1 - Epidemiological and clinical aspects of human typhoid fever  pp. 1-24

Epidemiological and clinical aspects of human typhoid fever

By Christopher M. Parry

Image View Previous Chapter Next Chapter



INTRODUCTION

Typhoid fever is an acute systemic infection caused by the bacterium Salmonella enterica serovar Typhi. Salmonella enterica serovars Paratyphi A, B, and C cause the clinically similar condition, paratyphoid fever. Typhoid and paratyphoid fevers are collectively referred to as enteric fevers. In most endemic areas, approximately 90% of enteric fever is typhoid. Typhoid is transmitted by the fecal-oral route via contaminated food and water and is therefore common where sanitary conditions are inadequate and access to clean water is limited. Although typhoid fever was common in the United States and Europe in the 19th century, it is now encountered mostly throughout the developing world. In the last fifteen years, the emergence of resistance to the antibiotics used for treatment has led to large epidemics, and complicated the management of this serious disease.

Before the 19th century, typhoid fever was commonly confused with other prolonged febrile syndromes, particularly typhus fever. Following the observations of Huxham, Louis, Bretonneau, Gerhard and William Jenner, by the middle of the 19th century the two conditions were clearly differentiated (Richens, 1996). In 1873, William Budd described the contagious nature of the disease and incriminated fecally contaminated water sources in transmission. The causative organism was visualized in tissue sections from Peyer's patches and spleens of infected patients by Eberth in 1880 and was grown in pure culture by Gaffky in 1884. The organism has been variously known as Bacillus typhosus, Erbethella typhosa, Salmonella typhosa and Salmonella typhi.

1

Reference Title: References

Reference Type: reference-list

Acharya, I. L., Lowe, C. U., Thapa, R. et al. (1987). Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi. A preliminary report. N Engl J Med, 317, 1101–4.
Ackers, M. L., Puhr, N. D., Tauxe, R. V. and Mintz, E. D. (2000). Laboratory-based surveillance of Salmonella serotype Typhi infections in the United States: antimicrobial resistance on the rise. JAMA, 283, 2668–73.
Ashcroft, M. T. (1964). Typhoid and Paratyphoid fever in the tropics. J Trop Med Hyg, 67, 185–9.
Bethell, D. B., Hien, T. T., Phi, L. T. et al. (1996). Effects on growth of single short courses of fluoroquinolones. Arch Dis Child, 74, 44–6.
Bhan, M. K., Bahl, R., Sazawal, S. et al. (2002). Association between Helicobacter pylori infection and increased risk of typhoid fever. J Infect Dis, 186, 1857–60.
Bhutta, Z. A. (1996a). Impact of age and drug resistance on mortality in typhoid fever. Arch Dis Child, 75, 214–17.
Bhutta, Z. A (1996b). Therapeutic aspects of typhoidal salmonellosis in childhood: the Karachi experience. Ann Trop Paed, 16, 299–306.
Bhutta, Z. A. and Mansurali, N. (1999). Rapid serological diagnosis of pediatric typhoid fever in an endemic area: a prospective comparative evaluation of two dot-enzyme immunoassays and the Widal test. Am J Trop Med Hyg, 61, 654–7.
Black, R. E., Cisneros, L., Levine, M. M. et al. (1985). Case-control study to identify risk factors for paediatric endemic typhoid fever in Santiago, Chile. Bull WHO, 43, 899–904.
Bodhidatta, L., Taylor, D. N., Thisyakorn, U. and Echeverria, P. (1987). Control of typhoid fever in Bangkok, Thailand, by annual immunisation of schoolchildren with parenteral typhoid vaccine. Rev Infect Dis, 9, 841–5.
Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R. and Swaminathan, B. (2000). Salmonella nomenclature. J Clin Microbiol, 38, 2465–7.
Brown, J. C., Shanahan, P. M., Jesudason, M. V., Thomson, C. J. and Aymes, S. G. (1996). Mutations responsible for reduced susceptibility to 4-quinolones in clinical isolates of multi-resistant Salmonella typhi in India. J Antimicrob Chemother, 37, 891–900.
Butler, T., Bell, W. R., Levin, J., Linh, N. N. and Arnold, K. (1978). Typhoid Fever. Studies of blood coagulation, bacteremia and endotoxaemia. Arch Intern Med, 138, 407–10.
Butler, T., Islam, A., Kabir, I. and Jones, P. K. (1991). Patterns of morbidity and mortality in typhoid fever dependent on age and gender: a review of 552 hospitalised patients with diarrhoea. Rev Infect Dis, 13, 85–90.
Butler, T., Knight, J., Nath, S. K. et al. (1985). Typhoid fever complicated by intestinal perforation: a persisting fatal disease requiring surgical management. Rev Infect Dis, 7, 244–56.
Caygill, C. P. J., Hill, M. J., Braddick, M. and Sharp, J. C. M. (1994). Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet, 343, 83–4.
Chaudhry, R., Laxmi, B. V., Nisar, N., Ray, K. and Kumar, D. (1997). Standardisation of polymerase chain reaction for the detection of Salmonella typhi in typhoid fever. J Clin Pathol, 50, 437–9.
Chinh, N. T., Parry, C. M., Ly, N. T. et al. (2000). A randomised controlled comparison of azithromycin and ofloxacin for multidrug-resistant and nalidixic acid resistant enteric fever. Antimicrob Agents Chemother, 44, 1855–9.
Clegg, A., Passey, M., Omena, M., Karigifa, K. K. and Suve, N. (1994). Re-evaluation of the Widal agglutination test in response to the changing pattern of typhoid fever in the highlands of Papua New Guinea. Acta Tropica, 57, 255–63.
Crump, J. A., Barrett, T. J., Nelson, J. T. and Angulo, F. J. (2003a). Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis, 37, 75–81.
Crump, J. A., Youssef, F. G., Luby, S. P. et al. (2003b). Estimating the incidence of Typhoid Fever and other febrile illnesses in developing countries. Emerg Infect Dis, 9, 539–44.
Crump, J. A., Luby, S. P. and Mintz, E. D. (2004). The global burden of typhoid fever. Bull World Health Org, 82, 346–53.
Doherty, C. P., Saha, S. K. and Cutting, W. M. (2000). Typhoid fever, ciprofloxacin and growth in young children. Ann Trop Paed, 20, 297–303.
Duggan, M. B. and Beyer, L. (1975). Enteric fever in young Yoruba children. Arch Dis Child, 50, 67–71.
Dutta, P., Mitra, U., Dutta, S., De, A., Chatterjee, M. K. and Bhattacharya, S. K. (2001). Ceftriaxone therapy in ciprofloxacin treatment failure in children. Indian J Med Res, 113, 210–13.
Dutta, P., Rasaily, R., Saha, M. R. et al. (1993). Ciprofloxacin for treatment of severe typhoid fever in children. Antimicrob Agents Chemother, 37, 1197–9.
Engels, E. A., Falagas, M. E., Lau, J. and Bennish, M. L. (1998). Typhoid fever vaccines: a meta-analysis of studies on efficacy and toxicity. Br Med J, 316, 110–16.
Everest, P., Wain, J., Roberts, M., Rook, G. and Dougan, G. (2001). The molecular mechanisms of severe typhoid fever. Trends Microbiol, 9, 316–20.
Ferreccio, C., Levine, M. M., Manterola, A. et al. (1984). Benign bacteraemia caused by Salmonella typhi and paratyphi in children younger than two years. J Pediatr, 104, 899–901.
Ferreccio, C., Morris, J. G., Valdiviseo, C. et al. (1988). Efficacy of ciprofloxacin in the treatment of chronic typhoid carriers. J Infect Dis, 157, 1235–9.
Garmory, H. S., Brown, K. A. and Titball, R. W. (2002). Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol Rev, 26, 339–53.
Gasem, M. H., Dolmans, W. M. V., Keuter, M. and Djokomoeljanto, R. (2001). Poor food hygiene and housing as risk factors for typhoid fever in Semarang, Indonesia. Trop Med Int Hlth, 6, 484–90.
Gilman, R. H., Terminel, M., Levine, M. M., Hernandez-Mendoze, P. and Hornick, R. B. (1975). Relative efficacy of blood, urine, rectal swab, bone marrow and rose spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet, 1, 1211–13.
Gotuzzo, E., Guerra, J. G., Benavente, L. et al. (1988). Use of norfloxacin to treat chronic typhoid carriers. J Infect Dis, 157, 1221–5.
Hatta, M., Mubin, H., Abdoel, T. and Smits, H. L. (2002). Antibody response in typhoid fever in endemic Indonesia and the relevance of serology and culture to diagnosis. Southeast Asian J Trop Med Hyg, 33, 742–51.
Hien, T. T., Bethell, D. B., Hoa, N. T. T. et al. (1995). Short course of ofloxacin for treatment of multidrug-resistant typhoid. Clin Infect Dis, 20, 917–23.
Hoffman, S. L., Edman, D. C., Punjabi, N. H. et al. (1986). Bone marrow aspirate culture superior to streptokinase clot culture and 8 ml 1:10 blood-to-broth ratio blood culture for diagnosis of typhoid fever. Am J Trop Med Hyg, 35, 836–9.
Hoffman, S. L., Punjabi, N. H., Kumala, S. et al. (1984a). Reduction of mortality in chloramphenicol-treated severe typhoid fever by high dose dexamethasone. N Engl J Med, 310, 82–8.
Hoffman, S. L., Punjabi, N. H., Rockhill, R. C. et al. (1984b). Duodenal string-capsule culture compared with bone-marrow, blood, and rectal-swab cultures for diagnosing typhoid and paratyphoid fever. J Infect Dis, 149, 157–61.
Hornick, R. B., Greisman, S. E., Woodward, T. E. et al. (1970). Typhoid fever: pathogenesis and immunological control. N Engl J Med, 283, 686–91 and 739–46.
House, D., Bishop, A., Parry, C. M., Dougan, G. and Wain, J. (2001a). Typhoid fever: pathogenesis and disease. Curr Opinions in Infect Dis, 14, 573–8.
House, D., Wain, J., Ho, V. A. et al. (2001b). The serology of typhoid fever in an endemic area and its relevance to diagnosis. J Clin Microbiol, 39, 1002–7
Huckstep, R. L. (1962). Typhoid fever and other “Salmonella” infections. Edinburgh and London: Livingstone.
Kariuki, S., Gilks, C., Revathi, G., Hart, C. A. (2000). Genotypic analysis of multidrug-resistant Salmonella enterica serovar Typhi, Kenya. Emerg Infect Dis, 6, 649–51.
Klugman, K. P., Gilbertson, I. T., Koornhof, H. J. et al. (1987). Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet, 2, 1165–9.
Klugman, K. P., Koornhof, H. J., Robbins, J. B. and Cam, N. N. L. (1996). Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine, 14, 435–8.
Koul, P. A., Wani, J. I. and Wahid, A. (1995). Ciprofloxacin for multiresistant enteric fever in pregnancy. Lancet, 346, 307–8.
Lanata, C. F., Levine, M. M., Ristori, C., Black, R. E., Jiminez, L., Salcedo, M., Garcia, J. and Sotomayor, V. (1983) Vi serology in detection of chronic Salmonella typhi carriers in an endemic area. Lancet, 2, 441–3.
Lanh, M. N., Bay, P. V., Ho, V. A. et al. (2003). Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. N Engl J Med, 349, 1390–1.
Levine, M. M., Ferreccio, C., Black, R. E. and Germanier, R. (1987). Large-scale field trial of Ty21a live oral typhoid vaccine in enteric-coated capsule formulation. Lancet, 1, 1049–52.
Levine, M. M., Ferrecio, C., Cryz, S. and Ortiz, E. (1990). Comparison of enteric-coated capsules and liquid formulation of Ty21a typhoid vaccine in randomized controlled field trial. Lancet, 336, 891–4.
Levine, M. M., Grados, O., Gilman, R. H. et al. (1978). Diagnostic value of the Widal test in areas endemic for typhoid fever. Am J Trop Med Hyg, 27, 795–800.
Lin, F. Y. C., Ho, V. A., Bay, P. V. et al. (2000). The epidemiology of typhoid fever in the Dong Thap province, Mekong Delta region of Vietnam. Am J Trop Med Hyg, 62, 644–8.
Lin, F. Y. C., Ho, V. A., Khiem, H. B. et al. (2001). The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med, 344, 1263–9.
Luby, S. P., Faizan, M. K., Fisher-Hoch, S. P. et al. (1998). Risk factors for typhoid fever in an endemic setting, Karachi, Pakistan. Epidemiol Infect, 120, 129–38.
Luxemburger, C., Duc, C. N., Lanh, M. N. et al. (2001). Risk factors for Typhoid fever in the Mekong Delta, southern Vietnam: a case-control study. Trans R Soc Trop Med Hyg, 95, 19–23.
Mahle, W. T. and Levine, M. M. (1993). Salmonella typhi infection in children younger than five years of age. Pediatr Infect Dis J, 12, 627–31.
Marmion, D. E., Naylor, G. R. E. and Stewart, I. O. (1953). Second attacks of typhoid fever. J Hyg (Camb), 51, 260–7.
Mehta, G., Randhawa, V. S. and Mohapatra, N. P. (2001). Intermediate susceptibility to ciprofloxacin in Salmonella typhi strains in India. Eur J Clin Microbiol Infect Dis, 20, 760–1.
Mermin, J. H., Villar, R., Carpenter, J. et al. (1999). A massive epidemic of multidrug-resistant typhoid fever in Tajikistan associated with consumption of municipal water. J Infect Dis, 179, 1416–22.
Morris, J. G., Ferreccio, C., Garcia, J. et al. (1984). Typhoid fever in Santiago, Chile: a study of household contacts of pediatric patients. Am J Trop Med Hyg, 33, 1198–202.
Parry, C. M. (2004). The treatment of multidrug resistant and nalidixic acid resistant typhoid fever in Vietnam. Trans Roy Soc Trop Med Hyg, 98, 413–22.
Parry, C. M, Hien, T. T., Dougan, G., White, N. J. and Farrar, J. J. (2002). Typhoid Fever. N Engl J Med, 347, 1770–82.
Parry, C. M., Hoa, N. T., Diep, T. S. et al. (1999). Value of a single-tube Widal test in diagnosis of typhoid fever in Vietnam. J Clin Microbiol, 37, 2882–6.
Punjabi, N. H., Hoffman, S. L., Edman, D. C. et al. (1988). Treatment of severe typhoid fever in children with high dose dexamethasone. Pediatr Infect Dis J, 7, 598–600.
Reed, R. P. and Klugman, K. P. (1994). Neonatal typhoid fever. Pediatr Infect Dis J, 13, 774–7.
Richens, J. (1996). Typhoid. In The Wellcome Trust Illustrated History of Tropical Diseases, ed. F. E. G. Cox. London: Wellcome Trust.
Rodrigues, C., Shenai, S. and Mehta, A. (2003). Enteric fever in Mumbai, India: the good news and the bad news. Clin Infect Dis, 36, 535.
Rogerson, S. J., Spooner, V. J., Smith, T. A. and Richens, J. (1991). Hydrocortisone in chloramphenicol-treated severe typhoid fever in Papua New Guinea. Trans Roy Soc Trop Med Hyg, 85, 113–16.
Rowe, B., Ward, L. R. and Threlfall, E. J. (1997). Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis, 24(suppl. 1), S106–9.
Rupali, P., Abraham, O. C., Jesudason, M. V. et al. (2004). Treatment failure in typhoid fever with ciprofloxacin susceptible Salmonella enterica serotype Typhi. Diagn Microbiol Infect Dis, 49, 1–3.
Saha, S. K., Talukder, S. Y., Islam, M. and Saha, S. (1999). A highly ceftriaxone-resistant Salmonella typhi in Bangladesh. Pediatr Infect Dis J, 18, 387.
Seoud, M., Saade, G., Uwaydah, M. and Azoury, R. (1988). Typhoid fever in pregnancy. Obstet Gynecol, 71, 711–14.
Simanjuntak, C. H., Paleologo, F. P., Punjabi, N. H. et al. (1991). Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. Lancet, 338, 1055–9.
Sinha, A., Sazawal, S., Kumar, R. et al. (1999). Typhoid fever in children aged less than five years. Lancet, 354, 734–7.
Stephens, I. and Levine, M. M. (2002). Management of typhoid fever in children. Pediatr Infect Dis J, 21, 157–9.
Stuart, B. M. and Pullen, R. L. (1946). Typhoid. Clinical analysis of three hundred and sixty cases. Arch Intern Med, 78, 629–61.
Tarr, P. E., Kuppens, L., Jones, T. C. et al. (1999). Considerations regarding mass vaccination against typhoid fever as an adjunct to sanitation and public health measures: potential use in an epidemic in Tajikistan. Am J Trop Med Hyg, 61, 163–70.
Taylor, D. N., Levine, M. M., Kuppens, L. and Ivanoff, B. (1999). Why are typhoid vaccines not recommended for epidemic typhoid fever? J Infect Dis, 180, 2089–90.
Thong, K. L., Cheong, Y. M., Puthucheary, S., Koh, C. L. and Pang, T. (1994). Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field electrophoresis. J Clin Microbiol, 32, 1135–41.
Threlfall, E. J., Skinner, J. A., Ward, L. R. (2001). Detection of decreased in vitro susceptibility to ciprofloxacin in Salmonella enterica serotypes Typhi and Paratyphi A. J Antimicrob Chemother, 48, 740–1.
Topley, J. M. (1986). Mild typhoid fever. Arch Dis Child, 61, 164–7.
Velema, J. P., van Wijnen, G., Bult, P., van Naerssen, T. and Jota, S. (1997). Typhoid fever in Ujung Pandang, Indonesia – high-risk groups and high-risk behaviours. Trop Med Int Health, 2, 1088–94.
Wahdan, M. H., Sérié, C., Cerisier, Y., Sallam, S. and Germanier, R. (1982). A controlled field trial of live Salmonella typhi strain Ty21a oral vaccine against typhoid: three-year results. J Infect Dis, 145, 292–5.
Wain, J., Bay, P. V. B., Vinh, H. et al. (2001). Quantitation of bacteria in bone marrow from patients with Typhoid Fever: relationship between counts and clinical features. J Clin Microbiol, 39, 1571–6.
Wain, J., Diep, T. S., Ho, V. A. et al. (1998). Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol, 36, 1683–7.
Wain, J., Hoa, N. T., Chinh, N. T. T. et al. (1997). Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis, 25, 1404–10.
Wasfy, M. O., Frenck, R., Ismail, T. F. et al. (2002). Trends of multiple-drug resistance among Salmonella serotype Typhi isolates during a 14-year period in Egypt. Clin Infect Dis, 35, 1265–8.
Woodward, T. E., Smadel, J. E., Ley, H. L., Green, R. and Mankikar, D. S. (1948). Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever. Ann Intern Med, 29, 131–4.
World Health Organization background document. The diagnosis, treatment and prevention of typhoid fever. WHO/V&B/03.07 (2003). Accessed at www.who.int/vaccines-documents/DocsPDF03/www740.pdf on 15.03.04.
Yang, H. H., Wu, C. G., Xie, G. Z. et al. (2001). Efficacy trial of Vi polysaccharide vaccine against typhoid fever in South-Western China. Bull WHO, 79, 625–31.

Reference Title: References

Reference Type: reference-list

Ahmad, K. (2002). Experts call for surveillance of drug-resistant typhoid at a global level. Lancet, 359, 592.
Anderson, E. S. (1968). Drug resistance in Salmonella typhimurium and its implications. Br Med J, 3, 333–9.
Andersson, D. I. and Levin, B. R. (1999). The biological cost of antibiotic resistance. Curr Opin Microbiol, 2, 489–93.
Angulo, F. J., Johnson, K. R., Tauxe, R. V. and Cohen, M. L. (2000). Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microb Drug Resist, 6, 77–83.
Anonymous (1969). Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. London: HMSO.
Bolton, A. J., Osborne, M. P. and Stephen, J. (2000). Comparative study of the invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin for Caco-2 cells, HEp-2 cells and rabbit ileal epithelia. J Med Microbiol, 49, 503–11.
Briggs, C. E. and Fratamico, P. M. (1999). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother, 43, 846–9.
Brown, J. D., Mo, D. H. and Rhoades, E. R. (1975). Chloramphenicol-resistant Salmonella typhi in Saigon. JAMA, 231, 162–6.
Chandel, D. S., Chaudhry, R., Dhawan, B., Pandey, A. and Dey, A. B. (2000). Drug-resistant Salmonella enterica serotype paratyphi A in India. Emerg Infect Dis, 6, 420–1.
Chiu, C. H., Su, L. H., Chu, C. et al. (2004). Isolation of Salmonella enterica serotype Choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet, 363, 1285–6.
Chu, C., Chiu, C. H., Wu, W. Y. et al. (2001). Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob Agents Chemother, 45, 2299–303.
Chun, D., Seol, S. Y., Cho, D. T. and Tak, R. (1977). Drug resistance and R plasmids in Salmonella typhi isolated in Korea. Antimicrob Agents Chemother, 11, 209–13.
Connerton, P., Wain, J., Hien, T. T. et al. (2000). Epidemic typhoid in Vietnam: molecular typing of multiple-antibiotic-resistant Salmonella enterica serotype Typhi from four outbreaks. J Clin Microbiol, 38, 895–7.
Coovadia, Y. M., Gathiram, V., Bhamjee, A. et al. (1992). An outbreak of multiresistant Salmonella typhi in South Africa. Quarterly J of Med, 82, 91–100.
Crump, J. A., Barrett, T. J., Nelson, J. T. and Angulo, F. J. (2003). Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis, 37, 75–81.
Crump, J. A., Luby, S. P. and Mintz, E. D. (2004). The global burden of typhoid fever. Bull WHO, 82, 346–53.
Datta, N. and Olarte, J. (1974). R factors in strains of Salmonella typhi and Shigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrob Agents Chemother, 5, 310–17.
Drlica, K. (2003). The mutant selection window and antimicrobial resistance. J Antimicrob Chemother, 52, 11–17.
Dromigny, J. A. and Perrier-Gros-Claude, J. D. (2003). Antimicrobial resistance of Salmonella enterica serotype Typhi in Dakar, Senegal. Clin Infect Dis, 37, 465–6.
Echeita, M. A., Herrera, S. and Usera, M. A. (2001). Atypical, fljB-negative Salmonella enterica subsp. enterica strain of serovar 4,5,12:i:- appears to be a monophasic variant of serovar Typhimurium. J Clin Microbiol, 39, 2981–3.
Gales, A. C., Sader, H. S., Mendes, R. E. and Jones, R. N. (2002). Salmonella spp. isolates causing bloodstream infections in Latin America: report of antimicrobial activity from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis, 44, 313–18.
Gangarosa, E. J., Bennett, J. V., Wyatt, C. et al. (1972). An epidemic-associated episome? J Infect Dis, 126, 215–18.
Gonzalez Cortes, A., Bessudo, D., Sanchez Leyva, R. et al. (1973). Water-borne transmission of chloramphenicol-resistant Salmonella typhi in Mexico. Lancet, 2, 605–7.
Gregorova, D., Pravcova, M., Karpiskova, R. and Rychlik, I. (2002). Plasmid pC present in Salmonella enterica serovar Enteritidis PT14b strains encodes a restriction modification system. FEMS Microbiol Lett, 214, 195–8.
Grindley, N. D., Humphreys, G. O. and Anderson, E. S. (1973). Molecular studies of R factor compatibility groups. J Bacteriol, 115, 387–98.
Guerra, B., Soto, S., Helmuth, R. and Mendoza, M. C. (2002). Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob Agents Chemother, 46, 2977–81.
Guerra, B., Soto, S. M., Arguelles, J. M. and Mendoza, M. C. (2001). Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4,5,12:i:-]. Antimicrob Agents Chemother, 45, 1305–8.
Hampton, M. D., Ward, L. R., Rowe, B. and Threlfall, E. J. (1998). Molecular fingerprinting of multidrug-resistant Salmonella enterica serotype Typhi. Emerg Infect Dis, 4, 317–20.
Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. and Danbara, H. (2001). Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun, 69, 2612–20.
Harish, B. N., Madhulika, U. and Parija, S. C. (2004). Isolated high-level ciprofloxacin resistance in Salmonella enterica subsp. enterica serotype Paratyphi A. J Med Microbiol, 53, 819.
Harnett, N., McLeod, S., AuYong, Y. et al. (1998). Molecular characterization of multiresistant strains of Salmonella typhi from South Asia isolated in Ontario, Canada. Can J Microbiol, 44, 356–63.
Hayes, F. (2003). Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301, 1496–9.
Helms, M., Vastrup, P., Gerner-Smidt, P. and Molbak, K. (2002). Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerg Infect Dis, 8, 490–5.
Herikstad, H., Motarjemi, Y. and Tauxe, R. V. (2002). Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect, 129, 1–8.
Hermans, P. W., Saha, S. K., van Leeuwen, W. J.et al. (1996). Molecular typing of Salmonella typhi strains from Dhaka (Bangladesh) and development of DNA probes identifying plasmid-encoded multidrug-resistant isolates. J Clin Microbiol, 34, 1373–9.
Hirose, K., Tamura, K., Sagara, H. and Watanabe, H. (2001). Antibiotic susceptibilities of Salmonella enterica serovar Typhi and S. enterica serovar Paratyphi A isolated from patients in Japan. Antimicrob Agents Chemother, 45, 956–8.
Holmberg, S. D., Solomon, S. L. and Blake, P. A. (1987). Health and economic impacts of antimicrobial resistance. Rev Infect Dis, 9, 1065–78.
Jacoby, G. A. and Sutton, L. (1991). Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother, 35, 164–9.
Jesudason, M. V., John, R. and John, T. J. (1996). The concurrent prevalence of chloramphenicol-sensitive and multi-drug resistant Salmonella typhi in Vellore, S. India. Epidemiol Infect, 116, 225–7.
Kamili, M. A., Ali, G., Shah, M. Y., Rashid, S., Khan, S. and Allaqaband, G. Q. (1993). Multiple drug resistant typhoid fever outbreak in Kashmir Valley. Indian J of Med Sci, 47, 147–51.
Kariuki, S., Gilks, C., Revathi, G. and Hart, C. A. (2000). Genotypic analysis of multidrug-resistant Salmonella enterica serovar Typhi, Kenya. Emerg Infect Dis, 6, 649–51.
Komalarini, S., Njotosiswojo, S., Rockhill, R. C. and Lesmana, M. (1980). Chloramphenicol resistant strains in salmonellosis in Jakarta. Southeast Asian J Trop Med Public Health, 11, 539–42.
Lee, C. A. and Falkow, S. (1994). Isolation of hyperinvasive mutants of Salmonella. Methods Enzymol, 236, 531–45.
Lindsay, E. A., Lawson, A. J., Walker, R. A. et al. (2002). Role of electronic data exchange in an international outbreak caused by Salmonella enterica serotype Typhimurium DT204b. Emerg Infect Dis, 8, 732–4.
Lindstedt, B. A., Heir, E., Nygard, I. and Kapperud, G. (2003). Characterization of class I integrons in clinical strains of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis from Norwegian hospitals. J Med Microbiol, 52, 141–9.
Ling, J. and Chau, P. Y. (1984). Plasmids mediating resistance to chloramphenicol, trimethoprim, and ampicillin in Salmonella typhi strains isolated in the Southeast Asian region. J Infect Dis, 149, 652.
Ling, J. M., Chan, E. W., Lam, A. W. and Cheng, A. F. (2003). Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother, 47, 3567–73.
Martínez, J. L., Alonso, A., Gómez-Gómez, J. M. and Baquero, F. (1998). Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg? J Antimicrob Chemother, 42, 683–8.
Martínez-Martínez, L., Pascual, A. and Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet, 351, 797–9.
Mead, P. S., Slutsker, L., Dietz, V. et al. (1999). Food-related illness and death in the United States. Emerg Infect Dis, 5, 607–25.
Mendoza-Medellin, A., Curiel-Quesada, E. and Camacho-Carranza, R. (2004). Escherichia coli R-factors unstable in Salmonella typhi are deleted before being segregated in this host. Plasmid, 51, 75–86.
Mendoza-Medellin, A., Rios-Chavez, I. and Amaro-Robles, D. (1993). Behavior of Escherichia coli R factors in Salmonella typhi. Rev Latinoam Microbiol, 35, 77–85.
Mermin, J. H., Villar, R., Carpenter, J. et al. (1999). A massive epidemic of multidrug-resistant typhoid fever in Tajikistan associated with consumption of municipal water. J Infect Dis, 179, 1416–22.
Mills-Robertson, F., Addy, M. E., Mensah, P. and Crupper, S. S. (2002). Molecular characterization of antibiotic resistance in clinical Salmonella typhi isolated in Ghana. FEMS Microbiol Lett, 215, 249–53.
Mirza, S., Kariuki, S., Mamun, K. Z., Beeching, N. J. and Hart, C. A. (2000). Analysis of plasmid and chromosomal DNA of multidrug-resistant Salmonella enterica serovar Typhi from Asia. J Clin Microbiol, 38, 1449–52.
Mirza, S. H. and Hart, C. A. (1993). Plasmid encoded multi-drug resistance in Salmonella typhi from Pakistan. Ann Trop Med Parasitol, 87, 373–7.
Mirza, S. H., Beeching, N. J. and Hart, C. A. (1996). Multi-drug resistant typhoid: a global problem. J Med Microbiol, 44, 317–19.
Mukhtar, E. D. and Mekki, M. O. (1981). Trimethoprim-sulphamethoxazole in the treatment of enteric fever in the Sudan. Trans R Soc Trop Med Hyg, 75, 771–3.
Murray, B. E. (1989). Problems and mechanisms of antimicrobial resistance. Infect Dis Clin North Am, 3, 423–39.
Murray, B. E., Levine, M. M., Cordano, A. M. et al. (1985). Survey of plasmids in Salmonella typhi from Chile and Thailand. J Infect Dis, 151, 551–5.
Nath, M. L. and Singh, J. (1966). Antibiotic sensitivity of Salmonella typhi. Indian J Med Res, 54, 217–19.
O' Brien, T. F. (2002). Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis, 34(suppl. 3), S78–84.
Olarte, J. and Galindo, E. (1973). Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother, 4, 597–601.
Oyofo, B. A., Lesmana, M., Subekti, D. et al. (2002). Surveillance of bacterial pathogens of diarrhea disease in Indonesia. Diagn Microbiol Infect Dis, 44, 227–34.
Pai, H., Byeon, J. H., Yu, S., Lee, B. K. and Kim, S. (2003). Salmonella enterica serovar Typhi strains isolated in Korea containing a multidrug resistance class 1 integron. Antimicrob Agents Chemother, 47, 2006–8.
Paniker, C. K. and Vimala, K. N. (1972). Transferable chloramphenicol resistance in Salmonella typhi. Nature, 239, 109–10.
Parkhill, J., Dougan, G., James, K. D. et al. (2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.
Parry, C., Wain, J., Chinh, N. T., Vinh, H. and Farrar, J. J. (1998). Quinolone-resistant Salmonella typhi in Vietnam. Lancet, 351, 1289.
Parry, C. M. (1998). Untreatable infections? – The challenge of the 21st century. Southeast Asian J Trop Med Public Health, 29, 416–24.
Partridge, S. R. and Hall, R. M. (2003). In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrob Agents Chemother, 47, 342–9.
Phillips, I., Casewell, M., Cox, T. et al. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother, 53, 28–52.
Poirel, L., Naas, T., Guibert, M. et al. (1999). Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother, 43, 573–81.
Poppe, C., Ziebell, K., Martin, L. and Allen, K. (2002). Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb Drug Resist, 8, 107–22.
Rahman, M., Ahmad, A. and Shoma, S. (2002). Decline in epidemic of multidrug resistant Salmonella typhi is not associated with increased incidence of antibiotic-susceptible strain in Bangladesh. Epidemiol Infect, 129, 29–34.
Rodrigues, C., Mehta, A. and Joshi, V. R. (2002). Salmonella typhi in the past decade: learning to live with resistance. Clin Infect Dis, 34, 126.
Rowe, B., Threlfall, E. J., Ward, L. R. and Ashley, A. S. (1979). International spread of multiresistant strains of Salmonella typhimurium phage types 204 and 193 from Britain to Europe. Vet Rec, 105, 468–9.
Saha, S. K., Talukder, S. Y., Islam, M. and Saha, S. (1999). A highly ceftriaxone-resistant Salmonella typhi in Bangladesh. Pediatr Infects Dis J, 18, 387.
Shanahan, P. M., Jesudason, M. V., Thomson, C. J. and Amyes, S. G. (1998). Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India. J Clin Microbiol, 36, 1595–600.
Shanahan, P. M., Karamat, K. A., Thomson, C. J. and Amyes, S. G. (2000). Characterization of multi-drug resistant Salmonella typhi isolated from Pakistan. Epidemiol Infect, 124, 9–16.
Shannon, K. and French, G. (1998). Multiple-antibiotic-resistant Salmonella. Lancet, 352, 490.
Sherburne, C. K., Lawley, T. D., Gilmour, M. W. et al. (2000). The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res, 28, 2177–86.
Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. and Morris, J. G., Jr (2002). Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA, 99, 6434–9.
Sood, S., Kapil, A., Das, B., Jain, Y. and Kabra, S. K. (1999a). Re-emergence of chloramphenicol-sensitive Salmonella typhi. Lancet, 353, 1241–2.
Sood, S., Kapil, A., Dash, N. et al. (1999b). Paratyphoid fever in India: an emerging problem. Emerg Infect Dis, 5, 483–4.
Summers, A., Wireman, J., Vimy, M. et al. (1993). Mercury released from dental ‘silver’ fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother, 37, 825–34.
Tassios, P. T., Vatopoulos, A. C., Mainas, E. et al. (1997). Molecular analysis of ampicillin-resistant sporadic Salmonella typhi and Salmonella paratyphi B clinical isolates. Clin Microbiol Infect, 3, 317–23.
Taylor, D. E. (1983). Transfer-defective and tetracycline-sensitive mutants of the incompatibility group HI plasmid R27 generated by insertion of transposon 7. Plasmid, 9, 227–39.
Taylor, D. E. and Brose, E. C. (1985). Characterization of incompatibility group HI1 plasmids from Salmonella typhi by restriction endonuclease digestion and hybridization of DNA probes for Tn3, Tn9, and Tn10. Can J Microbiol, 31, 721–9.
Thong, K. L., Cheong, Y. M., Puthucheary, S., Koh, C. L. and Pang, T. (1994). Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis. J Clin Microbiol, 32, 1135–41.
Threlfall, E. J., Lawson, A. J., Walker, R. A. and Ward, L. R. (2001). Salmonella typhimurium DT104: the rise and fall of a multiresistant epoizootic clone. SCIEH Weekly Report, 35, 142–4.
Threlfall, E. J., Teale, C. J., Davies, R. H. et al. (2003). A comparison of antimicrobial susceptibilities in nontyphoidal salmonellas from humans and food animals in England and Wales in 2000. Microb Drug Resist, 9, 183–9.
Tran, J. H. and Jacoby, G. A. (2002). Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA, 99, 5638–42.
Travers, K. and Barza, M. (2002). Morbidity of infections caused by antimicrobial-resistant bacteria. Clin Infect Dis, 34(suppl. 3), S131–4.
Verdet, C., Arlet, G., Barnaud, G., Lagrange, P. H. and Philippon, A. (2000). A novel integron in Salmonella enterica serovar Enteritidis, carrying the bla(DHA-1) gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob Agents Chemother, 44, 222–5.
Vinh, H., Wain, J., Vo, T. N. et al. (1996). Two or three days of ofloxacin treatment for uncomplicated multidrug-resistant typhoid fever in children. Antimicrob Agents Chemother, 40, 958–61.
Wain, J., Diem Nga, L. T., Kidgell, C. et al. (2003). Molecular analysis of incHI1 antimicrobial resistance plasmids from Salmonella serovar Typhi strains associated with typhoid fever. Antimicrob Agents Chemother, 47, 2732–9.
Wain, J., Diep, T. S., Ho, V. A. et al. (1998). Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol, 36, 1683–7.
Wain, J., Hoa, N. T., Chinh, N. T. et al. (1997). Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis, 25, 1404–10.
Walker, R. A., Lindsay, E., Woodward, M. J., Ward, L. R. and Threlfall, E. J. (2001). Variation in clonality and antibiotic-resistance genes among multiresistant Salmonella enterica serotype Typhimurium phage-type U302 (MR U302) from humans, animals, and foods. Microb Drug Resist, 7, 13–21.
Wall, P. G., Morgan, D., Lamden, K. et al. (1994). A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. Commun Dis Rep CDR Rev, 4, R130–5.
Wang, M., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. (2004). Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother, 48, 1295–9.
Wasfy, M. O., Frenck, R., Ismail, T. F. et al. (2002). Trends of multiple-drug resistance among Salmonella serotype Typhi isolates during a 14-year period in Egypt. Clin Infect Dis, 35, 1265–8.
Webber, M. and Piddock, L. J. (2001). Quinolone resistance in Escherichia coli. Vet Res, 32, 275–84.
Wegener, H. C., Hald, T., Lo Fo Wong, D. et al. (2003). Salmonella control programs in Denmark. Emerg Infect Dis, 9, 774–80.
Woodward, T. E., Smadel, J. E., Lay, H. L., Jr., Green, R. and Marnkihar, D. S. (1948 / Fall 2004). Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever. Wilderness Environ Med, 15 (3), 218–20; discussion 216–17.
Zahurul Haque Asna, S. M. and Ashraful Haq, J. (2000). Decrease of antibiotic resistance in Salmonella typhi isolated from patients attending hospitals of Dhaka City over a 3 year period. Int J Antimicrob Agents, 16, 249–51.
Zansky, S., Wallace, B., Schoonmaker-Bopp, D. et al. (2002). From the Centers for Disease Control and Prevention. Outbreak of multi-drug resistant Salmonella Newport – United States, January–April 2002. Jama, 288, 951–3.

