2 - Diagnosis and classification  pp. 21-47


By Mihaela Onciu and Ching-Hon Pui

Image View Previous Chapter Next Chapter



Introduction

Precise diagnosis and classification are essential to the successful treatment and biologic study of the childhood leukemias. In broadest terms, the leukemias are classified as acute versus chronic and as lymphoid versus myeloid. The terms acute and chronic originally referred to the relative durations of survival of patients with these diseases when effective therapy was not available. With improvements in treatment, they have taken on new meanings. Acute currently refers to leukemia characterized by rapid tumor cell proliferation and a predominance of blast cells, while chronic leukemia encompasses a variety of myeloproliferative and lymphoproliferative disorders in which the predominant tumor cells show variable degrees of differentiation beyond the blast stage. The vast majority of childhood leukemia cases are acute, unlike those in adults. The most common subtype, acute lymphoblastic (also termed lymphocytic or lymphoid) leukemia (ALL) accounts for 75% to 80% of all childhood cases, while acute myeloid (also termed myelocytic, myelogenous, or nonlymphoblastic) leukemia (AML) comprises approximately 20%. By contrast, chronic myeloid leukemia (CML) represents only approximately 2% of childhood leukemias and chronic lymphocytic leukemia (CLL) is reported only rarely in children. Finally, myelodysplastic syndrome (MDS) designates a heterogeneous group of clonal diseases related to a subset of AML. MDS is characterized by peripheral blood cytopenias, normocellular or hypercellular but nonproductive bone marrow (inefficient hematopoiesis), and dysmorphic maturation of hematopoietic precursors. It may evolve into frank AML or result in death due to cytopenic complications.

2

Reference Title: References

Reference Type: reference-list

Aur, R. J. A., Simone, J. V., Hustu, H. O., et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood, 1971; 37: 272–81.
Velpeau, A. Sur la resorption du pusaet sur l'alteration du sang dans les maladies clinique de persection nenemant. Premier observation. Rev Med, 1827; 2: 216.
Virchow, R. Weisses blut. Notiz Geb Natur Heilk, 1845; 36: 152–6.
Bennett, J. H. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinburgh Med Surg J, 1845; 64: 413–23.
Craigie, D. Case of disease of the spleen in which death took place in consequence of the presence of purulent matter in the blood. Edinburgh Med Surg J, 1845; 64: 400–13.
Virchow, R. Die leukämie. In R. Virchow, ed., Gesammelte abhandlungen zur wissenschaft lichen medizin (Frankfurt, Germany: Meidinger, 1856), pp. 190–211.
Friedreich, N. Ein neuer fall von leukämie. Virchow's Arch Pathol Anat, 1857; 12: 37–58.
Neumann, E. Ueber myelogene leukämie. Berl Klin Wochenschr, 1878; 15: 69–72.
Turk, W. Ein system der lymphomatosen. Wien Klin Wochenschr, 1903; 16: 1073–85.
Ehrlich, P. Farbenanalytische untersuchungen zur histologie und klinick des blutes (Berlin: Hirschwald, 1891).
Reschad, H. & Schilling-Torgau, V. Ueber eine neue leukämie durch echte uebergangsformen und ihre bedeutung fur dies selbständigkeit dieser zellen. Munch Med Wochenschr, 1913; 60: 1981–4.
Ward, G. The infective theory of acute leukemia. Br J Child Dis, 1917; 14: 10–20.
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al. Criteria for the diagnosis of acute leukemia of megakaryocytic lineage (M7). A report of the French–American–British Cooperative Group. Ann Intern Med, 1985; 103: 460–2.
Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science, 1960; 132: 1497.
Rowley, J. D. A new consistent chromosome abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973; 243: 290–3.
Jurlander, J., Caliguri, M. A., Ruutu, T., et al. Persistence of AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood, 1996; 88: 2183–91.
Guthrie, R. Organization of a regional newborn screening laboratory. Neonatal Screening for Inborn Errors of Metabolism (Berlin: Springer, 1980), In H. Bickel, R. Guthrie & G. Hammersen, eds., pp. 259–70.
