young, L. Y. (2001). Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol, 3, 600–3
Postgate, J. R. (1984). The sulphate-reducing bacteria. Cambridge, UK: Cambridge University Press.
Rabus, R., Hansen, T. and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In M. Dworkin, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).
Rabus, R. and Heider, J. (1998). Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulphate-reducing bacteria. Arch Microbiol, 170, 377–84
Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulphate-reducing bacterium. Appl Environ Microbiol, 59, 1444–51
Rabus, R., Wilkes, H., Behrends, A. et al. (2001). Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol, 183, 1707–15
Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T. et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–21
Reeburgh, W. S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett, 28, 337–44
Reeburgh, W. S. (1980). Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett, 47, 345–52
Reed, D. R. and Kass, S. R. (2000). Experimental determination of the α and β C–H bond dissociation energies in naphthalene. J Mass Spectr, 35, 534–9
Reguera, G., McCarthy, K. D., Mehta, T. et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435, 1098–101
Reusser, D. E., Istok, J. D., Beller, H. R. and Field, J. A. (2002). In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol, 36, 4127–34
Richnow, H. H., Annweiler, E., Michaelis, W. and Meckenstock, R. U. (2003). Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol, 65, 101–20
Ritger, S., Carson, B. and Suess, E. (1987). Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull, 98, 147–56
Ruckmick, J. C., Wimberly, B. H. and Edwards, A. F. (1979). Classification and genesis of biogenic sulfur deposits. Econ Geol, 74, 469–74
Rueter, P., Rabus, R., Wilkes, H. et al. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372, 455–8
Safinowski, M. and Meckenstock, R. U. (2004). Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47. FEMS Microbiol Lett, 240, 99–104
Safinowski, M. and Meckenstock, R. U. (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Environ Microbiol, 8, 347–52
Schink, B. (1985). Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Lett, 31, 69–77
Schink, B. and Stams, A. F. (2002). Structure and growth dynamics of syntrophic associations. In M. Dworkin, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).
Schmitt, R., Langguth, H. R. and Püttmann, W. (1998). Abbau aromatischer Kohlenwasserstoffe und Metabolitenbildung im Grundwasserleiter eines ehemaligen Gaswerkstandorts Grundwasser, 3, 78–86
Selmer, T. and Andrei, P. I. (2001). p-Hydroxyphenylacetate decarboxylase from Clostridium difficile: a novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem, 268, 1363–72
Selmer, T., Pierik, A. and Heider, J. (2005). New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem, 386, 981–8
Shen, Y., Buick, R. and Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81
Shilov, A. E. and Shul'pin, B. (1997). Activation of C−H bonds by metal complexes. Chem Rev, 97, 2879–932
Shima, S. and Thauer, R. K. (2005). Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol, 8, 643–8
So, C. M., Phelps, C. D. and Young, L. Y. (2003). Anaerobic transformation of alkanes to fatty acids by a sulphate-reducing bacterium, strain Hxd3. Appl Environ Microbiol, 69, 3892–900
So, C. M. and Young, L. Y. (1999). Isolation and characterization of a sulphate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol, 65, 2969–76
Sørensen, K. B., Finster, K. and Ramsing, N. B. (2001). Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate and methanol as possible shuttles. Microbial Ecol, 42, 1–10
Spormann, A. M. and Widdel, F. (2000). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 11, 85–105
Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd edn. New York: John Wiley & Sons.
Sullivan, E. R., Zhang, X., Phelps, C. and Young, L. Y. (2001). Anaerobic mineralization of stable-isotope-labeled 2-methylnaphthalene Appl Environ Microbiol, 67, 4353–7
Tauson, V. O., Veselov, I. Ya. (1934). O bakterialnom razlozhenii tsiklicheskikh soyedineniy pri vosstanovlenii sulfatov. (On the bacteriology of the decomposition of cyclical compounds at the reduction of sulphates.) Mikrobiologiya (in Russian), 3, 360–9
Tissot, B. P. and Welte, D. H. (1984). Petroleum formation and occurrence. Berlin: Springer.
Thauer, R. K., Jungermann, K. and Decker, K. (1977). Energy conservation in anaerobic bacteria. Bacteriol Rev, 41, 100–80
Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology, 144, 2377–406
Townsend, G. T., Prince, R. C. and Suflita, J. M. (2003). Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol, 37, 5213–18
Ulrich, A. C., Beller, H. R. and Edwards, E. A. (2005). Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol, 39, 6681–91
Weast, R. C. (1989). Handbook of chemistry and physics. Boca Raton, USA: CRC Press.
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms. New York: John Wiley & Sons. pp 469–585.
Widdel, F., Boetius, A. and Rabus, R. (2004). Anaerobic biodegradation of hydrocarbons including methane. In M. Dworkin, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).
Widdel, F. and Rabus, R. (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol, 12, 259–76
Wilkes, H., Rabus, R., Fischer, T. et al. (2002). Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl) succinate via c-skeleton rearrangement. Arch Microbiol, 177, 235–43
Wischgoll, S., Heintz, D., Peters, F. et al. (2005). Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol, 58, 1238–52
Wolfe, R. S. (1991). My kind of biology. Annu Rev Microbiol, 45, 1–35
Zehnder, A. J. and Brock, T. D. (1979). Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol, 137, 420–32
Zengler, K., Richnow, H. H., Rosselló-Mora, R., Michaelis, W. and Widdel, F. (1999). Methane formation from long-chain alkanes by anarobic microorganisms. Nature, 401, 266–9
Zhang, X. and Young, L. Y. (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol, 63, 4759–64
ZoBell, C. E. (1946). Action of microörganisms on hydrocarbons. Bacteriol Rev, 10, 1–49
ZoBell, C. E. (1959). Ecology of sulphate reducing bacteria. Prod Mon, 22: 12–29

Reference Title: References

Reference Type: reference-list

Aitken, C. M., Jones, D. M. and Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431, 291–4
Alazard, D., Dukan, S., Urios, A. et al. (2003). Desulfovibrio hydrothermalis sp. nov., a novel sulphate-reducing bacterium isolated from hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology, 53, 173–8
Audiffrin, C., Cayol, J.-L., Joulian, C. et al. (2003). Desulfonauticus submarinus gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 53, 1585–90
Bale, S. J., Goodman, K., Rochelle, P. A. et al. (1997). Desulfovibrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. International Journal of Systematic Bacteriology, 47, 515–21
Barth, T. (1991). Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Applied Geochemistry, 6, 1–15
Barth, T. and Riis, M. (1992). Interactions between organic acid anions in formation waters and reservoir mineral phases. Organic Geochemistry, 19, 455–82
Basso, O., Lascourrèges, J.-F., Jarry, M. and Magot M. (2005). The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environmental Microbiology, 7, 13–21
Bastin, E. S. (1926). The problem of the natural reduction of sulphates. Bulletin of the American Association of Petroleum Geologists, 10, 1270–99
Beeder, J., Nilsen, R. K., Rosnes, J. T., Torsvik, T. and Lien, T. (1994). Archaeglobus fulgidus isolated from hot North Sea oil field water. Applied and Environmental Microbiology, 60, 1227–31
Beeder, J., Torsvik, T. and Lien, T. (1995). Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulphate-reducing bacterium from oil field water. Archives of Microbiology, 164, 331–6
Beijerinck, W. M. (1895). Ueber Spirillum desulphuricans als ursache von sulfat-reduction. Zentralblatt für Bakteriologie und Parasitenkunde, 1, 1–9, 49–59 and 104–14.
Birkeland, N.-K. (2005). Sulphate-reducing Bacteria and Archaea. In Petroleum Microbiology, B. Ollivier and M. Magot (eds.). Washington, D.C.: ASM Press, pp. 35–54.
Bonch-Osmolvskaya, E. A., Miroshnichenko, M. L., Lebedinsky, A. V. et al. (2003). Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and Environmental Microbiology, 69, 6143–51
Burggraf, S., Jannasch, H. W., Nicolaus, B. and Stetter, K. O. (1990). Archaeoglobus profundus sp. nov., represents a new species within the sulphate-reducing Archaebacteria. Systematic and Applied Microbiology, 13, 24–8
Castro, H. F., Williams, N. H. and Ogram, A. (2000). Phylogeny of sulphate-reducing bacteria. FEMS Microbiology Ecology, 31, 1–9
Christensen, B., Torsvik, T. and Lien, T. (1992). Immunomagnetically captured thermophilic sulphate-reducing bacteria from North Sea oil field waters. Applied and Environmental Microbiology, 58, 1244–8
Cottrell, M. T. and Cary, S. G. (1999). Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Applied and Environmental Microbiology, 65, 1127–32
Dhillon, A., Teske, A., Dillon, J., Stahl, D. A. and Sogin, M. L. (2003). Molecular characterization of sulphate-reducing bacteria in the Guaymas Basin. Applied and Environmental Microbiology, 69, 2765–72
Fauque, G. (1995). Ecology of sulphate-reducing bacteria. In L. L. Barton (ed.), Sulphate-reducing bacteria. New York and London: Plenum Press. pp. 217–41.
Fauque, G., LeGall, J. and Barton, L. L. (1991). Sulphate-reducing and sulfur-reducing bacteria. In J. M. Shively and L. L. Barton (eds.), Variations in autotrophic life. London: Academic Press. pp. 271–337.
Fauque, G. and Ollivier, B. (2004). Anaerobes: the sulphate-reducing bacteria as an example of metabolic diversity. In A. Bull (ed.), Microbial diversity and bioprospecting. Washington, DC: ASM Press, pp. 169–76.
Feio, M. J., Zinkevich, V., Beech, I. W. et al. (2004). Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. International Journal of Systematic and Evolutionary Microbiology, 54, 1747–52
Galushko, A. S. and Rozanova, E. P. (1991). Desulfobacterium cetonicum. sp. nov: a sulphate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology, 60, 102–7
L'Haridon, S., Reysenbach, A. L., Glénat, P., Prieur, D. and Jeanthon, P. (1995). Hot subterranean biosphere in a continental oil reservoir. Nature, 377, 223–4
Head, I. M., Jones, D. M. and Larter, S. R. (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–52
Hoppe-Seyler, F. (1886). Ueber die gährung der Cellulose mit Bildung von methan und Kohlensaüre: II. Der Zerfall der Cellulose durch Gährung unter Bildung von Methan und Kohlensaüre und die Erscheinungen, welche dieser Process veranlasst. Zeitschrift für Physiologische Chemie, 10, 401–40
Huber, H., Jannasch, H., Rachel, R., Fuchs, T. and Stetter, K. O. (1997). Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology, 20, 374–80
Jannasch, H. W. and Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, 229, 717–25
Jeanthon, C. (2000). Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek, 77, 117–33
Jeanthon, C., L'Haridon, S., Cueff, V. et al. (2002). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulphate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 765–72
Le Faou, A., Rajagopal, B. S., Daniels, L. and Fauque, G. (1990). Thiosulphate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiology Reviews, 75, 351–82
Leu, J.-Y, McGovern-Traa, C. P., Porter, A. J. R. and Hamilton, W. A. (1999). The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea. Letters in Applied Microbiology, 29, 246–52
Lien, T. and Beeder, J. (1997). Desulfobacter vibrioformis sp. nov., a sulphate-reducer from a water–oil separation system. International Journal of Systematic Bacteriology, 47, 1124–8
Lien, T., Madsen, M., Steen, I. H. and Gjerdevik, K. (1998). Desulfobulbus rhabdoformis sp. nov., a sulphate reducer from a water–oil separation system. International Journal of Systematic Bacteriology, 48, 469–74
Magot, M., Basso, O., Tardy-Jacquenod, C. and Caumette, P. (2004). Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulphate-reducing bacteria isolated from deep subsurface oilfield water. International Journal of Systematic and Evolutionary Microbiology, 54, 1693–7
Magot, M., Caumette, P., Desperrier, J. M. et al. (1992). Desulfovibrio longus sp. nov., a sulphate-reducing bacteria isolated from oil-producing well. International Journal of Systematic Bacteriology, 42, 398–403
Magot, M., Ollivier, B. and Patel B. K. C. (2000). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 77, 103–16
Miranda-Tello, E., Fardeau, M.-L., Fernandez, L. et al. (2003). Desulfovibrio capillatus sp. nov., a novel sulphate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe, 9, 97–103
Moura, I., Bursakov, S., Costa, C. and Moura, J. J. G. (1997). Nitrate and nitrite utilization in sulphate-reducing bacteria. Anaerobe, 3, 279–90
Moussard, H., L'Haridon, S., Tindall, B. J. et al. (2004). Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulphate-reducing bacterium isolated from the Central Indian Ridge. International Journal of Systematic and Evolutionary Microbiology, 54, 227–33
Nazina, T. N., Ivanova, A. E., Kanchaveli, L. P. and Rozanova, E. P. (1988). A new sporeforming thermophilic methylotrophic sulphate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology, 57, 823–7
Nazina, T. N. and Rozanova, E. P. (1978). Thermophilic sulphate-reducing bacteria from oil strata. Microbiology, 47, 142–8
Nga, D. P., Cam Ha, D. T., Hien, L. T. and Stan-Lotter, H. (1996). Desulfovibrio vietnamensis sp. nov., a halophilic sulphate-reducing bacterium from Vietnamese oil fields. Anaerobe, 2, 385–92
Nilsen, R. K., Beeder, J., Thostenson, T. and Torsvik, T. (1996a). Distribution of thermophilic marine sulphate reducers in North Sea oil field waters and oil reservoirs. Applied and Environmental Microbiology, 62, 1793–8
Nilsen, R. K., Torsvik, T. and Lien, T. (1996b). Desulfotomaculum thermocisternum sp. nov., a sulphate reducer isolated from a hot North Sea oil reservoir. International Journal of Systematic Bacteriology, 46, 397–402
Ollivier, B. and Cayol, J.-L. (2005). The fermentative, iron-reducing, and nitrate-reducing microorganisms. In B. Ollivier and M. Magot (eds.), Petroleum microbiology. Washington, DC: ASM Press. pp. 71–88.
Orphan, V. J., Taylor, L. T., Hafenbradl, D. and Delong, E. F. (2000). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Applied and Environmental Microbiology, 66, 700–11
Osipov, G. A., Nazina, T. N. and Ivanova, A. E. (1995). Study of species composition of microbial community of water-flooded oil field by chromato-mass spectrometry. Microbiology, 63, 490–3
Philippi, G. T. (1977). On the depth, time, and mechanism of origin of the heavy to medium gravity naphtenic crude oil. Geochimica Cosmochimica Acta, 41, 33–52
Rees, G. N., Grassia, G. S., Sheehy, A. J., Dwivedi, P. P. and Patel, B. K. C. (1995). Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulphate-reducing bacterium from a petroleum reservoir. International Journal of Systematic Bacteriology, 45, 85–9
Reysenbach, A.-L., Longnecker, K. and Kirshtein, J. (2000). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Applied and Environmental Microbiology, 66, 3798–806
Rosnes, J. T., Torsvik, T. and Lien, T. (1991). Spore-forming thermophilic sulphate-reducing bacteria isolated from North Sea oil field waters. Applied and Environmental Microbiology, 57, 2302–7
Rozanova, E. P. and Khudyakova, A. I. (1974). A new nonspore-forming thermophilic sulphate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology, 43, 1069–75
Rozanova, E. P. and Nazina, T. N. (1979). Occurrence of thermophilic sulphate-reducing bacteria in oil-bearing strata. Microbiology, 48, 907–11
Rozanova, E. P., Nazina, T. N. and Galushko, A. S. (1988). Isolation of a new genus of sulphate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov. sp. nov. Microbiology, 57, 634–41
Rozanova, E. P. and Pivovarova, T. A. (1988). Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Microbiology, 57, 102–6
Rozanova, E. P., Tourova, T. V. et al. (2001). Desulfacinum subterraneum sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a high-temperature oil field. Microbiology, 70, 466–71
Rueter, P., Rabus, R., Wilkes, H. et al. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372, 455–8
Shen, Y. and Buick, R. (2004). The antiquity of microbial sulphate-reduction. Earth Science Reviews, 64, 243–72
Sievert, S. M. and Kuever, J. (2000). Desulfacinum hydrothermale sp. nov., a thermophilic, sulphate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). International Journal of Systematic and Evolutionary Microbiology, 50, 1239–46
Stetter, K. O., Huber, R., Blöchl, E. et al. (1993). Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365, 743–5
Tardy-Jacquenod, C., Caumette, P., Matheron, R. et al. (1996a). Characterization of sulphate-reducing bacteria isolated from oil-field waters. Canadian Journal of Microbiology, 42, 259–66
Tardy-Jacquenod, C., Magot, M., Laigret, F. et al. (1996b). Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulphate-reducing bacterium isolated from an oil pipeline. International Journal of Systematic Bacteriology, 46, 710–15
Tardy-Jacquenod, C., Magot, M., Patel, B. K. C., Matheron, R. and Caumette, P. (1998). Desulfotomaculum halophilum sp. nov., a halophilic sulphate-reducing bacterium isolated from oil production facilities. International Journal of Systematic Bacteriology, 48, 333–8
Telang, A. J., Ebert, S., Foght, J. M. et al. (1997). Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Applied and Environmental Microbiology, 63, 1785–93
Vance, I. and Trasher, D. R. (2005). Reservoir souring: mechanisms and prevention. In B. Ollivier and M. Magot (eds.), Petroleum Microbiology, Washington, DC: ASM Press. pp. 123–42.
Voordouw, G. (1995). The genus Desulfovibrio: the centennial. Applied and Environmental Microbiology, 61, 2813–19
Voordouw, G., Armstrong, S. M., Reimer, M. F. et al. (1996). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulphate-reducing, fermentative, and sulfide-oxidizing bacteria. Applied and Environmental Microbiology, 62, 1623–9
Watanabe, K., Kodama, Y. and Kaku, N. (2002). Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiology, 2, 23–32
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. New York: John Wiley and Sons, Inc. pp. 469–585.