Reference Title: References

Reference Type: reference-list

Aabo, S., Christensen, J. P., Chadfield, M. S. et al. (2002). Quantitative comparison of intestinal invasion of zoonotic serotypes of Salmonella enterica in poultry. Avian Pathol, 31, 41–7.
Ahmer, B. M., Watson, P. R., Wallis, T. S. and Heffron, F. (1999). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol, 31, 971–82.
Alpuche-Aranda, C. M., Berthiaume, E. P., Mock, B., Swanson, J. A. and Miller, S. I. (1995). Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect Immun, 63, 4456–62.
Baird, G. D., Manning, E. J. and Jones, P. W. (1985). Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium. J Gen Microbiol, 131, 1815–23.
Bakshi, C. S., Singh, V. P., Wood, M. W. et al.(2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol, 182, 2341–4.
Barrow, P. A. (2000). The paratyphoid salmonellae. Rev Sci Tech, 19, 351–75.
Barrow, P. A. and Lovell, M. A. (1988). The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum. J Gen Microbiol, 134, 2307–16.
Barrow, P. A., Huggins, M. B., Lovell, M. A. and Simpson, J. M. (1987). Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res Vet Sci, 42, 194–9.
Barrow, P. A., Simpson, J. M. and Lovell, M. A. (1988). Intestinal colonisation in the chicken by food-poisoning Salmonella serotypes; microbial characteristics associated with fecal excretion. Avian Pathology, 17, 571–88.
Baskerville, A. and Dow, C. (1973). Pathology of experimental pneumonia in pigs produced by Salmonella cholerae-suis. J Comp Pathol, 83, 207–15.
Bernard, S., Boivin, R., Menanteau, P. and Lantier, F. (2002). Cross-protection of Salmonella abortusovis, S. choleraesuis, S. dublin and S. gallinarum in mice induced by S. abortusovis and S. gallinarum: bacteriology and humoral immune response. Vet Res, 33, 55–69.
Beuzon, C. R., Meresse, S., Unsworth, K. E. et al. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo J, 19, 3235–49.
Bispham, J., Tripathi, B. N., Watson, P. R. and Wallis, T. S. (2001). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun, 69, 367–77.
Bolton, A. J., Osborne, M. P., Wallis, T. S. and Stephen, J. (1999). Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiology, 145, 2431–41.
Brennan, M. A. and Cookson, B. T. (2000). Salmonella induces macrophage death by Caspase-1-dependent necrosis. Mol Microbiol, 38, 31–40.
Brito, J. R., Xu, Y., Hinton, M. and Pearson, G. R. (1995). Pathological findings in the intestinal tract and liver of chicks after exposure to Salmonella serotypes Typhimurium or Kedougou. Br Vet J, 151, 311–23.
Chadfield, M. S., Brown, D. J., Aabo, S., Christensen, J. P. and Olsen, J. E. (2003). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol, 92, 49–64.
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.
Chen, L. M., Kaniga, K. and Galan, J. E. (1996). Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol, 21, 1101–15.
Collier-Hyams, L. S., Zeng, H., Sun, J. et al. (2002). Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol, 169, 2846–50.
Conlan, J. W. and North, R. J. (1992). Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun, 60, 5164–71.
Coyle, E. F., Palmer, S. R., Ribeiro, C. D. et al. (1988). Salmonella enteritidis phage type 4 infection: association with hen's eggs. Lancet, 2, 1295–7.
Danbara, H., Moriguchi, R., Suzuki, S. et al. (1992). Effect of 50 kilobase-plasmid, pKDSC50, of Salmonella choleraesuis RF-1 strain on pig septicemia. J Vet Med Sci, 54, 1175–8.
Desmidt, M., Ducatelle, R. and Haesebrouck, F. (1997). Pathogenesis of Salmonella enteritidis phage type four after experimental infection of young chickens. Vet Microbiol, 56, 99–109.
Dhillon, A. S., Alisantosa, B., Shivaprasad, H. L. et al. (1999). Pathogenicity of Salmonella enteritidis phage types 4, 8, and 23 in broiler chicks. Avian Dis, 43, 506–15.
Dunlap, N. E., Benjamin, W. H., Jr, McCall, R. D., Jr, Tilden, A. B. and Briles, D. E. (1991). A “safe-site” for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microb Pathog, 10, 297–310.
Eckmann, L., Rudolf, M. T., Ptasznik, A. et al. (1997). D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci USA, 94, 14456–60.
Faddoul, G. P. and Fellows, G. W. (1965). Clinical manifestations of paratyphoid infection in pigeons. Avian Dis, 22, 377–81.
Farrant, J. L., Sansone, A., Canvin, J. R. et al. (1997). Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol, 25, 785–96.
Fedorka-Cray, P. J., Kelley, L. C., Stabel, T. J., Gray, J. T. and Laufer, J. A. (1995). Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect Immun, 63, 2658–64.
Frost, A. J., Bland, A. P. and Wallis, T. S. (1997). The early dynamic response of the calf ileal epithelium to Salmonella typhimurium. Vet Pathol, 34, 369–86.
Galan, J. E. and Curtiss, R., III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.
Galyov, E. E., Wood, M. W., Rosqvist, R. et al. (1997). A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol, 25, 903–12.
Gast, R. K. and Benson, S. T. (1995). The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Dis, 39, 567–74.
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol, 167, 1882–5.
Gewirtz, A. T., Siber, A. M., Madara, J. L. and McCormick, B. A. (1999). Orchestration of neutrophil movement by intestinal epithelial cells in response to Salmonella typhimurium can be uncoupled from bacterial internalization. Infect Immun, 67, 608–17.
Gray, J. T., Fedorka-Cray, P. J., Stabel, T. J. and Ackermann, M. R. (1995). Influence of inoculation route on the carrier state of Salmonella choleraesuis in swine. Vet Microbiol, 47, 43–59.
Gray, J. T., Stabel, T. J. and Fedorka-Cray, P. J. (1996). Effect of dose on the immune response and persistence of Salmonella choleraesuis infection in swine. Am J Vet Res, 57, 313–19.
Green, B. T., Lyte, M., Kulkarni-Narla, A. and Brown, D. R. (2003). Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum. J Neuroimmunol, 141, 74–82.
Guilloteau, L. A., Wallis, T. S., Gautier, A. V. et al. (1996). The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses. Infect Immun, 64, 3385–93.
Halavatkar, H. and Barrow, P. A. (1993). The role of a 54-kb plasmid in the virulence of strains of Salmonella enteritidis of phage type 4 for chickens and mice. J Med Microbiol, 38, 171–6.
Hall, G. A. and Jones, P. W. (1976). An experimental study of Salmonella dublin abortion in cattle. Br Vet J, 132, 60–5.
Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. and Danbara, H. (2001). Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun, 69, 2612–20.
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–26.
Hersh, D., Monack, D. M., Smith, M. R., Ghori, N., Falkow, S. and Zychlinsky, A. (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to Caspase-1. Proc Natl Acad Sci USA, 96, 2396–401.
Hinton, M., Pearson, G. R., Threlfall, E. J., Rowe, B., Woodward, M. and Wray, C. (1989). Experimental Salmonella enteritidis infection in chicks. Vet Rec, 124, 223.
Hinton, M. H. (1973). Salmonella dublin abortion in cattle. Vet Rec, 93, 162.
Hong, K. H. and Miller, V. L. (1998). Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol, 180, 1793–802.
Hopper, S. A. and Mawer, S. (1988). Salmonella enteritidis in a commercial layer flock. Vet Rec, 123, 351.
Ishibashi, Y. and Arai, T. (1990). Roles of the complement receptor type 1 (CR1) and type 3 (CR3) on phagocytosis and subsequent phagosome–lysosome fusion in Salmonella-infected murine macrophages. FEMS Microbiol Immunol, 2, 89–96.
Jones, G. W., Rabert, D. K., Svinarich, D. M. and Whitfield, H. J. (1982). Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun, 38, 476–86.
Jones, M. A., Wigley, P., Page, K. L., Hulme, S. D. and Barrow, P. A. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun, 69, 5471–6.
Jones, M. A., Wood, M. W., Mullan, P. B. et al. (1998). Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect Immun, 66, 5799–804.
Kaiser, P., Rothwell, L., Galyov, E. E. et al. (2000). Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology, 146, 3217–26.
Keller, L. H., Schifferli, D. M., Benson, C. E., Aslam, S. and Eckroade, R. J. (1997). Invasion of chicken reproductive tissues and forming eggs is not unique to Salmonella enteritidis. Avian Dis, 41, 535–9.
Knodler, L. A., Celli, J., Hardt, W. D. et al.(2002). Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol, 43, 1089–103.
Kohler, H., McCormick, B. A. and Walker, W. A. (2003). Bacterial-enterocyte crosstalk: cellular mechanisms in health and disease. J Pediatr Gastroenterol Nutr, 36, 175–85.
Libby, S. J., Adams, L. G., Ficht, T. A. et al. (1997). The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun, 65, 1786–92.
Lichtensteiger, C. A. and Vimr, E. R. (2003). Systemic and enteric colonization of pigs by a hilA signature-tagged mutant of Salmonella choleraesuis. Microb Pathog, 34, 149–54.
Lister, S. A. (1988). Salmonella enteritidis infection in broilers and broiler breeders. Vet Rec, 123, 350.
Lyte, M. (2004). Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol, 12, 14–20.
McCormick, B. A., Miller, S. I., Carnes, D. and Madara, J. L. (1995). Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun, 63, 2302–9.
Meyerholz, D. K. and Stabel, T. J. (2003). Comparison of early ileal invasion by Salmonella enterica serovars Choleraesuis and Typhimurium. Vet Pathol, 40, 371–5.
Monack, D. M., Raupach, B., Hromockyj, A. E. and Falkow, S. (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA, 93, 9833–8.
Nadeau, W. J., Pistole, T. G. and McCormick, B. A. (2002). Polymorphonuclear leukocyte migration across model intestinal epithelia enhances Salmonella typhimurium killing via the epithelial derived cytokine, IL6. Microbes Infect, 4, 1379–87.
Nakamura, M., Sato, S., Ohya, T., Suzuki, S. and Ikeda, S. (1985). Possible relationship of a 36-megadalton Salmonella enteritidis plasmid to virulence in mice. Infect Immun, 47, 831–3.
Norimatsu, M., Harris, J., Chance, V. et al.(2003). Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology, 108, 55–61.
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA, 95, 14057–9.
Okamura, M., Miyamoto, T., Kamijima, Y. et al. (2001). Differences in abilities to colonize reproductive organs and to contaminate eggs in intravaginally inoculated hens and in vitro adherences to vaginal explants between Salmonella enteritidis and other Salmonella serovars. Avian Dis, 45, 962–71.
Parkhill, J., Dougan, G., James, K. D. et al.(2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.
Pasmans, F., Van Immerseel, F., Heyndrickx, M. et al. (2003). Host adaptation of pigeon isolates of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen phage type 99 is associated with enhanced macrophage cytotoxicity. Infect Immun, 71, 6068–74.
Paulin, S. M., Watson, P. R., Benmore, A. R. et al. (2002). Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun, 70, 6788–97.
Popiel, I. and Turnbull, P. C. (1985). Passage of Salmonella enteritidis and Salmonella thompson through chick ileocecal mucosa. Infect Immun, 47, 786–92.
Poppe, C., Demczuk, W., McFadden, K. and Johnson, R. P. (1993). Virulence of Salmonella enteritidis phagetypes 4, 8 and 13 and other Salmonella spp. for day-old chicks, hens and mice. Can J Vet Res, 57, 281–7.
Pospischil, A., Wood, R. L. and Anderson, T. D. (1990). Peroxidase-antiperoxidase and immunogold labeling of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf in tissues of experimentally infected swine. Am J Vet Res, 51, 619–24.
Rabsch, W., Andrews, H. L., Kingsley, R. A. et al.(2002). Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun, 70, 2249–55.
Reed, W. M., Olander, H. J. and Thacker, H. L. (1986). Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res, 47, 75–83.
Reis, B. P., Zhang, S., Tsolis, R. M. et al. (2003). The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer's patches. Vet Microbiol, 97, 269–77.
Richter-Dahlfors, A., Buchan, A. M. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.
Roy, P., Dhillon, A. S., Shivaprasad, H. L. et al. (2001). Pathogenicity of different serogroups of avian salmonellae in specific-pathogen-free chickens. Avian Dis, 45, 922–37.
Santos, R. L., Tsolis, R. M., Baumler, A. J. and Adams, L. G. (2003). Pathogenesis of Salmonella-induced enteritis. Braz J Med Biol Res, 36, 3–12.
Schesser, K., Dukuzumuremyi, J. M., Cilio, C. et al.(2000). The Salmonella YopJ-homologue AvrA does not possess YopJ-like activity. Microb Pathog, 28, 59–70.
Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. and Holden, D. W. (1999). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun, 67, 213–19.
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.
Sheppard, M., Webb, C., Heath, F. et al.(2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol, 5, 593–600.
Sojka, W. J., Wray, C., Shreeve, J. and Benson, A. J. (1977). Incidence of Salmonella infection in animals in England and Wales 1968–1974. J Hyg (Lond), 78, 43–56.
Terakado, N., Sekizaki, T., Hashimoto, K. and Naitoh, S. (1983). Correlation between the presence of a fifty-megadalton plasmid in Salmonella dublin and virulence for mice. Infect Immun, 41, 443–4.
Townsend, S. M., Kramer, N. E., Edwards, R. et al.(2001). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun, 69, 2894–901.
Tsolis, R. M., Adams, L. G., Ficht, T. A. and Baumler, A. J. (1999a). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun, 67, 4879–85.
Uzzau, S., Gulig, P. A., Paglietti, B. et al.(2000). Role of the Salmonella abortusovis virulence plasmid in the infection of BALB/c mice. FEMS Microbiol Lett, 188, 15–18.
Uzzau, S., Leori, G. S., Petruzzi, V. et al.(2001). Salmonella enterica serovar-host specificity does not correlate with the magnitude of intestinal invasion in sheep. Infect Immun, 69, 3092–9.
Vazquez-Torres, A., Xu, Y., Jones-Carson, J. et al.(2000). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.
Villarreal-Ramos, B., Manser, J. M., Collins, R. A. et al.(2000). Susceptibility of calves to challenge with Salmonella typhimurium 4/74 and derivatives harbouring mutations in htrA or purE. Microbiology, 146, 2775–83.
Vladoianu, I. R., Chang, H. R. and Pechere, J. C. (1990). Expression of host resistance to Salmonella typhi and Salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog, 8, 83–90.
Wallis, T. S., Paulin, S. M., Plested, J. S., Watson, P. R. and Jones, P. W. (1995). The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect Immun, 63, 2755–61.
Watson, P. R., Galyov, E. E., Paulin, S. M., Jones, P. W. and Wallis, T. S. (1998). Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. Infect Immun, 66, 1432–8.
Watson, P. R., Gautier, A. V., Paulin, S. M. et al.(2000a). Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect Immun, 68, 3744–7.
Watson, P. R., Paulin, S. M., Bland, A. P., Jones, P. W. and Wallis, T. S. (1995). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect Immun, 63, 2743–54.
Watson, P. R., Paulin, S. M., Jones, P. W. and Wallis, T. S. (2000b). Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence. Microbiology, 146, 1639–49.
Wells, C. L., Maddaus, M. A., Erlandsen, S. L. and R. L. Simmons (1988). Evidence for the phagocytic transport of intestinal particles in dogs and rats. Infect Immun, 56, 278–82.
Wigley, P., Berchieri, A., Jr., Page, K. L., Smith, A. L. and Barrow, P. A. (2001). Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect Immun, 69, 7873–9.
Wigley, P., Jones, M. A. and Barrow, P. A. (2002). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol, 31, 501–6.
Wills, R. W. (2000). Diarrhea in growing-finishing swine. Vet Clin North Am Food Anim Pract, 16, 135–61.
Withanage, G. S. K., Kaiser, P., Wigley, P. et al.(2004). Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect Immun, 72, 2152–9.
Wood, M. W., Jones, M. A., Watson, P. R. et al. (1998). Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol, 29, 883–91.
Wood, M. W., Rosqvist, R., Mullan, P. B., Edwards, M. H. and Galyov, E. E. (1996). SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol, 22, 327–38.
Zhang, S., Santos, R. L., Tsolis, R. M. et al.(2002a). Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett, 217, 243–7.
Zhang, S., Santos, R. L., Tsolis, R. M. et al.(2002b). The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun, 70, 3843–55.