Ford, A. M., Ridge, S. A., Cabrera, M. E., et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature, 1993; 363: 358–60.
Gale, K. B., Ford, A. M., Repp, R., et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–1503.
Yagi, T., Hibi, S., Tabata, Y., et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood, 2000; 96: 264–8.
Taub, J. W., Konrad, M. A., Ge, Y., et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood, 2002; 99: 2992–6.
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.
Greaves, M. Childhood leukaemia. BMJ, 2002; 324: 283–7.
Borella, L. & Sen, L. T cell surface markers on lymphoblasts from acute lymphocytic leukemia. J Immunol, 1973; 111: 1257–60.
Sen, L. & Borella, L. Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Engl J Med, 1975; 92: 828–32.
Ritz, J., Pesando, J. M., Notis-McConarty, J., et al. A monoclonal antibody to human acute lymphoblastic leukemia antigen. Nature, 1980; 283: 583–5.
Pui, C. H. & Crist, W. M. Biology and treatment of acute lymphoblastic leukemia. J Pediatr, 1994; 124: 491–503.
Romana, S. P., Poirel, H., Leconiat, M., et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, 1995; 86: 4263–9.
Pinkel, D. Genotypic classification of childhood acute lymphoid leukemia. Leukemia, 1999; 13(Suppl.): S90–1.
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumors. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).
Vardiman, J. W., Harris, N. L., & Brunning, R. D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.
Walters, T. R., Bushore, M., & Simone, J. Poor prognosis in Negro children with acute lymphocytic leukemia. Cancer, 1972; 29: 210–14.
Viana, M. B., Murao, M., Ramos, G., et al. Malnutrition as a prognostic factor in lymphoblastic leukemia: a multivariate analysis. Arch Dis Child, 1994; 71: 304–10.
Lobato-Mendizabal, E., Ruiz-Arguelles, G. J., & Marin-Lopez, A. Leukemia and nutrition: malnutrition is an adverse prognostic factor in the outcome of treatment of patients with standard risk acute lymphoblastic leukemia. Leuk Res, 1989; 13: 899–906.
Lobato-Mendizabal, E., Ruiz-Arguelles, G. J., & Ganci-Cerrud, G. Effects of socioeconomic status on the therapeutic response of children with acute lymphoblastic leukemia of common risk. Neoplasia, 1991; 8: 161–5.
Hord, M. H., Smith, T. L., Culbert, S. J., et al. Ethnicity and cure rates of Texas children with acute lymphoid leukemia. Cancer, 1996; 77: 563–9.
Krivit, W. & Good, R. A. Simultaneous occurrence of mongolism and leukemia. AMA J Dis Child, 1957; 94: 289–93.
Ravindrinath, Y., Abella, E., Krischer, J. P., et al. Acute myeloid leukemia in Down's syndrome is highly responsive to chemotherapy: experience of Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.
Douer, D., Preston-Martin, S., Chang, E. et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.
Lennard, L., Lilleyman, J. S., Van Loon, J., et al. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet, 1990; 336: 225–9.
McLeod, H. L., Relling, M. V., Liu, Q., et al. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood, 1995; 85: 1897–1902.
Wiemels, J. L., Pagnamenta, A., Taylor, G. M., et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res, 1999; 59: 4095–9.
Wiemels, J. L., Smith, R. N., Taylor, G. M., et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A, 2001; 98: 4004–9.
Ellerman, V. & Bang, O. Experimentelle leukämie bei hühnern. Zentrabl Bakteriol, 1908; 46: 595–609.
Gross, L. “Spontaneous” leukemia developing in C3H mice following inoculation, in infancy, with AK-leukemic extracts or AK-embryos. Proc Soc Exp Biol Med, 1951; 76: 27–32.
Rickard, C. G., Post, J. E., Noronha, F., et al. A transmissable virus-induced lymphocytic leukemia of the cat. J Natl Cancer Inst, 1969; 42: 987–1014.
Miller, J. M., Miller, L. D., Olson, C. & Gillette, K. G. Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J Natl Cancer Inst, 1969; 43: 1297–1305.
Kawakami, T. G., Huff, S. D., Buckley, P. M., et al. C-type virus associated with gibbon lymphosarcoma. Nat New Biol, 1972; 235: 170–1.