Reference Title: References

Reference Type: reference-list

Anderson, R., Hobart, M. and Langseth, M. (1979). Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science, 204, 828–32
Bach, W. and Edwards, K. J. (2003). Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. et Cosmochim. Acta., 67, 3871–87
Baker, B. J., Moser, D. P., MacGregor, B. J. et al. (2003). Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol., 5, 267–77
Bale, S. J., Goodman, K., Rochelle, P. A. et al. (1997). Desulfovibrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47, 515–21
Barnes, S. P., Bradbrook, S. D., Cragg, B. A. et al. (1998). Isolation of sulphate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J., 15, 67–83
Basso, O., Caumette, P. and Magot, M. (2005). Desulfovibrio putealis sp. nov., a novel sulphate-reducing bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol., 55, 101–4
Bekins, B. A., Godsy, E. M. and Warren, E. (1999). Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol., 37, 263–75
Bidle, K. A., Kastner, M. and Bartlett, D. H. (1999). A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia Margin (ODP site 892B). FEMS Microbiol. Lett., 177, 101–8
Boetius, A., Ravenschlag, K., Schubert, C. J. et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6
Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S. and Christen, R. (1996). Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol., 62, 3405–12
Bottrell, S. H., Parkes, R. J., Cragg, B. A. and Raiswell, R. (2000). Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc., 157, 711–14
Bradbrook, S. D. (2000). Physiological, metabolic, and genetic characteristics of sulphate-reducing bacteria from deep-sediment layers of the Cascadia Margin (ODP Leg 146). PhD thesis, University of Bristol.
Canfield, D. E. (1991). Sulphate reduction in deep-sea sediments. Am. J. Sci., 291, 177–88
Chapelle, F. H. and Bradley, P. M. (1996). Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments. Geology, 24, 925–8
Colwell, F. S., Onstott, T. C., Delwiche, M. E. et al. (1997). Microorganisms from deep, high temperature sandstones: Constraints on microbial colonization. FEMS Microbiol. Rev., 20, 425–35
Coolen, M. J. L., Cypionka, H., Sass, A. M., Sass, H. and Overmann, J. (2002). Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science, 296, 2407–10
Cowen, J. P., Giovannoni, S. J., Kenig, F. et al. (2003). Fluids from ageing ocean crust that support microbial life. Science, 299, 120–3
Cragg, B. A., Harvey, S. M., Fry, J. C., Herbert, R. A. and Parkes, R. J. (1992). Bacterial biomass and acyivity in the deep sediment layers of the Japan Sea, Hole 798B. Proc. ODP Sci. Res., 127/128, 761–76
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1997). Bacterial profiles in Amazon Fan sediments (Sites 934, 940). Proc. ODP Sci. Res., 155, 565–71
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1998). The response of bacterial populations to sapropels in deep sediments of the Eastern Medierranean (Site 969). Proc. ODP Sci. Res., 160, 303–7
Cragg, B. A., Parkes, R. J., Fry, J. C. et al. (1996). Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Sci. Lett., 139, 497–507
Cragg, B. A., Parkes, R. J., Fry, J. C. et al. (1995). The impact of fluid and gas venting on bacterial populations and processes in sediments from the Cascadia Margin Accretionary System (Sites 888–892) and the geochemical consequences. Proc. ODP Sci. Res., 146, 399–411
Cragg, B. A., Wellsbury, P., Murray, R. W. and Parkes, R. J. (2003). Bacterial populations in deep-water, low-sedimentation-rate marine sediments and evidence for subsurface bacterial manganese reduction (ODP Site 1149 Izu-Bonin Trench). Proc. ODP Sci. Res., v. Vol. 185, online, http://www-odp.tamu.edu/publications/185_SR/008/008.htm.
Daumas, S., Cord-Ruwisch, R. and Garcia, J. L. (1988). Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulphate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek, 54, 165–78
D'Hondt, S., Jørgensen, B. B., Miller, D. J. et al. (2004). Distributions of microbial activities in deep subseafloor sediments. Science, 306, 2216–21
D'Hondt, S., Rutherford, S. and Spivack, A. J. (2002). Metabolic activity of subsurface life in deep-sea sediments. Science, 295, 2067–70
Dickens, G. R., Paull, C. K., Wallace, P. and the ODP Leg 164 Scientific Party. (1997). Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385, 426–8
Egeberg, P. K. and Barth, T. (1998). Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol., 149, 25–35
Fisk, M. R., Giovannoni, S. J. and Thorseth, I. H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281, 978–80
Fowler, C. M. R. (1990). The solid earth, an introduction to global geophysics. Cambridge: Cambridge University Press.
Fry, N. K., Frederikson, J. K., Fishbain, S., Wagner, M. and Stahl, D. A. (1997). Population structure of microbial communities associated with two deep, anaerobic alkaline aquifers. Appl. Environ. Microbiol., 53, 1498–504
Furnes, H. and Staudigel, H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett., 166, 97–103
Gogotova, G. I. and Vainshtein, M. B. (1989). Description of a sulphate-reducing bacterium, Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Microbiology, 58, 64–8
Haridon, S. L., Reysenbach, A., Glenat, P., Prieur, D. and Jeanthon, C. (1995). Hot subterranean biosphere in continental oil reservoir. Nature, 377, 223–4
Hedges, J. I. and Keil, R. G. (1995). Marine chemistry discussion paper. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 4, 81–115
Inagaki, F., Suzuki, M., Takai, K. et al. (2003). Microbial communities associated with geological horizons in coastal subseafloor sediment from the Sea of Okhotsk. Appl. Environ. Microbiol., 69, 7224–35
Ingle, J. C., Jr., Suyehiro, K. and von Breymann, M. T. (1990). Initial Reports Sites 794, 798–799 Japan Sea. Proceedings of the Ocean Drilling Program, Initial Reports, v 128, College Station, TX.
Jørgensen, B. B. (1983). Processes at the sediment-water interface. In B. Bolin and R. B. Cook (eds.), The Major Biogeochemical Cycles and their Interactions, Chichester: John Wiley. pp. 477–515.
Kallmeyer, J. and Boetius, A. (2004). Effects of temperature and pressure on sulphate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol., 70, 1231–3
Kemp, P. F. and Aller, J. Y. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol., 47, 161–77
Kennicutt, M. C., Brooks, J. M. and Cox, B. C. (1993). The origin and distribution of gas hydrates in marine sediments. In M. H. Engel and S. A. Macko (eds.), Organic Geochemistry. New York: Plenum Press. pp. 535–44.
Kimura, H., Sugihara, M., Yamamoto, H. et al. (2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles, 9, 407–14
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005). Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., 71, 467–79
Köpke, B., Wilms, R., Engelen, B., Cypionka, H. and Sass, H. (2005). Microbial diversity in coastal subsurface sediments – a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71, 7819–30
Kormas, K. A., Smith, D. C., Edgcomb, V. and Teske, A. (2003). Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol. Ecol., 45, 115–25
Krumholz, L. R., McKinley, J. P., Ulrich, F. A. and Suflita, J. M. (1997). Confined subsurface microbial communities in Cretaceous rock. Nature, 386, 64–6
Li, L., Guenzennec, J., Nichols, P. et al. (1999). Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanogr., 55, 635–42
Ludvigsen, L., Albrechtsen, H. J., Ringelberg, D. B., Ekelund, F. and Christensen, T. H. (1999). Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microb. Ecol. 37, 197–207
Mangelsdorf, K., Zink, K.-G., Birrien, J.-L. and Toffin, L. (2005). A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of a piezosensitive deep sub-seafloor bacterium. Org. Geochem., 36, 1459–79
Mather, I. D. and Parkes, R. J. (2000). Bacterial populations in sediments of the eastern flank of the Juan de Fuca Ridge, Sites 1026 and 1027. Proc. ODP Sci. Res. 168, 161–5
Mauclaire, L., Zepp, K., Meister, P. and Mckenzie, J. (2004). Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology, 2, 217–23
Morita, R. Y. and ZoBell, C. E. (1955). Occurence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res., 3, 66–73
Moser, D. P., Onstott, T. C., Fredrickson, J. K. et al. (2003). Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiol. J., 20, 517–48
Nazina, T. N., Ivanova, A. E., Kanchveli, L. P. and Rozanova, E. P. (1989). A new spore-forming thermophilic methylotrophic sulphate-reducing bacterium, Desulfotomaculum kuznetsovii. Microbiology, 57, 659–63
Nedwell, D. B., Embley, T. M. and Purdy, K. J. (2004). Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquat. Microb. Ecol., 37, 209–17
Parkes, R. J., Cragg, B. A., Bale, S. J. et al. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–13
Parkes, R. J., Cragg, B. A., Bale, S. J., Goodman, K. and Fry, J. C. (1995). A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J. Microbiol. Meth., 23, 235–49
Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. and Wimpenny, J. W. T. (1990). Bacterial biomass and activity in deep sediment layers from the Peru Margin. Phil. Trans. R. Soc. Lond. A., 331, 139–53
Parkes, R. J., Cragg, B. A. and Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J., 8, 11–28
Parkes, R. J., Webster, G., Cragg, B. A. et al. (2005). Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 436, 390–4
Paull, C. K., Buelow, W. J., Ussler, W. and Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–6
Pedersen, K., Arlinger, J., Ekendahl, S. and Hallbeck, L. (1996). 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden. FEMS Microbiol. Ecol., 19, 249–62
Postgate, J. R. and Hunter, J. R. (1963). Acceleration of bacterial death by growth substrate. Nature, 198, 273.
Quigley, T. M. and Mackenzie, A. S. (1988). The temperatures of oil and gas formation in the sub-surface. Nature, 333, 549–52
Reed, D. W., Fujita, Y., Delwiche, M. E. et al. (2002). Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol., 68, 3759–70
Sass, H. and Cypionka, H. (2004). Isolation of sulphate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. System. Appl. Microbiol., 27, 541–8
Schippers, A., Neretin, L. N., Kallmeyer, J. et al. (2005). Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433, 861–4
Süß, J., Engelen, B., Cypionka, H. and Sass, H. (2004). Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol. Ecol., 51, 109–21
Tasaki, M., Kamagata, Y., Nakamura, K. and Mikami, E. (1991). Isolation and characterization of a thermophilic benzoate-degrading, sulphate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol., 155, 348–52
Thomsen, T. R., Finster, K. and Ramsing, N. B. (2001). Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol., 67, 1646–56
Toffin, L., Webster, G., Weightman, A. J., Fry, J. C. and Prieur, D. (2004). Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol. Ecol., 48, 357–67
Wellsbury, P., Goodman, K., Barth, T. et al. (1997). Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388, 573–6
Wellsbury, P., Goodman, K., Cragg, B. A. and Parkes, R. J. (2000). The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). Proc. ODP Sci. Res., 164, 379–91
Wellsbury, P., Mather, I. and Parkes, R. J. (2002). Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol. Ecol., 42, 59–70
Wellsbury, P. and Parkes, R. J. (2000). Deep biosphere: source of methane for oceanic hydrate. In M. D. Max (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht: Kluwer. pp. 91–104.
Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998). Prokaryotes: the unseen majority: Proc. Natl. Acad. Sci. USA., 95, 6578–83
Wilms, R., Köpke, B., Sass, H. et al. (2006). Deep-biosphere bacteria within the subsurface of tidal flat sediments. Environ. Microbiol., 8, 709–19.
ZoBell, C. E. (1938). Studies on the bacterial flora of marine bottom sediments. J. Sed. Petrol., 8, 10–18