Reference Title: References

Reference Type: reference-list

Adak, G. K., Long, S. M. and O'Brien, S. J. (2002). Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut, 51, 832–41.
Ager, E. A., Nelson, K. E., Galton, M. M., Boring, J. R., III, and Jernigan, J. R. (1967). Two outbreaks of egg-borne salmonellosis and implications for their prevention. JAMA, 199, 372–8.
Alban, L., Olsen, A. M., Nielsen, B., Sorensen, R. and Jessen, B. (2002). Qualitative and quantitative risk assessment for human salmonellosis due to multi-resistant Salmonella typhimurium DT104 from consumption of Danish dry-cured pork sausages. Prev Vet Med, 52, 251–65.
Angulo, F. J. and Swerdlow, D. L. (1999). Epidemiology of human Salmonella enterica serovar Enteritidis in the United States. In Salmonella enterica serovar Enteritidis in Humans and Animals, ed. A. M. Saeed. Ames, Iowa: Iowa State University Press, pp. 33–42.
Anonymous. (1986). The Report of the Committee of Inquiry into an Outbreak of Food Poisoning at Stanley Royd Hospital. Department of Health and Social Security. London: HMSO.
Anonymous (1989). Salmonella in eggs: PHLS evidence to Agriculture Committee. PHLS Microbiology Digest, 6, 1–9.
Anonymous (1997). COST Action 97. Lelystad: European Union.
Anonymous (2001). Advisory Committee on the Microbiological Safety of Food: Second Report on Salmonella in Eggs. London: The Stationery Office.
Anonymous (2003). UK-wide Survey of Salmonella and Campylobacter Contamination of Fresh and Frozen Chicken on Retail Sale. Food Standards Agency.
Anonymous (2004a). Zoonoses report United Kingdom 2002 issued by Defra, the Department of Health, the Food Standards Agency, the Scottish Executive Environment & Rural Affairs Department (SEERAD), the Welsh Assembly Government, and the Department of Agriculture & Rural Development Northern Ireland (DARDNI). Defra, 2004 A4 63pp., figures PB9248 Free (ISBN 0855210559)
Anonymous (2004b). Salmonella enteritidis outbreak in central London linked to Spanish eggs. CDR Weekly, 14.
Bailey, J. S., Stern, N. J., Fedorka-Cray, P. et al. (2001). Sources and movement of Salmonella through integrated poultry operations: a multistate epidemiological investigation. J Food Prot, 64, 1690–7.
Barrell, R. A. (1987). Isolations of salmonellas from humans and foods in the Manchester area: 1981–1985. Epidemiol Infect, 98, 277–84.
Barrow, P. A., Simpson, J. M. and Lovell, M. A. (1988). Intestinal colonisation in the chicken by food-poisoning Salmonella serotypes; microbial characteristics associated with faecal excretion. Avian Pathol, 17, 571–88.
Barrow, P. A., Simpson, J. M., Lovell, M. A. and Binns, M. M. (1987). Contribution of Salmonella gallinarum large plasmid toward virulence in fowl typhoid. Infect Immun, 55, 388–92.
Baumler, A. J., Hargis, B. M. and Tsolis, R. M. (2000). Tracing the origins of Salmonella outbreaks. Science, 287, 50–2.
Berends, B. R., Van Knapen, F., Mossel, D. A., Burt, S. A. and Snijders, J. M. (1998). Impact on human health of Salmonella spp. on pork in The Netherlands and the anticipated effects of some currently proposed control strategies. Int J Food Microbiol, 44, 219–29.
Borland, E. D. (1975). Salmonella infection in poultry. Vet Rec, 97, 406–8.
Bullis, K. L. (1977). The history of avian medicine in the U.S. II. Pullorum disease and fowl typhoid. Avian Dis, 21, 422–9.
Burton, C. L., Chhabra, S. R., Swift, S. et al. (2002). The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun, 70, 5913–23.
Bygrave, A. C. and Gallagher, J. (1989). Transmission of Salmonella enteritidis in poultry. Vet Rec, 124, 571.
Cantor, A. and McFarlane, V. H. (1948). Salmonella organisms on and in chicken eggs. Br Poult Sci, 27, 350–5.
Chapman, P. A., Rhodes, P. and Rylands, W. (1988). Salmonella typhimurium phage type 141 infections in Sheffield during 1984 and 1985: association with hens' eggs. Epidemiol Infect, 101, 75–82.
Cooper, G. L., Nicholas, R. A. and Bracewell, C. D. (1989). Serological and bacteriological investigations of chickens from flocks naturally infected with Salmonella enteritidis. Vet Rec, 125, 567–72.
Corry, J. E., Allen, V. M., Hudson, W. R., Breslin, M. F. and Davies, R. H. (2002). Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control. J Appl Microbiol, 92, 424–32.
Cowden, J. M., Lynch, D., Joseph, C. A. et al. (1989). Case-control study of infections with Salmonella-enteritidis phage type-4 in England. BMJ, 299, 771–3.
Cox, J. M. (1995). Salmonella enteritidis – the egg and I. Aust Vet J, 72, 108–15.
Daniels, N. A., MacKinnon, L., Rowe, S. M. et al. (2002). Foodborne disease outbreaks in United States schools. Pediatr Infect Dis J, 21, 623–8.
D'Aoust, J. Y. (1985). Infective dose of Salmonella typhimurium in cheddar cheese. Am J Epidemiol, 122, 717–20.
de Louvois, J. (1993). Salmonella contamination of eggs. Lancet, 342, 366–7.
Desenclos, J. C., Bouvet, P., Benz-Lemoine, E. et al. (1996). Large outbreak of Salmonella enterica serotype paratyphi B infection caused by a goats' milk cheese, France, 1993: a case finding and epidemiological study. BMJ, 312, 91–4.
deWit, J. C., Broekhuizen, G. and Kampelmacher, E. H. (1979). Cross-contamination during the preparation of frozen chickens in the kitchen. J Hyg (Lond.), 83, 27–32.
Edwards, P. R. and Bruner, D. W. (1943). The occurrence and distribution of Salmonella types in the United States. J Infect Dis, 72, 58–67.
Firstenberg-Eden, R. (1981). Attachment of bacteria to meat surface: a review. J Food Prot, 44, 6002–7.
Gast, R. K. and Beard, C. W. (1990). Production of Salmonella enteritidis-contaminated eggs by experimentally infected hens. Avian Dis, 34, 438–46.
Gast, R. K. and Holt, P. S. (2000). Deposition of phage type 4 and 13a Salmonella enteritidis strains in the yolk and albumen of eggs laid by experimentally infected hens. Avian Dis, 44, 706–10.
Gay, J. M., Rice, D. H. and Steiger, J. H. (1994). Prevalence of faecal Salmonella shedding by cull dairy-cattle marketed in Washington-State. J Food Prot, 57, 195–7.
Gill, O. N., Bartlett, C. L. R., Sockett, P. N. et al. (1983). Outbreak of Salmonella-Napoli infection caused by contaminated chocolate bars. Lancet, 1, 574–7.
Grau, F. H. and Smith, M. G. (1974). Salmonella contamination of sheep and mutton carcasses related to pre-slaughter holding conditions. J Appl Bacteriol, 37, 111–16.
Guard-Petter, J. (2001). The chicken, the egg and Salmonella enteritidis. Environ Microbiol, 3, 421–30.
Haeghebaert, S., Duche, L., Gilles, C. et al. (2001). Minced beef and human salmonellosis: review of the investigation of three outbreaks in France. Euro Surveill, 6, 21–6.
Harbour, H. E., Abell, J. M., Cavanagh, P. et al. (1977). Salmonella: The Food Poisoner. London: British Association for the Advancement of Science.
Helms, M., Vastrup, P., Gerner-Smidt, P. and Molbak, K. (2003). Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based study. BMJ, 326, 357–9.
Hoop, R. K. and Pospischil, A. (1993). Bacteriological, serological, histological and immunohistochemical findings in laying hens with naturally acquired Salmonella enteritidis phage type-4 infection. Vet Rec, 133, 391–3.
Humphrey, T. J. (1991). Food poisoning – a change in patterns? Veterinary Annual, 31, 32–7.
Humphrey, T. J. (1994). Contamination of egg shell and contents with Salmonella enteritidis: a review. Int J Food Microbiol, 21, 31–40.
Humphrey, T. J. and Lanning, D. G. (1987). Salmonella and Campylobacter contamination of broiler chickens and scald tank water: the influence of water pH. J Appl Bacteriol, 63, 21–5.
Humphrey, T. J., Baskerville, A., Chart, H. and Rowe, B. (1989a). Infection of egg-laying hens with Salmonella enteritidis PT4 by oral inoculation. Vet Rec, 18, 531–2.
Humphrey, T. J., Baskerville, A., Mawer, S., Rowe, B. and Hopper, S. (1989b). Salmonella enteritidis phage type 4 from the contents of intact eggs: a study involving naturally infected hens. Epidemiol Infect, 103, 415–23.
Humphrey T. J., Cruickshank, J. G. and Rowe, B. (1989c). Salmonella enteritidis phage type-4 and hens' eggs. Lancet, 1, 281.
Humphrey, T. J., Martin, K. W. and Whitehead, A.(1994). Contamination of hands and work surfaces with Salmonella enteritidis PT4 during the preparation of egg dishes. Epidemiol Infect, 113, 403–9.
Humphrey, T. J., Slater, E., McAlpine, K., Rowbury, R. J. and Gilbert, R. J. (1995). Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid or hydrogen peroxide also survive longer on surfaces. Appl Environ Microbiol, 61, 3161–4.
Humphrey, T. J., Whitehead, A., Gawler, A. H., Henley, A. and Rowe, B. (1991). Numbers of Salmonella enteritidis in the contents of naturally contaminated hens' eggs. Epidemiol Infect, 106, 489–96.
Humphrey, T. J., Wilde, S. J., Rowbury, R. J. (1997). Heat tolerance of Salmonella typhimurium DT104 isolates attached to muscle tissue. Lett Appl Microbiol, 25, 265–8.
Humphrey, T. J., Williams, A., McAlpine, K. et al. (1996). Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol Infect, 117, 79–8.
Keller, L. H., Schifferli, D. M., Benson, C. E., Aslam, S. and Eckroade, R. J. (1997). Invasion of chicken reproductive tissues and forming eggs is not unique to Salmonella enteritidis. Avian Dis, 41, 535–9.
Kennedy, M., Villar, R., Vugia, D. J. et al.; Emerging Infections Program FoodNet Working Group (2004). Hospitalizations and deaths due to Salmonella infections, FoodNet, 1996–1999. Clin Infect Dis, 15 (38 suppl. 3), S142–8.
Killalea, D., Ward, L. R., Roberts, D. et al. (1996). International epidemiological and microbiological study of outbreak of Salmonella agona infection from a ready to eat savoury snack.1. England and Wales and the United States. BMJ, 313, 1105–7.
Leach, S. A., Williams, A., Davies, A. C. et al. (1999). Aerosol route enhances the contamination of intact eggs and muscle of experimentally infected laying hens by Salmonella typhimurium DT104. FEMS Microbiol Lett, 171, 203–7.
Li, J., Smith, N. H., Nelson, K. et al. (1993). Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J Med Microbiol, 38, 129–39.
Liebana, E., Garcia-Migura, L., Clouting, C. et al. (2003). Molecular fingerprinting evidence of the contribution of wildlife vectors in the maintenance of Salmonella enteritidis infection in layer farms. J Appl Microbiol, 94, 1024–9.
Lillard, H. S. (1973). Contamination of blood systems and edible parts of poultry with Clostridium perfringens during water scalding. J Food Sci, 38, 131–4.
Lister, S. A. (1988). Salmonella enteritidis infection in broilers and broiler breeders. Vet Rec, 123, 50.
Luby, S. P., Jones, J. L. and Horan, J. M. (1993). A large Salmonellosis outbreak associated with a frequently penalized restaurant. Epidemiol Infect, 110, 31–9.
Maguire, H., Cowden, J., Jacob, M. et al. (1992). An outbreak of Salmonella dublin infection in England and Wales associated with a soft unpasteurized cows' milk cheese. Epidemiol Infect, 109, 389–96.
Mattick, K. L., Phillips, L. E., Jorgensen, F., Lappin-Scott, H. M. and Humphrey, T. J. (2003). Filament formation by Salmonella spp. inoculated into liquid food matrices at refrigeration temperatures, and growth patterns when warmed. J Food Prot, 66, 215–19.
Mawer, S. L., Spain, G. E. and Rowe, B. (1989). Salmonella enteritidis phage type 4 and hens' eggs. Lancet, 280–1.
McBride, G. B., Skura, B. J., Yada, R. Y. and Bowmer, E. J. (1980). Relationship between incidence of Salmonella contamination among pre-scalded, eviscerated and post-chilled chickens in a poultry-processing plant. J Food Prot, 43, 538–42.
McClelland, M., Sanderson, K. E., Spieth, J. et al. (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852–6.
McIlroy, S. G., McCracken, R. M., Neill, S. D. and O'Brien, J. J. (1989). Control, prevention and eradication of Salmonella enteritidis infection in broiler and broiler breeder flocks. Vet Rec, 125, 545–8.
Mead, P. S., Slutsker, L., Dietz, V. et al. (1999). Food-related illness and death in the United States. Emerg Infect Dis, 5, 381–5.
Mulder, R. W., Dorresteijn, L. W. and Van der Broek, J. (1978). Cross-contamination during scalding and plucking of broilers. Br Poult Sci, 19, 61–70.
Nietfeld, J. C., Yeary, T. J., Basaraba, R. J. and Schauenstein, K. (1999). Norepinephrine stimulates in vitro growth but does not increase pathogenicity of Salmonella choleraesuis in an in vivo model. Adv Exp Med Biol, 473, 249–60.
Notermans, S., Kampelmacher, E. H. and van Schothorst, M. (1975). Studies on sampling methods used in control of hygiene in poultry processing. J Appl Bacteriol, 39, 55–61.
Padron, M. (1990). Salmonella typhimurium penetration through the eggshell of hatching eggs. Avian Dis, 34, 463–5.
Pang, T., Bhutta, Z. A., Finlay, B. B. and Altwegg, M. (1995). Typhoid-fever and other salmonellosis – a continuing challenge. Trends Microbiol, 3, 253–5.
Patrick, M. E., Adcock, P. M., Gomez, T. M. et al. (2004). Salmonella enteritidis infections, United States, 1985–1999. Emerg Infect Dis, 10, 1–7.
Paul, J. and Batchelor, B. (1988). Salmonella enteritidis phage type 4 and hens' eggs. Lancet, 2, 1421.
Perales, I. and Audicana, A. (1989). The role of hens' eggs in outbreaks of salmonellosis in north Spain. Int J Food Microbiol, 8, 175–80.
Rabsch, W., Tschape, H. and Baumler, A. J. (2001). Non-typhoidal salmonellosis: emerging problems. Microbes Infect, 3, 237–47.
Rampling, A., Anderson, J. R., Upson, R. et al. (1989). Salmonella enteritidis phage-type-4 infection of broiler-chickens – a hazard to public-health. Lancet, 2, 436–8.
Rees, J. R., Pannier, M. A., McNees, A. et al. (2004). Persistent diarrhea, arthritis, and other complications of enteric infections: a pilot survey based on California FoodNet surveillance, 1998–1999. Clin Infect Dis, 38 (suppl. 3), S311–17.
Refregier-Petton, J., Kemp, G. K., Nebout, J. M., Allo, J. C. and Salvat, G. (2003). Post treatment effects of a SANOVA immersion treatment on turkey carcases and subsequent influence on recontamination and cross contamination of breast fillet meat during turkey processing. Br Poult Sci, 44, 790–1.
Rice, D. H., Besser, T. E. and Hancock, D. D. (1997). Epidemiology and virulence assessment of Salmonella dublin. Vet Microbiol, 56, 111–24.
Riemann, H., Kass, P. and Cliver, D. (2000). Salmonella enteritidis epidemic. Science, 287, 1754–5.
Roberts, D. (1986). Factors contributing to outbreaks of food-borne infection and intoxication in England and Wales 1970–1982. In 2nd World Congress Foodborne Infections and Intoxication, Berlin, 1, 157–9.
Roberts, J. A., Cumberland, P., Sockett, P. N. et al. and Infectious Intestinal Disease Study Executive (2003). The study of infectious intestinal disease in England: socio-economic impact. Epidemiol Infect, 130, 1–11.
Rowe, B., Hutchinson, D. N., Gilbert, R. J. et al. (1987). Salmonella ealing infections associated with consumption of infant dried milk. Lancet, 2, 900–3.
Ryan, C. A., Nickels, M. K., Hargrett-Bean, N. T. et al. (1987). Massive outbreak of antimicrobial-resistant salmonellosis traced to pasteurized milk. JAMA, 258, 3269–74.
Scott, W. M. (1930). Food poisoning due to eggs. BMJ, 12, 56–8.
Selander, R. K., Beltran, P., Smith, N. H. et al. (1990). Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun, 58, 2262–75.
Shelobolina, E. S., Sullivan, S. A., O'Neill, K. R., Nevin, K. P. and Lovley, D. R. (2004). Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov. Appl Environ Microbiol, 70, 2959–65.
Slader, J., Domingue, G., Jorgensen, F. et al. (2002). Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl Environ Microbiol, 68, 713–19.
Solowey, M., Spaulding, E. H. and Goresline, H. E. (1946). An investigation of a source of mode of entry of Salmonella organisms in spray-dried whole-egg powder. Food Research, 11, 380–90.
Sparks, N. H. C. and Board, R. G. (1985). Bacterial penetration of the recently oviposited shell of hens eggs. Aust Vet J, 62, 169–70.
St Louis, M. E., Morse, D. L., Potter, M. E. et al. (1988). The emergence of grade A eggs as a major source of Salmonella enteritidis infections: new implications for the control of salmonellosis. JAMA, 259, 2103–7.
Stevens, A., Joseph, C., Bruce, J. et al. (1989). A large outbreak of Salmonella enteritidis phage type-4 associated with eggs from overseas. Epidemiol Infect, 103, 425–33.
Thatcher, F. S. and Montford, J. (1962). Egg products as a source of Salmonellae in processed foods. Can J Public Health, 53, 61–9.
Threlfall, E. J., Hall, M. L. and Rowe, B. (1992). Salmonella bacteraemia in England and Wales, 1981–1990. J Clin Pathol, 45, 34–6.
Timoney, J. F., Shivaprasad, H. L., Baker, R. C. and Rowe, B. (1989). Egg transmission after infection of hens with Salmonella enteritidis phage type 4. Vet Rec, 125, 600–1.
Turcotte, C. and Woodward, M. J. (1993). Cloning, DNA nucleotide sequence and distribution of the gene encoding the SEF14 fimbrial antigen of Salmonella enteritidis. J Gen Microbiol, 139, 1477–85.
Vadehra, D. V., Baker, R. C. and Naylor, H. B. (1969). Salmonella infection of cracked eggs. Br Poult Sci, 48, 954–7.
van Duynhoven, Y. T., Widdowson, M. A., de Jager, C. M. et al. (2002). Salmonella enterica serotype Enteritidis phage type 4b outbreak associated with bean sprouts. Emerg Infect Dis, 8, 440–3.
Voetsch, A. C., Van Gilder, T. J., Angulo, F. J. et al. Emerging Infections Program FoodNet Working Group (2004). FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis, 38 (suppl. 3), S127–34.
Vought, K. J. and Tatini, S. R. (1998). Salmonella enteritidis contamination of ice cream associated with a 1994 multistate outbreak. J Food Prot, 61, 5–10.
Wall, P. G., Morgan, D., Lamden, K. et al. (1994). A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. CDR Review, 4, R130–5.
Ward, L. R., Threlfall, E. J., Smith, H. R. and O' Brien, S. J. (2000). Salmonella enteritidis epidemic. Science, 287, 1753–4.
Wheeler, J. G., Sethi, D., Cowden, J. M. et al. (1999). Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance. BMJ, 318, 1046–50.
Williams, E. F. and Spencer, R. (1973). Abattoir practices and their effect on the incidence of Salmonellae in meat. In B. C. Hobbs and J. H. B. Christian, eds., The Microbiological Safety of Food. London: Academic Press, pp. 41–6.
Williams, J. E. (1981). Salmonella in poultry feeds – a worldwide review. Part 1. World's Poult Sci J, 37, 6–19.
Wilson, I. G., Wilson, T. S. and Weatherup, S. T. (1996). Salmonella in retail poultry in Northern Ireland. CDR Review, 6, R64–6.
Wilson, J. E. (1945). Infected egg shells as a means of spread of salmonellosis in chicks and ducklings. Vet Rec, 57, 411–13.
Winter, A. R., Stewart, G. F., McFarlane, V. H. and Solowey, M. (1946). Pasteurisation of liquid egg products III. Destruction of Salmonella in liquid whole egg. Am J Public Health, 36, 451–60.
Wray, C. and Wray, A. (2000). Salmonella in domestic animals. (Wallingford, Oxfordshire: CABI Publishing).
Wray, C., Todd, N., Mclaren, I. M. and Beedell, Y. E. (1991). The epidemiology of Salmonella in calves – the role of markets and vehicles. Epidemiol Infect, 107, 521–5.

Reference Title: References

Reference Type: reference-list

Agron, P. G., Macht, M., Radnedge, L. et al. (2002). Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. FEMS Microbiol Lett, 211, 175–82.
Agron, P. G., Walker, R. L., Kinde, H. et al. (2001). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl Environ Microbiol, 67, 4984–91.
Ahmer, B. M., Tran, M. and Heffron, F. (1999). The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol, 181, 1364–8.
Alokam, S., Liu, S. L., Said, K. and Sanderson, K. E. (2002). Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar Typhi. J Bacteriol, 184, 6190–7.
Astill, D. S., Manning, P. A. and Heuzenroeder, M. W. (1993). Characterization of the small cryptic plasmid, pIMVS1, of Salmonella enterica ser. Typhimurium. Plasmid, 30, 258–67.
Badarinarayana, V., Estep, P. W., III, Shendure, J. et al. (2001). Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol, 19, 1060–5.
Bakshi, C. S., Singh, V. P., Wood, M. W. et al. (2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol, 182, 2341–4.
Baumler, A. J., Gilde, A. J., Tsolis, R. M. et al. (1997). Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J Bacteriol, 179, 317–22.
Baumler, A. J., Tsolis, R. M., Bowe, F. A. et al. (1996). The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun, 64, 61–8.
Beltran, P., Musser, J. M., Helmuth, R. et al. (1988). Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci USA, 85, 7753–7.
Blattner, F. R., Plunkett, G., III, Bloch, C. A. et al. (1997). The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–74.
Boyd, E. F. and Brussow, H. (2002). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol, 10, 521–9.
Boyd, E. F. and Hartl, D. L. (1998). Salmonella virulence plasmid. Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics, 149, 1183–90.
Boyd, E. F., Porwollik, S., Blackmer, F. and McClelland, M. (2003). Differences in gene content among Salmonella enterica serovar Typhi isolates. J Clin Microbiol, 41, 3823–8.
Boyd, E. F., Wang, F. S., Whittam, T. S. and Selander, R. K. (1996). Molecular genetic relationships of the salmonellae. Appl Environ Microbiol, 62, 804–8.
Brumell, J. H., Kujat-Choy, S., Brown, N. F. et al. (2003). SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic, 4, 36–48.
Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L. and Brussow, H. (2003). Phage as agents of lateral gene transfer. Curr Opin Microbiol, 6, 417–24.
Chan, K., Baker, S., Kim, C. C. et al. (2003). Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of a S. enterica serovar Typhimurium DNA microarray. J Bacteriol, 185, 553–63.
Clouthier, S. C., Muller, K. H., Doran, J. L., Collinson, S. K. and Kay, W. W. (1993). Characterization of three fimbrial genes, sefABC, of Salmonella enteritidis. J Bacteriol, 175, 2523–33.
Cole, S. T., Eiglmeier, K., Parkhill, J. et al. (2001). Massive gene decay in the leprosy bacillus. Nature, 409, 1007–11.
Conway, T. and Schoolnik, G. K. (2003). Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol, 47, 879–89.
Crosa, J. H., Brenner, D. J., Ewing, W. H. and Falkow, S. (1973). Molecular relationships among the salmonelleae. J Bacteriol, 115, 307–15.
Datsenko, K. A. and Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 97, 6640–5.
Delcher, A. L., Harmon, D., Kasif, S., White, O. and Salzberg, S. L. (1999a). Improved microbial gene identification with GLIMMER. Nucleic Acids Res, 27, 4636–41.
Delcher, A. L., Kasif, S., Fleischmann, R. D. et al. (1999b). Alignment of whole genomes. Nucleic Acids Res, 27, 2369–76.
Deng, W., Liou, S. R., Plunkett, G., III et al. (2003). Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol, 185, 2330–7.
Detweiler, C. S., Cunanan, D. B. and Falkow, S. (2001). Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA, 98, 5850–5.
Doran, J. L., Collinson, S. K., Burian, J. et al. (1993). DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J Clin Microbiol, 31, 2263–73.
Duguid, J. P., Anderson, E. S., Alfredsson, G. A., Barker, R. and Old, D. C. (1975). A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. J Med Microbiol, 8, 149–66.
Emmerth, M., Goebel, W., Miller, S. I. and Hueck, C. J. (1999). Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol, 181, 5652–61.
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.
Felix, A. (1956). Phage typing of Salmonella typhimurium: its place in epidemiological and epizootiological investigations. J Gen Microbiol, 14, 208–22.
Figueroa-Bossi, N. and Bossi, L. (1999). Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol, 33, 167–76.
Figueroa-Bossi, N., Uzzau, S., Maloriol, D. and Bossi, L. (2001). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol, 39, 260–71.
Florea, L., McClelland, M., Riemer, C., Schwartz, S. and Miller, W. (2003). EnteriX 2003: visualization tools for genome alignments of Enterobacteriaceae. Nucleic Acids Res, 31, 3527–32.
Folkesson, A., Advani, A., Sukupolvi, S. et al. (1999). Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol, 33, 612–22.
Franco, A., Gonzalez, C., Levine, O. S. et al. (1992). Further consideration of the clonal nature of Salmonella typhi: evaluation of molecular and clinical characteristics of strains from Indonesia and Peru. J Clin Microbiol, 30, 2187–90.
Galan, J. E. (2001). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol, 17, 53–86.
Galan, J. E. and Curtiss, R. (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.
Garaizar, J., Porwollik, S., Echeita, A. et al. (2002). DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar. J Clin Microbiol, 40, 2074–8.
Gregorova, D., Pravcova, M., Karpiskova, R. and Rychlik, I. (2002). Plasmid pC present in Salmonella enterica serovar Enteritidis PT14b strains encodes a restriction modification system. FEMS Microbiol Lett, 214, 195–8.
Guerra, B., Soto, S., Helmuth, R. and Mendoza, M. C. (2002). Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob Agents Chemother, 46, 2977–81.
Gulig, P. A., Danbara, H., Guiney, D. G. et al. (1993). Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol, 7, 825–30.
Haack, K. R. and Roth, J. R. (1995). Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. Genetics, 141, 1245–52.
Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. and Danbara, H. (2001). Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun, 69, 2612–20.
Hansen-Wester, I. and Hensel, M. (2002). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun, 70, 2351–60.
Hayashi, T., Makino, K., Ohnishi, M. et al. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157: H7 and genomic comparison with a laboratory strain K-12. DNA Res, 8, 11–22.
Heffernan, E. J., Harwood, J., Fierer, J. and Guiney, D. (1992). The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol, 174, 84–91.
Hensel, M., Nikolaus, T. and Egelseer, C. (1999). Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol, 31, 489–98.
Hill, C. W. and Harnish, B. W. (1981). Inversions between ribosomal RNA genes of Escherichia coli. Proc Natl Acad Sci USA, 78, 7069–72.
Humphries, A. D., Townsend, S. M., Kingsley, R. A. et al. (2001). Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol Lett, 201, 121–5.
Jin, Q., Yuan, Z., Xu, J. et al. (2002). Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res, 30, 4432–41.
Jungblut, P. R. (2001). Proteome analysis of bacterial pathogens. Microbes Infect, 3, 831–40.
Kauffmann, F. (1957). [The Kauffmann-White schema; diagnostic Salmonella antigen schema.] Ergeb Mikrobiol Immunitatsforsch Exp Ther, 30, 160–216.
Kidgell, C., Pickard, D., Wain, J. et al. (2002). Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2. Plasmid, 47, 159–71.
Kingsley, R. A., van Amsterdam, K., Kramer, N. and Baumler, A. J. (2000). The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect Immun, 68, 2720–7.
Koay, A. S., Jegathesan, M., Rohani, M. Y. and Cheong, Y. M. (1997). Pulsed-field gel electrophoresis as an epidemiologic tool in the investigation of laboratory acquired Salmonella typhi infection. Southeast Asian J Trop Med Public Health, 28, 82–4.
Lawhon, S. D., Frye, J. G., Suyemoto, M. et al. (2003). Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol, 48, 1633–45.
Lawrence, J. G., Hendrix, R. W. and Casjens, S. (2001). Where are the pseudogenes in bacterial genomes? Trends Microbiol, 9, 535–40.
Lesnick, M. L., Reiner, N. E., Fierer, J. and Guiney, D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol, 39, 1464–70.
Libby, S. J., Adams, L. G., Ficht, T. A. et al. (1997). The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun, 65, 1786–92.
Libby, S. J., Lesnick, M., Hasegawa, P., Weidenhammer, E. and Guiney, D. G. (2000). The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol, 2, 49–58.
Liu, G. R., Rahn, A., Liu, W. Q., Sanderson, K. E., Johnston, R. N. and Liu, S. L. (2002). The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol, 184, 2626–33.
Liu, S. L. and Sanderson, K. E. (1995). Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA, 92, 1018–22.
Liu, S. L. and Sanderson, K. E. (1998). Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. FEMS Microbiol Lett, 164, 275–81.
Liu, S. L., Hessel, A. and Sanderson, K. E. (1993). The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol, 175, 4104–20.
Marcus, S. L., Brumell, J. H., Pfeifer, C. G. and Finlay, B. B. (2000). Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect, 2, 145–56.
Matsui, H., Bacot, C. M., Garlington, W. A. et al. (2001). Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol, 183, 4652–8.
McClelland, M., Florea, L., Sanderson, K. et al. (2000). Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three Salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Res, 28, 4974–86.
McClelland, M., Sanderson, K. E., Spieth, J. et al. (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852–6.
McClelland, M., Sanderson, K. and Clifton, S. W. (2004). Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet., 36, 1268–74.
Millemann, Y., Gaubert, S., Remy, D. and Colmin, C. (2000). Evaluation of IS200-PCR and comparison with other molecular markers to trace Salmonella enterica subsp. enterica serotype typhimurium bovine isolates from farm to meat. J Clin Microbiol, 38, 2204–9.
Mirold, S., Rabsch, W., Tschape, H. and Hardt, W. D. (2001). Transfer of the Salmonella type III effector sopE between unrelated phage families. J Mol Biol, 312, 7–16.
Montenegro, M. A., Morelli, G. and Helmuth, R. (1991). Heteroduplex analysis of Salmonella virulence plasmids and their prevalence in isolates of defined sources. Microb Pathog, 11, 391–7.
Nair, S., Schreiber, E., Thong, K. L., Pang, T. and Altwegg, M. (2000). Genotypic characterization of Salmonella typhi by amplified fragment length polymorphism fingerprinting provides increased discrimination as compared to pulsed-field gel electrophoresis and ribotyping. J Microbiol Methods, 41, 35–43.
Ochman, H. and Groisman, E. A. (1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun, 64, 5410–12.
Ochman, H. and Wilson, A. C. (1987). Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol, 26, 74–86.
Paesold, G., Guiney, D. G., Eckmann, L. and Kagnoff, M. F. (2002). Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol, 4, 771–81.
Parkhill, J., Dougan, G., James, K. D. et al. (2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.
Parry, C. M., Hien, T. T., Dougan, G., White, N. J. and Farrar, J. J. (2002). Typhoid fever. N Engl J Med, 347, 1770–82.
Perna, N. T., Plunkett, G., III, Burland, V. et al. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 409, 529–33.
Pickard, D., Wain, J., Baker, S. et al. (2003). Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol, 185, 5055–65.
Popoff, M. Y., Bockemuhl, J. and Gheesling, L. L. (2003). Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res Microbiol, 154, 173–4.
Porwollik, S., Frye, J., Florea, L. D., Blackmer, F. and McClelland, M. (2003). A non-redundant microarray of genes for two related bacteria. Nucleic Acids Res, 31, 1869–76.
Porwollik, S., Wong, R. M. and McClelland, M. (2002). Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci USA, 99, 8956–61.
Prager, R., Rabsch, W., Streckel, W. et al. (2003). Molecular properties of Salmonella enterica serotype paratyphi B distinguish between its systemic and its enteric pathovars. J Clin Microbiol, 41, 4270–8.
Reeves, M. W., Evins, G. M., Heiba, A. A., Plikaytis, B. D. and Farmer, J. J., III. (1989). Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol, 27, 313–20.
Rodriguez-Pena, J. M., Buisan, M., Ibanez, M. and Rotger, R. (1997). Genetic map of the virulence plasmid of Salmonella enteritidis and nucleotide sequence of its replicons. Gene, 188, 53–61.
Roth, J. R., Lawrence, J. G. and Bobik, T. A. (1996). Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol, 50, 137–81.
Rychlik, I., Lovell, M. A. and Barrow, P. A. (1998). The presence of genes homologous to the K88 genes faeH and faeI on the virulence plasmid of Salmonella gallinarum. FEMS Microbiol Lett, 159, 255–60.
Sassetti, C. M., Boyd, D. H. and Rubin, E. J. (2001). Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA, 98, 12712–7.
Selander, R. K., Beltran, P., Smith, N. H. et al. (1990a). Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B. Infect Immun, 58, 1891–901.
Selander, R. K., Beltran, P., Smith, N. H. et al. (1990b). Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun, 58, 2262–75.
Shalon, D., Smith, S. J. and Brown, P. O. (1996). A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res, 6, 639–45.
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.
Sherburne, C. K., Lawley, T. D., Gilmour, M. W. et al. (2000). The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res, 28, 2177–86.
Swenson, D. L., Clegg, S. and Old, D. C. (1991). The frequency of fim genes among Salmonella serovars. Microb Pathog, 10, 487–92.
Thomson, N., Baker, S., Pickard, D. et al. (2004). The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol, 339, 279–300.
Threlfall, E. J., Ward, L. R., Hampton, M. D. et al. (1998). Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol Infect, 121, 289–93.
Townsend, S. M., Kramer, N. E., Edwards, R. et al. (2001). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun, 69, 2894–901.
Tsolis, R. M., Townsend, S. M., Miao, E. A. et al. (1999). Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun, 67, 6385–93.
Uzzau, S., Bossi, L. and Figueroa-Bossi, N. (2002). Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol, 46, 147–56.
Virlogeux-Payant, I., Mompart, F., Velge, P., Bottreau, E. and Pardon, P. (2003). Low persistence of a large-plasmid-cured variant of Salmonella enteritidis in ceca of chicks. Avian Dis, 47, 163–8.
Wain, J., Diem Nga, L. T., Kidgell, C. et al. (2003). Molecular analysis of incHI1 antimicrobial resistance plasmids from Salmonella serovar Typhi strains associated with typhoid fever. Antimicrob Agents Chemother, 47, 2732–9.
Wei, J., Goldberg, M. B., Burland, V. et al. (2003). Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun, 71, 2775–86.
Wilson, J. W., Ramamurthy, R., Porwollik, S. et al. (2002). Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci USA, 99, 13807–12.
Wood, M. W., Jones, M. A., Watson, P. R. et al. (2000). The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol, 2, 293–303.
Ye, R. W., Wang, T., Bedzyk, L. and Croker, K. M. (2001). Applications of DNA microarrays in microbial systems. J Microbiol Methods, 47, 257–72.
Zeng, H., Carlson, A. Q., Guo, Y. et al. (2003). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol, 171, 3668–74.