Poiesz, B. J., Ruscette, F. W., Gagdar, A. F., et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A, 1980; 77: 7415–19.
Churchill, A. E. & Biggs, P. M. Agent of Marek disease in tissue culture. Nature, 1967; 215: 528–30.
Epstein, M. A., Achong, B. G., & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 1964; 15: 702–3.
Pagano, J. S. Epstein–Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians, 1999; 111: 573–80.
Smith, J. W., Freeman, A. & Pinkel, D. Search for a human leukemia virus. Archiv Gesamte Virusforschung, 1967; 22: 294–302.
Cooke, J. V. The incidence of acute leukemia in children. JAMA, 1942; 119: 547–50.
Kellett, C. E. Acute myeloid leukemia in one of identical twins. Arch Dis Child, 1937; 12: 239–52.
Pinkel, D. & Nefzger, D. Some epidemiological features of childhood leukemia in the Buffalo, NY, area. Cancer, 1959; 12: 351–8.
Pinkel, D., Dowd, J. E. & Bross, I. D. J. Some epidemiological features of malignant solid tumors of children in the Buffalo, NY, area. Cancer, 1963; 16: 28–33.
Heath, C. W. & Hasterlik, R. J. Leukemia among children in a suburban community. Am J Med, 1963; 34: 796–812.
Knox, G. Epidemiology of childhood leukemia in Northumberland and Durham. Br J Prev Soc Med, 1964; 18: 17–24.
Lock, S. P. & Merrington, M. Leukemia in Lewisham (1957–1963). Br Med J, 1967; 3: 759–60.
Ederer, F., Myers, M. H., Eisenberg, H., et al. Temporal-spatial distribution of leukemia and lymphoma in Connecticut. J Natl Cancer Inst, 1965; 35: 625–9.
Kinlen, L. J., Dickson, M., & Stiller, C. A. Childhood leukemia and non-Hodgkin's lymphoma near large rural construction sites, with a comparison with Sellafield nuclear site. BMJ, 1995; 310: 763–8.
Greaves, M. F. & Alexander, F. E. An infectious etiology for common acute lymphoblastic leukemia in childhood ? Leukemia, 1993; 7: 349–60.
Greaves, M. F., Colman, S. M., Beard, M. E. J., et al. Geographical distribution of acute lymphoblastic leukemia subtypes: second report of the collaborative group study. Leukemia, 1993; 7: 27–34.
March, H. C. Leukemia in radiologists. Radiology, 1944; 43: 275–8.
Folley, J. H., Borges, W., & Yamawaki, T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med, 1952; 13: 311–21.
Simpson, C. L., Hempelman, L. H., & Fuller, L. M. Neoplasia in children treated with x-rays in infancy for thymic enlargement. Radiology, 1955; 64: 840–5.
Stewart, A., Webb, J., Gates, D., et al. Malignant disease in childhood and diagnostic irradiation in utero. Lancet, 1956; 2: 447.
Ron, E., Modan, B., & Boice, J. D., Jr. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol, 1988; 127: 713–25.
Kadhim, M. A. & Wright, E. G. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells. Adv Space Res, 1998; 22: 587–96.
Delore, P. & Borgomano, C. Leucémie aigue au cours de l'intoxication benzenique: sur l'origine toxique de certaines leucémies aigues et leurs relations avec les anémies graves. J Méd Lyon, 1928; 9: 227–33.
Aksoy, M., Erdem, S., & Dincol, G. Leukemia in shoe workers exposed chronically to benzene. Blood, 1974; 44: 837–41.
Vigliani, E. C. & Saita, G. Benzene and leukemia. N Engl J Med, 1964; 271: 872–6.
Hayes, R. B., Yin, S. N., Dosemeci, M., et al. Mortality among benzene-exposed workers in China. Environ Health Perspect, 1996; 104 (Suppl. 6): 1349–52.
Hoffmann, D., Brunnemann, K. D., & Hoffman, I. Significance of benzene in tobacco carcinogenesis. In M. A. Mehlman, ed., Benzene: Occupational and Environmental Hazards: Scientific Update (Princeton, NJ: Princeton Scientific Publications, 1989), pp. 99–112.