Reference Title: References

Reference Type: bibliography

Allen, L. A. (1929). The effect of nitro-compounds and some other substances on production of hydrogen sulphide by sulphate-reducing bacteria in sewage. Proc Soc Appl Bacteriol, 2, 26–38
Amann, R. and Ludwig, W. (2000). Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev, 24, 555–65
Amann, R. I., Ludwig, W. and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59, 143–69
Amann, R. and Kühl, M. (1998). In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol, 1, 352–8
Amann, R. I., Stomley, J., Devereux, R. K. and Stahl, D. A. (1992). Molecular and microscopic identification of sulphate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol, 58, 614–23
Boone, D. R. and Bryant, M. P. (1980). Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol, 40, 626–32
Buisman, C., Ijspeert, P., Janssen, A. and Lettinga, G. (1990). Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Wat Res, 24, 667–71
Canfield, D. E. and Des Marais, D. J. (1991). Aerobic sulphate reduction in microbial mats. Science, 251, 1471–3
Chen, K. Y. and Morris, J. C. (1972). Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol, 6, 529–37
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158, 93–9
Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A. (1992). Genus- and group-specific hybridization probes for determinative and environmental studies of sulphate-reducing bacteria. System Appl Microbiol, 15, 601–9
Devereux, R., Delaney, M., Widdel, F. and Stahl, D. A. (1989). Natural relationships among sulphate-reducing eubacteria. J Bacteriol, 171, 6689–95
Devereux, R. and Stahl, D. A. (1993). Phylogeny of sulphate-reducing bacteria and a perspective for analyzing their natural communities. In J. M. Odom and R. Singleton Jr. (eds.), The sulphate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag. pp. 131–60.
Eary, L. E. and J. A. Schramke. (1990). Rates of inorganic oxidation reactions involving dissolved oxygen. In D. C. Melchior and R. L. Basset (eds.), Chemical modeling of aqueous systems II. Washington, DC: American Chemical Society. pp. 379–96.
Frund, C. and Cohen, Y. (1992). Diurnal cycles of sulphate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol, 58, 70–7
Fukui, M., Teske, A., Assmus, B., Muyzer, G. and Widdel, F. (1999). Physiology, phylogenetic relationships, and ecology of filamentous sulphate-reducing bacteria (genus Desulfonema). Arch Microbiol, 172, 193–203
Hamilton, W. A. (1985). Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol, 35, 195–217
Hamilton, W. A. (2003). Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 19, 65–76
Hamilton, W. A. and Lee, W. (1995). Biocorrosion. In L. L. Barton (ed.), Sulphate-reducing bacteria. Biotechnology Handbooks 8. New York: Plenum Press. pp. 243–62.
Harmsen, H. J. M., Akkermans, A. D. L., Stams, A. J. M. and de Vos, W. M. (1996). Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl Environ Microbiol, 62, 2163–8
Head, I. M., Saunders, J. R. and Pickup, R. W. (1998). Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultured microorganisms. Microb Ecol, 35, 1–21
Heppner, B., Zellner, G. and Diekmann, H. (1992). Start-up and operation of a propionate-degrading fluidized-bed reactor. Appl Microbiol Biotechnol, 36, 810–16
Ito T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002a). Phylogenetic identification and substrate uptake patterns of sulphate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl Environ Microbiol, 68, 356–64
Ito, T., Okabe, S., Satoh, H. and Watanabe, Y. (2002b). Successional development of sulphate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol, 68, 1392–402
Ito T., Sugita, K. and Okabe, S. (2004). Isolation, characterization and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Appl Environ Microbiol, 70, 3122–9
Ito, T., Sugita, K., Yumoto, I., Nodasaka, Y. and Okabe, S. (2005). Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithotrophic sulfur-oxidizing bacterium isolated from a microaerophilic waste-water biofilm. International Journal of Systematic and Evolutionary Microbiology, 55, 1059–64
Janssen, A. J. H., Sleyster, R., van der Kaa, C. et al. (1995). Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng, 47, 327–33
Jenneman, G. E., McInerney, M. J. and Knapp, R. M. (1986). Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol, 51, 1205–11
Jørgensen, B. B. (1978). A comparison of methods for the quantification of bacterial sulphate reduction in coastal marine sediments. III. Estimation from chemical and bacteriological field data. Geomicrobiol J, 1, 49–64
Jørgensen, B. B. (1982). Ecology of the bacteria of the sulphur cycle with special reference to anoxic–oxic interface environments. Phil Trans R Soc Lond, 298, 543–61
Kühl, M. and Jørgensen, B. B. (1992). Microsensor measurement of sulphate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol, 58, 1164–74
Lee, N., Nielsen, P. H., Andreasen, K. H. et al. (1999). Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol, 65, 1289–97
Lee, W., Lewandowski, Z., Characklis, W. G. and Nielsen, P. H. (1994). Microbial corrosion of mild steel in a biofilm system. In G.G. Geesey, Z. Lewandowski and H.-C. Flemming (eds.), Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Plenum Press, CRC Press, Inc., Florida, pp. 205–12.
Lovley, D. R. and Phillips, E. J. P. (1994). Novel processes for anaerobic sulphate production from elemental sulfur by sulphate-reducing bacteria. Appl Environ Microbiol, 60, 2394–9
Loy A., Lehner, A., Lee, N. et al. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulphate-reducing prokaryotes in the environment. Appl Environ Microbiol, 68, 5064–81
Manz, W., Eisenbrecher, M., Neu, T. R. and Szewzyk, U. (1998). Abundance and spatial organization of Gram-negative sulphate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiology Ecology, 25, 43–61
Minz, D., Fishbain, S., Green, S. J. et al. (1999a). Unexpected population distribution in a microbial mat community: sulphate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol, 65, 4659–65
Minz, D., Flax, J. L., Green, S. J. et al. (1999b). Diversity of sulphate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol, 65: 4666–71
Nielsen, P. H., Lee, W., Lewandowski, Z., Morison, M. and Characklis, W. G. (1993). Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling, 7, 267–84
Norsker, N. H., Nielsen, P. H. and Hvitved-Jacobsen, T. (1995). Influence of oxygen on biofilm growth and potential sulphate reduction in gravity sewer biofilm. Wat Sci Tech, 31(7), 159–67
Okabe, S., Itoh, T., Satoh, H. and Watanabe, Y. (1999a). Analyses of spatial distributions of sulphate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol, 65, 5107–16
Okabe, S., Ito T. and Satoh, H. (2003a). Sulphate-reducing bacterial community structure, function and their contribution to carbon mineralization in a wastewater biofilm growing microaerophilic conditions. Appl Microbiol Biotechnol, 63, 322–34
Okabe, S., Ito T., Satoh, H. and Watanabe, Y. (2003b). Effect of nitrite and nitrate on biogenic sulfide production in sewer biofilms as determined by use of microelectrodes. Water Science and Technology, 47, 281–8
Okabe, S., Ito T., Sugita, K. and Satoh, H. (2005). Succession of internal sulfur cycle and sulfide-oxidizing bacterial community in microaerophilic wastewater biofilms. Appl Environ Microbiol, 71, 2520–9
Okabe, S., Santegoeds, C. and de Beer, D. (2003c). Effect of nitrite and nitrate on in situ sulfide production in an activated sludge immobilized agar film as determined by use of microelectrodes. Biotechnol Bioeng, 81, 570–7
Okabe, S., Satoh, H. and Watanabe, Y. (1999b). In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol, 65, 3182–91
Oude Elferink, S. J. W. H., Visser, A., Hulshoff Pol, L. W. and Stams, A. J. M. (1994). Sulphate reduction in methanogenic bioreactors. FEMS Microbiol Rev, 15, 119–36
Oude Elferink, S. J. W. H., Vorstman, W. J. C., Sopjes, A. and Stams, A. J. M. (1998). Characterization of the sulphate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater. FEMS Microbiol Ecology, 27, 185–94
Ouverney, C. C. and Fuhrman, J. A. (1999). Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol, 65, 1746–52
Postgate, J. R. (1984). The sulphate-reducing bactera, 2nd edn. Cambridge, UK: Cambridge University Press.
Ramsing, N. B., Kühl, M. and Jørgensen, B. B. (1993). Distribution of sulphate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probe and microelectrodes. Appl Environ Microbiol, 59, 3840–9
Rabus, R., Fukui, M., Wilkes, H. and Widdel, F. (1996). Degradative capacities and 16S rRNA-targeted whole cell hybridization of sulphate-reducing bacteria in an anaerobic environment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol, 62, 3605–13
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA, 91, 10173–7
Santegoeds, C. M., Damgaard, L. R., Hesselink, G. et al. (1999). Distribution of sulphate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl Environ Microbiol, 65, 4618–29
Santegoeds, C. M., Ferdelman, T. G., Muyzer, G. and de Beer, D. (1998). Structural and functional dynamics of sulphate-reducing populations in bacterial biofilms. Appl Environ Microbiol, 64, 3731–9
Schramm, A. (2003). In situ analysis of structure and activity of the nitrifying community in biofilms, aggregate, and sediments. Geomicrobiol J, 20, 313–33
Schramm, A., Larsen, L. H., Revsbech, N. P., Amann, R. and Schleifer, K.-H. (1996). Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol, 62, 4641–7
Schramm, A., Santegoeds, C. M., Nielsen, H. K. et al. (1999). On the occurrence of anoxic microniches, denitrification, and sulphate reduction in aerated activated sludge. Appl Environ Microbiol, 65, 4189–96
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms. John Wiley & Sons Inc., New York, pp. 469–585.
Widdel, F. and Pfenning, N. (1982). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol, 131, 360–5
Wu, W.-M., Jain, M. K., Conway de Macario, E., Thiele, J. H. and Zeikus, J. G. (1992). Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biotechnol, 38, 282–90