Reference Title: References

Reference Type: reference-list

Ahmer, B. M., van Reeuwijk, J., Watson, P. R., Wallis, T. S. and Heffron, F. (1999). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol, 31, 971–82.
Amavisit, P., Lightfoot, D., Browning, G. F. and Markham, P. F. (2003). Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol, 185, 3624–35.
Bäumler, A. J. (1997). The record of horizontal gene transfer in Salmonella. Trends Microbiol, 5, 318–22.
Bäumler, A. J., Tsolis, R. M., van der Velden, A. W. et al. (1996). Identification of a new iron regulated locus of Salmonella typhi. Gene, 183, 207–13.
Beuzon, C. R., Meresse, S., Unsworth, K. E. et al. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of sifA. EMBO J, 19, 3235–49.
Blanc-Potard, A. B. and Groisman, E. A. (1997). The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J, 16, 5376–85.
Blanc-Potard, A. B., Solomon, F., Kayser, J. and Groisman, E. A. (1999). The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol, 181, 998–1004.
Boyd, D., Peters, G. A., Cloeckaert, A. et al. (2001). Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol, 183, 5725–32.
Carniel, E. (2001). The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect, 3, 561–9.
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.
Cirillo, D. M., Valdivia, R. H., Monack, D. M. and Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol, 30, 175–88.
Deiwick, J., Nikolaus, T., Erdogan, S. and Hensel, M. (1999). Environmental regulation of Salmonella Pathogenicity Island 2 gene expression. Mol Microbiol, 31, 1759–73.
Doublet, B., Lailler, R., Meunier, D. et al. (2003). Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany. Emerg Infect Dis, 9, 585–91.
Figueroa-Bossi, N., Uzzau, S., Maloriol, D. and Bossi, L. (2001). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol, 39, 260–71.
Folkesson, A., Lofdahl, S. and Normark, S. (2002). The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol, 153, 537–45.
Foultier, B., Troisfontaines, P., Muller, S., Opperdoes, F. R. and Cornelis, G. R. (2002). Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol, 55, 37–51.
Freeman, J. A., Rappl, C., Kuhle, V., Hensel, M. and Miller, S. I. (2002). SpiC is required for translocation of Salmonella Pathogenicity Island 2 effectors and secretion of translocon proteins SseB and SseC. J Bacteriol, 184, 4971–80.
Fu, Y. and Galan, J. E. (1999). A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature, 401, 293–7.
Galan, J. E. (2001). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol, 17, 53–86.
Galan, J. E. and Curtiss, R. (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.
Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y. and Finlay, B. B. (1993). Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci USA, 90, 10544–8.
Ginocchio, C. C., Rahn, K., Clarke, R. C. and Galan, J. E. (1997). Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun, 65, 1267–72.
Groisman, E. A. and Ochman, H. (1993). Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J, 12, 3779–87.
Groisman, E. A. and Ochman, H. (1997). How Salmonella became a pathogen. Trends Microbiol, 5, 343–9.
Hacker, J., Knapp, S. and Goebel, W. (1983). Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. J Bacteriol, 154, 1145–52.
Hansen-Wester, I. and Hensel, M. (2002). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun, 70, 2351–60.
Hansen-Wester, I., Stecher, B. and Hensel, M. (2002). Analyses of the evolutionary distribution of Salmonella translocated effectors. Infect Immun, 70, 1619–22.
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–26.
Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. and Berks, B. C. (1999a). The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol, 32, 275–88.
Hensel, M., Nikolaus, T. and Egelseer, C. (1999b). Molecular and functional analysis indicates a mosaic structure of Salmonella Pathogenicity Island 2. Mol Microbiol, 31, 489–98.
Hensel, M., Shea, J. E., Bäumler, A. J. et al. (1997). Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol, 179, 1105–11.
Hensel, M., Shea, J. E., Gleeson, C. et al. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–3.
Hersh, D., Monack, D. M., Smith, M. R. et al. (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to Caspase-1. Proc Natl Acad Sci USA, 96, 2396–401.
Hindle, Z., Chatfield, S. N., Phillimore, J. et al. (2002). Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella Pathogenicity Island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun, 70, 3457–67.
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 62, 379–433.
Jones, M. A., Wood, M. W., Mullan, P. B. et al. (1998). Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect Immun, 66, 5799–804.
Knodler, L. A. and B. B. Finlay (2001). Salmonella and apoptosis: to live or let die? Microbes Infect, 3, 1321–6.
Knodler, L. A., Celli, J., Hardt, W. D. et al. (2002). Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol, 43, 1089–103.
Kubori, T., Matsushima, Y., Nakamura, D., Galan, J. E. and Aizawa, S. I. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science, 280, 602–5.
Kuhle, V. and Hensel, M. (2002). SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol, 4, 813–24.
Lee, A. K., Detweiler, C. S. and Falkow, S. (2000). OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol, 182, 771–81.
Lucas, R. L. and Lee, C. A. (2000). Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol Microbiol, 36, 1024–33.
Medina, E., Paglia, P., Nikolaus, T. et al. (1999). Pathogenicity Island 2 mutants of Salmonella typhimurium are efficient carriers for heterologous antigens and enable modulation of immune responses. Infect Immun, 67, 1093–9.
Miao, E. A. and Miller, S. I. (2000). A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci USA, 97, 7539–44.
Mills, D. M., Bajaj, V. and Lee, C. A. (1995). A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol, 15, 749–59.
Mirold, S., Ehrbar, K., Weissmüller, A. et al. (2001). Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella Pathogenicity Island 1 (SPI-1), SPI-5, and sopE2. J Bacteriol, 183, 2348–58.
Mirold, S., Rabsch, W., Rohde, M. et al. (1999). Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA, 96, 9845–50.
Monack, D. M., Detweiler, C. S. and Falkow, S. (2001). Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease Caspase-1. Cell Microbiol, 3, 825–37.
Monack, D. M., Hersh, D., Ghori, N. et al. (2000). Salmonella exploits Caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med, 192, 249–58.
Moncrief, M. B. and Maguire, M. E. (1998). Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect Immun, 66, 3802–9.
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA, 95, 14057–9.
Ochman, H. and Groisman, E. A. (1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun, 64, 5410–12.
Ochman, H., Soncini, F. C., Solomon, F. and Groisman, E. A. (1996). Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci. USA, 93, 7800–4.
Oelschlaeger, T. A., Zhang, D., Schubert, S. et al. (2003). The High-Pathogenicity Island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J Bacteriol, 185, 1107–11.
Parkhill, J., Dougan, G., James, K. D. (2001a). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.
Parkhill, J., Wren, B. W., Thomson, N. R. (2001b). Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523–7.
Pickard, D., Wain, J., Baker, S. et al. (2003). Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol, 185, 5055–65.
Rappl, C., Deiwick, J. and Hensel, M. (2003). Acidic pH is required for the functional assembly of the type III secretion system encoded by Salmonella pathogenicity island 2. FEMS Microbiol. Lett, 226, 363–72.
Rescigno, M., Urbano, M., Valzasina, B. et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2, 361–7.
Schmidt, H. and Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clin Microbiol. Rev, 17, 14–56.
Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. and Holden, D. W. (1999). Influence of the Salmonella typhimurium Pathogenicity Island 2 type III secretion system on bacterial growth in the mouse. Infect Immun, 67, 213–19.
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.
Snavely, M. D., Miller, C. G. and Maguire, M. E. (1991). The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem, 266, 815–23.
Stevens, M. P., Wood, M. W., Taylor, L. A. et al. (2002). An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol, 46, 649–59.
Townsend, S. M., Kramer, N. E., Edwards, R. et al. (2001). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun, 69, 2894–901.
Uchiya, K., Barbieri, M. A., Funato, K. et al. (1999). A Salmonella virulence protein that inhibits cellular trafficking. EMBO J, 18, 3924–33.
Vazquez-Torres, A., Jones-Carson, J., Bäumler, A. J. et al. (1999). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 401, 804–8.
Vazquez-Torres, A., Xu, Y., Jones-Carson, J. et al. (2000). Salmonella Pathogenicity Island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.
Wallis, T. S. and Galyov, E. E. (2000). Molecular basis of Salmonella-induced enteritis. Mol Microbiol, 36, 997–1005.
Waterman, S. R. and Holden, D. W. (2003). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol, 5, 501–11.
Wong, K. K., McClelland, M., Stillwell, L. C. et al. (1998). Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun, 66, 3365–71.
Wood, M. W., Jones, M. A., Watson, P. R. et al. (1998). Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol, 29, 883–91.
Yu, X. J., Ruiz-Albert, J., Unsworth, K. E. et al. (2002). SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cell Microbiol, 4, 531–40.
Zhang, X. L., Morris, C. and Hackett, J. (1997). Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major ‘pathogenicity island’ of Salmonella typhi. Gene, 202, 139–46.
Zhang, X. L., Tsui, I. S., Yip, C. M. et al. (2000). Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun, 68, 3067–73.
Zhou, D., Hardt, W. D. and Galan, J. E. (1999). Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun, 67, 1974–81.

Reference Title: References

Reference Type: reference-list

Ahmer, B. M., van Reeuwijk, J., Watson, P. R., Wallis, T. S. and Heffron, F. (1999). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol, 31, 971–82.
Alpuche-Aranda, C. M., Racoosin, E. L., Swanson, J. A. and Miller, S. I. (1994). Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med, 179, 601–8.
Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. and Miller, S. I. (1992). Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA, 89, 10079–83.
Bader, M. W., Navarre, W. W., Shiau, W. et al. (2003). Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol, 50, 219–30.
Bajaj, V., Hwang, C. and Lee, C. A. (1995). hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol, 18, 715–27.
Bajaj, V., Lucas, R. L., Hwang, C. and Lee, C. A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol, 22, 703–14.
Bakshi, C. S., Singh, V. P., Wood, M. W. et al. (2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol, 182, 2341–4.
Baümler, A. J., Kusters, J. G., Stojiljkovic, I. and Heffron, F. (1994). Salmonella typhimurium loci involved in survival within macrophages. Infect Immun, 62, 1623–30.
Bearson, B. L., Wilson, L. and Foster, J. W. (1998). A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol, 180, 2409–17.
Bearson, S., Bearson, B. and Foster, J. W. (1997). Acid stress responses in enterobacteria. FEMS Microbiol Lett, 147, 173–80.
Bearson, S. M., Benjamin, W. H., Jr., Swords, W. E. and Foster, J. W. (1996). Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol, 178, 2572–9.
Behlau, I. and Miller, S. I. (1993). A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol, 175, 4475–84.
Beuzon, C. R., Meresse, S., Unsworth, K. E. et al. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo J, 19, 3235–49.
Bispham, J., Tripathi, B. N., Watson, P. R. and Wallis, T. S. (2001). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun, 69, 367–77.
Blanc-Potard, A. B. and Groisman, E. A. (1997). The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. Embo J, 16, 5376–85.
Bowe, F., Lipps, C. J., Tsolis, R. M. et al. (1998). At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun, 66, 3372–7.
Bumann, D. (2001). In vivo visualization of bacterial colonization, antigen expression, and specific T-cell induction following oral administration of live recombinant Salmonella enterica serovar Typhimurium. Infect Immun, 69, 4618–26.
Bumann, D. (2002). Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol, 43, 1269–83.
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.
Chatfield, S. N., Dorman, C. J., Hayward, C. and Dougan, G. (1991). Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. Infect Immun, 59, 449–52.
Conner, C. P., Heithoff, D. M. and Mahan, M. J. (1998). In vivo gene expression: contributions to infection, virulence, and pathogenesis. Curr Top Microbiol Immunol, 225, 1–12.
DeGroote, M. A., Ochsner, U. A., Shiloh, M. U. et al. (1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA, 94, 13997–4001.
Detweiler, C. S., Monack, D. M., Brodsky, I. E., Mathew, H. and Falkow, S. (2003). virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol, 48, 385–400.
Dorman, C. J., Chatfield, S., Higgins, C. F., Hayward, C. and Dougan, G. (1989). Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun, 57, 2136–40.
Eichelberg, K. and Galan, J. E. (1999). Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. Infect Immun, 67, 4099–105.
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.
Ernst, R. K., Dombroski, D. M. and Merrick, J. M. (1990). Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. Infect Immun, 58, 2014–16.
Fang, F. C., DeGroote, M. A., Foster, J. W. et al. (1999). Virulent Salmonella typhimurium has two periplasmic cu, Zn-superoxide dismutases. Proc Natl Acad Sci USA, 96, 7502–7.
Fields, P. I., Groisman, E. A. and Heffron, F. (1989). A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science, 243, 1059–62.
Fields, P. I., Swanson, R. V., Haidaris, C. G. and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA, 83, 5189–93.
Foster, J. W. and Spector, M. P. (1995). How Salmonella survive against the odds. Annu Rev Microbiol, 49, 145–74.
Friebel, A., Ilchmann, H., Aepfelbacher, M. et al. (2001). SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem, 276, 34035–40.
Galán, J. E. and Curtiss, R., III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.
Galán, J. E. and Curtiss, R., III (1990). Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun, 58, 1879–85.
Garcia Vescovi, E., Soncini, F. C. and Groisman, E. A. (1996). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell, 84, 165–74.
Garcia-del Portillo, F., Foster, J. W. and Finlay, B. B. (1993). Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun, 61, 4489–92.
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol, 167, 1882–5.
Groisman, E. A., Chiao, E., Lipps, C. J. and Heffron, F. (1989). Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA, 86, 7077–81.
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. and Heffron, F. (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 89, 11939–43.
Guiney, D. G., Fang, F. C., Krause, M. et al. (1995). Biology and clinical significance of virulence plasmids in Salmonella serovars. Clin Infect Dis, 21 (suppl. 2), S146–S151.
Gulig, P. A. and Curtiss, R., III (1987). Plasmid-associated virulence of Salmonella typhimurium. Infect Immun, 55, 2891–901.
Gulig, P. A. and Curtiss, R., III (1988). Cloning and transposon insertion mutagenesis of virulence genes of the 100-kilobase plasmid of Salmonella typhimurium. Infect Immun, 56, 3262–71.
Gulig, P. A., Caldwell, A. L. and Chiodo, V. A. (1992). Identification, genetic analysis and DNA sequence of a 7.8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol, 6, 1395–411.
Gulig, P. A., Doyle, T. J., Hughes, J. A. and Matsui, H. (1998). Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun, 66, 2471–85.
Gunn, J. S. and Miller, S. I. (1996). PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol, 178, 6857–64.
Gunn, J. S., Belden, W. J. and Miller, S. I. (1998). Identification of PhoP-PhoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. Microb Pathog, 25, 77–90.
Gunn, J. S., Hohmann, E. L. and Miller, S. I. (1996). Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol, 178, 6369–73.
Guo, L., Lim, K. B., Gunn, J. S. et al. (1997). Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 276, 250–3.
Guo, L., Lim, K. B., Poduje, C. M. et al. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95, 189–98.
Hall, H. K. and Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol, 178, 5683–91.
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–26.
Heithoff, D. M., Conner, C. P., Hanna, P. C. et al. (1997). Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA, 94, 934–9.
Heithoff, D. M., Conner, C. P., Hentschel, U. et al. (1999). Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol, 181, 799–807.
Hensel, M., Shea, J. E., Gleeson, C.et al. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–3.
Hensel, M., Shea, J. E., Waterman, S. R. et al. (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol, 30, 163–74.
Hueck, C. J., Hantman, M. J., Bajaj, V. et al. (1995). Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol Microbiol, 18, 479–90.
Hurme, R., Berndt, K. D., Normark, S. J. and Rhen, M. (1997). A proteinaceous gene regulatory thermometer in Salmonella. Cell, 90, 55–64.
Johnston, C., Pegues, D. A., Hueck, C. J., Lee, A. and Miller, S. I. (1996). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol, 22, 715–27.
Jones, B. D. and Falkow, S. (1994). Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun, 62, 3745–52.
Julio, S. M., Conner, C. P., Heithoff, D. M. and Mahan, M. J. (1998). Directed formation of chromosomal deletions in Salmonella typhimurium: targeting of specific genes induced during infection. Mol Gen Genet, 258, 178–81.
Kaniga, K., Bossio, J. C. and Galan, J. E. (1994). The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol, 13, 555–68.
Kier, L. D., Weppelman, R. M. and Ames, B. N. (1979). Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol, 138, 155–61.
Knuth, K., Niesella, H., Hueck, C. J. and Fuchs, T. M. (2004). Large-scale identification of essential Salmonella by trapping lethal insertions. Mol Microbiol, 51, 1729–44.
Lawhon, S. D., Frye, J. G., Suyemoto, M. et al. (2003). Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol, 48, 1633–45.
Lee, C. A. and Falkow, S. (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA, 87, 4304–8.
Lee, A. K., Detweiler, C. S. and Falkow, S. (2000). OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol, 182, 771–81.
Lee, C. A., Jones, B. D. and Falkow, S. (1992). Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci USA, 89, 1847–51.
Lee, I. S., Lin, J., Hall, H. K., Bearson, B. and Foster, J. W. (1995). The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol, 17, 155–67.
Lesnick, M. L., Reiner, N. E., Fierer, J. and Guiney, D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol, 39, 1464–70.
Lichtensteiger, C. A. and Vimr, E. R. (2003). Systemic and enteric colonization of pigs by a hilA signature – tagged mutant of Salmonella choleraesuis. Microb Pathog, 34, 149–54.
Lindgren, S. W., Stojiljkovic, I. and Heffron, F. (1996). Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 4197–201.
Lodge, J., Douce, G. R., Amin, I. I. et al. (1995). Biological and genetic characterization of TnphoA mutants of Salmonella typhimurium TML in the context of gastroenteritis. Infect Immun, 63, 762–9.
Loewen, P. C. and Hengge-Aronis, R. (1994). The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol, 48, 53–80.
Mahan, M. J., Slauch, J. M. and Mekalanos, J. J. (1993). Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 259, 686–8.
Mahan, M. J., Tobias, J. W., Slauch, J. M. et al. (1995). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci USA, 92, 669–73.
McClelland, M., Sanderson, K. E., Spieth, J. et al. (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852–6.
Merrell, D. S. and Camilli, A. (2000). Detection and analysis of gene expression during infection by in vivo expression technology. Philos Trans R Soc Lond B Biol Sci, 355, 587–99.
Miller, I., Maskell, D., Hormaeche, C., Johnson, K., Pickard, D. and Dougan, G. (1989). Isolation of orally attenuated Salmonella typhimurium following TnphoA mutagenesis. Infect Immun, 57, 2758–63.
Miller, S. I., Pulkkinen, W. S., Selsted, M. E. and Mekalanos, J. J. (1990). Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun, 58, 3706–10.
Mills, S. D., Ruschkowski, S. R., Stein, M. A. and Finlay, B. B. (1998). Trafficking of porin-deficient Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are defective for the formation of Salmonella-induced filaments. Infect Immun, 66, 1806–11.
Mirold, S., Ehrbar, K., Weissmuller, A. et al. (2001). Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol, 183, 2348–58.
Moncrief, M. B. and Maguire, M. E. (1998). Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect Immun, 66, 3802–9.
Nickerson, C. A. and Curtiss, R., III (1997). Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect Immun, 65, 1814–23.
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA, 95, 14057–9.
Ochman, H. and Groisman, E. A. (1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun, 64, 5410–12.
Osbourn, A. E., Barber, C. E. and Daniels, M. J. (1987). Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter probe plasmid. EMBO J, 6, 23–8.
Otto, H., Tezcan-Merdol, D., Girisch, R. et al. (2000). The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol, 37, 1106–15.
Parra-Lopez, C., Baer, M. T. and Groisman, E. A. (1993). Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. Embo J, 12, 4053–62.
Parra-Lopez, C., Lin, R., Aspedon, A. and Groisman, E. A. (1994). A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. Embo J, 13, 3964–72.
Pegues, D. A., Hantman, M. J., Behlau, I. and Miller, S. I. (1995). PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion. Mol Microbiol, 17, 169–81.
Penheiter, K. L., Mathur, N., Giles, D., Fahlen, T. and Jones, B. D. (1997). Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches. Mol Microbiol, 24, 697–709.
Popoff, M. Y., Miras, I., Coynault, C., Lasselin, C. and Pardon, P. (1984). Molecular relationships between virulence plasmids of Salmonella serotypes Typhimurium and Dublin and large plasmids of other Salmonella serotypes. Annal Microbiol, 135A, 389–98.
Poppe, C., Curtiss, R., III, Gulig, P. A. and Gyles, C. L. (1989). Hybridization with a DNA probe derived from the virulence region of the 60 Mdal plasmid of Salmonella typhimurium. Can J Vet Res, 53, 378–84.
Rhen, M., Virtanen, M. and Makela, P. H. (1989). Localization by insertion mutagenesis of a virulence-associated region on the Salmonella typhimurium 96 kilobase pair plasmid. Microb Pathog, 6, 153–8.
Riesenberg-Wilmes, M. R., Bearson, B., Foster, J. W. and Curtis, R., III. (1996). Role of the acid tolerance response in virulence of Salmonella typhimurium. Infect Immun, 64, 1085–92.
Robbe-Saule, V., Coynault, C. and Norel, F. (1995). The live oral typhoid vaccine Ty21a is a rpoS mutant and is susceptible to various environmental stresses. FEMS Microbiol Lett, 126, 171–6.
Ronson, C. W., Nixon, B. T. and Ausubel, F. M. (1987). Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell, 49, 579–81.
Roudier, C., Krause, M., Fierer, J. and Guiney, D. G. (1990). Correlation between the presence of sequences homologous to the vir region of Salmonella dublin plasmid pSDL2 and the virulence of twenty-two Salmonella serotypes in mice. Infect Immun, 58, 1180–5.
Rubino, S., Leori, G., Rizzu, P. et al. (1993). TnphoA Salmonella abortusovis mutants unable to adhere to epithelial cells and with reduced virulence in mice. Infect Immun, 61, 1786–92.
Santos, R. L., Zhang, S., Tsolis, R. M., Bäumler, A. J. and Adams, L. G. (2002). Morphologic and molecular characterization of Salmonella typhimurium infection in neonatal calves. Vet Pathol, 39, 200–15.
Schmitt, C. K., Ikeda, J. S., Darnell, S. C. et al. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun, 69, 5619–25.
Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. and Holden, D. W. (1999). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun, 67, 213–19.
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.
Sizemore, D. R., Fink, P. S., Ou, J. T. et al. (1991). Tn5 mutagenesis of the Salmonella typhimurium 100 kb plasmid: definition of new virulence regions. Microb Pathog, 10, 493–9.
Smith, R. L. and Maguire, M. E. (1998). Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol, 28, 217–26.
Soncini, F. C. and Groisman, E. A. (1996). Two-component regulatory systems can interact to process multiple environmental signals. J Bacteriol, 178, 6796–801.
Soncini, F. C., Garcia Vescovi, E. and Groisman, E. A. (1995). Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol, 177, 4364–71.
Soncini, F. C., Garcia Vescovi, E., Solomon, F. and Groisman, E. A. (1996). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol, 178, 5092–9.
Stanley, T. L., Ellermeier, C. D. and Slauch, J. M. (2000). Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer's patches. J Bacteriol, 182, 4406–13.
Stender, S., Friebel, A., Linder, S. et al. (2000). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol, 36, 1206–21.
Tao, T., Grulich, P. F., Kucharski, L. M., Smith, R. L. and Maguire, M. E. (1998). Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci. Microbiology, 144, 655–64.
Tezcan-Merdol, D., Nyman, T., Lindberg, U. et al. (2001). Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol, 39, 606–19.
Tsolis, R. M., Adams, L. G., Ficht, T. A. and Baumler, A. J. (1999). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun, 67, 4879–85.
Tsolis, R. M., Adams, L. G., Hantman, M. J. et al. (2000). SspA is required for lethal Salmonella typhimurium infections in calves but is not essential for diarrhea. Infect Immun, 68, 3158–63.
Turner, A. K., Lovell, A., Hulme, S. D., Zhang-Barber, L. and Barrow, P. A. (1998). Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun, 66, 2099–106.
Uchiya, K., Barbieri, M. A., Funato, K. et al. (1999). A Salmonella virulence protein that inhibits cellular trafficking. Embo J, 18, 3924–33.
Unsworth, K. E. and Holden, D. W. (2000). Identification and analysis of bacterial virulence genes in vivo. Philos Trans R Soc Lond B Biol Sci, 355, 613–22.
Valdivia, R. H. and Falkow, S. (1996). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol, 22, 367–78.
Valdivia, R. H. and Falkow, S. (1997). Fluorescence-based isolation of bacterial genes expressed within host cells. Science, 277, 2007–11.
van der Velden, A. W., Lindgren, S. W., Worley, M. J. and Heffron, F. (2000). Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect Immun, 68, 5702–9.
Vazquez-Torres, A., Xu, Y., Jones-Carson, J. et al. (2000). Salmonella Pathogenicity Island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.
Vescovi, E. G., Ayala, Y. M., Di Cera, E. and Groisman, E. A. (1997). Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem, 272, 1440–3.
Waldburger, C. D. and Sauer, R. T. (1996). Signal detection by the PhoQ sensor-transmitter. Characterization of the sensor domain and a response-impaired mutant that identifies ligand-binding determinants. J Biol Chem, 271, 26630–6.
Wallis, T. S., Wood, M., Watson, P. et al. (1999). Sips, Sops, and SPIs but not stn influence Salmonella enteropathogenesis. Adv Exp Med Biol, 473, 275–80.
Watson, P. R., Benmore, A., Khan, S. A. et al. (2000). Mutation of waaN reduces Salmonella enterica serovar Typhimurium-induced enteritis and net secretion of type III secretion system 1-dependent proteins. Infect Immun, 68, 3768–71.
Watson, P. R., Galyov, E. E., Paulin, S. M., Jones, P. W. and Wallis, T. S. (1998). Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. Infect Immun, 66, 1432–8.
Wendland, M. and Bumann, D. (2002). Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett, 521, 105–8.
Wilmes-Riesenberg, M. R., Foster, J. W. and Curtiss, R., III (1997). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun, 65, 203–10.
Wood, M. W., Rosqvist, R., Mullan, P. B., Edwards, M. H. and Galyov, E. E. (1996). SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol, 22, 327–38.
Woodward, M. J., McLaren, I. and Wray, C. (1989). Distribution of virulence plasmids within salmonellae. J Gen Microbiol, 135, 503–11.
Yu, X. J., Ruiz-Albert, J., Unsworth, K. E. et al. (2002). SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cell Microbiol, 4, 531–40.
Zeng, H., Carlson, A. Q., Guo, Y. et al. (2003). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol, 171, 3668–74.
Zhang, S., Adams, L. G., Nunes, J. et al. (2003). Secreted effector proteins of Salmonella enterica serotype Typhimurium elicit host-specific chemokine profiles in animal models of typhoid fever and enterocolitis. Infect Immun, 71, 4795–803.
Zhang, S., Santos, R. L., Tsolis, R. M. et al. (2002). Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett, 217, 243–7.
Zhou, D. and Galan, J. (2001). Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect, 3, 1293–8.
Zhou, D., Mooseker, M. S. and Galan, J. E. (1999a). An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci USA, 96, 10176–81.
Zhou, D., Mooseker, M. S. and Galan, J. E. (1999b). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science, 283, 2092–5.