Smith, M. T. The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect, 1996; 104(Suppl. 6): 1219–25.
Thompson, J. R., Gerald, P. F., Willoughby, L. N., et al. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet, 2001; 358: 1935–40.
Tucker, M. A., Meadows, A. T., Boice, J. D., et al. Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst, 1987; 78: 459–64.
Pui, C.-H., Behm, F. G., Raimondi, S. C., et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.
Alexander, F. E., Patheal, S. L., Biondi, A., et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res, 2001; 61: 2542–6.
Hartenstein, Ber Veterinärw, Sachsen: 1876; 44: 41: As cited by Engelbreth-Holm, J. In Spontaneous and Experimental Leukemia in Animals (Edinburgh, UK: Oliver and Boyd, 1942), p. 130.
Slye, M. The relation of heredity to the occurence of spontaneous leukemia, pseudoleukemia, lymphosarcoma and allied diseases in mice. Preliminary report. Am J Cancer, 1931; 15: 1361–86.
MacDowell, E. C. & Richter, M. N. Mouse leukemia. Ⅸ. The role of heredity in spontaneous cases. Arch Pathol, 1935; 20: 709–24.
Ardashnikov, S. N. The genetics of leukemia in man. J Hyg, 1937; 37: 286–302.
Videbaek, A. Heredity in Human Leukemia and its Relation to Cancer: A Genetic and Clinical Study of 209 Probands (London: H K Lewis, 1947).
Steinberg, A. G. A genetic and statistical study of acute leukemia in children. In Proceedings of the Third National Cancer Conference (Philadelphia, PA: J. B. Lippincott, 1957), pp. 353–6.
Siegel, A. E. Lymphocytic leukemia occurring in twins. Atlantic Med Monthly J, 1928; 31: 748–9.
MacMahon, B. & Levy, M. A. Prenatal origin of childhood leukemia. Evidence from twins. N Engl J Med, 1964; 270: 1082–5.
Brewster, H. F. & Cannon, H. E. Acute lymphatic leukemia: report of a case in an eleventh month mongolian idiot. New Orleans Med Surg J, 1930; 82: 872–3.
Miller, R. W. Persons with an exceptionally high risk of leukemia. Cancer Res, 1967; 27: 2420–3.
De Klein, A., Kessel, A. G. van, Grosveld, G., et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature, 1982; 300: 765–7.
Dalla-Favera, R., Bregni, M., Erikson, J., et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A, 1982; 79: 7824–7.
Pinkel, D. Curing children of leukemia. Cancer, 1987; 59: 1683–91.
Deininger, M. W., Goldman, J. M., & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood, 2000; 96: 3343–56.
Blackwood, E. M. & Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991; 251: 1211–17.
Lissauer, H. Zwei fälle von leucaemie. Berl Klin Wochenschr, 1865; 2: 403–4.
Senn, N. The therapeutical value of the Roentgen ray in the treatment of pseudoleukemia. N Y Med J, 1903; 77: 665–8.
Lawrence, J. H. Nuclear physics and therapy: preliminary report on a new method for the treatment of leukemia and polycythemia. Radiology, 1940; 35: 51–60.
Krumbhaar, E. B. & Krumbhaar, H. D. The blood and bone marrow in yellow cross (mustard gas) poisoning. Changes produced in the bone marrow of fatal cases. J Med Res, 1919; 40: 497–506.
Alexander, A. F. Medical report of the Bari harbor mustard casualties. Mil Surg, 1947; 101: 1–17.
Goodman, L. S., Wintrobe, M. W., Dameshek, W., et al. Nitrogen mustard therapy. Use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders. JAMA, 1946; 132: 126–132.
Karnofsky, D. A. Summary of results obtained with nitrogen mustard in the treatment of neoplastic disease. Ann NY Acad Sci, 1958; 68: 889–914.
Mitchell, H. K., Snell, E. E., & Williams, R. J. The concentration of “folic acid”. J Am Chem Soc, 1941; 63: 2284.