Reference Title: References

Reference Type: bibliography

Ahuja, P., Gupta R. and Saxena, R. K. (1999). Sorption and desorption of cobalt by Oscillatoria anguitissima. Curr. Microbiol., 39, 49–52
Aksu, Z. (2002). Determination of the equilibrium, kinetics and thermodynamic parameters of the batch sorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem., 38, 89–99
Artola, A., Martin M., Balaguer D. M. and Rigola M. (2000). Isotherm model analyses for the adsorption of Cd(II), Cu(II), Ni(II) and Zn(II) on anaerobically digested sludge. J. Colloid. Inter. Sci., 232, 64–70
Barton, C. D. and Karathanasis, A. D. (1999). Renovation of a failed constructed wetland treating acid mine drainage. Environmental Geology, 39, 39–50
Bechard, G., Yamazaki, H., Gould, W. D. and Bedard, P. (1994). Use of cellulosic substrates for the microbial treatment of acid mine drainage. J. Environmental Qual., 23, 111–16
Benner, S. G., Blowes, D. W., Ptacek, C. J. and Mayer, K. U. (2002). Rates of sulphate reduction and metal sulfide precipitation in a permeable reactive barrier. Applied Geochemistry, 17, 301–20
Beuling, E. E., van Dusschoten, D., Lens, P. et al. (1998). Characterization of the diffusive properties of biofilms using pulsed field gradient nuclear magnetic resonance. Biotech. Bioeng., 60, 283–91
Buisman, C. N. J., Geraats, B. G., Ijspeert, P. and Lettinga, G. (1990). Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotech. Bioeng., 35, 50–6
Chang, I. S., Shin, P. K. and Kim, B. H. (2000). Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Wat. Res., 34, 1269–77
Cheong, Y.-W., Min, J.-S. and Kwon, K.-S. (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64, 147–52
Clancy, P. B., Venkataraman, N. and Lynd, L. R. (1992). Biochemical inhibition of sulphate reduction in batch and continuous anaerobic digesters. Wat. Sci. Tech., 25, 51–60
Cocos, I. A., Zagury, G. J., Clement, B. and Samson, R. (2002). Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Wat. Res., 32, 167–77
Colleran, E., Finnegan, S. and Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, 67, 29–46
Crocetti, G. R., Hugenholtz, P., Bond, P. L. et al. (2000). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol., 66, 1175–82
Dabert, P., Delgenes, J.-P., Moletta, R. and Godon, J.-J. (2002). Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Reviews in Environmental Science and Bio/Technology, 1, 39–49
De Smul, A. and Verstraete, W. (1999). The phenomenology and the mathematical modeling of the silicone-supported chemical oxidation of aqueous sulfide to elemental sulfur with ferric sulphate. J. Chem. Technol. Biotechnol., 74, 456–66
Edenborn, H. M. (2004). Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings. Bioresource Technology, 92, 111–19
El-Shafey, E., Cox, M., Pichugin, A. A. and Appleton, Q. (2002). Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqeous solution. J. Chem. Technol. Biotechnol., 77, 429–36
Esposito, G., Veeken, A., Weijma, J. and Lens, P. N. L. (2006). Effect of the use of biogenic sulphide on ZnS precipitation under different process conditions. Separation and Purification Technology, 51, 31–9
Fedorovich, V., Greben, M., Kalyuzhnyi, S. et al. (2000). Use of membranes for hydrogen supply in a sulphate reducing reactor. Biodegradation, 11, 295–303
Fedorovich, V., Lens, P. and Kalyuzhnyi, S. (2003). Extension of anaerobic digestion model no. 1 with the processes of sulphate reduction. Applied Biochemistry and Biotechnology, 109, 33–46
Gibert, O., de Pablo, J., Cortina, J. L. and Ayora, C. (2004). Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Wat. Res., 38, 4186–96
Gonzalez-Gil, G., Lens, P., Van Aelst, A. et al. (2001). Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl. Environ. Microbiol., 67, 3683–92
Gonzalez-Gil, G., Jansen, S., Zandvoort, M. H. and van Leeuwen, H. P. (2003). Effect of yeast extract on speciation and bioavailability in nickel and cobalt in anaerobic bioreactors. Biotech. Bioeng., 82, 134–42
Gray, N. D., Howarth, R., Pickup, R. W., Gwyn Jones, J. and Head, I. M. (2000). Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol., 66, 4518–22
Haridas, A., Majumdar, S. and Kumar, K. (2000). Reverse fluidised loop reactor for oxidation of sulphide. In Workshop on Anaerobic Processes in Wastewater Management., MHO-cooperation Cochin University of Science and Technology, Technical University Delft and Wageningen University. 9–15 October, Cochin, India.
Haytoglu, B., Demerir, G. N. and Yetis, U. (2001). Effectiveness of anaerobic biomass in adsorbing heavy metals. Wat. Sci. Technol., 44, 245–52
Ho, Y. S., Wase, D. A. J. and Forster, C. F. (1996). Kinetic studies of competitive heavy metal sorption by sphagnum moss peat. Environ. Technol., 17, 71–6
Huisman, J. W., Van den Heuvel, J. C. and Ottengraf, S. P. P. (1990). Enhancement of external mass transfer by gaseous end products. Biotechnol. Progr., 6, 425–9
Hulshoff Pol, L., Lens, P., Stams, A. J. M. and Lettinga, G. (1998). Anaerobic treatment of sulphate-rich wastewaters. Biodegradation, 9, 213–24
Jensen, A. B. and Webb, C. (1995). Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microbiol. Technol., 17, 2–10
Janssen, G. M. C. M. and Teminghoff, E. J. M. (2004). In situ metal precipitation in a zinc contaminated aerobic sandy aquifer by means of biological sulphate reduction. Environ. Sci. Technol., 38, 4002–11
Jansen, S., Steffen, F., Threels, W. F. and Van Leeuwen, H. P. (2005). Speciation of Co(II) and Ni(II) in anaerobic bioreactors measured by competitive ligand exchange-adsorptive stripping voltammetry. Environ. Sci. Technol., 39, 9493–9
Janssen, A. J. H., Sleyster, R., van der Kaa, C. et al. (1995). Biological sulphide oxidation in a fed-batch reactor. Biotech. Bioeng., 47, 327–33
Janssen, A. J. H., Ma, S. C., Lens, P. and Lettinga, G. (1997). Performance of a sulphide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotech. Bioeng., 53, 32–40
Janssen, A. J. H., Meijer, S., Bontsema, J. and Lettinga, G. (1998). Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotech. Bioeng., 60, 147–55
Jong, T. and Perry, L. (2003). Removal of sulphate and heavy metals by sulphate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactors. Wat. Res., 37, 3379–89
Kaksonen, A. H., Riekkola-Vanhanen, M. L. and Puhakka, J. A. (2003). Optimization of metal sulfide precipitation in fluidized-bed treatment of acidic wastewater. Wat. Res., 37, 255–66
Harris, M. A. and Ragusa, S. (2001). Bioremediation of acid mine drainage using decompostable plant material in a constant flow bioreactor. Environmental Geology, 40, 1192–204
Kim, B. W., Kim, E. H., Lee, S. C. and Chang, H. N. (1993). Model-based control of feed rate and illuminance in a photosynthetic fed-batch reactor for H2S removal. Bioprocess Eng., 8, 263–9
König, J., Keesman, K. J., Veeken, A. and Lens, P. N. L. (2006). Dynamic modelling and process control of ZnS precipitation. Separation Science Technology. 41(6), 1025–42
Kurisu, F., Satoh, H., Mino, T. and Matsuo, T. (2002). Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA and the quinone profile method. Wat. Res., 36, 429–38
Lens, P., de Beer, D., Cronenberg, C. et al. (1993). Inhomogenic distribution of microbial activity in UASB aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol., 59, 3803–15
Lens, P., Gastesi, R., Hulshoff Pol, L. and Lettinga, G. (2003). Use of sulphate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases. Biodegradation, 14, 229–40
Lens, P., Sipma, J., Hulshof Pol, L. and Lettinga, G. (2000). Effect of staging and nitrate addition on sulfidogenic acetate removal. Wat. Res., 34, 31–42
Lens, P., van den Bosch, M., Hulshoff Pol, L. and Lettinga, G. (1998b). Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Wat. Res., 32, 1178–92
Lens, P., Vergeldt, F., Lettinga, G. and van As, H. (1999). 1H-NMR study of the diffusional properties of methanogenic aggregates. Wat. Sci. Tech., 39, 187–94
Lens, P., Visser, A., Janssen, A., Hulshoff Pol, L. and Lettinga, G. (1998a). Biotechnological treatment of sulphate rich wastewaters. Crit. Rev. Env. Sci. Technol., 28, 41–88
Lens, P. N. L., Klijn, R., van Lier, J. B., Hulshoff Pol, L. W. and Lettinga, G. (2002). Effect of specific gas loading rate on thermofilic sulphate reduction under acidifying conditons. Wat. Res., 37, 1033–47
Lens, P. N. L., Korthout, D., van Lier, J. B., Hulshoff Pol, L. W. and Lettinga, G. (2001). Effect of upflow velocity on thermofilic sulphate reduction under acidifying conditons. Environ. Technol., 22, 183–93
Lens, P. N. L. and Kuenen, J. G. (2001). The biological sulfur cycle: novel opportunities for environmental biotechnology. Wat. Sci. Tech., 44, 57–66
Lopez, A., Lazaro, N., Priego, J. M. and Marques, A. M. (2000). Effect of pH on the biosorption of nickel and other metals by Pseodomonas fluorescens 4F39. J. Ind. Microbiol. Bioetechnol., 24, 146–51
Markewitz, K., Cabral, A. R., Panarotto, C. T. and Lefebvre, G. (2004). Anaerobic biodegradation of an organic by-products leachate by interaction with different mine tailings. Journal of Hazardous Materials, 110, 93–104
McFarland, M. J. and Jewell, W. J. (1989). In situ control of sulfide emission during thermophilic anaerobic digestion process. Wat. Res., 23, 1571–7
Mersmann, A. (1999). Crystallization and precipitation. Chem. Eng. Process, 38, 345–53
Muthumbi, W., Boon, N., Boterdaele, R. et al. (2001). Microbial sulphate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl. Microbiol. Biotechol., 55, 787–93
Omil, F., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1996). Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem., 31, 699–710
Omil, F., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1997a). Characterization of biomass from a sulphidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme Microb. Technol., 20, 229–36
Omil, F., Lens, P., Visser, A., Hulshoff Pol, L. W. and Lettinga, G. (1998). Long term competition between sulphate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotech. Bioeng., 57, 676–85
Omil, F., Oude Elferink, S. J. W. H., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1997b). Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulphate reducing and methanogenic bacteria in an acetate fed UASB reactor. Biores. Technol., 60, 113–22
Oude Elferink, S. J. W. H., Boschker, H. T. S. and Stams, A. J. M. (1998). Identification of sulphate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty-acid biomarkers and 16S rRNA probing. Geomicrobial J., 15, 3–18
Paulo, P., Kleerebezem, R., Lettinga, G. and Lens, P. N. L. (2005). Cultivation of high-rate sulphate reducing sludge by pH-based electron donor dosage. Journal of Biotechnology, 118, 107–16
Prasad, D., Wai, M., Berube, P. and Henry, J. G. (1999). Evaluating substrates in the biological treatment of acid mine drainage. Environmental Technology, 20, 449–58
Rebac, S., van Lier, J. B., Lens, P. et al. (1998). Psychrophilic (6–15 °C) high-rate treatment of malting waste water in a two module EGSB system. Biotechnol. Progr., 14, 856–64
Reis, M. A. M., Lemos, P. C. and Carrondo, M. J. T. (1995). Biological sulphate removal of industrial effluents using the anaerobic digestion. Med. Fac. Landbouww. Univ. Gent., 60, 2701–7
Rengaraj, S. and Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and and wastewater by ion exchange resin. Wat. Res., 36, 1783–93
Rintala, J., Lepisto, S. and Ahring, B. (1993). Acetate degradation at 70 °C in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70 °C. Appl. Environ. Microbiol., 59, 1742–6
Rinzema, A. and Lettinga, G. (1988). Anaerobic treatment of sulphate containing waste water. In D. L. Wise (ed.), Biotreatment systems, Vol III, pp. 65–109. Boca Raton, FL: CRC Press Inc.
Rose, P. D., Boshoff, G. A., van Hille, R. P. et al. (1998). An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation, 9, 247–57
Santegoeds, C. M., Damgaard, L. R., Hesselink, G. et al. (1999). Distribution of sulphate reducing and methanogenic bacteria in UASB aggregates determined by microsensors and molecular techniques. Appl. Environ. Microbiol., 65, 4618–29
Santegoeds, C. M., Schramm, A. and de Beer, D. (1998). Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation, 9, 159–67
Särner, E. (1990). Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter. Wat. Sci. Tech., 22, 395–404
Sipma, J., Lens, P. N. L., Vieira, A. et al. (2000). Thermofilic sulphate reduction in UASB reactors under acidifying conditons. Process Biochem., 35, 509–22
Sipma, J., Meulepas, R. J. W., Parshina, S. N. et al. (2004). Effect of carbon monoxide, hydrogen and sulphate on thermophilic (55 °C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Applied Microbiology and Biotechnology, 64, 421–8
Stefess, G. C., Torremans, R. A. M., De Schrijver, R., Robertson, L. A. and Kuenen, J. G. (1996). Quantitative measurement of sulphur formation by steady-state and transient-state continuous cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol., 45, 169–75
Sublette, K. L. and Sylvester, N. D. (1987). Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotech. Bioeng., 29, 753–8
Tanimoto, Y., Tasaki, M., Okamura, K., Yamaguchi, M. and Minami, K. (1989). Screening growth inhibitors of sulphate-reducing bacteria and their effects on methane fermentation. J. Ferment. Bioeng., 68, 353–9
Vallero, M. V. G., Camarero, E., Lettinga, G. and Lens, P. N. L. (2007). Hyperthermophilic sulphate reduction in methanol and formate fed UASB reactors. Appl. Environ. Microbiol. Submitted.
Vallero, M. V. G., Lens, P. N. L., Hulshoff Pol, L. W. and Lettinga, G. (2003a). Effect of NaCl on thermophilic (55 °C) methanol degradation in sulphate reducing reactors. Wat. Res., 37, 2269–80
Vallero, M. V. G., Paulo, P. L., Trevino, R. H. M., Lettinga, G. and Lens, P. N. L. (2003b). Effect of sulphate on methanol degradation in thermophilic (55 °C) methanogenic UASB reactors. Enzyme Microb. Technol., 32, 676–87
van den Heuvel, J. C., Vredenbregt, L. H. J., Portegies-Zwart, I. and Ottengraf, S. P. P. (1995). Acceleration of mass transfer in methane-producing loop reactors. Antonie van Leeuwenhoek, 67, 125–30
van Houten, R. T., Hulshoff Pol, L. W. and Lettinga, G. (1994). Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotech. Bioeng., 44, 586–94
van Houten, R. T., Oude Elferink, S. J. W. H., van Hamel, S. E. et al. (1995). Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Biores. Technol., 54, 73–9
van Houten, R. T., van der Spoel, H., van Aelst, A. C., Hulshoff Pol, L. W. and Lettinga, G. (1996). Biological sulphate reduction using synthesis gas as energy and carbon source. Biotech. Bioeng., 50, 136–44
van Houten, R. T., Yun, S. Y. and Lettinga, G. (1997). Thermophilic sulphate and sulfite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotech. Bioeng., 55, 807–14
van Hullebusch, E. D., Zandvoort, M. H. and Lens, P. N. L. (2003). Metal immobilisation in biofilms: mechanisms and analytical tools. Re/view Environ. Sci. Bio/Technol., 2, 9–33
van Hullebusch, E. D., Peerbolte, A., Zandvoort, M. H. and Lens, P. N. L. (2005). Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere, 58, 493–505
van Hullebusch, E., Zandvoort, M. H. and Lens, P. N. L. (2004). Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies. J. Chem. Technol. Biotechnol., 79, 1219–27
Van Lier, J. B., Boersma, F., Debets, M. M. W. H. and Lettinga, G. (1994). High-rate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Wat. Sci. Tech., 30, 251–61
Veeken, A. H. M., Vries, S. de, Mark, A van der, Rulkens, W. H. (2003). Selective precipitation of heavy metals as controlled by a sulfide-selective electrode. Sep. Sci. Tech., 38, 1–19
Visser, A., Beeksma, I., van der Zee, F., Stams, A. J. M. and Lettinga, G. (1993a). Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biotechnol., 40, 549–56
Verstraete, W., de Beer, D., Pena, M., Lettinga, G. and Lens, P. (1996). Anaerobic bioprocessing of waste. World J. Microbiol. Biotechnol., 12, 221–38
Visser, A., Gao, Y. and Lettinga, G. (1992). The anaerobic treatment of a synthetic sulphate containing wastewater under thermophilic (55 °C) conditions. Wat. Sci. Tech., 25, 193–202
Visser, A., Gao, Y. and Lettinga, G. (1993b). Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulphate containing synthetic wastewater. Wat. Res., 27, 541–50
Visser, A., Hulshoff Pol, L. W. and Lettinga, G. (1996). Competition of methanogenic and sulfidogenic bacteria. Wat. Sci. Tech., 33, 99–110
Visser, J. M., Robertson, L. A., Van Verseveld, H. W. and Kuenen, J. G. (1997). Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl. Environ. Microbiol., 63, 2300–5
Waybrant, K. R., Blowes, D. W. and Ptacek, C. J. (1998). Selection of reactive mixtures for use in permeable reactive walls for treatment of acid mine drainage. Environ. Sci. Tech., 32, 1972–9
Weijma, J., Stams, A. J. M., Hulshoff Pol, L. W. and Lettinga, G. (2000). Thermophilic sulphate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng., 67, 354–63
Yadav, V. K. and Archer, D. B. (1989). Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high sulphate molasses wastewater. Appl. Microbiol. Biotechnol., 31, 103–6