Reference Title: References

Reference Type: reference-list

Adamo, R., Sokol, S., Soong, G., Gomez, M. and Prince, A. (2003). P. aeruginosa flagella activate airway epithelial cells through asialoGM1 and TLR2 as well as TLR5. Am J Respir Cell Mol Biol, 30, 627–34.
al-Ramadi, B. K., Al-Dhaheri, M. H., Mustafa, N. et al. (2001). Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun, 69, 3980–8.
al-Ramadi, B. K., Meissler, J. J., Jr., Huang, D. and Eisenstein, T. K. (1992). Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur J Immunol, 22, 2249–54.
Altare, F., Lammas, D., Revy, P. et al. (1998). Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest, 102, 2035–40.
Anand, A. J. and Glatt, A. E. (1994). Salmonella osteomyelitis and arthritis in sickle cell disease. Semin Arthritis Rheum, 24, 211–21.
Arai, T., Hiromatsu, K., Nishimura, H. et al. (1995). Effects of in vivo administration of anti-IL10 monoclonal antibody on the host defence mechanism against murine Salmonella infection. Immunology, 85, 381–8.
Ashkenazi, S., Cleary, T. G., Murray, B. E., Wanger, A. and Pickering, L. K. (1988). Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. Infect Immun, 56, 3089–94.
Bauer, S., Kirschning, C. J., Hacker, H. et al. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA, 98, 9237–42.
Benjamin, W. H., Jr., Hall, P., Roberts, S. J. and Briles, D. E. (1990). The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol, 144, 3143–51.
Beutler, B., Krochin, N., Milsark, I. W., Luedke, C. and Cerami, A. (1986). Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science, 232, 977–80.
Biozzi, G., Howard, J. G., Halpern, B. N., Stiffel, C. and Mouton, D. (1960). The kinetics of blood clearance of isotopically labelled Salmonella enteritidis by the reticuloendothelial system in mice. Immunology, 3, 74–89.
Blackwell, J. M., Goswami, T., Evans, C. A. et al. (2001). SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol, 3, 773–84.
Blander, J. M. and Medzhitov, R. (2004). Regulation of phagosome maturation by signals from Toll-like receptors. Science, 304, 1014–18.
Bohnoff, M. and Miller, P. (1962). Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infec Dis, 111, 117–27.
Bonina, L., Costa, G. B. and Mastroeni, P. (1998). Comparative effect of gentamicin and pefloxacin treatment on the late stages of mouse typhoid. New Microbiol, 21, 9–14.
Casadevall, A. (1998). Antibody-mediated protection against intracellular pathogens. Trends Microbiol, 6, 102–7.
Celum, C. L., Chaisson, R. E., Rutherford, G. W., Barnhart, J. L. and Echenberg, D. F. (1987). Incidence of salmonellosis in patients with AIDS. J Infect Dis, 156, 998–1002.
Chabalgoity, J. A., Dougan, G., Mastroeni, P. and Aspinall, R. J. (2002). Live bacteria as the basis for immunotherapies against cancer. Expert Rev Vaccines, 1, 495–505.
Cirillo, D. M., Valdivia, R. H., Monack, D. M. and Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol, 30, 175–88.
Clare, S., Goldin, R., Hale, C. et al. (2003). Intracellular adhesion molecule 1 plays a key role in acquired immunity to salmonellosis. Infect Immun, 71, 5881–91.
Collins, F. M. (1969). Effect of specific immune mouse serum on the growth of Salmonella enteritidis in non-vaccinated mice challenged by various routes. J Bacteriol, 97, 667–75.
Collins, F. M. (1974). Vaccines and cell-mediated immunity. Bacteriol Rev, 38, 371–402.
Conlan, J. W. (1997). Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun, 65, 630–5.
de Jong, R., Altare, F., Haagen, I. A. et al. (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280, 1435–8.
Denich, K., Borlin, P., O'Hanley, P. D., Howard, M. and Heath, A. W. (1993). Expression of the murine interleukin-4 gene in an attenuated aroA strain of Salmonella typhimurium: persistence and immune response in BALB/c mice and susceptibility to macrophage killing. Infect Immun, 61, 4818–27.
Doffinger, R., Dupuis, S., Picard, C. et al. (2002). Inherited disorders of IL12- and IFNγ-mediated immunity: a molecular genetics update. Mol Immunol, 38, 903–9.
Doffinger, R., Smahi, A., Bessia, C. et al. (2001). X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet, 27, 277–85.
Doucet, F. and Bernard, S. (1997). In vitro cellular responses from sheep draining lymph node cells after subcutaneous inoculation with Salmonella abortusovis. Vet Res, 28, 165–78.
Dunlap, N. E., Benjamin, W. H., Jr., Berry, A. K., Eldridge, J. H. and Briles, D. E. (1992). A “safe-site” for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog, 13, 181–90.
Dunstan, S. J., Ho, V. A., Duc, C. M. et al. (2001a). Typhoid fever and genetic polymorphisms at the natural resistance- associated macrophage protein 1. J Infect Dis, 183, 1156–60.
Dunstan, S. J., Stephens, H. A., Blackwell, J. M. et al. (2001b). Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis, 183, 261–8.
Dunstan, S. J., Hawn, T. R., Hue, N. T. et al. (2005). Host susceptibility and clinical outcomes in Toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J Infect Dis, 191, 1068–71.
Eisenstein, T. K., Deakins, L. W., Killar, L., Saluk, P. H. and Sultzer, B. M. (1982). Dissociation of innate susceptibility to Salmonella infection and endotoxin responsiveness in C3HeB/FeJ mice and other strains in the C3H lineage. Infect Immun, 36, 696–703.
Eisenstein, T. K., Killar, L. M. and Sultzer, B. M. (1984). Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis, 150, 425–35.
Emoto, M., Danbara, H. and Yoshikai, Y. (1992). Induction of gamma/delta T-cells in murine salmonellosis by an avirulent but not by a virulent strain of Salmonella choleraesuis. J Exp Med, 176, 363–72.
Enomoto, A., Nishimura, H. and Yoshikai, Y. (1997). Predominant appearance of NK1.1+ T-cells producing IL4 may be involved in the increased susceptibility of mice with the beige mutation during Salmonella infection. J Immunol, 158, 2268–77.
Eriksson, S., Bjorkman, J., Borg, S. et al. (2000). Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cell Microbiol, 2, 239–50.
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.
Everest, P., Allen, J., Papakonstantinopoulou, A.et al. (1997). Salmonella typhimurium infections in mice deficient in interleukin-4 production: role of IL4 in infection-associated pathology. J Immunol, 159, 1820–7.
Everest, P., Roberts, M. and Dougan, G. (1998). Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun, 66, 3355–64.
Fields, P. I., Swanson, R. V., Haidaris, C. G. and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA, 83, 5189–93.
Forbes, J. R. and Gros, P. (2001). Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions. Trends Microbiol, 9, 397–403.
Forrest, B. D., LaBrooy, J. T., Beyer, L., Dearlove, C. E. and Shearman, D. J. (1991). The human humoral immune response to Salmonella typhi Ty21a. J Infect Dis, 163, 336–45.
Freudenberg, M. A. and Galanos, C. (1991). Tumor necrosis factor alpha mediates lethal activity of killed Gram-negative and Gram-positive bacteria in D-galactosamine-treated mice. Infect Immun, 59, 2110–15.
Gianella R. A., Broitman, S. A., Zamcheck, N. (1971). Salmonella enteritis. Role of reduced gastric secretion in pathogenesis. Am J Dig Dis, 16, 1000.
Gohin, I., Olivier, M., Lantier, I., Pepin, M. and Lantier, F. (1997). Analysis of the immune response in sheep efferent lymph during Salmonella abortusovis infection. Vet Immunol Immunopathol, 60, 111–30.
Graham, S. M., Hart, C. A., Molyneux, E. M., Walsh, A. L. and Molyneux, M. E. (2000). Malaria and Salmonella infections: cause or coincidence? Trans R Soc Trop Med Hyg, 94, 227.
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. and Heffron, F. (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 89, 11939–43.
Guilloteau, L., Buzoni-Gatel, D., Bernard, F., Lantier, I. and Lantier, F. (1993). Salmonella abortusovis infection in susceptible BALB/cby mice: importance of Lyt-2+ and L3T4+ T-cells in acquired immunity and granuloma formation. Microb Pathog, 14, 45–55.
Haraga, A. and Miller, S. I. (2003). A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect Immun, 71, 4052–8.
Harrington, K. A. and Hormaeche, C. E. (1986). Expression of the innate resistance gene Ity in mouse Kupffer cells infected with Salmonella typhimurium in vitro. Microb Pathog, 1, 269–74.
Harrison, J. A., Villarreal-Ramos, B., Mastroeni, P., Demarco de Hormaeche, R. and Hormaeche, C. E. (1997). Correlates of protection induced by live Aro- Salmonella typhimurium vaccines in the murine typhoid model. Immunology, 90, 618–25.
Hart, C. A., Beeching, N. J., Duerden, B. I. et al. (2000). Infections in AIDS. J Med Microbiol, 49, 947–67.
Hayashi, F., Smith, K. D., Ozinsky, A. et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099–103.
Hemmi, H., Takeuchi, O., Kawai, T. et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–5.
Hermaszewski, R. A. and Webster, A. D. (1993). Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med, 86, 31–42.
Hess, J., Ladel, C., Miko, D. and Kaufmann, S. H. (1996). Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFNγ in bacterial clearance independent of intracellular location. J Immunol, 156, 3321–6.
Hirose, K., Nishimura, H., Matsuguchi, T. and Yoshikai, Y. (1999). Endogenous IL15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J Leukoc Biol, 66, 382–90.
Hochadel, J. F. and Keller, K. F. (1977). Protective effects of passively transferred immune T- or B-lymphocytes in mice infected with Salmonella typhimurium. J Infect Dis, 135, 813–23.
Hopkins, S. A. and Kraehenbuhl, J. P. (1997). Dendritic cells of the murine Peyer's patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv Exp Med Biol, 417, 105–9.
Hormaeche, C. E. (1979). The natural resistance of radiation chimeras to S. typhimurium C5. Immunology, 37, 329–32.
Hormaeche, C. E. (1980). The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice measured by the superinfecting phage technique of Meynell. Immunology, 41, 973–9.
Hormaeche, C. E. (1990). Dead salmonellae or their endotoxin accelerate the early course of a Salmonella infection in mice. Microb Pathog, 9, 213–18.
Hormaeche, C. E., Harrington, K. A. and Joysey, H. S. (1985). Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J Infect Dis, 152, 1050–6.
Hormaeche, C. E., Mastroeni, P., Arena, A., Uddin, J. and Joysey, H. S. (1990). T-cells do not mediate the initial suppression of a Salmonella infection in the RES. Immunology, 70, 247–50.
Hormaeche, C. E., Mastroeni, P., Harrison, J. A. et al. (1996). Protection against oral challenge three months after i.v. immunization of BALB/c mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine, 14, 251–9.
House, D., Chinh, N. T., Hien, T. T. et al. (2002). Cytokine release by lipopolysaccharide-stimulated whole blood from patients with typhoid fever. J Infect Dis, 186, 240–5.
Hsu, H. S. (1989). Pathogenesis and immunity in murine salmonellosis. Microbiol Rev, 53, 390–409.
John, B., Rajagopal, D., Pashine, A. et al. (2002). Role of IL12-independent and IL12-dependent pathways in regulating generation of the IFNγ component of T-cell responses to Salmonella typhimurium. J Immunol, 169, 2545–52.
Kagaya, K., Watanabe, K. and Fukazawa, Y. (1989). Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity. Infect Immun, 57, 609–15.
Kantele, A., Arvilommi, H. and Jokinen, I. (1986). Specific immunoglobulin-secreting human blood cells after peroral vaccination against Salmonella typhi. J Infect Dis, 153, 1126–31.
Kelleher, P. and Misbah, S. A. (2003). What is Good's syndrome? Immunological abnormalities in patients with thymoma. J Clin Pathol, 56, 12–16.
Khan, S. A., Everest, P., Servos, S. et al. (1998). A lethal role for lipid A in Salmonella infections. Mol Microbiol, 29, 571–9.
Khan, S. A., Strijbos, P. J., Everest, P. et al. (2001). Early responses to Salmonella typhimurium infection in mice occur at focal lesions in infected organs. Microb Pathog, 30, 29–38.
Kim, H. S., Yoon, H., Minn, I. et al. (2000). Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol, 165, 3268–74.
Klein, C., Lisowska-Grospierre, B., LeDeist, F., Fischer, A. and Griscelli, C. (1993). Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J Pediatr, 123, 921–8.
Klugman, K. P., Gilbertson, I. T., Koornhof, H. J. et al. (1987). Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet, 2, 1165–9.
Klugman, K. P., Koornhof, H. J., Robbins, J. B. and Le Cam, N. N. (1996). Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine, 14, 435–8.
Koo, F. C., Peterson, J. W., Houston, C. W. and Molina, N. C. (1984). Pathogenesis of experimental salmonellosis: inhibition of protein synthesis by cytotoxin. Infect Immun, 43, 93–100.
Landesman, S. H., Rao, S. P. and Ahonkhai, V. I. (1982). Infections in children with sickle cell anemia. Special reference to pneumococcal and Salmonella infections. Am J Pediatr Hematol Oncol, 4, 407–18.
Lazarus, G. M. and Neu, H. C. (1975). Agents responsible for infection in chronic granulomatous disease of childhood. J Pediatr, 86, 415–17.
Lee, V. T. and Schneewind, O. (1999). Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol Rev, 168, 241–55.
Leen, C. L., Birch, A. D., Brettle, R. P., Welsby, P. D. and Yap, P. L. (1986). Salmonellosis in patients with primary hypogammaglobulinaemia. J Infect, 12, 241–5.
Lembo, A., Kalis, C., Kirschning, C. J. et al. (2003). Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun, 71, 6058–62.
Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O. and Germanier, R. (1989). Progress in vaccines against typhoid fever. Rev Infect Dis, 11 (suppl. 3), S552–S567.
Levy, J., Espanol-Boren, T., Thomas, C. et al. (1997). Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr, 131, 47–54.
Liang-Takasaki, C. J., Saxen, H., Makela, P. H. and Leive, L. (1983). Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun, 41, 563–9.
Lissner, C. R., Swanson, R. N. and O'Brien, A. D. (1983). Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol, 131, 3006–13.
Lo, W. F., Ong, H., Metcalf, E. S. and Soloski, M. J. (1999). T-cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T-cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol, 162, 5398–406.
Lo, W. F., Woods, A. S., DeCloux, A. et al. (2000). Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med, 6, 215–18.
MacFarlane, A. S., Schwacha, M. G. and Eisenstein, T. K. (1999). In vivo blockage of nitric oxide with aminoguanidine inhibits immunosuppression induced by an attenuated strain of Salmonella typhimurium, potentiates Salmonella infection, and inhibits macrophage and polymorphonuclear leukocyte influx into the spleen. Infect Immun, 67, 891–8.
Maskell, D. J. and Hormaeche, C. E. (1986). Genes within the major histocompatibility complex influence the response to ampicillin therapy and severity of relapse in H-2 congenic, susceptible Itys mice infected with virulent Salmonella typhimurium. J Immunogenet, 13, 451–7.
Maskell, D. J., Hormaeche, C. E., Harrington, K. A., Joysey, H. S. and Liew, F. Y. (1987). The initial suppression of bacterial growth in a Salmonella infection is mediated by a localized rather than a systemic response. Microb Pathog, 2, 295–305.
Mastroeni, P. (2002). Immunity to systemic Salmonella infections. Curr Mol Med, 2, 393–406.
Mastroeni, P., Arena, A., Costa, G. B. et al. (1991). Serum TNFα in mouse typhoid and enhancement of a Salmonella infection by anti-TNFα antibodies. Microb Pathog, 11, 33–8.
Mastroeni, P., Chabalgoity, J. A., Dunstan, S. J., Maskell, D. J. and Dougan, G. (2001). Salmonella: immune responses and vaccines. Vet J, 161, 132–64.
Mastroeni, P., Clare, S., Khan, S. et al. (1999). Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun, 67, 478–83.
Mastroeni, P., Harrison, J. A., Chabalgoity, J. A. and Hormaeche, C. E. (1996). Effect of interleukin 12 neutralization on host resistance and gamma interferon production in mouse typhoid. Infect Immun, 64, 189–96.
Mastroeni, P., Harrison, J. A., Robinson, J. H. et al. (1998). Interleukin 12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect Immun, 66, 4767–76.
Mastroeni, P., Simmons, C., Fowler, R., Hormaeche, C. E. and Dougan, G. (2000a). Igh-6−/− (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar Typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun, 68, 46–53.
Mastroeni, P., Skepper, J. N. and Hormaeche, C. E. (1995). Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections [published erratum appears in Infect Immun (1995 Dec) 63(12), 4966]. Infect Immun, 63, 3674–82.
Mastroeni, P., Vazquez-Torres, A., Fang, F. C. et al. (2000b). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med, 192, 237–48.
Mastroeni, P., Villarreal-Ramos, B., Demarco de Hormaeche, R. and Hormaeche, C. E. (1993a). Delayed (footpad) hypersensitivity and Arthus reactivity using protein-rich antigens and LPS in mice immunized with live attenuated aroA Salmonella vaccines. Microb Pathog, 14, 369–79.
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1992). Role of T-cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro Salmonella vaccines. Microb Pathog, 13, 477–91.
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1993b). Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T-cells. Infect Immun, 61, 3981–4.
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1993c). Effect of late administration of anti-TNFα antibodies on a Salmonella infection in the mouse model. Microb Pathog, 14, 473–80.
Matsui, K. and Arai, T. (1989). Protective immunity induced by porin in experimental mouse salmonellosis. Microbiol Immunol, 33, 699–708.
McSorley, S. J. and Jenkins, M. K. (2000). Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar Typhimurium. Infect Immun, 68, 3344–8.
McSorley, S. J., Cookson, B. T. and Jenkins, M. K. (2000). Characterization of CD4+ T-cell responses during natural infection with Salmonella typhimurium. J Immunol, 164, 986–93.
Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–7.
Mitchell, E. K., Mastroeni, P., Kelly, A. P. and Trowsdale, J. (2004). Inhibition of cell surface MHC class II expression by Salmonella. Eur J Immunol, 34, 2559–67.
Mittrucker, H. W., Kohler, A. and Kaufmann, S. H. (2002). Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection. Infect Immun, 70, 199–203.
Mittrucker, H. W., Kohler, A., Mak, T. W. and Kaufmann, S. H. (1999). Critical role of CD28 in protective immunity against Salmonella typhimurium. J Immunol, 163, 6769–76.
Mittrucker, H. W., Raupach, B., Kohler, A. and Kaufmann, S. H. (2000). Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol, 164, 1648–52.
Mixter, P. F., Camerini, V., Stone, B. J., Miller, V. L. and Kronenberg, M. (1994). Mouse T lymphocytes that express a gamma delta T-cell antigen receptor contribute to resistance to Salmonella infection in vivo. Infect Immun, 62, 4618–21.
Monack, D. M., Hersh, D., Ghori, N. et al. (2000). Salmonella exploits Caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med, 192, 249–58.
Moors, M. A., Li, L. and Mizel, S. B. (2001). Activation of interleukin 1 receptor-associated kinase by gram-negative flagellin. Infect Immun, 69, 4424–9.
Mouy, R., Fischer, A., Vilmer, E., Seger, R. and Griscelli, C. (1989). Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr, 114, 555–60.
Muotiala, A. and Makela, P. H. (1990). The role of IFNγ in murine Salmonella typhimurium infection. Microb Pathog, 8, 135–41.
Muotiala, A. and Makela, P. H. (1993). Role of gamma interferon in late stages of murine salmonellosis. Infect Immun, 61, 4248–53.
Murphy, J. R., Baqar, S., Munoz, C. et al. (1987). Characteristics of humoral and cellular immunity to Salmonella typhi in residents of typhoid-endemic and typhoid-free regions. J Infect Dis, 156, 1005–9.
Murphy, J. R., Wasserman, S. S., Baqar, S. et al. (1989). Immunity to Salmonella typhi: considerations relevant to measurement of cellular immunity in typhoid-endemic regions. Clin Exp Immunol, 75, 228–33.
Naiki, Y., Nishimura, H., Kawano, T. et al. (1999). Regulatory role of peritoneal NK1.1+ alpha beta T-cells in IL12 production during Salmonella infection. J Immunol, 163, 2057–63.
Nauciel, C. (1990). Role of CD4+ T-cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J Immunol, 145, 1265–9.
Nauciel, C. and Espinasse-Maes, F. (1992). Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun, 60, 450–4.
Nauciel, C., Ronco, E., Guenet, J. L. and Pla, M. (1988). Role of H-2 and non-H-2 genes in control of bacterial clearance from the spleen in Salmonella typhimurium-infected mice. Infect Immun, 56, 2407–11.
Nauciel, C., Ronco, E. and Pla, M. (1990). Influence of different regions of the H-2 complex on the rate of clearance of Salmonella typhimurium. Infect Immun, 58, 573–4.
Netea, M. G., Kullberg, B. J., Joosten, L. A. et al. (2001). Lethal Escherichia coli and Salmonella typhimurium endotoxemia is mediated through different pathways. Eur J Immunol, 31, 2529–38.
Nishimura, H., Hiromatsu, K., Kobayashi, N. et al. (1996). IL15 is a novel growth factor for murine gamma delta T-cells induced by Salmonella infection. J Immunol, 156, 663–9.
Nishimura, H., Washizu, J., Naiki, Y. et al. (1999). MHC class II-dependent NK1.1+ gammadelta T-cells are induced in mice by Salmonella infection. J Immunol, 162, 1573–81.
O'Brien, A. D. and Metcalf, E. S. (1982). Control of early Salmonella typhimurium growth in innately Salmonella-resistant mice does not require functional T lymphocytes. J Immunol, 129, 1349–51.
O'Brien, A. D., Metcalf, E. S. and Rosenstreich, D. L. (1982). Defect in macrophage effector function confers Salmonella typhimurium susceptibility on C3H/HeJ mice. Cell Immunol, 67, 325–33.
O'Brien, A. D., Scher, I. and Formal, S. B. (1979). Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infect Immun, 25, 513–20.
Paul, C., Shalala, K., Warren, R. and Smith, R. (1985). Adoptive transfer of murine host protection to salmonellosis with T-cell growth factor-dependent, Salmonella-specific T-cell lines. Infect Immun, 48, 40–3.
Paul, C. C., Norris, K., Warren, R. and Smith, R. A. (1988). Transfer of murine host protection by using interleukin 2-dependent T- lymphocyte lines. Infect Immun, 56, 2189–92.
Peel, J. E., Voirol, M. J., Kolly, C., Gobet, D. and Martinod, S. (1990). Induction of circulating tumor necrosis factor cannot be demonstrated during septicemic salmonellosis in calves. Infect Immun, 58, 439–42.
Picard, C., Fieschi, C., Altare, F. et al. (2001). Inherited Interleukin 12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet, 70, 2.
Pie, S., Matsiota-Bernard, P., Truffa-Bachi, P. and Nauciel, C. (1996). Gamma interferon and interleukin 10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection. Infect Immun, 64, 849–54.
Pie, S., Truffa-Bachi, P., Pla, M. and Nauciel, C. (1997). Th1 response in Salmonella typhimurium-infected mice with a high or low rate of bacterial clearance. Infect Immun, 65, 4509–14.
Poltorak, A., Smirnova, I., He, X. et al. (1998). Genetic and physical mapping of the lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis, 24, 340–55.
Pope, M., Kotlarski, I. and Doherty, K. (1994). Induction of Lyt-2+ cytotoxic T lymphocytes following primary and secondary Salmonella infection. Immunology, 81, 177–82.
Qureshi, S. T., Lariviere, L., Leveque, G. et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med, 189, 615–25.
Ramarathinam, L., Niesel, D. W. and Klimpel, G. R. (1993). Salmonella typhimurium induces IFNγ production in murine splenocytes. Role of natural killer cells and macrophages. J Immunol, 150, 3973–81.
Reisfeld, R. A., Niethammer, A. G., Luo, Y. and Xiang, R. (2004). DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev, 199, 181–90.
Reitmeyer, J. C., Peterson, J. W. and Wilson, K. J. (1986). Salmonella cytotoxin: a component of the bacterial outer membrane. Microb Pathog, 1, 503–10.
Rescigno, M., Urbano, M., Valzasina, B. et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2, 361–7.
Richter-Dahlfors, A., Buchan, A. M. J. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.
Robbins, J. D. and Robbins, J. B. (1984). Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis, 150, 436–49.
Robertsson, J. A., Fossum, C., Svenson, S. B. and Lindberg, A. A. (1982). Salmonella typhimurium infection in calves: specific immune reactivity against O-antigenic polysaccharide detectable in in vitro assays. Infect Immun, 37, 728–36.
Rosenberger, C. M., Scott, M. G., Gold, M. R., Hancock, R. E. and Finlay, B. B. (2000). Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol, 164, 5894–904.
Royle, M. C., Totemeyer, S., Alldridge, L. C., Maskell, D. J. and Bryant, C. E. (2003). Stimulation of Toll-like receptor 4 by lipopolysaccharide during cellular invasion by live Salmonella typhimurium is a critical but not exclusive event leading to macrophage responses. J Immunol, 170, 5445–54.
Salcedo, S. P., Noursadeghi, M., Cohen, J. and Holden, D. W. (2001). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol, 3, 587–97.
Salerno-Goncalves, R., Pasetti, M. F. and Sztein, M. B. (2002). Characterization of CD8+ effector T-cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol, 169, 2196–203.
Salerno-Goncalves, R., Wyant, T. L., Pasetti, M. F. et al. (2003). Concomitant induction of CD4+ and CD8+ T-cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain CVD 908-htrA. J Immunol, 170, 2734–41.
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. and Bevins, C. L. (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 422, 522–6.
Saxen, H., Reima, I. and Makela, P. H. (1987). Alternative complement pathway activation by Salmonella O polysaccharide as a virulence determinant in the mouse. Microb Pathog, 2, 15–28.
Schwacha, M. G. and Eisenstein, T. K. (1997). Interleukin 12 is critical for induction of nitric oxide-mediated immunosuppression following vaccination of mice with attenuated Salmonella typhimurium. Infect Immun, 65, 4897–903.
Sebastiani, G., Leveque, G., Lariviere, L. et al. (2000). Cloning and characterization of the murine Toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics, 64, 230–40.
Segall, T. and Lindberg, A. A. (1993). Oral vaccination of calves with an aromatic-dependent Salmonella dublin (O9,12) hybrid expressing O4,12 protects against S. dublin (O9,12) but not against Salmonella typhimurium (O4,5,12). Infect Immun, 61, 1222–31.
Senterfitt, V. C. and Shands, J. W., Jr. (1968). Salmonellosis in mice infected with Mycobacterium tuberculosis BCG. I. Role of endotoxin in infection. J Bacteriol, 96, 287–92.
Sheppard, M., Webb, C., Heath, F. et al. (2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol, 5, 593–600.
Sinha, K., Mastroeni, P., Harrison, J., and Hormaeche, C. E. (1997). Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun, 65, 1566–9.
Skeen, M. J. and Ziegler, H. K. (1993). Induction of murine peritoneal gamma/delta T-cells and their role in resistance to bacterial infection. J Exp Med, 178, 971–84.
Srinivasan, A., Foley, J. and McSorley, S. J. (2004). Massive number of antigen-specific CD4 T-cells during vaccination with live attenuated Salmonella causes interclonal competition. J Immunol, 172, 6884–93.
Svenson, S. B., Nurminen, M. and Lindberg, A. A. (1979). Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun, 25, 863–72.
Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella enterica serovar Typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect Immun, 68, 6311–20.
Sztein, M. B., Tanner, M. K., Polotsky, Y., Orenstein, J. M. and Levine, M. M. (1995). Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J Immunol, 155, 3987–93.
Sztein, M. B., Wasserman, S. S., Tacket, C. O. et al. (1994). Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis, 170, 1508–17.
Tacket, C. O., Hone, D. M., Curtiss, R., III et al. (1992). Comparison of the safety and immunogenicity of ΔaroC ΔaroD and Δcya Δcrp Salmonella typhi strains in adult volunteers. Infect Immun, 60, 536–41.
Takeshita, F., Leifer, C. A., Gursel, I. et al. (2001). Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol, 167, 3555–8.
Takeuchi, O., Hoshino, K., Kawai, T. et al. (1999). Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity, 11, 443–51.
Tarr, P. E., Sneller, M. C., Mechanic, L. J. et al. (2001). Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine (Baltimore), 80, 123–33.
Thatte, J., Rath, S. and Bal, V. (1993). Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFNγ-dominant versus an IL4-dominant immune response. Int Immunol, 5, 1431–6.
Totemeyer, S., Foster, N., Kaiser, P., Maskell, D. J. and Bryant, C. E. (2003). Toll-like receptor expression in C3H/HeN and C3H/HeJ mice during Salmonella enterica serovar Typhimurium infection. Infect Immun, 71, 6653–7.
Ugrinovic, S., Menager, N., Goh, N. and Mastroeni, P. (2003). Characterization and development of T-cell immune responses in B-cell-deficient (Igh−6−/−) mice with Salmonella enterica serovar Typhimurium infection. Infect Immun, 71, 6808–19.
Van Amersfoort, E. S., Van Berkel, T. J. and Kuiper, J. (2003). Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev, 16, 379–414.
Velasquez, M. and Starnbach, M. N. (2003). Salmonella rapidly kill dendritic cells via a Caspase-1-dependent mechanism. J Immunol, 171, 6742–9.
Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K., III, Dinarello, C. A. and Fang, F. C. (2001). Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci USA, 98, 2561–5.
Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J. et al. (1999). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 401, 804–8.
Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. and Fang, F. C. (2000a). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med, 192, 227–36.
Vazquez-Torres, A., Xu, Y., Jones-Carson, J. et al. (2000b). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469–85.
Villarreal, B., Mastroeni, P., de Hormaeche, R. D. and Hormaeche, C. E. (1992). Proliferative and T-cell specific interleukin (IL2/IL4) production responses in spleen cells from mice vaccinated with aroA live attenuated Salmonella vaccines. Microb Pathog, 13, 305–15.
Villarreal-Ramos, B., Manser, J., Collins, R. A. et al. (1998). Immune responses in calves immunised orally or subcutaneously with a live Salmonella typhimurium aro vaccine. Vaccine, 16, 45–54.
Vogel, S. N., Johnson, D., Perera, P. Y. et al. (1999). Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an lpsn gene: in vivo evidence for a dominant negative mutation. J Immunol, 162, 5666–70.
Warren, J., Mastroeni, P., Dougan, G. et al. (2002). Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect Immun, 70, 551–7.
Weinberger, M. and Pizzo, P. (1992). The evaluation and management of neutropenic patients with unexplained fever. In Infections in immunocompromised infants and children, ed. C. C. Patrich. New York: Churchill Livingstone, pp. 338–41.
Wyant, T. L., Tanner, M. K. and Sztein, M. B. (1999). Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect Immun, 67, 3619–24.
Xu, H. R., Hsu, H. S., Moncure, C. W. and King, R. A. (1993). Correlation of antibody titres induced by vaccination with protection in mouse typhoid. Vaccine, 11, 725–9.
Yrlid, U., Svensson, M., Hakansson, A. et al. (2001). In vivo activation of dendritic cells and T-cells during Salmonella enterica serovar Typhimurium infection. Infect Immun, 69, 5726–35.
Zasloff, M. (2002). Trypsin, for the defense. Nat Immunol, 3, 508–10.
Zhang, S., Adams, L. G., Nunes, J. et al. (2003). Secreted effector proteins of Salmonella enterica serotype Typhimurium elicit host-specific chemokine profiles in animal models of typhoid fever and enterocolitis. Infect Immun, 71, 4795–803.