Angier, R. B., Boothe, J. H., Hutchings, B. L., et al. The structure and synthesis of the liver (L. casei) factor. Science, 1946; 103: 667–9.
Spies, T. D. Treatment of macrocytic anemia with folic acid. Lancet, 1946; 1: 225–8.
Farber, S., Diamond, L. K., Mercer, R. D., et al. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-amino-pteroylglutamic acid (aminopterin). N Engl J Med, 1948; 238: 787–93.
Farber, S., Toch, R., Sears, E. M., et al. Advances in chemotherapy of cancer in man. Adv Cancer Res, 1956; 4: 1–71.
Seeger, D. R., Smith, J. M., & Hultquist, M. E. Antagonist for pteroylglutamic acid. J Am Chem Soc, 1947; 69: 2567.
Farber, S. The effect of ACTH in acute leukemia in childhood. In J. R. Mote, ed., First Clinical ACTH Conference (New York: Blakiston, 1950).
Elion, G. B., Hitchings, G. H., & Vanderwerff, H. Antagonists of nucleic acid derivatives. Ⅵ. Purines. J Biol Chem, 1951; 192: 505–18.
Burchenal, J. H., Murphy, M. L., Ellison, R. R., et al. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in treatment of leukemia and allied diseases. Blood, 1953; 8: 965–99.
Fernbach, D. J., Sutow, W. W., Thurman, W. G., et al. Clinical evaluation of cyclophosphamide. A new agent for the treatment of children with acute leukemia. JAMA, 1962; 182: 30–7.
Karon, M. R., Freireich, E. J., & Frei, E., III. A preliminary report on vincristine sulfate: a new active agent for the treatment of acute leukemia. Pediatrics, 1962; 30: 791–6.
Gloor, W. Ein fall von geheilter myeloblastenleukämie. Munch Med Wochenschr, 1930; 77: 1096–8.
Burchenal, J. H. & Murphy, M. L. Long-term survivors in acute leukemia. Cancer Res, 1965; 25: 1491–4.
Zuelzer, W. W. Implications of long-term survival in acute stem cell leukemia of childhood treated with composite cyclic therapy. Blood, 1964; 24: 477–94.
Krivit, W., Gilchrist, G., & Beatty, E. The need for chemotherapy after prolonged complete remission in acute leukemia of childhood. J Pediatr, 1970; 76: 138–41.
Skipper, H. E., Schabel, F. M., Bell, M., et al. On the curability of experimental neoplasms. I. A-methopterin and mouse leukemias. Cancer Res, 1957; 17: 717–26.
Goldin, A., Venditti, J. M., Humphreys, S. R., et al. Influence of the concentration of leukemic inoculum on the effectiveness of treatment. Science, 1956; 123: 840.
Frei, E., III, Holland, J. F., Schneiderman, M. A., et al. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood, 1958; 13: 1126–48.
Frei, E., III, Freireich, E. J., Gehan, E., et al. Studies of sequential and combination antimetabolite therapy in acute leukemia. 6-mercaptopurine and methotrexate. Blood, 1961; 18: 431–54.
Frei, E., III, Karon, M., Levin, R. H., et al. The effectiveness of combinations of antileukemia agents in inducing and maintaining remission in children with acute leukemia. Blood, 1965; 26: 642–56.
Henderson, E. S. Combination chemotherapy of acute lymphocytic leukemia of childhood. Cancer Res, 1967; 27: 2570–2.
Henderson, E. S. & Samaha, R. J. Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res, 1969; 29: 2272–80.
George, P., Hernandez, K., Hustu, O., et al. A study of “total therapy” of acute leukemia in children. J Pediatr, 1968; 72: 399–408.
Pinkel, D. Five-year follow-up of “total therapy” of childhood lymphocytic leukemia. JAMA, 1971; 216: 648–52.
Simone, J. V. Treatment of children with acute lymphocytic leukemia. Adv Pediatr, 1972; 19: 13–45.
Pinkel, D., Hernandez, K., Borella, L., et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer, 1971; 27: 247–56.
Aur, R. J. A., Simone, J. V., Hustu, H. O., et al. A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer, 1972; 29: 381–91.