Reference Title: References

Reference Type: bibliography

Aubert, C., Lojou, E., Bianco, P. et al. (1998). The Desulfuromonas acetoxidans tri-heme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Applied and Environmental Microbiology, 64, 1308–12
Bang, S. W., Clark, D. S. and Keasling, J. D. (2000). Engineering hydrogen sulphide production and cadmium removal by expression of the thiosulphate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Applied and Environmental Microbiology, 66, 3939–44
Barnes, L. J., Janssen, F. J., Sherren, J. et al. (1991). A new process for the microbial removal of sulphate and heavy metals from contaminated waters extracted by a geohydrological control system. Transactions of the Institute of Chemical Engineering, 69, 184–6
Barnes, L. J., Scheeren, P. J. and Buisman, C. J. N. (1994). Microbial removal of heavy metals and sulphate from contaminated groundwaters. In J. L. Means and R. E. Hinchee (eds.), Emerging technology for the bioremediation of metals. Boca Raton, FL: Lewis Publishers. pp. 38–49.
Barton, L. L., Choudhury, K., Thomson, B. M. and Steenhoudt, K. (1996). Bacterial reduction of soluble uranium: the first step of in situ immobilization of uranium. Radioactive Waste Management and Environmental Restoration, 20, 141–51
Battelle Bioprocessing (2001). http://bioprocess.pnl.gov/sulfide.htm.
Beech, I. B. and Cheung, C. W. S. (1995). Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. International Biodeterioration and Biodegradation, 35, 59–72
Blenkinsop, S. A., Khoury, A. E. and Costerton, J. W. (1992). Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 58, 3770–3
Brown, D. A., Choudari Kamineni, D., Sawicki, J. A. and Beveridge, T. J. (1994). Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. Applied and Environmental Microbiology, 60, 3182–91
Buisman, C., Post, R., Yspeert, P., Geraats, G. and Lettinga, G. (1989). Biotechnological process for sulfide removal with sulfur reclamation. Acta Biotechnologica, 9, 255–67
Chang, I. S., Shin, P. K. and Kim, B. H. (2000). Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Research, 34, 1269–77
Cooper, D. C. and Morse, J. W. (1998). Biogeochemical controls on trace metal cycling in anoxic marine sediments. Environmental Science and Technology, 32, 327–30
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annual Review of Microbiology, 54, 827–48
DeLuca, G., de Philip, P., Dermoun, Z., Rousset, M. and Vermeglio, A. (2001). Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Applied and Environmental Microbiology, 67, 4583–7
Dilling, W. and Cypionka, H. (1990). Aerobic respiration in sulphate-reducing bacteria. FEMS Microbiology Letters, 71, 123–8
Douglas, S. and Beveridge, T. J. (1998). Mineral formation by bacteria in natural communities. FEMS Microbial Ecology, 26, 79–88
Dowdle, P. R., Laverman, A. M. and Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Applied and Environmental Microbiology, 62, 1664–9
Dvorak, D. H., Hedin, R. S., Edenborm, H. M. and McIntyre, P. E. (1991). Treatment of metal-contaminated water using bacterial sulphate-reduction: results from pilot-scale reactors. Biotechnology and Bioengineering, 40, 609–16
Elias, D. A., Suflita, J. M., McInerney, M. J. and Krumholz, L. R. (2004). Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulphate reduction. Applied and Environmental Microbiology, 70, 413–20
Ewart, D. K. and Hughes, M. N. (1991). The extraction of metals from ores using bacteria. Advances in Inorganic Chemistry, 36, 103–35
Flemming, H.-C. (1995). Sorption sites in biofilms. Water Science and Technology, 32, 27–33
Fortin, D. and Beveridge, T. J. (1997). Microbial sulphate reduction within sulphidic mine tailings: formation of diagenetic iron sulphides. Geomicrobiology Journal, 14, 1–21
Fortin, D., Davis, B. and Beveridge, T. J. (1996). Role of Thiobacillus and sulphate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiology Ecology, 21, 11–24
Fortin, D., Goulet, R. and Roy, M. (2000). The effect of seasonal variations in sulphate-reducing bacterial populations on Fe and S cycling in a constructed wetland. Geomicrobiology Journal, 17, 221–35
Fortin, D., Souham, G. and Beveridge, T. J. (1994). Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly-isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiology Ecology, 14, 121–32
Fude, L., Harris, B., Urrutia, M. M. and Beveridge, T. J. (1994). Reduction of Cr(VI) by a consortium of sulphate-reducing bacteria (SRB III). Applied and Environmental Microbiology, 60, 1525–31
Gadd, G. M. (2000). Heavy metal pollutants: environmental and biotechnological aspects. In J. Lederberg (ed.), The Encyclopedia of Microbiology, 2nd edn. San Diego: Academic Press, Inc. pp. 607–17.
Gadd, G. M. (2001). Accumulation and transformation of metals by microorganisms. In H.-J. Rehm, G. Reed, A. Puhler and P. Stadler (eds.), Biotechnology, a Multi-Volume Comprehensive Treatise, Volume 10: Special Processes. Weinheim, Germany: Wiley-VCH Verlag. pp. 225–64.
Gadd, G. M. (2002). Interactions between microorganisms and metals/radionuclides: the basis of bioremediation. In M. J. Keith-Roach and F. R. Livens (eds.), Interactions of Microorganisms with Radionuclides. Amsterdam: Elsevier. pp. 179–203.
Gadd, G. M. (2005). Microorganisms in toxic metal polluted soils. In F. Buscot and A. Varma (eds.), Microorganisms in Soils: Roles in Genesis and Functions. Berlin: Springer-Verlag. pp. 325–56.
Geesey, G. G., Lang, J., Jolly, J. G. et al. (1989). Binding of metal ions by extracellular polymers of biofilm bacteria. Water Science and Technology, 20, 161–5
Glasauer, S., Beveridge, T. J., Burford, E. P., Harper, F. A. and Gadd, G. M. (2004). Metals and metalloids, transformations by microorganisms. In D. Hillel, C. Rosenzweig, D. S. Powlson et al. (eds.), Encyclopedia of Soils in the Environment. Amsterdam: Elsevier. pp. 438–47.
Glasauer, S., Langley, S. and Beveridge, T. J. (2001). Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Applied and Environmental Microbiology, 67, 5544–50
Goenka, A., Voordouw, J. K., Lubitz, W., Gartner, W. and Voordouw, G. (2005). Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Transactions of the Biochemical Society, 33, 59–60
Gyure, R. A., Konpka, A., Brooks, A. and Doemel, W. (1990). Microbial sulphate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiology Ecology, 73, 193–202
Hammack, R. W. and Edenborm, H. M. (1992). The removal of nickel from mine waters using bacterial sulphate reduction. Applied Microbiology and Biotechnology, 37, 674–8
Hard, B. C. and Babel, F. W. (1997). Bioremediation of acid minewater, using facultatively methylotrophic metal-tolerant sulphate-reducing bacteria. Microbiological Research, 152, 65–73
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M. et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 98, 1602–6
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 22, 554–9
Hemme, C. L. and Wall, J. D. (2004). Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. OMICS: A Journal of Integrative Biology, 8, 43–55
Hockin, S. L. and Gadd, G. M. (2003). Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulphate-reducing bacterial biofilms. Applied and Environmental Microbiology, 69, 7063–72
Hockin, S. and Gadd, G. M. (2006). Removal of selenate from sulphate-containing media by sulphate-reducing bacterial biofilms. Environmental Microbiology, 8, 816–26
Jacobs, L. (1989). Selenium in agriculture and the environment. Madison, Wisconsin: American Society of Agronomy.
Kirk, M. F., Holm, T. R., Park, J. et al. (2004). Bacterial sulphate reduction limits natural arsenic contamination in groundwater. Geology, 32, 953–6
Kühl, M. and Jørgensen, B. B. (1992). Microsensor measurements of sulphate reduction and sulfide oxidation in compact microbial commuities of aerobic biofilms. Applied and Environmental Microbiology, 58, 1164–74
Labrenz, M., Druschel, G. K., Thompson-Ebert, T. K. et al. (2000). Formation of sphaelerite (ZnS) deposits in natural biofilms of sulphate-reducing bacteria. Science, 290, 1744–6
Langley, S. and Beveridge, T. J. (1999). Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth as a biofilm. Canadian Journal of Microbiology, 45, 616–22
Laverman, A. M., Switzer Blum, J., Schaefer, J. K. et al. (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology, 61, 3556–61
Lee, J.-U. and Beveridge, T. J. (2001). Interaction between iron and Pseudomonas aeruginosa biofilms attached to sepharose surfaces. Chemical Geology, 180, 67–80
Lens, P. N., DePoorter, M. P., Cronenberg, C. C. and Verstraete, W. H. (1995). Sulphate-reducing and methane-producing bacteria in aerobic wastewater treatment systems. Water Research, 29, 857–70
Lemos, R. S., Gomes, C. M., Santana, M. et al. (2001). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Letters, 496, 40–3
Lloyd, J. R., Lovley, D. R. and Macaskie, L. E. (2004). Biotechnological applications of metal-reducing microorganisms. Advances in Applied Microbiology, 53, 85–128
Lloyd, J. R., Nolting, H. F., Sole, V. A., Bosecker, K. and Macaskie, L. E. (1998a). Technetium reduction and precipitation by sulphate-reducing bacteria. Geomicrobiology Journal, 15, 45–58