Reference Title: References

Reference Type: reference-list

Ables, G. P., Takamatsu, D., Noma, H. et al. (2001). The roles of Nramp1 and TNFα genes in nitric oxide production and their effect on the growth of Salmonella typhimurium in macrophages from Nramp1 congenic and tumor necrosis factor-alpha−/− mice. J Interferon Cytokine Res, 21, 53–62.
Alam, M. S., Akaike, T., Okamoto, S. et al. (2002). Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun, 70, 3130–42.
Aliprantis, A. O., Yang, R. B., Mark, M. R. et al. (1999). Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science, 285, 736–9.
Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. and Miller, S. I. (1992). Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA, 89, 10079–83.
Atkinson, P. G. and Barton, C. H. (1999). High level expression of Nramp1G169 in RAW264.7 cell transfectants: analysis of intracellular iron transport. Immunology, 96, 656–62.
Barrera, L. F., Kramnik, I., Skamene, E. and Radzioch, D. (1994). Nitrite production by macrophages derived from BCG-resistant and -susceptible congenic mouse strains in response to IFNγ and infection with BCG. Immunology, 82, 457–64.
Bauer, S., Kirschning, C. J., Hacker, H. et al. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA, 98, 9237–42.
Bernheiden, M., Heinrich, J. M., Minigo, G. et al. (2001). LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J Endotoxin Res, 7, 447–50.
Beuzon, C. R., Banks, G., Deiwick, J., Hensel, M. and Holden, D. W. (1999). pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol Microbiol, 33, 806–16.
Bihl, F., Salez, L., Beaubier, M. et al. (2003). Overexpression of Toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. J Immunol, 170, 6141–50.
Boehm, U., Klamp, T., Groot, M. and Howard, J. C. (1997). Cellular responses to interferon-gamma. Annu Rev Immunol, 15, 749–95.
Brightbill, H. D., Libraty, D. H., Krutzik, S. R. et al. (1999). Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285, 732–6.
Bryk, R., Griffin, P. and Nathan, C. (2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 407, 211–15.
Buchmeier, N. A. and Heffron, F. (1991). Inhibition of macrophage phagosome–lysosome fusion by Salmonella typhimurium. Infect Immun, 59, 2232–8.
Buchmeier, N. A., Libby, S. J., Xu, Y. et al. (1995). DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest, 95, 1047–53.
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.
Chateau, M. T. and Caravano, R. (1997). The oxidative burst triggered by Salmonella typhimurium in differentiated U937 cells requires complement and a complete bacterial lipopolysaccharide. FEMS Immunol Med Microbiol, 17, 57–66.
Cirillo, D. M., Valdivia, R. H., Monack, D. M. and Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol, 30, 175–88.
Crawford, M. J. and Goldberg, D. E. (1998). Regulation of the Salmonella typhimurium flavohemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide. J Biol Chem, 273, 34028–32.
Cuellar-Mata, P., Jabado, N., Liu, J. et al. (2002). Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem, 277, 2258–65.
De Groote, M. A., Ochsner, U. A., Shiloh, M. U. et al. (1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA, 94, 13997–4001.
De Groote, M. A., Testerman, T., Xu, Y., Stauffer, G. and Fang, F. C. (1996). Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science, 272, 414–17.
de Jong, R., Altare, F., Haagen et al. (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280, 1435–8.
Dobrovolskaia, M. A. and Vogel, S. N. (2002). Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect, 4, 903–14.
Dunstan, S. J., Ho, V. A., Duc, C. M. et al. (2001). Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J Infect Dis, 183, 1156–60.
Dunstan, S. J., Hawn, T. R., Hue, N. T. et al. (2005). Host susceptibility an clinical outcomes in Toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J Infect Dis, 191, 1068–71.
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.
Everest, P., Roberts, M. and Dougan, G. (1998). Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun, 66, 3355–64.
Ezekowitz, R. A., Dinauer, M. C., Jaffe, H. S., Orkin, S. H. and Newburger, P. E. (1988). Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon gamma. N Engl J Med, 319, 146–51.
Fields, P. I., Swanson, R. V., Haidaris, C. G. and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA, 83, 5189–93.
Flo, T. H., Halaas, O., Lien, E. et al. (2000). Human Toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol, 164, 2064–9.
Forbes, J. R. and Gros, P. (2003). Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood, 102, 1884–92.
Fritsche, G., Dlaska, M., Barton, H. et al. (2003). Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFNγ regulatory factor 1 expression. J Immunol, 171, 1994–8.
Gallois, A., Klein, J. R., Allen, L. A., Jones, B. D. and Nauseef, W. M. (2001). Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol, 166, 5741–8.
Garcia-del Portillo, F. and Finlay, B. B. (1995). Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J Cell Biol, 129, 81–97.
Garmendia, J., Beuzon, C. R., Ruiz-Albert, J. and Holden, D. W. (2003). The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology, 149, 2385–96.
Garvis, S. G., Beuzon, C. R. and Holden, D. W. (2001). A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell Microbiol, 3, 731–44.
Goswami, T., Bhattacharjee, A., Babal, P. et al. (2001). Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J, 354, 511–19.
Groisman, E. A. and Saier, M. H., Jr. (1990). Salmonella virulence: new clues to intramacrophage survival. Trends Biochem Sci, 15, 30–3.
Gruenheid, S., Pinner, E., Desjardins, M. and Gros, P. (1997). Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med, 185, 717–30.
Hantke, K. (1997). Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium. J Bacteriol, 179, 6201–4.
Hashim, S., Mukherjee, K., Raje, M., Basu, S. K. and Mukhopadhyay, A. (2000). Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem, 275, 16281–8.
Hayashi, F., Smith, K. D., Ozinsky, A. et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099–103.
Hemmi, H., Takeuchi, O., Kawai, T. et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–5.
Hess, J., Ladel, C., Miko, D. and Kaufmann, S. H. (1996). Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFNγ in bacterial clearance independent of intracellular location. J Immunol, 156, 3321–6.
Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. and Weis, J. J. (2000). Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J Immunol, 165, 618–22.
Hormaeche, C. E. (1979). Genetics of natural resistance to Salmonella in mice Immunology, 37, 319–27.
Imlay, J. A. (2003). Pathways of oxidative damage. Annu Rev Microbiol, 57, 395–418.
Imlay, J. A. and Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J Bacteriol, 166, 519–27.
Jabado, N., Cuellar-Mata, P., Grinstein, S. and Gros, P. (2003). Iron chelators modulate the fusogenic properties of Salmonella-containing phagosomes. Proc Natl Acad Sci USA, 100, 6127–32.
Jabado, N., Jankowski, A., Dougaparsad, S. et al. (2000). Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med, 192, 1237–48.
Kagaya, K., Watanabe, K. and Fukazawa, Y. (1989). Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity. Infect Immun, 57, 609–15.
Kehres, D. G., Janakiraman, A., Slauch, J. M. and Maguire, M. E. (2002). SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J Bacteriol, 184, 3159–66.
Kuhn, D. E., Baker, B. D., Lafuse, W. P. and Zwilling, B. S. (1999). Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169. J Leukoc Biol, 66, 113–19.
Lafuse, W. P., Alvarez, G. R. and Zwilling, B. S. (2002). Role of MAP kinase activation in Nramp1 mRNA stability in RAW264.7 macrophages expressing Nramp1Gly169. Cell Immunol, 215, 195–206.
Lalmanach, A. C., Montagne, A., Menanteau, P. and Lantier, F. (2001). Effect of the mouse Nramp1 genotype on the expression of IFNγ gene in early response to Salmonella infection. Microbes Infect, 3, 639–44.
Lembo, A., Kalis, C., Kirschning, C. J. et al. (2003). Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun, 71, 6058–62.
Leveque, G., Forgetta, V., Morroll, S. et al. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun, 71, 1116–24.
Lundberg, B. E., Wolf, R. E., Jr., Dinauer, M. C., Xu, Y. and Fang, F. C. (1999). Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun, 67, 436–8.
Mastroeni, P., Arena, A., Costa, G. B. et al. (1991). Serum TNFα in mouse typhoid and enhancement of a Salmonella infection by anti-TNFα antibodies. Microb Pathog, 11, 33–8.
Mastroeni, P., Skepper, J. N. and Hormaeche, C. E. (1995). Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections. Infect Immun, 63, 3674–82.
Mastroeni, P., Vazquez-Torres, A., Fang, F. C. et al. (2000). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med, 192, 237–48.
Meresse, S., Steele-Mortimer, O., Finlay, B. B. and Gorvel, J. P. (1999). The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. Embo J, 18, 4394–403.
Mittrucker, H. W. and Kaufmann, S. H. (2000). Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol, 67, 457–63.
Moors, M. A., Li, L. and Mizel, S. B. (2001). Activation of interleukin-1 receptor-associated kinase by gram-negative flagellin. Infect Immun, 69, 4424–9.
Mukherjee, K., Siddiqi, S. A., Hashim, S. et al. (2000). Live Salmonella recruits N-ethylmaleimide-sensitive fusion protein on phagosomal membrane and promotes fusion with early endosome. J Cell Biol, 148, 741–53.
Muotiala, A. and Makela, P. H. (1990). The role of IFNγ in murine Salmonella typhimurium infection. Microb Pathog, 8, 135–41.
Muotiala, A. and Makela, P. H. (1993). Role of gamma interferon in late stages of murine salmonellosis. Infect Immun, 61, 4248–53.
Muroi, M. and Tanamoto, K. (2002). The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-κB through human Toll-like receptor 4. Infect Immun, 70, 6043–7.
Muroi, M., Ohnishi, T. and Tanamoto, K. (2002). MD-2, a novel accessory molecule, is involved in species-specific actions of Salmonella lipid A. Infect Immun, 70, 3546–50.
Nagai, Y., Akashi, S., Nagafuku, M. et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol, 3, 667–72.
Nakano, Y., Onozuka, K., Terada, Y., Shinomiya, H. and Nakano, M. (1990). Protective effect of recombinant tumor necrosis factor-alpha in murine salmonellosis. J Immunol, 144, 1935–41.
Nauciel, C. and Espinasse-Maes, F. (1992). Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun, 60, 450–4.
O'Brien, A. D., Metcalf, E. S. and Rosenstreich, D. L. (1982). Defect in macrophage effector function confers Salmonella typhimurium susceptibility on C3H/HeJ mice. Cell Immunol, 67, 325–33.
O'Brien, A. D., Rosenstreich, D. L., Scher, I. et al. (1980). Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol, 124, 20–4.
Oh, Y. K., Alpuche-Aranda, C., Berthiaume, E. et al. (1996). Rapid and complete fusion of macrophage lysosomes with phagosomes containing Salmonella typhimurium. Infect Immun, 64, 3877–83.
Ozinsky, A., Underhill, D. M., Fontenot, J. D. et al. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA, 97, 13766–71.
Plant, J. and Glynn, A. A. (1976). Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis, 133, 72–8.
Poltorak, A., He, X., Smirnova, I. et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in tlr4 gene. Science, 282, 2085–8.
Rathman, M., Barker, L. P. and Falkow, S. (1997). The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun, 65, 1475–85.
Rathman, M., Sjaastad, M. D. and Falkow, S. (1996). Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun, 64, 2765–73.
Richter-Dahlfors, A., Buchan, A. M. J. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.
Rosenberger, C. M. and Finlay, B. B. (2002). Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem, 277, 18753–62.
Rosenberger, C. M., Scott, M. G., Gold, M. R., Hancock, R. E. and Finlay, B. B. (2000). Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol, 164, 5894–904.
Royle, M. C., Totemeyer, S., Alldridge, L. C., Maskell, D. J. and Bryant, C. E. (2003). Stimulation of Toll-like receptor 4 by lipopolysaccharide during cellular invasion by live Salmonella typhimurium is a critical but not exclusive event leading to macrophage responses. J Immunol, 170, 5445–54.
Schapiro, J. M., Libby, S. J. and Fang, F. C. (2003). Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA, 100, 8496–501.
Schletter, J., Heine, H., Ulmer, A. J. and Rietschel, E. T. (1995). Molecular mechanisms of endotoxin activity. Arch Microbiol, 164, 383–9.
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem, 274, 17406–9.
Sebastiani, G., Leveque, G., Lariviere, L. et al. (2000). Cloning and characterization of the murine Toll-like receptor 5 (tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics, 64, 230–40.
Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. and Finlay, B. B. (1999). Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol, 1, 33–49.
Steele-Mortimer, O., St-Louis, M., Olivier, M. and Finlay, B. B. (2000). Vacuole acidification is not required for survival of Salmonella enterica serovar typhimurium within cultured macrophages and epithelial cells. Infect Immun, 68, 5401–4.
Stevanin, T. M., Poole, R. K., Demoncheaux, E. A. and Read, R. C. (2002). Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun, 70, 4399–405.
Suvarnapunya, A. E., Lagasse, H. A. and Stein, M. A. (2003). The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol, 48, 549–59.
Swanson, R. N. and O'Brien, A. D. (1983). Genetic control of the innate resistance of mice to Salmonella typhimurium: Ity gene is expressed in vivo by 24 hours after infection. J Immunol, 131, 3014–20.
Takeshita, F., Leifer, C. A., Gursel, I. et al. (2001). Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol, 167, 3555–8.
Takeuchi, O., Hoshino, K. and Akira, S. (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 165, 5392–6.
Takeuchi, O., Takeda, K., Hoshino, K. et al. (2000). Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol, 12, 113–17.
Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. J. and Tobias, P. S. (2000). Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol, 165, 5780–7.
Tite, J. P., Dougan, G. and Chatfield, S. N. (1991). The involvement of tumor necrosis factor in immunity to Salmonella infection. J Immunol, 147, 3161–4.
Totemeyer, S., Foster, N., Kaiser, P., Maskell, D. J. and Bryant, C. E. (2003). Toll-like receptor expression in C3H/HeN and C3H/HeJ mice during Salmonella enterica serovar Typhimurium infection. Infect Immun, 71, 6653–7.
Tsolis, R. M., Baumler, A. J. and Heffron, F. (1995). Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun, 63, 1739–44.
Tsolis, R. M., Baumler, A. J., Heffron, F. and Stojiljkovic, I. (1996). Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun, 64, 4549–56.
Uchiya, K., Barbieri, M. A., Funato, K. et al. (1999). A Salmonella virulence protein that inhibits cellular trafficking. Embo J, 18, 3924–33.
van der Straaten, T., van Diepen, A., Kwappenberg, K. et al. (2001). Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication. Infect Immun, 69, 7413–18.
Vazquez-Torres, A. and Fang, F. C. (2001a). Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol, 9, 29–33.
Vazquez-Torres, A. and Fang, F. C. (2001b). Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect, 3, 1313–20.
Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K. R., Dinarello, C. A. and Fang, F. C. (2001). Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci USA, 98, 2561–5.
Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. and Fang, F. C. (2000a). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med, 192, 227–36.
Vazquez-Torres, A., Vallance, B. A., Bergman, M. A. et al. (2004). Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol, 172, 6202–8.
Vazquez-Torres, A., Xu, Y., Jones-Carson, J. et al. (2000b). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.
Vidal, S., Tremblay, M. L., Govoni, G. et al. (1995). The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med, 182, 655–66.
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg Cell, 73, 469–85.
Vieira, O. V., Botelho, R. J. and Grinstein, S. (2002). Phagosome maturation: aging gracefully. Biochem J, 366, 689–704.
Webb, J. L., Harvey, M. W., Holden, D. W. and Evans, T. J. (2001). Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun, 69, 6391–400.
Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. (1999). Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol, 163, 1–5.
Zaharik, M. L., Vallance, B. A., Puente, J. L., Gros, P. and Finlay, B. B. (2002). Host–pathogen interactions: host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proc Natl Acad Sci USA, 99, 15705–10.
Zwilling, B. S., Kuhn, D. E., Wikoff, L., Brown, D. and Lafuse, W. (1999). Role of iron in Nramp1-mediated inhibition of mycobacterial growth. Infect Immun, 67, 1386–92.

Reference Title: References

Reference Type: reference-list

Ardavin, C. (2003). Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol, 3, 582–90.
Asselin-Paturel, C., Boonstra, A., Dalod, M. et al. (2001). Mouse type I IFNproducing cells are immature APCs with plasmacytoid morphology. Nat Immunol, 2, 1144–50.
Banchereau, J. and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–52.
Björck, P. (2001). Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte–macrophage colony-stimulating factor-treated mice. Blood, 98, 3520–26.
Cella, M., Scheidegger, D., Palmer-Lehmann, K. et al. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T-T help via APC activation. J Exp Med, 184, 747–52.
Crowley, M. T., Reilly, C. R. and Lo, D. (1999). Influence of lymphocytes on the presence and organization of dendritic cell subsets in the spleen. J Immunol, 163, 4894–900.
De Smedt, T., Pajak, B., Muraille, E. et al. (1996). Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med, 184, 1413–24.
George, A. (1996). Generation of gamma interferon responses in murine Peyer's patches following oral immunization. Infect Immun, 64, 4606–11.
Henri, S., Vremec, D., Kamath, A. et al. (2001). The dendritic cell populations of mouse lymph nodes. J Immunol, 167, 741–8.
Hopkins, S. A., Niedergang, F., Corthesy-Theulaz, I. E. and Kraehenbuhl, J. P. (2000). A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol, 2, 59–68.
Inaba, K., Inaba, M., Deguchi, M. et al. (1993). Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci USA, 90, 3038–42.
Iwasaki, A. and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T-helper type 2 cells. J Exp Med, 190, 229–39.
Iwasaki, A. and Kelsall, B. L. (2000). Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J Exp Med, 191, 1381–94.
Iwasaki, A. and Kelsall, B. L. (2001). Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J Immunol, 166, 4884–90.
Jensen, V. B., Harty, J. T. and Jones, B. D. (1998). Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun, 66, 3758–66.
Jepson, M. A. and Clark, M. A. (2001). The role of M cells in Salmonella infection. Microbes Infect, 3, 1183–90.
Johansson, C. and Wick, M. (2004). Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter. J Immunol, 172, 2496–503.
Johansson-Lindbom, B., Svensson, M., Wurbel, M. A. et al. (2003). Selective generation of gut tropic T-cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med, 198, 963–9.
Jones, B. D., Ghori, N. and Falkow, S. (1994). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med, 180, 15–23.
Jung, S., Unutmaz, D., Wong, P. et al. (2002). In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T-cells by exogenous cell-associated antigens. Immunity, 17, 211–20.
Kamath, A. T., Pooley, J., O'Keeffe, M. A. et al. (2000). The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol, 165, 6762–70.
Karem, K. L., Kanangat, S. and Rouse, B. T. (1996). Cytokine expression in the gut associated lymphoid tissue after oral administration of attenuated Salmonella vaccine strains. Vaccine, 14, 1495–502.
Kelsall, B. L. and Strober, W. (1996). Distinct populations of dendritic cells are present in the subepithelial dome and T-cell regions of the murine Peyer's patch. J Exp Med, 183, 237–47.
Kirby, A. C., Yrlid, U., Svensson, M. and Wick, M. J. (2001). Differential involvement of dendritic cell subsets during acute Salmonella infection. J Immunol, 166, 6802–11.
Koch, F., Stanzl, U., Jennewein, P. et al. (1996). High level IL12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL4 and IL10. J Exp Med, 184, 741–6.
Kudo, S., Matsuno, K., Ezaki, T. and Ogawa, M. (1997). A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J Exp Med, 185, 777–84.
Kursar, M., Bonhagen, K., Kohler, A. et al. (2002). Organ-specific CD4+ T-cell response during Listeria monocytogenes infection. J Immunol, 168, 6382–7.
Leenen, P. J., Radosevic, K., Voerman, J. S. et al. (1998). Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J Immunol, 160, 2166–73.
Lian, Z. X., Okada, T., He, X. S. et al. (2003). Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J Immunol, 170, 2323–30.
MacPherson, G. G., Jenkins, C. D., Stein, M. J. and Edwards, C. (1995). Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNFα dependence. J Immunol, 154, 1317–22.
Maldonado-Lopez, R., Maliszewski, C., Urbain, J. and Moser, M. (2001). Cytokines regulate the capacity of CD8α+ and CD8α dendritic cells to prime Th1/Th2 cells in vivo. J Immunol, 167, 4345–50.
Maric, I., Holt, P. G., Perdue, M. H. and Bienenstock, J. (1996). Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol, 156, 1408–14.
Marriott, I., Hammond, T. G., Thomas, E. K. and Bost, K. L. (1999). Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol, 29, 1107–15.
Matsuno, K., Ezaki, T., Kudo, S. and Uehara, Y. (1996). A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med, 183, 1865–78.
McSorley, S. J., Cookson, B. T. and Jenkins, M. K. (2000). Characterization of CD4+ T-cell responses during natural infection with Salmonella typhimurium. J Immunol, 164, 986–93.
McSorley, S. J., Asch, S., Costalonga, M., Reinhardt, R. L. and Jenkins, M. K. (2002a). Tracking Salmonella-specific CD4 T-cells in vivo reveals a local mucosal response to a disseminated infection. Immunity, 16, 365–77.
McSorley, S. J., Ehst, B. D., Yu, Y. and Gewirtz, A. T. (2002b). Bacterial flagellin is an effective adjuvant for CD4+ T-cells in vivo. J Immunol, 169, 3914–19.
Morelli, A. E., O'Connell, P. J., Khanna, A. et al. (2000). Preferential induction of Th1 responses by functionally mature hepatic (CD8α and CD8α+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation, 69, 2647–57.
Moser, M. and Murphy, K. M. (2000). Dendritic cell regulation of TH1–TH2 development. Nat Immunol, 1, 199–205.
Nagler-Anderson, C. (2001). Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol, 1, 59–67.
Nakano, H., Yanagita, M. and Gunn, M. D. (2001). CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med, 194, 1171–8.
Neutra, M. R., Frey, A. and Kraehenbuhl, J. P. (1996). Epithelial M cells: gateways for mucosal infection and immunization. Cell, 86, 345–8.
Niess, J. H., Brand, S., Gu, X. et al. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 307, 254–8.
O'Connell, P. J., Morelli, A. E., Logar, A. J. and Thomson, A. W. (2000). Phenotypic and functional characterization of mouse hepatic CD8γ+ lymphoid-related dendritic cells. J Immunol, 165, 795–803.
Okahashi, N., Yamamoto, M., Vancott, J. L. et al. (1996). Oral immunization of interleukin-4 (IL4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL6 and IL10 are associated with mucosal immunoglobulin A responses. Infect Immun, 64, 1516–25.
Pavli, P., Woodhams, C. E., Doe, W. F. and Hume, D. A. (1990). Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology, 70, 40–7.
Pope, C., Kim, S. K., Marzo, A. et al. (2001). Organ-specific regulation of the CD8 T-cell response to Listeria monocytogenes infection. J Immunol, 166, 3402–9.
Regnault, A., Lankar, D., Lacabanne, V. et al. (1999). Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med, 189, 371–80.
Reis e Sousa, C. R., Hieny, S., Scharton-Kersten, T. et al. (1997). In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T-cell areas. J Exp Med, 186, 1819–29.
Rescigno, M., Urbano, M., Valzasina, B. et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2, 361–7.
Richter-Dahlfors, A., Buchan, A. M. J. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.
Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A. (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med, 182, 389–400.
Sato, A., Hashiguchi, M., Toda, E. et al. (2003). CD11b+ Peyer's patch dendritic cells secrete IL6 and induce IgA secretion from naive B cells. J Immunol, 171, 3684–90.
Sato, T., Yamamoto, H., Sasaki, C. and Wake, K. (1998). Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy. Cell Tissue Res, 294, 503–14.
Schulz, O., Edwards, D. A., Schito, M. et al. (2000). CD40 triggering of heterodimeric IL12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity, 13, 453–62.
Sheppard, M., Webb, C., Heath, F. et al. (2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol, 5, 593–600.
Shortman, K. and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nature Rev Immunol, 2, 151–61.
Shreedhar, V. K., Kelsall, B. L. and Neutra, M. R. (2003). Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer's patches. Infect Immun, 71, 504–9.
Shurin, M. R., Pandharipande, P. P., Zorina, T. D. et al. (1997). FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol, 179, 174–84.
Sparwasser, T., Koch, E. S., Vabulas, R. M. et al. (1998). Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol, 28, 2045–54.
Steiniger, B., Klempnauer, J. and Wonigeit, K. (1984). Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney. Transplantation, 38, 169–74.
Steinman, R. M. and Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 137, 1142–62.
Steinman, R. M., Lustig, D. S. and Cohn, Z. A. (1974). Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med, 139, 1431–45.
Steinman, R. M., Pack, M. and Inaba, K. (1997). Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev, 156, 25–37.
Steptoe, R. J., Patel, R. K., Subbotin, V. M. and Thomson, A. W. (2000). Comparative analysis of dendritic cell density and total number in commonly transplanted organs: morphometric estimation in normal mice. Transpl Immunol, 8, 49–56.
Sundquist, M., Johansson, C. and Wick, M. J. (2003). Dendritic cells as inducers of antimicrobial immunity in vivo. Apmis, 111, 715–24.
Svensson, M. and Wick, M. J. (1999). Classical MHC class I peptide presentation of a bacterial fusion protein by bone marrow-derived dendritic cells. Eur J Immunol, 29, 180–8.
Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella enterica serovar Typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect Immun, 68, 6311–20.
VanCott, J. L., Chatfield, S. N., Roberts, M. et al. (1998). Regulation of host immune responses by modification of Salmonella virulence genes. Nat Med, 4, 1247–52.
Vazquez-Torres, A. and Fang, F. C. (2000). Cellular routes of invasion by enteropathogens. Curr Opin Microbiol, 3, 54–9.
Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J. et al. (1999). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 401, 804–8.
Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. and Pauwels, R. A. (2001). Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med, 193, 51–60.
Vremec, D. and Shortman, K. (1997). Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol, 159, 565–73.
Vremec, D., Pooley, J., Hochrein, H., Wu, L. and Shortman, K. (2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164, 2978–86.
Wick, M. J. (2002). The role of dendritic cells during Salmonella infection. Curr Opin Immunol, 14, 437–43.
Wick, M. J., Leithäuser, F. and Reimann, J. (2002). The hepatic immune system. Crit Rev Immunol, 22, 47–103.
Wilson, N. S., El-Sukkari, D., Belz, G. T. et al. (2003). Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood, 102, 2187–94.
Winzler, C., Rovere, P., Rescigno, M. et al. (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med, 185, 317–28.
Woo, J., Lu, L., Rao, A. S., Li, Y. et al. (1994). Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells. Transplantation, 58, 484–91.
Wu, L., Li, C. L. and Shortman, K. (1996). Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med, 184, 903–11.
Yrlid, U. and Wick, M. J. (2002). Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter. J Immunol, 169, 108–16.
Yrlid, U., Svensson, M., Hakansson, A. et al. (2001). In vivo activation of dendritic cells and T-cells during Salmonella enterica serovar Typhimurium infection. Infect Immun, 69, 5726–35.