Jacquillat, C., Weil, M., Gemon, M.-F., et al. Combination therapy in 130 patients with acute lymphoblastic leukemia (Protocol O6 LA 66-Paris). Cancer Res, 1973; 33: 3278–84.
Sullivan, M. P., Chen, T., Dyment, P. G., et al. Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphatic leukemia. A Pediatric Oncology Group study. Blood, 1982; 60: 948–58.
Rivera, G. K., Pinkel, D., Simone, J. V., et al. Treatment of acute lymphoblastic leukemia: 30 years experience at St. Jude Children's Research Hospital. N Engl J Med, 1993; 329: 1289–95.
Miller, R. W. & McKay, F. W. Decline in US childhood cancer mortality, 1950 through 1980. JAMA, 1984; 251: 1567–70.
Birch, J. M., Marsden, H. B., Morris Jones, P. H., et al. Improvements in survival from childhood cancer: results of a population based survey over 30 years. BMJ, 1988; 296: 1372–6.
Ellison, R. R, Holland, J. F., Weil, M., et al. Arabinosyl cytosine, a useful agent in the treatment of leukemia in adults. Blood, 1968; 32: 507–23.
Howard, J. P., Albo, V., Newton, W. A. Cytosine arabinoside. Results of a cooperative study in acute childhood leukemia. Cancer, 1968; 21: 341–5.
Holton, C. P., Lonsdale, D., Nora, A. H., et al. Clinical study of daunomycin in children with acute leukemia. Cancer, 1968; 22: 1014–17.
Hill, J. M., Roberts, J., Loeb, E., et al. L-asparaginase therapy for leukemia and other malignant neoplasms. JAMA, 1967; 202: 882–8.
Mathé, G., Schwarzenberg, L., Pouillart, P., et al. Two epipodophyllotoxin derivatives, VM 26 and VP 16213, in the treatment of leukemias, hematosarcomas and lymphomas. Cancer, 1974; 34: 985–92.
Djerassi, I., Farber, S., Abir, E., et al. Continuous infusion of methotrexate in children with acute leukemia. Cancer, 1967; 20: 233–42.
Lauer, S. J., Pinkel, D., Buchanan, G. R., et al. Cytosine arabinoside/cyclophosphamide pulses during continuation therapy for childhood acute lymphoblastic leukemia. Cancer, 1987; 60: 2366–71.
Patte, C., Thierry, P., Chantal, R., et al. High survival rate in advanced-staged B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy. J Clin Oncol, 1991; 9: 123–32.
Gee, T. S., Yu, K.-P., & Clarkson, B. D. Treatment of adult acute leukemia with arabinosylcytosine and thioguanine. Cancer, 1969; 23: 1019–32.
Dahl, G. V., Kalwinsky, D. K., Mirro, J. et al. A comparison of cytokinetically based versus intensive chemotherapy for childhood acute myelogenous leukemia. Hematol Blood Transfusion, 1987; 30: 83–7.
Perel, Y., Aurvrignon, A., Leblanc, T., et al. Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. J Clin Oncol, 2002; 20: 2774–82.
Woods, W. G., Neudorf, S., Gold, S., et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood, 2001; 97: 56–62.
Barnes, D. W. H., & Loutit, J. F. Treatment of murine leukemia with x-rays and homologous bone marrow: II. Br J Haematol, 1957; 3: 241–52.
Dausset, J. Iso-leuco-anticorps. Acta Haematol, 1958; 20: 156–66.
Thomas, E. D., Buckner, C. D., Rudolph, R. H., et al. Allogeneic marrow grafting for hematologic malignancy using HL-A-matched donor recipient sibling pairs. Blood, 1971; 38: 267–87.
Pinkel, D. Bone marrow transplantation in children. J Pediatr, 1993; 122: 331–41.
Fefer, A., Cheever, M. A., Thomas, E. D., et al. Disappearance of Ph1-positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N Engl J Med, 1979; 300: 333–7.
Galton, D. A. G. Myleran in chronic myeloid leukemia. Results of treatment. Lancet, 1953; 264: 208–13.
Fishbein, W. N., Carbone, P. P., Freireich, E. J., et al. Clinical trials of hydroxyurea in patients with cancer and leukemia. Clin Pharmacol Ther, 1965; 5: 574–80.