Lloyd, J. R., Yong, P. and Macaskie, L. E. (1998b). Enzymatic recovery of elemental palladium by using sulphate-reducing bacteria. Applied and Environmental Microbiology, 64, 4607–9
Lloyd, J. R., Ridley, J., Khizniak, T., Lyalikova, N. N. and Macaskie, L. E. (1999a). Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Applied and Environmental Microbiology, 65, 2691–6
Lloyd, J. R., Sole, V. A., Van Praagh, C. V. and Lovley, D. R. (2000). Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology, 66, 3743–9
Lloyd, J. R., Thomas, G. H., Finlay, J. A., Cole, J. A. and Macaskie, L. E. (1999b). Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement by the use of high activity strains and effects of process parameters. Biotechnology and Bioengineering, 66, 122–30
Lovley, D. R. and Phillips, E. J. P. (1992). Reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 58, 850–6
Lovley, D. R. and Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio desulfuricans and its c3 cytochrome. Applied and Environmental Microbiology, 60, 726–8
Lovley, D. R., Roden, E. E., Phillips, E. J. P. and Woodward, J. C. (1993a). Enzymatic iron and uranium reduction by sulphate-reducing bacteria. Marine Geology, 113, 41–53
Lovley, D. R., Widman, P. K., Woodward, J. C. and Phillips E. J. P. (1993b). Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Applied and Environmental Microbiology, 59, 3572–6
Macy, J. M., Santini, J. M., Pauling, B. V., O'Neill, A. H. and Sly, L. I. (2000). Two new arsenate/sulphate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 173, 49–57
Marschall, C., Frenzel, P. and Cypionka, H. (1993). Influence of oxygen on sulphate reduction and growth of sulphate-reducing bacteria. Archives of Microbiology, 159, 168–73
Michalke, K., Wickenheiser, E. B., Mehring, M., Hirner, A. V. and Hensel, R. (2000). Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Applied and Environmental Microbiology, 66, 2791–6
McCreadie, H., Blowes, D. W., Ptacek, C. J. and Jambor, J. L. (2000). Influence of reduction reactions and solid-phase composition on porewater concentrations of arsenic. Environmental Science and Technology, 34, 3159–66
Mitchell, G. J., Jones, J. G. and Cole, J. A. (1986). Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Archives of Microbiology, 144, 35–40
Moore, J. N., Ficklin, W. H. and Johns, C. (1988). Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science and Technology, 22, 432–7
Morse, J. W. (1994). Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 46, 1–6
Morse, J. W. and Arakaki, T. (1993). Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta, 57, 3635–40
Morse, J. W., Millero, F. J., Cornwell, J. C. and Rickard, D. (1987). The chemistry of hydrogen sulfide and iron sulfide systems in natural waters. Earth Science Reviews, 24, 1–42
Naz, N., Young, H. K., Ahmed, N. and Gadd, G. M. (2005). Cadmium accumulation and homology with metal resistance genes in sulphate-reducing bacteria. Applied and Environmental Microbiology, 71, 4610–18
Nemati, M., Mazutinec, T. J., Jenneman, G. E. and Voordrouw, G. (2001). Control of biogenic H2S production with nitrite and molybdate. Journal of Industrial Microbiology and Biotechnology, 26, 350–5
Newman, D. K., Beveridge, T. J. and Morel, F. M. M. (1997). Precipitation of arsenic trisulphide by Desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63, 2022–8
Newport, P. J. and Nedwell, D. B. (1988). The mechanism of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. Journal of Applied Bacteriology, 65, 419–23
NTBC (2000). http://www.direct.ca/ntbc/srb.htm.
Oremland, R., Hollibaugh, J. T., Maest, A. S. et al. (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulphate independent respiration. Applied and Environmental Microbiology, 55, 2333–43
Oremland, R. S., Switzer-Blum, J., Culbertson, C. W. et al. (1994). Isolation, growth and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Applied and Environmental Microbiology, 60, 3011–19
Oremland, R., Switzer-Blum, J., Burns Bindi, A. et al. (1999). Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Applied and Environmental Microbiology, 65, 4385–92
Ozawa, K., Tsapin, A. I., Nealson, K. H., Cusanovich, M. A. and Akutsu, H. (2000). Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 66, 4168–71
Pignolet, L., Fonsy, K., Capot, F. and Moureau, Z. (1989). The role of various microorganisms on Tc behaviour in sediments. Health Physics, 57, 791–800
Postgate, J. R. (1952). Competitive and non-competitive inhibitors of bacterial sulphate reduction. Journal of General Microbiology, 6, 128–42
Rapp-Giles, B. J., Casalot, L., English, R. S. et al. (2000). Cytochrome c(3) mutants of Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 66, 671–7
Rittle, K. A., Drever, J. I. and Colberg, P. J. S. (1995). Precipitation of arsenic during bacterial sulphate reduction. Geomicrobiology Journal, 13, 1–12
Rowley, M. V., Warkentin, D. D. and Sicotte, V. (1997). Site demonstration of the biosulphide process at the former Britannia mine. In Proceedings of the Fourth International Conference of Acid Rock Drainage. Vancouver, BC, Canada: Canadian Institute of Mining, Metallurgy and Petroleum. pp. 1533–48.
Sadeghi, S. J., Meharenna, Y. T., Fantuzzi, A., Valetti, F. and Gilardi, G. (2000). Engineering artificial redox chains by molecular ‘Lego’. Faraday Discussions, 116, 135–53 (discussion 171–90).
Santegoeds, C., Ferdelman, G. and Muyzer, G. (1998). Structural and functional dynamics of sulphate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology, 64, 3731–9
Smith, W. L. and Gadd, G. M. (2000). Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. Journal of Applied Microbiology, 88, 983–91
Stoodley, P., Jacobsen, A., Dunsmore, B. C. et al. (2001). The influence of fluid shear and AlCl3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Science and Technology, 43, 113–20
Stumm, W. and Morgan, J. J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. New York: John Wiley and Sons Inc.
Tebo, B. M. and Obraztsova, A. Y. (1998). Sulphate-reducing bacterium grows with Cr(IV), U(VI), Mn(IV) and Fe(III) as electron acceptors. FEMS Microbiology Letters, 162, 193–8
Tomei, F. A., Barton, L. L., Lemanski, C. L. et al. (1995). Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. Journal of Industrial Microbiology and Biotechnology, 14, 329–36
Tucker, M. D., Barton, L. L. and Thompson, B. M. (1998). Reduction of Cr, Mo, Se, and U by Desulfovibrio desulfuricans immobilised in polyacrylamide gels. Journal of Industrial Microbiology and Biotechnology, 20, 13–19
Valente, F. M., Oliveira, A. S., Gnadt, N. et al. (2005). Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound NiFeSe hydrogenase. Journal of Biological Inorganic Chemistry, 10, 667–82
van Houten, R. T., Pol, L. W. H. and Lettinga, G. (1994). Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnology and Bioengineering, 44, 586–94
Vile, M. A. and Wieder, R. K. (1993). Alkalinity generation by Fe(III) reduction versus sulphate reduction in wetlands constructed for acid mine drainage treatment. Water, Air and Soil Pollution, 69, 425–41
Wang, C. L., Maratukulam, P. D. L., Clark, D. S. and Keasling, J. D. (2000). Metabolic engineering of an aerobic sulphate reduction pathway and its application to precipitation of cadmium on the cell surface. Applied and Environmental Microbiology, 66, 4497–502
Watson, J. H. P., Ellwood, D. C., Quixi, D. et al. (1995). Heavy metal adsorption on bacterially produced FeS. Minerals Engineering, 8, 1097–108
Watson, J. H. P., Croudace, I. W., Warwick, P. E. et al. (2001). Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulphate-reducing bacteria. Separation Science and Technology, 36, 2571–607
Webb, J. S., McGinness, S. and Lappin-Scott, H. M. (1998). Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. Journal of Applied Microbiology, 84, 240–8
White, C., Dennis, J. S. and Gadd, G. M. (2003). A mathematical process model for cadmium bioprecipitation by sulphate-reducing bacterial biofilms. Biodegradation, 14, 139–51
White, C. and Gadd, G. M. (1996a). Mixed sulphate-reducing cultures for the bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology, 142, 2197–205
White, C. and Gadd, G. M. (1996b). A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides. Journal of Industrial Microbiology, 17, 116–23
White, C. and Gadd, G. M. (1997). An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation. Journal of Industrial Microbiology and Biotechnology, 18, 414–21
White, C. and Gadd, G. M. (1998). Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology, 144, 1407–15
White, C. and Gadd, G. M. (2000). Copper accumulation by sulphate-reducing bacterial biofilms. FEMS Microbiology Letters, 183, 313–18
White, C., Sharman, A. K. and Gadd, G. M. (1998). An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnology, 16, 572–5
Zehr, J. P. and Oremland, R. S. (1987). Reduction of selenate to selenide by sulphate-respiring bacteria: experiments with cell suspensions and estuarine sediments. Applied and Environmental Microbiology, 53, 1365–9
Zinkevich, V., Bogdarina, I. and Kang, H. (1996). Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. International Biodeterioration and Biodegradation, 37, 163–72