Reference Title: References

Reference Type: reference-list

Anonymous (2000). Salmonella in Livestock 1999. London: Veterinary Laboratory Agency / Ministry of Agriculture Fisheries and Food.
Babu, U., Scott, M., Myers, M. J. et al. (2003). Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet Immunol Immunopathol, 91, 39–44.
Barrow, P. (1991). Serological analysis for antibodies to S. enteritidis. Vet Rec, 128, 43–4.
Barrow, P. A., Berchieri, A., Jr. and al-Haddad, O. (1992). Serological response of chickens to infection with Salmonella gallinarum-S. pullorum detected by enzyme-linked immunosorbent assay. Avian Dis, 36, 227–36.
Barrow, P. A., Bunstead, N., Marston, K., Lovell, M. A. and Wigley, P. (2004). Faecal shedding and intestinal colonization of Salmonella enterica in inbred chickens: the effect of host-genetic background. Epidemiol Infect, 132, 117–26.
Barrow, P. A., Huggins, M. B. and Lovell, M. A. (1994). Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun, 62, 4602–10.
Barrow, P. A., Lovell, M. A. and Barber, L. Z. (1996). Growth suppression in early stationary phase nutrient broth cultures of Salmonella typhimurium and Escherichia coli is genus specific and not regulated by sigma S. J Bacteriol, 178, 3072–6.
Barrow, P. A., Tucker, J. F. and Simpson, J. M. (1987). Inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium Gram-negative facultatively anaerobic bacteria. Epidemiol Infect, 98, 311–22.
Beal, R. K., Powers, C., Wigley, P., Barrow, P. A. and Smith, A. L. (2004a). Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol, 33, 25–33.
Beal, R. K., Wigley, P., Powers, C. et al. (2004b). Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet Immunol Immunopathol, 100, 151–64.
Berchieri, A., Jr. and Barrow, P. A. (1990). Further studies on the inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an avirulent mutant. Epidemiol Infect, 104, 427–41.
Berndt, A. and Methner, U. (2001). Gamma/delta T-cell response of chickens after oral administration of attenuated and non-attenuated Salmonella typhimurium strains. Vet Immunol Immunopathol, 78, 143–61.
Boyd, Y., Goodchild, M., Morroll, S. and Bumstead, N. (2001). Mapping of the chicken and mouse genes for Toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics, 52, 294–8.
Brennan, F. R., Oliver, J. J. and Baird, G. D. (1995). In vitro studies with lymphocytes from sheep orally inoculated with an aromatic-dependent mutant of Salmonella typhimurium. Res Vet Sci, 58, 152–7.
Brito, J. R., Hinton, M., Stokes, C. R. and Pearson, G. R. (1993). The humoral and cell mediated immune response of young chicks to Salmonella typhimurium and S. Kedougou. Br Vet J, 149, 225–34.
Chadfield, M. S., Brown, D. J., Aabo, S., Christensen, J. P. and Olsen, J. E. (2003). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol, 92, 49–64.
Christensen, J., Baggesen, D. L., Soerensen, V. and Svensmark, B. (1999). Salmonella level of Danish swine herds based on serological examination of meat-juice samples and Salmonella occurrence measured by bacteriological follow-up. Prev Vet Med, 40, 277–92.
Clifton-Hadley, F. A., Breslin, M., Venables, L. M. et al. (2002). A laboratory study of an inactivated bivalent iron restricted Salmonella enterica serovars Enteritidis and Typhimurium dual vaccine against Typhimurium challenge in chickens. Vet Microbiol, 89, 167–79.
Cooper, G. L., Venables, L. M., Woodward, M. J. and Hormaeche, C. E. (1994a). Invasiveness and persistence of Salmonella enteritidis, Salmonella typhimurium, and a genetically defined S. enteritidis aroA strain in young chickens. Infect Immun, 62, 4739–46.
Cooper, G. L., Venables, L. M., Woodward, M. J. and Hormaeche, C. E. (1994b). Vaccination of chickens with strain CVL30, a genetically defined Salmonella enteritidis aroA live oral vaccine candidate. Infect Immun, 62, 4747–54.
Corrier, D. E., Elissalde, M. H., Ziprin, R. L. and DeLoach, J. R. (1991). Effect of immunosuppression with cyclophosphamide, cyclosporin, or dexamethasone on Salmonella colonization of broiler chicks. Avian Dis, 35, 40–5.
Curtiss, R., III and Hassan, J. O. (1996). Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet Immunol Immunopathol, 54, 365–72.
Da Roden, L., Smith, B. P., Spier, S. J. and Dilling, G. W. (1992). Effect of calf age and Salmonella bacterin type on ability to produce immunoglobulins directed against Salmonella whole cells or lipopolysaccharide. Am J Vet Res, 53, 1895–9.
Desmidt, M., Ducatelle, R. and Haesebrouck, F. (1997). Pathogenesis of Salmonella enteritidis phage type four after experimental infection of young chickens. Vet Microbiol, 56, 99–109.
Desmidt, M., Ducatelle, R., Mast, J. et al. (1998). Role of the humoral immune system in Salmonella enteritidis phage type four infection in chickens. Vet Immunol Immunopathol, 63, 355–67.
Dlabac, V., Trebichavsky, I., Rehakova, Z. et al. (1997). Pathogenicity and protective effect of rough mutants of Salmonella species in germ-free piglets. Infect Immun, 65, 5238–43.
Doucet, F. and Bernard, S. (1997). In vitro cellular responses from sheep draining lymph node cells after subcutaneous inoculation with Salmonella abortusovis. Vet Res, 28, 165–78.
Dueger, E. L., House, J. K., Heithoff, D. M. and Mahan, M. J. (2001). Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens. Infect Immun, 69, 7950–4.
Dueger, E. L., House, J. K., Heithoff, D. M. and Mahan, M. J. (2003). Salmonella DNA adenine methylase mutants prevent colonization of newly hatched chickens by homologous and heterologous serovars. Int J Food Microbiol, 80, 153–9.
Eckmann, L., Fierer, J. and Kagnoff, M. F. (1996). Genetically resistant (Ityr) and susceptible (Itys) congenic mouse strains show similar cytokine responses following infection with Salmonella dublin. J Immunol, 156, 2894–900.
Feberwee, A., Hartman, E. G., de Wit, J. J. and de Vries, T. S. (2001). The spread of Salmonella gallinarum 9R vaccine strain under field conditions. Avian Dis, 45, 1024–9.
Fontaine, J. J., Pepin, M., Pardon, P., Marly, J. and Parodi, A. L. (1994). Comparative histopathology of draining lymph node after infection with virulent or attenuated strains of Salmonella abortusovis in lambs. Vet Microbiol, 39, 61–9.
Foster, N., Lovell, M. A., Marston, K. L. et al. (2003). Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect Immun, 71, 2182–91.
Fukui, A., Inoue, N., Matsumoto, M. et al. (2001). Molecular cloning and functional characterization of chicken Toll-like receptors. A single chicken Toll covers multiple molecular patterns. J Biol Chem, 276, 47143–9.
Galland, J. C., House, J. K., Hyatt, D. R. et al. (2000). Prevalence of Salmonella in beef feeder steers as determined by bacterial culture and ELISA serology. Vet Microbiol, 76, 143–51.
Gautier, A. V., Lantier, I. and Lantier, F. (1998). Mouse susceptibility to infection by the Salmonella abortusovis vaccine strain Rv6 is controlled by the Ity/Nramp 1 gene and influences the antibody but not the complement responses. Microb Pathog, 24, 47–55.
Gentschev, I., Glaser, I., Goebel, W. et al. (1998). Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella dublin: secretion of the product enhances specific antibody responses in cattle. Infect Immun, 66, 2060–144.
Gohin, I., Olivier, M., Lantier, I., Pepin, M. and Lantier, F. (1997). Analysis of the immune response in sheep efferent lymph during Salmonella abortusovis infection. Vet Immunol Immunopathol, 60, 111–30.
Gray, J. T., Stabel, T. J. and Fedorka-Cray, P. J. (1996). Effect of dose on the immune response and persistence of Salmonella choleraesuis infection in swine. Am J Vet Res, 57, 313–19.
Hassan, J. O. and Curtiss, R., III (1990). Control of colonization by virulent Salmonella typhimurium by oral immunization of chickens with avirulent Δcya Δcrp S. typhimurium. Res Microbiol, 141, 839–50.
Hassan, J. O. and Curtiss, R., III (1994). Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect Immun, 62, 5519–27.
Heithoff, D. M., Enioutina, E. Y., Daynes, R. A., Sinsheimer, R. L., Low, D. A. and Mahan, M. J. (2001). Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun, 69, 6725–30.
Henderson, S. C., Bounous, D. I. and Lee, M. D. (1999). Early events in the pathogenesis of avian salmonellosis. Infect Immun, 67, 3580–6.
Hoiseth, S. K. and Stocker, B. A. (1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature, 291, 238–9.
Hu, J., Bumstead, N., Barrow, P. et al. (1997). Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res, 7, 693–704.
Jones, M. A., Wigley, P., Page, K. L., Hulme, S. D. and Barrow, P. A. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun, 69, 5471–6.
Jones, P. W., Dougan, G., Hayward, C. et al. (1991). Oral vaccination of calves against experimental salmonellosis using a double aro mutant of Salmonella typhimurium. Vaccine, 9, 29–34.
Kaiser, P., Rothwell, L., Galyov, E. E. et al. (2000). Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology, 146 (Pt 12), 3217–26.
Kennedy, M. J., Yancey, R. J., Jr., Sanchez, M. S. et al. (1999). Attenuation and immunogenicity of Δcya Δcrp derivatives of Salmonella choleraesuis in pigs. Infect Immun, 67, 4628–36.
Kogut, M. H., Rothwell, L. and Kaiser, P. (2003a). Differential regulation of cytokine gene expression by avian heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteritidis. J Interferon Cytokine Res, 23, 319–27.
Kogut, M. H., Rothwell, L. and Kaiser, P. (2003b). Priming by recombinant chicken interleukin-2 induces selective expression of IL8 and IL18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteritidis. Mol Immunol, 40, 603–10.
Kogut, M. H., Tellez, G. I., McGruder, E. D. et al. (1994). Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microb Pathog, 16, 141–51.
Kramer, T. T., Roof, M. B. and Matheson, R. R. (1992). Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. Am J Vet Res, 53, 444–8.
Lee, G. M., Jackson, G. D. and Cooper, G. N. (1983). Infection and immune responses in chickens exposed to Salmonella typhimurium. Avian Dis, 27, 577–83.
Leveque, G., Forgetta, V., Morroll, S. et al. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun, 71, 1116–24.
Lindberg, A. A. and Andersson, J. A. (1983). Salmonella typhimurium infection in calves: cell-mediated and humoral immune reactions before and after challenge with live virulent bacteria in calves given live or inactivated vaccines. Infection and Immunity, 41, 751–7.
Lumsden, J. S. and Wilkie, B. N. (1992). Immune response of pigs to parenteral vaccination with an aromatic-dependent mutant of Salmonella typhimurium. Can J Vet Res, 56, 296–302.
Mariani, P., Barrow, P. A., Cheng, H. H. et al. (2001). Localization to chicken chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics, 53, 786–91.
Martin, G., Methner, U., Rychlik, I. and Barrow, P. A. (2002). [Specificity of inhibition between Salmonella strains.] Dtsch Tierarztl Wochenschr, 109, 154–7.
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1992). Role of T-cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro Salmonella vaccines. Microbial Pathogenesis, 13, 477–91.
Maxwell, M. H. and Robertson, G. (1998). The avian heterophil leucocyte: a review. World's Poultry Science Journal, 54, 155–78.
Mukkur, T. K. and Walker, K. H. (1992). Development and duration of protection against salmonellosis in mice and sheep immunised with live aromatic-dependent Salmonella typhimurium. Res Vet Sci, 52, 147–53.
Mukkur, T. K., Walker, K. H., Baker, P. and Jones, D. (1995). Systemic and mucosal intestinal antibody response of sheep immunized with aromatic-dependent live or killed Salmonella typhimurium. Comp Immunol Microbiol Infect Dis, 18, 27–39.
Nielsen, B., Baggesen, D., Bager, F., Haugegaard, J. and Lind, P. (1995). The serological response to Salmonella serovars Typhimurium and Infantis in experimentally infected pigs. The time course followed with an indirect anti-LPS ELISA and bacteriological examinations. Vet Microbiol, 47, 205–18.
Norimatsu, M., Chance, V., Dougan, G., Howard, C. J. and Villarreal-Ramos, B. (2004). Live Salmonella enterica serovar Typhimurium (S. Typhimurium) elicit dendritic cell responses that differ from those induced by killed S. typhimurium. Vet Immunol Immunopathol, 98, 193–201.
Norimatsu, M., Harris, J., Chance, V. et al. (2003). Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology, 108, 55–61.
Pardon, P., Marly, J., Lantier, F. and Sanchis, R. (1990). Vaccinal properties of Salmonella abortusovis mutants for streptomycin: screening with an ovine model. Ann Rech Vet, 21, 57–67.
Paulin, S. M., Watson, P. R., Benmore, A. R. et al. (2002). Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun, 70, 6788–97.
Plant, J. and Glynn, A. A. (1974). Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature, 248, 345–7.
Pogonka, T., Klotz, C., Kovacs, F. and Lucius, R. (2003). A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens in chicken. Int J Parasitol, 33, 81–8.
Qureshi, M. A. (2003). Avian macrophage and immune response: an overview. Poult Sci, 82, 691–8.
Roof, M. B. and Doitchinoff, D. D. (1995). Safety, efficacy, and duration of immunity induced in swine by use of an avirulent live Salmonella choleraesuis-containing vaccine. Am J Vet Res, 56, 39–44.
Segall, T. and Lindberg, A. A. (1993). Oral vaccination of calves with an aromatic-dependent Salmonella dublin (O9,12) hybrid expressing O4,12 protects against S. dublin (O9,12) but not against Salmonella typhimurium (O4, 5,12). Infect Immun, 61, 1222–31.
Smith, B. P., Reina-Guerra, M., Stocker, B. A., Hoiseth, S. K. and Johnson, E. (1984). Aromatic-dependent Salmonella dublin as a parenteral modified live vaccine for calves. Am J Vet Res, 45, 2231–5.
Smith, H. W. (1956). The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. J Hyg (Lond), 54, 419–32.
Smith, H. W. (1965). The immunization of mice, calves and pigs against Salmonella dublin and Salmonella choleraesuis infections. J Hyg (Lond), 63, 117–35.
Splichal, I., Trebichavsky, I., Muneta, Y. and Mori, Y. (2002). Early cytokine response of gnotobiotic piglets to Salmonella enterica serotype Typhimurium. Vet Res, 33, 291–7.
Springer, S., Lindner, T., Steinbach, G. and Selbitz, H. J. (2001). Investigation of the efficacy of a genetically-stabile live Salmonella typhimurium vaccine for use in swine. Berl Munch Tierarztl Wochenschr, 114, 342–5.
Srinand, S., Robinson, R. A., Collins, J. E. and Nagaraja, K. V. (1995). Serologic studies of experimentally induced Salmonella choleraesuis var kunzendorf infection in pigs. Am J Vet Res, 56, 1163–8.
Stabel, T. J., Fedorka-Cray, P. J. and Gray, J. T. (2002). Neutrophil phagocytosis following inoculation of Salmonella choleraesuis into swine. Vet Res Commun, 26, 103–9.
Trebichavsky, I., Splichal, I., Splichalova, A., Muneta, Y. and Mori, Y. (2003). Systemic and local cytokine response of young piglets to oral infection with Salmonella enterica serotype Typhimurium. Folia Microbiol (Praha), 48, 403–7.
van Diemen, P. M., Kreukniet, M. B., Galina, L., Bumstead, N. and Wallis, T. S. (2002). Characterisation of a resource population of pigs screened for resistance to salmonellosis. Vet Immunol Immunopathol, 88, 183–96.
Van Immerseel, F., De Buck, J., De Smet, I., Mast, J., Haesebrouck, F. and Ducatelle, R. (2002a). Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella enteritidis strain. Dev Comp Immunol, 26, 355–64.
Van Immerseel, F., De Buck, J., De Smet, I., Mast, J., Haesebrouck, F. and Ducatelle, R. (2002b). The effect of vaccination with a Salmonella enteritidis aroA mutant on early cellular responses in caecal lamina propria of newly-hatched chickens. Vaccine, 20, 3034–41.
Vermeulen, A. N. (1998). Progress in recombinant vaccine development against coccidiosis. A review and prospects into the next millennium. Int J Parasitol, 28, 1121–30.
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469–85.
Villarreal-Ramos, B., Manser, J., Collins, R. A. et al. (1998). Immune responses in calves immunised orally or subcutaneously with a live Salmonella typhimurium aro vaccine. Vaccine, 16, 45–54.
Villarreal-Ramos, B., Manser, J., Collins, R. A. (2000). Susceptibility of calves to challenge with Salmonella typhimurium 4/74 and derivatives harbouring mutations in htrA or purE. Microbiology, 146, 2775–83.
Watson, P. R., Paulin, S. M., Bland, A. P., Jones, P. W. and Wallis, T. S. (1995). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect Immun, 63, 2743–54.
Wells, L. L., Lowry, V. K., DeLoach, J. R. and Kogut, M. H. (1998). Age-dependent phagocytosis and bactericidal activities of the chicken heterophil. Dev Comp Immunol, 22, 103–9.
Wigley, P., Berchieri, A., Jr., Page, K. L., Smith, A. L. and Barrow, P. A. (2001). Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect Immun, 69, 7873–9.
Wigley, P., Hulme, S. D., Bumstead, N. and Barrow, P. A. (2002a). In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes Infect, 4, 1111–20.
Wigley, P., Jones, M. A. and Barrow, P. A. (2002b). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol, 31, 501–6.
Withanage, G. S., Sasai, K., Fukata, T. et al. (1998). T-lymphocytes, B-lymphocytes, and macrophages in the ovaries and oviducts of laying hens experimentally infected with Salmonella enteritidis. Vet Immunol Immunopathol, 66, 173–84.
Withanage, G. S., Sasai, K., Fukata, T., Miyamoto, T. and Baba, E. (1999). Secretion of Salmonella-specific antibodies in the oviducts of hens experimentally infected with Salmonella enteritidis. Vet Immunol Immunopathol, 67, 185–93.
Withanage, G. S. K., Kaiser, P., Wigley, P., Powers, C., Mastroeni, P., Brooks, H., Barrow, P., Smith, A., Maskell, D., and McConnell, I. (2004). Rapid expression of chemokines and pro-inflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect Immun, 72, 2152–9.
Woodward, M. J., Gettinby, G., Breslin, M. F., Corkish, J. D. and Houghton, S. (2002). The efficacy of Salenvac, a Salmonella enterica subsp. Enterica serotype Enteritidis iron-restricted bacterin vaccine, in laying chickens. Avian Pathol, 31, 383–92.
Zhang-Barber, L., Turner, A. K. and Barrow, P. A. (1999). Vaccination for control of Salmonella in poultry. Vaccine, 17, 2538–45.
Zhang-Barber, L., Turner, A. K., Martin, G. et al. (1997). Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization. J Bacteriol, 179, 7186–90.

Reference Title: References

Reference Type: reference-list

Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. and Miller, S. I. (1992). Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA, 89, 10079–83.
Anonymous (1966). Controlled field trials and laboratory studies on the effectiveness of typhoid vaccines in Poland, 1961–64. Bull WHO, 34, 211–22.
Barbezange, C., Ermel, G., Ragimbeau, C., Humbert, F. and Salvat, G. (2000). Some safety aspects of Salmonella vaccines for poultry: in vivo study of the genetic stability of three Salmonella typhimurium live vaccines. FEMS Microbiol Lett, 192, 101–6.
Chatfield, S. N., Fairweather, N., Charles, I. et al. (1992a). Construction of a genetically defined Salmonella typhi Ty2 aroA, aroC mutant for the engineering of a candidate oral typhoid–tetanus vaccine. Vaccine, 10, 53–60.
Chatfield, S. N., Strahan, K., Pickard, D. et al. (1992b). Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog, 12, 145–51.
Curtiss, R. and Kelly, S. M. (1987). Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun, 55, 3035–43.
Dougan, G., Chatfield, S., Pickard, D. et al. (1988). Construction and characterization of vaccine strains of Salmonella harboring mutations in two different aro genes. J Infect Dis, 158, 1329–35.
Feberwee, A., de Vries, T. S., Elbers, A. R. and de Jong, W. A. (2000). Results of a Salmonella enteritidis vaccination field trial in broiler-breeder flocks in The Netherlands. Avian Dis, 44, 249–55.
Feberwee, A., Hartman, E. G., de Wit, J. J. and de Vries, T. S. (2001). The spread of Salmonella gallinarum 9R vaccine strain under field conditions. Avian Dis, 45, 1024–9.
Gordon, M. A., Banda, H. T., Gondwe, M. et al. (2002). Non-typhoidal Salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. Aids, 16, 1633–41.
Gordon, M. A., Walsh, A. L., Chaponda, M. et al. (2001). Bacteraemia and mortality among adult medical admissions in Malawi – predominance of non-typhi salmonellae and Streptococcus pneumoniae. J Infect, 42, 44–9.
Groschel, D. H. and Hornick, R. B. (1981). Who introduced typhoid vaccination: Almroth Write or Richard Pfeiffer? Rev Infect Dis, 3, 1251–4.
Hassan, J. O. and Curtiss, R. (1994) Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect Immun, 62, 5519–27.
Hensel, M., Shea, J. E., Gleeson, C. et al. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–3.
Hindle, Z., Chatfield, S. N., Phillimore, J. et al. (2002). Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun, 70, 3457–67.
Hohmann, E. L., Oletta, C. A., Killeen, K. P. and Miller, S. I. (1996). phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis, 173, 1408–14.
Hoiseth, S. K. and Stocker, B. A. (1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature, 291, 238–9.
Hone, D. M., Attridge, S. R., Forrest, B. et al. (1988). A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect Immun, 56, 1326–33.
Hone, D. M., Harris, A. M., Chatfield, S., Dougan, G. and Levine, M. M. (1991). Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine, 9, 810–16.
Johnson, K., Charles, I., Dougan, G. et al. (1991). The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol, 5, 401–7.
Klugman, K. P., Koornhof, H. J., Robbins, J. B. and Le Cam, N. N. (1996). Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine, 14, 435–8.
Levine, M. M., Ferreccio, C., Black, R. E. and Germanier, R. (1987). Large-scale field trial of Ty21a live oral typhoid vaccine in enteric-coated capsule formulation. Lancet, 1, 1049–52.
Lopez-Macias, C., Lopez-Hernandez, M. A., Gonzalez, C. R., Isibasi, A. and Ortiz-Navarrete, V. (1995). Induction of antibodies against Salmonella typhi OmpC porin by naked DNA immunization. Ann N Y Acad Sci, 772, 285–8.
Mai, N. L., Phan, V. B., Vo, A. H. et al. (2003). Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. N Engl J Med, 349, 1390–1.
Miller, S. I., Kukral, A. M. and Mekalanos, J. J. (1989). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA, 86, 5054–8.
Miller, S. I., Mekalanos, J. J. and Pulkkinen, W. S. (1990). Salmonella vaccines with mutations in the phoP virulence regulon. Res Microbiol, 141, 817–21.
Nardelli-Haefliger, D., Kraehenbuhl, J. P., Curtiss, R. et al. (1996). Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun, 64, 5219–24.
Panchanathan, V., Kumar, S., Yeap, W. et al. (2001). Comparison of safety and immunogenicity of a Vi polysaccharide typhoid vaccine with a whole-cell killed vaccine in Malaysian Air Force recruits. Bull WHO, 79, 811–17.
Rabsch, W., Hargis, B. M., Tsolis, R. M. et al. (2000). Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg Infect Dis, 6, 443–8.
Ramsay, A. J., Kent, S. J., Strugnell, R. A. et al. (1999). Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev, 171, 27–44.
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.
Tacket, C. O., Hone, D. M., Curtiss, R., III et al. (1992). Comparison of the safety and immunogenicity of ΔaroC ΔaroD and Δcya Δcrp Salmonella typhi strains in adult volunteers. Infect Immun, 60, 536–41.
Tacket, C. O., Losonsky, G., Taylor, D. N. et al. (1991). Lack of immune response to the Vi component of a Vi-positive variant of the Salmonella typhi live oral vaccine strain Ty21a in human studies. J Infect Dis, 163, 901–4.
Tacket, C. O., Sztein, M. B., Losonsky, G. A. et al. (1997). Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect Immun, 65, 452–6.
Tarr, P. E., Kuppens, L., Jones, T. C. et al. (1999). Considerations regarding mass vaccination against typhoid fever as an adjunct to sanitation and public health measures: potential use in an epidemic in Tajikistan. Am J Trop Med Hyg, 61, 163–70.
Thomson, S. A., Burrows, S. R., Misko, I. S. et al. (1998). Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4² cytotoxic T lymphocytes: a novel approach to vaccine design. J Virol, 72, 2246–52.
Thomson, S. A., Elliott, S. L., Sherritt, M. A. et al. (1996). Recombinant polyepitope vaccines for the delivery of multiple CD8² cytotoxic T-cell epitopes. J Immunol, 157, 822–6.
Ulmer, J. B., Donnelly, J. J., Parker, S. E. et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 259, 1745–9.
Vaughan, V. C. (1926). A Doctor's Memories. Indianapolis: The Bobbs-Merril Co.
Wang, J. Y., Noriega, F. R., Galen, J. E., Barry, E. and Levine, M. M. (2000). Constitutive expression of the Vi polysaccharide capsular antigen in attenuated Salmonella enterica serovar Typhi oral vaccine strain CVD 909. Infect Immun, 68, 4647–52.
Warren, J. W. and Hornick, R. B. (1979). Immunization against typhoid fever. Annu Rev Med, 30, 457–72.
Woodward, M. J., Gettinby, G., Breslin, M. F., Corkish, J. D. and Houghton, S. (2002). The efficacy of Salenvac, a Salmonella enterica subsp. Enterica serotype Enteritidis iron-restricted bacterin vaccine, in laying chickens. Avian Pathol, 31, 383–92.

Reference Title: References

Reference Type: reference-list

Aggarwal, A., Kumar, S., Jaffe, R. et al. (1990). Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T-cells. J Exp Med, 172, 1083–90.
al- Ramadi, B. K., Al-Dhaheri, M. H., Mustafa, N. et al. (2001). Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun, 69, 3980–8.
Ascon, M. A., Hone, D. M., Walters, N. and Pascual, D. W. (1998). Oral immunization with a Salmonella typhimurium vaccine vector expressing recombinant enterotoxigenic Escherichia coli K99 fimbriae elicits elevated antibody titers for protective immunity. Infect Immun, 66, 5470–6.
Attridge, S. R., Davies, R. and LaBrooy, J. T. (1997). Oral delivery of foreign antigens by attenuated Salmonella: consequences of prior exposure to the vector strain. Vaccine, 15, 155–62.
Avogadri, F., Martinoli, Ch., Petrovska, L. et al. (2005). Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res., 65, 3920–7.
Barry, E. M., Gomez-Duarte, O., Chatfield, S. et al. (1996). Expression and immunogenicity of pertussis toxin S1 subunit – tetanus toxin fragment C fusions in Salmonella typhi vaccine strain CVD 908. Infect Immun, 64, 4172–81.
Ben-Yedidia, T. and Arnon, R. (1998). Effect of pre-existing carrier immunity on the efficacy of synthetic influenza vaccine. Immunol Lett, 64, 9–15.
Black, R. E., Levine, M. M., Clements, M. L., Losonsky et al. (1987). Prevention of shigellosis by a Salmonella typhiShigella sonnei bivalent vaccine. J Infect Dis, 155, 1260–5.
Brayton, K. A., van der Walt, M., Vogel, S. W. and Allsopp, B. A. (1998). A partially protective clone from Cowdria ruminantium identified by using a Salmonella vaccine delivery system. Ann N Y Acad Sci, 849, 247–52.
Brett, S. J., Dunlop, L., Liew, F. Y. and Tite, J. P. (1993). Influence of the antigen delivery system on immunoglobulin isotype selection and cytokine production in response to influenza A nucleoprotein. Immunology, 80, 306–12.
Brown, A., Hormaeche, C. E., Demarco-de-Hormaeche, R. et al. (1987). An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned beta-galactosidase in mice. J Infect Dis, 155, 86–92.
Capozzo, A.V., Cuberos, L., Levine, M. M. and Pasetti, M. F. (2004). Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect Immun, 72, 4637–46.
Carrier, M. J., Chatfield, S. N., Dougan, G. et al. (1992). Expression of human IL1 beta in Salmonella typhimurium. A model system for the delivery of recombinant therapeutic proteins in vivo. J Immunol, 148, 1176–81.
Catmull, J., Wilson, M. E., Kirchhoff, L. V., Metwali, A. and Donelson, J. E. (1999). Induction of specific cell-mediated immunity in mice by oral immunization with Salmonella expressing Onchocerca volvulus glutathione S-transferase. Vaccine, 17, 31–9.
Cattozzo, E. M., Stocker, B. A., Radaelli, A., De Giuli Morghen, C. and Tognon, M. (1997). Expression and immunogenicity of V3 loop epitopes of HIV-1, isolates SC and WMJ2, inserted in Salmonella flagellin. J Biotechnol, 56, 191–203.
Chabalgoity, J. A., Dougan, G., Mastroeni, P. and Aspinall, R. J. (2002). Live bacteria as the basis for immunotherapies against cancer. Expert Rev Vaccines, 1, 495–505.
Chabalgoity, J. A., Harrison, J. A., Esteves, A. et al. (1997). Expression and immunogenicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains. Infect Immun, 65, 2402–12.
Chabalgoity, J. A., Khan, C. M., Nash, A. A. and Hormaeche, C. E. (1996). A Salmonella typhimurium htrA live vaccine expressing multiple copies of a peptide comprising amino acids 8–23 of herpes simplex virus glycoprotein D as a genetic fusion to tetanus toxin fragment C protects mice from herpes simplex virus infection. Mol Microbiol, 19, 791–801.
Chabalgoity, J. A., Moreno, M., Carol, H., Dougan, G. and Hormaeche, C. E. (2000). A dog-adapted Salmonella typhimurium strain as a basis for a Live oral Echinococcus granulosus vaccine. Vaccine, 19, 460–9.
Chabalgoity, J. A., Villareal-Ramos, B., Khan, C. M. et al. (1995). Influence of preimmunization with tetanus toxoid on immune responses to tetanus toxin fragment C-guest antigen fusions in a Salmonella vaccine carrier. Infect Immun, 63, 2564–9.
Charbit, A., Martineau, P., Ronco, J. et al. (1993). Expression and immunogenicity of the V3 loop from the envelope of human immunodeficiency virus type 1 in an attenuated aroA strain of Salmonella typhimurium upon genetic coupling to two Escherichia coli carrier proteins. Vaccine, 11, 1221–8.
Chatfield, S. N., Charles, I. G., Makoff, A. J. et al. (1992a). Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology N Y, 10, 888–92.
Chatfield, S. N., Fairweather, N., Charles, I. et al. (1992b). Construction of a genetically defined Salmonella typhi Ty2 aroA, aroC mutant for the engineering of a candidate oral typhoid–tetanus vaccine. Vaccine, 10, 53–60.
Chen, H. and Schifferli, D. M. (2001). Enhanced immune responses to viral epitopes by combining macrophage-inducible expression with multimeric display on a Salmonella vector. Vaccine, 19, 3009–18.
Chen, H. and Schifferli, D. M. (2003). Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar Typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun, 71, 4664–73.
Cicin-Sain, L., Brune, W., Bubic, I., Jonjic, S. and Koszinowski, U. H. (2003). Vaccination of mice with bacteria carrying a cloned herpes virus genome reconstituted in vivo. J Virol, 77, 8249–55.
Clairmont, C., Lee, K. C., Pike, J. et al. (2000). Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis, 181, 1996–2002.
Cochlovius, B., Stassar, M. J., Schreurs, M. W., Benner, A. and Adema, G. J. (2002). Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol Lett, 80, 89–96.
Coulson, N. M., Fulop, M. and Titball, R. W. (1994a). Bacillus anthracis protective antigen, expressed in Salmonella typhimurium SL 3261, affords protection against anthrax spore challenge. Vaccine, 12, 1395–401.
Coulson, N. M., Fulop, M. and Titball, R. W. (1994b). Effect of different plasmids on colonization of mouse tissues by the aromatic amino acid dependent Salmonella typhimurium SL 3261. Microb Pathog, 16, 305–11.
Covone, M. G., Brocchi, M., Palla, E. et al. (1998). Levels of expression and immunogenicity of attenuated Salmonella enterica serovar Typhimurium strains expressing Escherichia coli mutant heat-labile enterotoxin. Infect Immun, 66, 224–31.
Darji, A., Guzman, C. A., Gerstel, B. et al. (1997). Oral somatic transgene vaccination using attenuated S. typhimurium. Cell, 91, 765–75.
Darji, A., zur Lage, S., Garbe, A. I., Chakraborty, T. and Weiss, S. (2000). Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol, 27, 341–9.
Denich, K., Borlin, P., O' Hanley, P. D., Howard, M. and Heath, A. W. (1993). Expression of the murine interleukin-4 gene in an attenuated aroA strain of Salmonella typhimurium: persistence and immune response in BALB/c mice and susceptibility to macrophage killing. Infect Immun, 61, 4818–27.
Dietrich, G., Spreng, S., Favre, D., Viret, J. F. and Guzman, C. A. (2003). Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr Opin Mol Ther, 5, 10–19.
Dunne, M., al- Ramadi, B. K., Barthold, S. W., Flavell, R. A. and Fikrig, E. (1995). Oral vaccination with an attenuated Salmonella typhimurium strain expressing Borrelia burgdorferi OspA prevents murine Lyme borreliosis. Infect Immun, 63, 1611–14.
Dunstan, S. J., Simmons, C. P. and Strugnell, R. A. (1999). Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium. Infect Immun, 67, 5133–41.
Dusek, D. M., Progulske-Fox, A. and Brown, T. A. (1994). Systemic and mucosal immune responses in mice orally immunized with avirulent Salmonella typhimurium expressing a cloned Porphyromonas gingivalis hemagglutinin. Infect Immun, 62, 1652–7.
Ervin, S. E., Small, P., Jr. and Gulig, P. A. (1993). Use of incompatible plasmids to control expression of antigen by Salmonella typhimurium and analysis of immunogenicity in mice. Microb Pathog, 15, 93–101.
Evans, D. T., Chen, L. M., Gillis, J. et al. (2003). Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol, 77, 2400–9.
Everest, P., Frankel, G., Li, J. et al. (1995). Expression of LacZ from the htrA, nirB and groE promoters in a Salmonella vaccine strain: influence of growth in mammalian cells. FEMS Microbiol Lett, 126, 97–101.
Fagan, P. K., Djordjevic, S. P., Chin, J., Eamens, G. J. and Walker, M. J. (1997). Oral immunization of mice with attenuated Salmonella typhimurium aroA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF). Infect Immun, 65, 2502–7.
Ferguson, A. and Sallam, J. (1992). Mucosal immunity to oral vaccines. Lancet, 339, 179.
Flo, J., Tisminetzky, S. and Baralle, F. (2001). Oral transgene vaccination mediated by attenuated salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine, 19, 1772–82.
Flynn, J. L., Weiss, W. R., Norris, K. A. et al. (1990). Generation of a cytotoxic T-lymphocyte response using a Salmonella antigen-delivery system. Mol Microbiol, 4, 2111–18.
Forbes, N. S., Munn, L. L., Fukumura, D. and Jain, R. K. (2003). Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res, 63, 5188–93.
Forrest, B. D. (1992). Impairment of immunogenicity of Salmonella typhi Ty21a due to preexisting cross-reacting intestinal antibodies. J Infect Dis, 166, 210–12.
Fouts, T. R., DeVico, A. L., Onyabe, D. Y. et al. (2003). Progress toward the development of a bacterial vaccine vector that induces high-titer long-lived broadly neutralizing antibodies against HIV-1. FEMS Immunol Med Microbiol, 37, 129–34.
Galan, J. E., Nakayama, K. and Curtiss, R., III (1990). Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene, 94, 29–35.
Galen, J. E., Nair, J., Wang, J. Y. et al. (1999). Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun, 67, 6424–33.
Gentschev, I., Glaser, I., Goebel, W. et al. (1998). Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella dublin: secretion of the product enhances specific antibody responses in cattle. Infect Immun, 66, 2060–4.
Gentschev, I., Mollenkopf, H., Sokolovic, Z. et al. (1996). Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene, 179, 133–40.
Gomez-Duarte, O. G., Galen, J., Chatfield, S. N. et al. (1995). Expression of fragment C of tetanus toxin fused to a carboxyl-terminal fragment of diphtheria toxin in Salmonella typhi CVD 908 vaccine strain. Vaccine, 13, 1596–602.
Gomez-Duarte, O. G., Lucas, B., Yan, Z. X. et al. (1998). Protection of mice against gastric colonization by Helicobacter pylori by single oral dose immunization with attenuated Salmonella typhimurium producing urease subunits A and B. Vaccine, 16, 460–71.
Goñi, F., Knudsen, E., Schreiber, F. et al. (2005). Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience, 133 (2), 413–21.
Guzman, C. A., Brownlie, R. M., Kadurugamuwa, J., Walker, M. J. and Timmis, K. N. (1991). Antibody responses in the lungs of mice following oral immunization with Salmonella typhimurium aroA and invasive Escherichia coli strains expressing the filamentous hemagglutinin of Bordetella pertussis. Infect Immun, 59, 4391–7.
Haddad, D., Liljeqvist, S., Kumar, S. et al. (1995). Surface display compared to periplasmic expression of a malarial antigen in Salmonella typhimurium and its implications for immunogenicity. FEMS Immunol Med Microbiol, 12, 175–86.
Hahn, H. P., Hess, C., Gabelsberger, J., Domdey, H. and von Specht, B. U. (1998). A Salmonella typhimurium strain genetically engineered to secrete effectively a bioactive human interleukin (hIL)-6 via the Escherichia coli hemolysin secretion apparatus. FEMS Immunol Med Microbiol, 20, 111–19.
Hayes, L. J., Conlan, J. W., Everson, J. S., Ward, M. E. and Clarke, I. N. (1991). Chlamydia trachomatis major outer membrane protein epitopes expressed as fusions with LamB in an attenuated aroA strain of Salmonella typhimurium; their application as potential immunogens. J Gen Microbiol, 137, 1557–64.
Hess, J., Gentschev, I., Miko, D. et al. (1996). Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci USA, 93, 1458–63.
Hohmann, E. L., Oletta, C. A., Loomis, W. P. and Miller, S. I. (1995). Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Natl Acad Sci USA, 92, 2904–8.
Hone, D., Attridge, S., van-den- Bosch, L. and Hackett, J. (1988). A chromosomal integration system for stabilization of heterologous genes in Salmonella based vaccine strains. Microb Pathog, 5, 407–18.
Hopkins, S., Kraehenbuhl, J. P., Schodel, F. et al. (1995). A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. Infect Immun, 63, 3279–86.
Houde, M., Bertholet, S., Gagnon, E. et al. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature, 425, 402–6.
Ianaro, A., Xu, D., O' Donnell, C. A., Di-Rosa, M. and Liew, F. Y. (1995). Expression of TGF-beta in attenuated Salmonella typhimurium: oral administration leads to the reduction of inflammation, IL2 and IFNγ, but enhancement of IL10, in carrageenin-induced oedema in mice. Immunology, 84, 8–15.
Igwe, E. I., Geginat, G. and Russmann, H. (2002). Concomitant cytosolic delivery of two immunodominant listerial antigens by Salmonella enterica serovar Typhimurium confers superior protection against murine listeriosis. Infect Immun, 70, 7114–19.
Jagusztyn-Krynicka, E. K., Clark-Curtiss, J. E. and Curtiss, R., III (1993). Escherichia coli heat-labile toxin subunit B fusions with Streptococcus sobrinus antigens expressed by Salmonella typhimurium oral vaccine strains: importance of the linker for antigenicity and biological activities of the hybrid proteins. Infect Immun, 61, 1004–15.
Kang, H. Y. and Curtiss, R., III (2003). Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol Med Microbiol, 37, 99–104.
Karem, K. L., Bowen, J., Kuklin, N. and Rouse, B. T. (1997). Protective immunity against herpes simplex virus (HSV) type 1 following oral administration of recombinant Salmonella typhimurium vaccine strains expressing HSV antigens. J Gen Virol, 78, 427–34.
Karem, K. L., Chatfield, S., Kuklin, N. and Rouse, B. T. (1995). Differential induction of carrier antigen-specific immunity by Salmonella typhimurium live-vaccine strains after single mucosal or intravenous immunization of BALB/c mice. Infect Immun, 63, 4557–63.
Khan, C. M., Villarreal-Ramos, B., Pierce, R. J. et al. (1994a). Construction, expression, and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide 115–131 of the P28 glutathione S-transferase expressed as C-terminal fusions to tetanus toxin fragment C in a live aro-attenuated vaccine strain of Salmonella. J Immunol, 153, 5634–42.
Khan, C. M., Villarreal-Ramos, B., Pierce, R. J. (1994b). Construction, expression, and immunogenicity of the Schistosoma mansoni P28 glutathione S-transferase as a genetic fusion to tetanus toxin fragment C in a live aro attenuated vaccine strain of Salmonella. Proc Natl Acad Sci USA, 91, 11261–5.
Khan, S. A., Everest, P., Servos, S. et al. (1998). A lethal role for lipid A in Salmonella infections. Mol Microbiol, 29, 571–9.
Kochi, S. K., Killeen, K. P. and Ryan, U. S. (2003). Advances in the development of bacterial vector technology. Expert Rev Vaccines, 2, 31–43.
Leary, S. E. C., Griffin, K. F., Garmory, H. S., Williamson, E. D. and Titball, R. W. (1997). Expression of an F1/V fusion protein in attenuated Salmonella typhimurium and protection of mice against plague. Microb Pathog, 23, 167–79.
Lo, W. F., Dunn, C. D., Ong, H., Metcalf, E. S. and Soloski, M. J. (2004). Bacterial and host factors involved in the major histocompatibility complex class Ib-restricted presentation of Salmonella Hsp 60: novel pathway. Infect Immun, 72, 2843–9.
Londono, L. P., Chatfield, S., Tindle, R. W. et al. (1996). Immunisation of mice using Salmonella typhimurium expressing human papillomavirus type 16 E7 epitopes inserted into hepatitis B virus core antigen. Vaccine, 14, 545–52.
Low, K. B., Ittensohn, M., Le, T. et al. (1999). Lipid A mutant Salmonella with suppressed virulence and TNFγ induction retain tumor-targeting in vivo. Nat Biotechnol, 17, 37–41.
Low, K. B., Ittensohn, M., Luo, X. et al. (2004). Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med, 90, 47–60.
Marshall, D. G., Haque, A., Fowler, R. et al. (2000). Use of the stationary phase inducible promoters, spv and dps, to drive heterologous antigen expression in Salmonella vaccine strains. Vaccine, 18, 1298–306.
Maskell, D. J., Sweeney, K. J., O' Callaghan, D. et al. (1987). Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathog, 2, 211–21.
Mastroeni, P., Chabalgoity, J. A., Dunstan, S. J., Maskell, D. J. and Dougan, G. (2001). Salmonella: immune responses and vaccines. Vet J, 161, 132–64.
McKelvie, N. D., Stratford, R., Wu, T. et al. (2004). Expression of heterologous antigens in Salmonella typhimurium vaccine vectors using the in vivo-inducible, SPI-2 promoter, ssaG. Vaccine, 22, 3243–55.
McSorley, S. J., Xu, D. and Liew, F. Y. (1997). Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect Immun, 65, 171–8.
Molina, N. C. and Parker, C. D. (1990). Murine antibody response to oral infection with live aroA recombinant Salmonella dublin vaccine strains expressing filamentous hemagglutinin antigen from Bordetella pertussis. Infect Immun, 58, 2523–8.
Nakayama, K., Kelly, S. M. and Curtiss, R., III (1988). Construction of an Asd+ expression cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology, 6, 693–7.
Nardelli-Haefliger, D., Kraehenbuhl, J. P., Curtiss, R., III et al. (1996). Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun, 64, 5219–24.
Nardelli-Haefliger, D., Roden, R. B., Benyacoub, J. et al. (1997). Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect Immun, 65, 3328–36.
Nayak, A. R., Tinge, S. A., Tart, R. C. et al. (1998). A live recombinant avirulent oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect Immun, 66, 3744–51.
Nemunaitis, J., Cunningham, C., Senzer, N. et al. (2003). Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther, 10, 737–44.
Newton, S. M., Jacob, C. O. and Stocker, B. A. (1989). Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science, 244, 70–2.
Newton, S. M., Joys, T. M., Anderson, S. A. et al. (1995). Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res Microbiol, 146, 203–16.
Newton, S. M., Kotb, M., Poirier, T. P., Stocker, B. A. and Beachey, E. H. (1991). Expression and immunogenicity of a streptococcal M protein epitope inserted in Salmonella flagellin. Infect Immun, 59, 2158–65.
Niethammer, A. G., Xiang, R., Becker, J. C. et al. (2002). A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med, 8, 1369–75.
Niethammer, A. G., Xiang, R., Ruehlmann, J. M. et al. (2001). Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res, 61, 6178–84.
Orr, N., Galen, J. E. and Levine, M. M. (1999). Expression and immunogenicity of a mutant diphtheria toxin molecule, CRM(197), and its fragments in Salmonella typhi vaccine strain CVD 908-htrA. Infect Immun, 67, 4290–4.
Orr, N., Galen, J. E. and Levine, M. M. (2001). Novel use of anaerobically induced promoter, dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella enterica serovar Typhi strain CVD 908-htrA. Vaccine, 19, 1694–700.
Oyston, P. C., Williamson, E. D., Leary, S. E. et al. (1995). Immunization with live recombinant Salmonella typhimurium aroA producing F1 antigen protects against plague. Infect Immun, 63, 563–8.
Paglia, P., Medina, E., Arioli, I., Guzman, C. A. and Colombo, M. P. (1998). Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood, 92, 3172–6.
Paglia, P., Terrazzini, N., Schulze, K., Guzman, C. A. and Colombo, M. P. (2000). In vivo correction of genetic defects of monocyte/macrophages using attenuated Salmonella as oral vectors for targeted gene delivery. Gene Ther, 7, 1725–30.
Pascual, D. W., Hone, D. M., Hall, S. et al. (1999). Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T-helper cell response. Infect Immun, 67, 6249–56.
Pasetti, M. F., Anderson, R. J., Noriega, F. R., Levine, M. M. and Sztein, M. B. (1999). Attenuated ΔguaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses. Clin Immunol, 92, 76–89.
Pasetti, M. F., Barry, E. M., Losonsky, G. et al. (2003). Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol, 77, 5209–17.
Pawelek, J. M., Low, K. B. and Bermudes, D. (1997). Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res, 57, 4537–44.
Pawelek, J. M., Low, K. B. and Bermudes, D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol, 4, 548–56.
Pawelek, J. M., Sodi, S., Chakraborty, A. K. et al. (2002). Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther, 9, 813–18.
Pertl, U., Wodrich, H., Ruehlmann, J. M. et al. (2003). Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood, 101, 649–54.
Pistor, S. and Hobom, G. (1990). OmpA-Haemagglutinin fusion proteins for oral immunization with live attenuated Salmonella. Res Microbiol, 141, 879–81.
Platt, J., Sodi, S., Kelley, M. et al. (2000). Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur J Cancer, 36, 2397–402.
Poirier, T. P., Kehoe, M. A. and Beachey, E. H. (1988). Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. J Exp Med, 168, 25–32.
Redman, T. K., Harmon, C. C., Lallone, R. L. and Michalek, S. M. (1995). Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A of Streptococcus sobrinus: dose response and induction of protective humoral responses in rats. Infect Immun, 63, 2004–11.
Redman, T. K., Harmon, C. C. and Michalek, S. M. (1996). Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A (SpaA) of Streptococcus sobrinus: effects of the Salmonella virulence plasmid on the induction of protective and sustained humoral responses in rats. Vaccine, 14, 868–78.
Reisfeld, R. A., Niethammer, A. G., Luo, Y. and Xiang, R. (2004). DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev, 199, 181–90.
Rescigno, M., Valzasina, B., Bonasio, R., Urbano, M. and Ricciardi-Castagnoli, P. (2001). Dendritic cells, loaded with recombinant bacteria expressing tumor antigens, induce a protective tumor-specific response. Clin Cancer Res, 7, 865s–870s.
Roberts, M., Bacon, A., Li, J. and Chatfield, S. (1999). Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic anti-fragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. Infect Immun, 67, 3810–15.
Roberts, M., Li, J., Bacon, A. and Chatfield, S. (1998). Oral vaccination against tetanus: comparison of the immunogenicities of Salmonella strains expressing fragment C from the nirB and htrA promoters [published erratum appears in Infect Immun (1999), 67, 468]. Infect Immun, 66, 3080–7.
Rosenberg, S. A., Spiess, P. J. and Kleiner, D. E. (2002). Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother, 25, 218–25.
Rosenkranz, C. D., Chiara, D., Agorio, C. et al. (2003). Towards new immunotherapies: targeting recombinant cytokines to the immune system using live attenuated Salmonella. Vaccine, 21, 798–801.
Russmann, H. (2004). Inverted pathogenicity: the use of pathogen-specific molecular mechanisms for prevention or therapy of disease. Int J Med Microbiol, 293, 565–9.
Russmann, H., Igwe, E. I., Sauer, J. et al. (2001). Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol, 167, 357–65.
Russmann, H., Shams, H., Poblete, F. et al. (1998). Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science, 281, 565–8.
Sadoff, J. C., Ballou, W. R., Baron, L. S. et al. (1988). Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science, 240, 336–8.
Schodel, F. and Will, H. (1990). Expression of hepatitis B virus antigens in attenuated salmonellae for oral immunization. Res Microbiol, 141, 831–7.
Schodel, F., Milich, D. R. and Will, H. (1990). Hepatitis B virus nucleocapsid/pre-S2 fusion proteins expressed in attenuated Salmonella for oral vaccination. J Immunol, 145, 4317–21.
Schorr, J., Knapp, B., Hundt, E., Kupper, H. A. and Amann, E. (1991). Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine, 9, 675–81.
Shams, H., Poblete, F., Russmann, H., Galan, J. E. and Donis, R. O. (2001). Induction of specific CD8+ memory T-cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope. Vaccine, 20, 577–85.
Shata, M. T., Reitz, M. S., Jr., DeVico, A. L., Lewis, G. K. and Hone, D. M. (2001). Mucosal and systemic HIV-1 Env-specific CD8+ T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine, 20, 623–9.
Shiau, A. L., Chu, C. Y., Su, W. C. and Wu, C. L. (2001). Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses. Vaccine, 19, 3277–84.
Simonet, M., Fortineau, N., Beretti, J. L. and Berche, P. (1994). Immunization with live aroA recombinant Salmonella typhimurium producing invasin inhibits intestinal translocation of Yersinia pseudotuberculosis. Infect Immun, 62, 863–7.
Sjostedt, A., Sandstrom, G. and Tarnvik, A. (1992). Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect Immun, 60, 2855–62.
Smerdou, C., Anton, I. M., Plana, J., Curtiss, R., III and Enjuanes, L. (1996). A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity. Virus Res, 41, 1–9.
Srinivasan, J., Tinge, S., Wright, R., Herr, J. C. and Curtiss, R., III (1995). Oral immunization with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract. Biol Reprod, 53, 462–71.
Stabel, T. J., Mayfield, J. E., Morfitt, D. C. and Wannemuehler, M. J. (1993). Oral immunization of mice and swine with an attenuated Salmonella choleraesuiscya-12 Δcrp-cdt19] mutant containing a recombinant plasmid. Infect Immun, 61, 610–18.
Stabel, T. J., Mayfield, J. E., Tabatabai, L. B. and Wannemuehler, M. J. (1990). Oral immunization of mice with attenuated Salmonella typhimurium containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 58, 2048–55.
Stabel, T. J., Mayfield, J. E., Tabatabai, L. B. and Wannemuehler, M. J. (1991). Swine immunity to an attenuated Salmonella typhimurium mutant containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 59, 2941–7.
Stager, S., Gottstein, B. and Muller, N. (1997). Systemic and local antibody response in mice induced by a recombinant peptide fragment from Giardia lamblia variant surface protein (VSP) H7 produced by a Salmonella typhimurium vaccine strain. Int J Parasitol, 27, 965–71.
Steger, K. K., Valentine, P. J., Heffron, F., So, M. and Pauza, C. D. (1999). Recombinant, attenuated Salmonella typhimurium stimulate lymphoproliferative responses to SIV capsid antigen in rhesus macaques. Vaccine, 17, 923–32.
Stocker, B. A. (1990). Aromatic-dependent Salmonella as live vaccine presenters of foreign epitopes as inserts in flagellin. Res Microbiol, 141, 787–96.
Strugnell, R., Dougan, G., Chatfield, S. et al. (1992). Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun, 60, 3994–4002.
Strugnell, R. A., Maskell, D., Fairweather, N. et al. (1990). Stable expression of foreign antigens from the chromosome of Salmonella typhimurium vaccine strains. Gene, 88, 57–63.
Su, G. F., Brahmbhatt, H. N., Wehland, J., Rohde, M. and Timmis, K. N. (1992). Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect Immun, 60, 3345–59.
Titball, R. W., Howells, A. M., Oyston, P. C. and Williamson, E. D. (1997). Expression of the Yersinia pestis capsular antigen (F1 antigen) on the surface of an aroA mutant of Salmonella typhimurium induces high levels of protection against plague. Infect Immun, 65, 1926–30.
Toso, J. F., Gill, V. J., Hwu, P. et al. (2002). Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol, 20, 142–52.
Turner, S. J., Carbone, F. R. and Strugnell, R. A. (1993). Salmonella typhimurium ΔaroA ΔaroD mutants expressing a foreign recombinant protein induce specific major histocompatibility complex class I-restricted cytotoxic T-lymphocytes in mice. Infection And Immunity, 61, 5374–80.
Urashima, M., Suzuki, H., Yuza, Y. et al. (2000). An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood, 95, 1258–63.
Valentine, P. J., Meyer, K., Rivera, M. M. et al. (1996). Induction of SIV capsid-specific CTL and mucosal sIgA in mice immunized with a recombinant S. typhimurium aroA mutant. Vaccine, 14, 138–46.
Verma, N. K., Ziegler, H. K., Stocker, B. A. and Schoolnik, G. K. (1995a). Induction of a cellular immune response to a defined T-cell epitope as an insert in the flagellin of a live vaccine strain of Salmonella. Vaccine, 13, 235–44.
Verma, N. K., Ziegler, H. K., Wilson, M., Khan, M. et al. (1995b). Delivery of class I and class II MHC-restricted T-cell epitopes of listeriolysin of Listeria monocytogenes by attenuated Salmonella. Vaccine, 13, 142–50.
Vrtala, S., Grote, M., Ferreira, F. et al. (1995). Humoral immune responses to recombinant tree pollen allergens (Bet v I and Bet v II) in mice: construction of a live oral allergy vaccine. Int Arch Allergy Immunol, 107, 290–4.
Walker, M. J., Rohde, M., Timmis, K. N. and Guzman, C. A. (1992). Specific lung mucosal and systemic immune responses after oral immunization of mice with Salmonella typhimurium aroA, Salmonella typhi Ty21a, and invasive Escherichia coli expressing recombinant pertussis toxin S1 subunit. Infect Immun, 60, 4260–8.
Wang, J., Michel, V., Leclerc, C., Hofnung, M. and Charbit, A. (1999). Immunogenicity of viral B-cell epitopes inserted into two surface loops of the Escherichia coli K12 LamB protein and expressed in an attenuated aroA strain of Salmonella typhimurium. Vaccine, 17, 1–12.
Wedemeyer, H., Gagneten, S., Davis, A. et al. (2001). Oral immunization with HCV-NS3-transformed Salmonella: induction of HCV-specific CTL in a transgenic mouse model. Gastroenterology, 121, 1158–66.
Weiss, S. (2003). Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol, 293, 95–106.
Weth, R., Christ, O., Stevanovic, S. and Zoller, M. (2001). Gene delivery by attenuated Salmonella typhimurium: comparing the efficacy of helper versus cytotoxic T-cell priming in tumor vaccination. Cancer Gene Ther, 8, 599–611.
Whittle, B. L. and Verma, N. K. (1997). The immune response to a B-cell epitope delivered by Salmonella is enhanced by prior immunological experience. Vaccine, 15, 1737–40.
Whittle, B. L., Lee, E., Weir, R. C. and Verma, N. K. (1997a). Immune response to a Murray Valley encephalitis virus epitope expressed in the flagellin of an attenuated strain of Salmonella. J Med Microbiol, 46, 129–38.
Whittle, B. L., Smith, R. M., Matthaei, K. I., Young, I. G. and Verma, N. K. (1997b). Enhancement of the specific mucosal IgA response in vivo by interleukin- 5 expressed by an attenuated strain of Salmonella serotype Dublin. J Med Microbiol, 46, 1029–38.
Winau, F., Kaufmann, S. H. and Schaible, U. E. (2004). Apoptosis paves the detaur path for CD8 T-cell activation against intracellular bacteria. Cell Microbiol, 6, 599–607.
Woo, P. C., Wong, L. P., Zheng, B. J. and Yuen, K. Y. (2001). Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium. Vaccine, 19, 2945–54.
Wu, J. Y., Newton, S., Judd, A., Stocker, B. and Robinson, W. S. (1989). Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella. Proc Natl Acad Sci USA, 86, 4726–30.
Wu, S., Pascual, D. W., Lewis, G. K. and Hone, D. M. (1997). Induction of mucosal and systemic responses against human immunodeficiency virus type 1 glycoprotein 120 in mice after oral immunization with a single dose of a Salmonella-HIV vector. AIDS Res Hum Retroviruses, 13, 1187–94.
Wyszynska, A., Raczko, A., Lis, M. and Jagusztyn-Krynicka, E. K. (2004). Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72D3/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 22, 1379–89.
Xiang, R., Lode, H. N., Chao, T. H. et al. (2000). An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA, 97, 5492–7.
Xiang, R., Mizutani, N., Luo, Y. et al. (2005). A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res., 65, 553–61.
Xiang, R., Primus, F. J., Ruehlmann, J. M. et al. (2001). A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T-cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol, 167, 4560–5.
Xiong Bao, J. and Clements, J. D. (1991). Prior immunologic experience potentiates the subsequent antibody response when Salmonella strains are used as vaccine carriers. Infect Immun, 59, 3841–5.
Xu, D., McSorley, S. J., Chatfield, S. N., Dougan, G. and Liew, F. Y. (1995). Protection against i infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (aroA aroD). Immunology, 85, 1–7.
Xu, D., McSorley, S. J., Tetley, L. et al. (1998). Protective effect on Leishmania major infection of migration inhibitory factor, TNFγ, and IFNγ administered orally via attenuated Salmonella typhimurium. J Immunol, 160, 1285–9.
Yang, D. M., Fairweather, N., Button, L. L. et al. (1990). Oral Salmonella typhimurium (aroA) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T-helper 1 cells and protective immunity against leishmaniasis. J Immunol, 145, 2281–5.
Yrlid, U. and Wick, M. J. (2000). Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med, 191, 613–24.
Yrlid, U., Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunol Med Microbiol, 27, 313–20.
Yu, Y. A., Shabahang, S., Timiryasova, T. M. et al. (2004). Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol, 22, 313–20.
Yuhua, L., Kunyuan, G., Hui, C. et al. (2001). Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int J Cancer, 94, 438–43.
Zheng, B., Woo, P. C., Ng, M. et al. (2001). A crucial role of macrophages in the immune responses to oral DNA vaccination against hepatitis B virus in a murine model. Vaccine, 20, 140–7.
Zheng, L. M., Luo, X., Feng, M. et al. (2000). Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol Res, 12, 127–35.
Zoller, M. and Christ, O. (2001). Prophylactic tumor vaccination: comparison of effector mechanisms initiated by protein versus DNA vaccination. J Immunol, 166, 3440–50.