Reference Title: References

Reference Type: reference-list

Abdelous, A., Gong, W. L., Lutze, W. et al. (2000). Using cytochrome c3 to make selenium wires. Chem Mat, 12, 1510–12
Assfalg, M., Bertini, I., Bruschi, M., Michel, C. and Turano, P. (2002). The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c7. Proc Natl Acad Sci USA, 99, 9750–4
Aubert, C., Lojou, E., Bianco, P. et al. (1998). The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Environ Microbiol, 64, 1308–12
Barkay, T. and Smets, B. F. (2005). Horizontal gene flow in microbial communities. ASM News, 71, 412–19
Bruschi, M., Bertrand, P., More, C. et al. (1992). Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Biochem, 31, 3281–8
Bruschi, M. (1994). Cytochrome c3 (Mr26000) isolated from sulphate-reducing bacteria and its relationships to other polyhemic cytochromes from Desulfovibrio. Meth Enzymol, 243, 140–55
Bruschi, M., Leroy, G., Guerlesquin, F. and Bonicel, J. (1994). Amino-acid sequence of the cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway and a comparison with those of the other polyhemic cytochromes from Desulfovibrio. Biochim Biophys Acta, 1205, 123–31
Barton, L. L., Plunkett, R. M. and Thomson, B. M. (2003). Reduction of metals and nonessential elements by anaerobes. In L. G. Ljungdahl, M. W. Adams, L. L. Barton, J. G. Ferry and M. K. Johnson (eds.), Biochemistry and Physiology of Anaerobic Bacteria. New York: Springer-Verlag. pp. 220–34.
Chang, Y. J., Peacock, A. D., Long, P. E. et al. (2001). Diversity and characterization of sulphate-reducing bacteria in groundwater at a uranium mill tailing site. Appl Environ Microbiol, 67, 3149–60
Chardin, B., Dolla, A., Chaspoul, F. et al. (2002). Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulphate-reducing bacteria. Appl Microbiol Biotechnol, 60, 352–60
Chardin, B., Giudici-Orticoni, M. T., De Luca, G., Guigliarelli, B. and Bruschi, M. (2003). Hydrogenases in sulphate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol, 63, 315–21
Choi, S. C., Chase, Jr., T. and Bartha, R. (1994). Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol, 60, 1342–6
Czjzek, M., Guerlesquin, F., Bruschi, M. and Haser, R. (1996). Crystal structure of a dimeric octaheme cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway. Structure, 4, 395–404
Czjzek, M., ElAntak, L., Zamboni, V. et al. (2002). The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c3. Structure, 10, 1677–86
De Luca, G., de Philip, P., Dermoun, Z., Rousset, M. and Vermeglio, A. (2001). Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol, 67, 4583–7
Fauque, G. D. (1994). Sulfur reductase form thiophilic sulphate-reducing bacteria. Meth Enzymol, 243, 353–67
Fauque, G., Herve, D. and LeGall, J. (1979). Structure–function relationship in hemoproteins: The role of cytochrome c3 in the reduction of colloidal sulfur by sulphate-reducing bacteria. Arch Microbiol, 121, 261–4
Fauque, G., Peck, H. D. Jr., Moura, J. J. G. et al. (1988). The three classes of hydrogenases from sulphate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev, 54, 299–344
Gilmore, C. C., Henry, E. A. and Mitchell, R. (1992). Sulphate stimulation of mercury methylation in fresh-water sediments. Environ Sci Technol, 26, 2281–7
Goulhen, F., Gloter, A., Guyot, F. and Bruschi, M. (2006). Desulfovibrio vulgaris strain Hildenborough: Microbe–metal interactions studies. Appl Microbiol Biotechnol, 71, 892–7
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol, 22, 554–9
Hobman, J. L., Wilson, J. R. and Brown, N. L. (2000). Microbial mercury reduction. In D. R. Lovley (ed.), Environmental metal–microbe interactions. Washington, DC: ASM Press. pp. 177–98.
Humphries, A. C. and Macaskie, L. E. (2002). Reduction of Cr(VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnol Lett, 24, 1261–7
Ishimoto, M., Kondo, Y., Kameyama, T., Yagi, T. and Shirak, M. (1958). The role of cytochrome in the enzyme system of sulphate-reducing bacteria. In Science Council of Japan (ed.), Proceedings of the International Symposium on Enzyme Chemistry. Tokyo and Kyoto: Marüzen. pp. 229–34.
Kesen, M. A., Schicho, R. N., Kelly, R. M. and Adams, M. W. W. (1993). Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfurylase: Evidence for a sulfur-reducing hydrogenase ancestor. Proc Nat Acad Sci USA, 90, 5341–4
King, J. K., Kosta, J. E., Frischer, M. E. and Saunders, F. M. (2000). Sulphate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol, 66, 2430–7
Kirk, M. F., Holm, T. R., Park, J. et al. (2004). Bacterial sulphate reduction limits natural arsenic contamination in groundwater. Geol, 32, 953–6
Klenk, H. P., Clayton, R. A., Tomb, J. F. et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70
Korthals, E. T. and Winfrey, M. R. (1987). Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake. Appl Environ Microbiol, 53, 2397–404
Lloyd, J. R., Mabbett, A. N., Williams, D. R. and Macaskie, L. E. (2001). Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy, 59, 327–37
Lloyd, J. R. and Macaskie, L. E. (2000). Bioremediation of radionuclide-containing wastewaters. In D. R. Lovley (ed.), Environmental metal–microbe interactions. Washington, DC: ASM Press. pp. 277–329.
Lloyd, J. R., Ridley, J., Khizniak, T., Lyalikova, N. N. and Macaskie, L. E. (1999). Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol, 65, 2691–6
Lloyd, J. R., Yong, P. and Macaskie, L. E. (1998). Enzymatic recovery of elemental palladium by using sulphate-reducing bacteria. Appl Environ Microbiol 64, 4607–9
Lojou, E., Bianco, P. and Bruschi, M. (1998a). Kinetic studies on the electron transfer between bacterial c-type cyrochromes and metal oxides. J Electroanal Chem, 452, 167–77
Lojou, E., Bianco, P. and Bruschi, M. (1998b). Kinetic studies on the electron transfer between various c-type cytochromes and iron (III) using a voltametric approach. Electrochim Acta, 43, 2005–13
Lojou, E. and Bianco, P. (1999). Electrocatalytic reduction of uranium by bacterial cytochromes: biochemical factors influencing the catalytic process. J Electroanal Chem, 471, 96–104
Lovley, D. R., Giovannoni, S. J., White, D. C. et al. (1993a). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 159, 336–44
Lovley, D. R. and Phillips, E. J. P. (1992). Reduction of uranium by Desulfovibrio desulfuricans. Appl Microbiol Microbiol, 58, 850–6
Lovley, D. R. and Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol, 60, 726–8
Lovley, D. R., Widman, P. K., Woodward, J. C. and Phillips, E. J. (1993b). Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol, 59, 3572–6
Mabbett, A. N., Lloyd, J. R. and Macaskie, L. E. (2002). Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioengineering, 79, 389–397
Macalady, J. L., Mack, E. E., Nelson, D. C. and Scow, K. M. (2000). Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Appl Environ Microbiol, 66, 1479–88
Macy, J. M., Santini, J. M., Pauling, B. V., O'Neill, A. H. and Sly, L. I. (2000). Two new arsenate/sulphate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol, 173, 49–57
Marvin-DiPasquale, M., Agee, J., McGowan, C. et al. (2000). Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol, 34, 4908–16
Marvin-DiPasquale, M. and Agee, M. (2003). Microbial mercury cycling in sediments of the San Francisco bay-delta. Estuaries, 26, 1517–28
Michel, C., Brugna, M., Aubert, C., Bernadac, A. and Bruschi, M. (2001). Enzymatic reduction of chromate: comparative studies using sulphate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol, 55, 95–100
Newman, D. K., Kennedy, E. K., Coates, J. D. et al. (1997). Dissimilatory arsenate and sulphate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol, 168, 380–8
Nies, D. H. (1999). Microbial heavy-metal resistance. Appl Microbiol Biotechnol, 51, 730–50
Nies, D. H., Koch, S., Shinichiro, W., Peitzch, N. and Saier, M. H. (1998). CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulphate antiporters. J Bacteriol, 180, 5799–802
Oremland, R. S. and Stolz, J. (2000). Dissimilatory reduction of selenate and arsenate in nature. In D. R. Lovley (ed.), Environmental Metal–Microbe Interactions. Washington, DC: ASM Press. pp. 199–224.
Oremland, R. S. and Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–44
Osborn, A. M., Bruce, K. D., Strike, P. and Ritchie, D. A. (1997). Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev, 19, 239–62
Pak, K.-R. and Bartha, R. (1998a). Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microbiol, 64, 1013–17
Pak, K.-R. and Bartha, R. (1998b). Products of mercury demethylation of sulfidogens and methanogens. Bull Environ Con Toxicol 61, 690–4
Pak, K.-R. and Bartha, R. (1998c). Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methogens. Appl Environ Microbiol, 64, 1987–90
Payne, R. B., Casalot, L., Rivere, T. et al. (2004). Interaction between uranium and the cytochrome c3 of Desulfovibrio desulfuricans G20. Arch Microbiol, 181, 398–406
Payne, R. B., Gentry, D. M., Rapp-Giles, B. J., Casalot, L. and Wall, J. D. (2002). Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol, 68, 3129–32
Rabus, R., Ruepp, A., Frickey, T. et al. (2004).The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902
Saltikov, C. W. and Newman, D. K. (2003). Genetic identification of a respiratory arsenate reductase. Proc Nat Acad Sci USA, 100, 10983–8
Sani, R. K., Peyton, B. M. Smith, W. A., Apel, W. A. and Petersen, J. N. (2002). Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl Microbiol Biotechnol, 60, 192–9
Silver, S. and Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol, 71, 599–608
Susuki, Y., Kelly, S. D., Kemner, K. M. and Banfield, J. F. (2004). Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim Acta, 92, 11–16
Tomei, F. A., Barton, L. L., Lemanski, C. L. et al. (1995). Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Indust Microbiol, 14, 329–36
Tucker, M. D., Barton, L. L. and Thomson, B. M. (1998). Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Industr Microbiol Biotechnol, 20, 13–19
Turner, R. J., Weiner, J. H. and Taylor, D. E. (1998). Selenium metabolism in Escherichia coli. BioMetals, 11, 223–7
Vignais, P. M., Billoud, B. and Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Microbiol Rev, 25, 455–501
Wang, Y.-T. (2000). Microbial reduction of chromate. In D. R. Lovley (ed.), Environmental Metal–Microbe Interactions. Washington, DC: ASM Press. pp. 225–6.
Warner, K. A., Roden, E. E. and Bonzongo, J. C. (2003). Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol, 37, 2159–65
Yanke, L. J., Bryant, R. D. and Laishley, E. J. (1995). Hydrogenase I of Clostridium pasteuranium functions as a novel selenite reductase. Anaerobe, 1, 61–7

Reference Title: References

Reference Type: reference-list

Allison, D. G. (1998). Exopolysaccharide production in bacterial biofilms. Biofilm J. 3, paper 2 (BF98002), Online Journals http://www.bdt.org.br/bioline/bf
Barton, L. L. (1985). Sulphate-reducing bacteria. New York: Plenum Press.
Beech, I. B. (1990). Biofilm formation on metal surfaces. PhD thesis, City of London Polytechnic, Council for National Academic Awards, UK.
Beech, I. B., Cheung, C. W. S., Johnson, D. B. and Smith, J. R. (1996). Comparative studies of bacterial biofilms on steel surfaces using techniques of atomic microscopy and environmental scanning electron microscopy. Biofouling, 10, 65–77
Beech, I. B., Zinkevich, V., Tapper, R. and Gubner, R. (1998). The direct involvement of extracellular compounds from a marine sulphate-reducing bacterium in deterioration of steel. Geomicrobiol. J., 15, 119–132
Beech, I. B., Zinkevich, V., Tapper, R. and Avci, R. (1999). Study of the interaction of exopolymers produced by sulphate-reducing bacteria with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry. J. Microbiol. Meth., 36, 3–10
Beech, I. B., Campbell, S. A. and Walsh, F. C. (2001a). Marine microbial corrosion. In J. G. Stoecker II (ed.), A Practical Manual on Microbially-Influenced Corrosion volume II, Houston, Texas: NACE. pp. 11.3–11.14.
Beech, I. B., Paiva, M., Caus, M. and Coutinho, C. (2001b). Enzymatic activity and within biofilms of sulphate-reducing bacteria. In P. G. Gilbert, D. Allison, M. Brading, J. Verran and J. Walker (eds.), Biofilm Community Interactions: chance or necessity? BioLine, Cardiff, UK, pp. 231–9.
Beech, I. B. (2002). Biocorrosion: role of sulphate-reducing bacteria. In G. Bitton (ed.), Encyclopaedia of Environmental Microbiology. John Wiley, New York, pp. 465–75.
Beech, I. B. and Coutinho, C. L. M. (2003). Biofilms on corroding materials. In P. Lens, A. P. Moran, T. Mahony, P. Stoodly and V. O'Flaherty (eds.), Biofilms in medicine, industry and environmental biotechnology – characteristics, analysis and control. London: IWA Publishing. pp. 115–31.
Beech, I. B. and Sunner, J. A. (2004). Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinions in Biotechnology, 15, 181–6
Beech, I. B., Sunner, J. A. and Hiraoka, K. (2005). Microbe–surface interactions in biofouling and biocorrosion processes. International Microbiology, 8, 157–68
Booth, G. H., Elford, L. and Wakerley, D. S. (1968). Corrosion of mild steel by sulphate-reducing bacteria, an alternative mechanism. Br. Corros. J., 3, 242–5
Breakell, J. E., Siegwart, M., Foster, K. et al. (2005). Management of accelerated low water corrosion in steel maritime structures. CIRIA, London, UK: Alden Press.
Bryant, R. D., Kloeke, F. V. O. and Laishley, E. J. (1993). Regulation of the periplasmic Fe hydrogenase by ferrous iron in Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol., 59, 491–5
Bryant, R. and Laishley, E. (1993). The effect of inorganic phosphate and hydrogenase on the corrosion of mild steel. Appl. Microbiol. Biotechnol., 38, 824–7
Chan, C. S., de Stasio, G., Welch, S. A. et al. (2003). Microbial polysaccharides template assembly of nanocrystal fibers. Science, 303, 1656–8
Characklis, W. G. and Marshall, K. C. (1990). Biofilms. John Wiley & Sons, Inc, New York.
Cheung, C. W. S. (1995). Biofilms of marine sulphate-reducing bacteria on mild steel. Unpublished PhD thesis, University of Portsmouth, UK.
Costerton, J. W., Lappin-Scott, H. M. and Cheng, K.-J. (1992). Glycocalyx bacterial. In J. Lederberg (ed.), Encyclopedia of Microbiology, vol. 2. San Diego: Academic Press. pp. 311–17.
Crolet, J.-L. (1993). Mechanism of uniform corrosion under corrosion deposits. J. Mat. Sci., 28, 2589–606
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol., 54, 827–48
Dar, S. A., Kuenen, J. G. and Muyzer, G. (2005). Nested PCR denaturing gradient gel electrophoresis approach to determine the diversity of sulphate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol., 71, 2325–30
Da Silva, S., Basséguy, R. and Bergel, A. (2004). Electron transfer between hydrogenase and 316L stainless steel: identification of hydrogenase-catalyzed cathodic reaction in anaerobic MIC. Journal of Electroanal. Chem., 561, 93–102
Dignac, M.-F., Urbain, V., Rybacki, D. et al. (1998). Chemical description of extracellular polymers: implication on activated sludge structure. Water Sci. Technol., 38, 45–53
Dinh, H. T., Kuever, J., Mußmann, M. et al. (2004). Iron corrosion by novel anaerobic microorganisms. Nature, 427, 829–32
Ford, T., Black, J. P. and Mitchell, R. (1990). Relationship between bacterial exopolymers and corroding metal surfaces. In Proceedings of the NACE Corrosion '90, Paper No. 110. Houston, TX: NACE.
Fournier, M., Dermoun, Z., Durand, M.-C. and Dolla, A. (2004). A new function of the Desulfovibrio vulgaris Hildenborough Fe hydrogenase in the protection against oxidative stress. J. Biol. Chem., 279, 1787–93
Fournier, M., Aubert, C., Dermoun, Z. et al. (2006). Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie, 88, 85–94
Garrett, J. H. (1891). The Action of Water on Lead. London: H. K. Lewis. pp. 23–9.
Geesey, G. G., Beech, I. B., Bremmer, P. J., Webster, B. J. and Wells, D. (2000). Biocorrosion. In J. Bryers (ed.), Biofilms II: Process Analysis and Applications. Wiley-Liss Inc, New York, pp. 281–326.
Geesey, G. G., Jang, L., Jolley, J. G. et al. (1988). Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci. Technol., 20, 161–5
Gubner, R. and Beech, I. B. (1999). Statistical assessment of the risk of biocorrosion in tidal waters. Corrosion 99, Paper 184. Houston, TX: NACE.
Hamilton, W. A. (1998). Sulphate-reducing bacteria: physiology determines their environmental impact. Geomicrobiol. J., 15, 19–28
Hamilton, W. A. (2000). Microbially induced corrosion in the context of metal microbe interactions. In L. V. Evans (ed.), Biofilms: recent advances in their study and control. Singapore: Harwood Academic Publishers. pp. 419–34.
Hamilton, W. A. (2003). Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 19, 65–76
Harrison, J. J., Turner, R. and Ceri, H. (2005). Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology, 7, 981–94
Heidelberg, J. F., Seshadri, R., Haveman, S. A. et al. (2004). The genome sequence of the anaerobic sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 20, 554–9
Iverson, W. P. (1998). Possible source of a phosphorus compound produced by sulphate reducing bacteria that cause anaerobic corrosion of iron. Mat. Perform., 37, 46–9
Iverson W. P. and Olson, G. J. (1983). Anaerobic corrosion by sulphate-reducing bacteria due to highly reactive volatile phosphorus compound. In Microbial Corrosion, Metals Society, London, 46–53.
Jan-Roblero, J., Romero, J. M. and Amaya, M. (2004). Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Appl. Microbiol. Biotechnol., 64, 862–7
King, R. A. and Miller, J. D. A. (1971). Corrosion by sulphate-reducing bacteria. Nature, 233, 491–3
Kloeke F. V., Bryant R. D. and Laishley, E. J. (1995). Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe, 1, 351–8
Lai, M. E. and Bergel, A. (2000). Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase. J. Electroanal. Chem., 494, 30–40
Lee, J. S., Ray, R. I., Lemieux, E. J., Falster, A. U. and Little, B. J. (2004). An evaluation of carbon steel corrosion under stagnant seawater conditions. Biofouling, 20, 237–47
Lee, J. S., Ray, R. I., Little, B. J. and Lemieux, E. J. (2005). Evaluation of deoxygenation as a corrosion control measure for ballast tanks. Corrosion, 61, 1173–88
Lee, W.-C. and deBeer, D. (1995). Oxygen and pH microprofiles above corroding mild steel covered with a biofilm. Biofouling, 8, 273–80
Lewandowski, Z., Dickinson, W. H. and Lee, W. C. (1997). Electrochemical interactions of biofilms with metal surfaces. Water Science and Technology, 36, 295–302
Lee, W.-C., Lewandowski, Z., Morrison, M., Characklis, W. G., Avci, R. and Nielsen, P. H. (1993b). Corrosion of mild steel underneath aerobic biofilms containing sulphate-reducing bacteria – Part II. At high dissolved oxygen concentrations. Biofouling, 7, 217–39
Lee, W.-C., Lewandowski, W. Z., Nielsen, P. H. and Hamilton, W. A. (1995). Role of sulphate-reducing bacteria in corrosion of mild steel: a review. Biofouling, 8, 165–94
Lee, W.-C., Lewandowski, Z., Okabe, S., Characklis, W. G. and Avci, R. (1993a). Corrosion of mild steel underneath aerobic biofilms containing sulphate-reducing bacteria – Part I. At low dissolved oxygen concentrations. Biofouling, 7, 197–216
Little, B. and Ray, R. (2002). A perspective on corrosion inhibition by biofilms. Corrosion, 58, 424–8
Little, B. and Wagner, P. (1997). Myths related to microbiologically influenced corrosion. Mater. Performance, 36, 40–4
Lovley, D. R. and Philips, E. J. P. (1994). Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol, 60, 2394–9
Nielsen, P. H., Lee, W.-C., Lewandowski, Z., Morrison, M. and Characklis, W. G. (1993). Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling, 7, 267–284
Nonaka, H., Keresztes, G., Shinoda, Y. et al. (2006). Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. Journal of Bacteriology, 188, 2262–74
Ochynski, F. W. and Postgate, J. R. (1963). Some biological differences between fresh water and salt water strains of sulphate-reducing bacteria. In C. H. Oppenheimer and C. C. Thomas (eds.), Marine Microbiology, Springfield, III. pp. 426–41.
Odom, J. M. and Singleton, R. (1993). The sulphate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag.
Omoike, A., Chorover, J., Kwon, K. D. and Kubicki, J. D. (2004). Adhesion of bacterial exopolymers to α-FeOOH. Inner-sphere complexation of phosphodiester groups. Langmuir, 20, 11108–14
Pires, R. H., Venceslau, S. S., Morais, F. et al. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP Complex. A membrane-bound redox complex involved in the sulphate respiratory pathway. Biochemistry, 45, 249–62
Pitonzo, B. J., Castro P., Amy, P. S. et al. (2004). Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain. Corrosion, 60, 64–74
Postgate, J. R. (1984). The Sulphate Reducing Bacteria, 2nd edn. Cambridge, UK: Cambridge University Press.
Rabus, R., Ruepp, A., Frickey, T. et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol., 6, 887–902
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci. USA, 91, 10173–7
Scully, J. C. (1990). Fundamentals of Corrosion, 3rd edn. Oxford, UK: Pergamon Press.
Sutherland, I. W. (2001). The biofilm matrix – an immobilized but dynamic microbial environment. Trend. Microbiol., 9, 222–7
Valencia-Cantero, E., Pena-Cabriales, J. J. and Martinez-Romero, E. (2003). The corrosion effect of sulphate and ferric iron reducing bacterial consortia on steel. Geomicrobiology Journal, 20, 157–69
Videla, H. A. (1996). Manual of Biocorrosion. Boca Raton, FL: Lewis Publishers, CRC Press, Inc.
von Wolzogen Kuhr, C. A. H. and van der Vlugt, L. S. (1934). De grafiteering van Gietijzer als electrobiochemisch Proces in anaerobe Grunden. (Graphitization of cast iron as an electrochemical process in anaerobic soils.) Water, 18, 147–51
Widdel, F. (1988). Microbiology and ecology of sulphate and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. New York: Wiley-Liss, John Wiley and Sons, Inc. pp. 469–586.