Sanders, J., Buckner, C., Thomas, E. D., et al. Allogeneic marrow transplantation for children with juvenile chronic myelogenous leukemia. Blood, 1988; 71: 1144–6.
Bunin, N., Casper, J., Chitambar, C., et al. Partially matched bone marrow transplantation in patients with myelodysplastic syndromes. J Clin Oncol, 1988; 6: 1851–5.
Appelbaum, F. R., Clift, R. A., Buckner, C. D., et al. Allogeneic marrow transplantation for acute nonlymphoblastic leukemia after first relapse. Blood, 1983; 61: 949–53.
Dopfer, R., Henze, G., Bender-Gotze, C., et al. Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM and Co-ALL protocols; results of the German cooperative study. Blood, 1991; 78: 2780–4.
Harrison, G., Richards, S., Lawson, S., et al. Comparison of allogeneic transplant versus chemotherapy for relapsed childhood acute lymphoblastic leukaemia in the MRC UKALL R1 trial. Ann Oncol, 2000; 11: 999–1006.
Gaynon, P. S., Harris, R. E., Trigg, M. E., et al. Chemotherapy (CT) vs. BMT for children (pts) with acute lymphoblastic leukemia (ALL) and early marrow relapse (MR): CCG-1941. Blood, 2000; 96: 418a.
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.
Pinkel, D. Treatment of children with acute myeloid leukemia. Blood, 2001; 97: 3673.
Giralt, S., Estey, E., Albitar, M., et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood, 1997; 89: 4531–6.
Talpaz, M., Kantarjian, H. M., & McCredie, K. Hematologic remission and cytogenetic improvement induced by human interferon alpha in chronic myelogenous leukemia. N Engl J Med, 1986; 314: 1065–9.
Talpaz, M., Kantarjian, H., Kurzrock, R., et al. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Ann Intern Med, 1991; 114: 532–8.
Dow, L., Raimondi, S., Culbert, S., et al. Response to alpha-interferon in children with Philadelphia chromosome-positive chronic myelocytic leukemia. Cancer, 1991; 68: 1678–84.
Pinkel, D. & Granoff, A., eds. Genetic Targeting in Leukemia. Accomplishments in Oncology, vol. 2 (no. 2) (Philadelphia, PA: J. B. Lippincott, 1988).
Huang, M. E., Ye, Y. C., Chen, S. R., et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 1988; 72: 567–72.
De Thé, H., Lavau, C., Marchio, A., et al. The PML-RAR fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RARα. Cell, 1991; 66: 675–84.
Fenaux, P., Wattel, E., Archimbaud, E., et al. Prolonged follow-up confirms that all-trans retinoic acid followed by chemotherapy reduces the risk of relapse in newly diagnosed acute promyelocytic leukemia. Blood, 1994; 84: 666–7.
Druker, B. J. & Lydon, N. B. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest, 2000; 105: 3–7.
Mauro, M. J., O'Dwyer, M., Heinrich, M. C., Druker, B. J. STI 571: a paradigm of new agents for cancer therapeutics. J Clin Oncol, 2001; 20: 325–334.
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.
Chandy, M. Childhood acute lymphoblastic leukemia in India: an approach to management in a three-tier society. Med Pediatr Oncol, 1995; 25: 197–203.
Kun, L. E., Camitta, B. M., Mulhern, R. K., et al. Treatment of meningeal relapse in childhood acute lymphoblastic leukemia. I. Results of craniospinal irradiation. J Clin Oncol, 1984; 2: 359–64.
Stoffel, T. J., Nesbit, M. E., Levitt, S. H. Extramedullary involvement of the testes in childhood leukemia. Cancer, 1975; 35: 1203–11.
Blundell, J. Successful case of transfusion. Lancet, 1828; 1: 431–2.
Landsteiner, K. Ueber agglutinationserscheinungen normalen menschlichen blutes. Wien Klin Wochenschr, 1901; 14: 1132–4.
Rous, P. & Turner, J. R. The preservation of living red blood cells in vitro I. Method of preservation. J Exp Med, 1916; 23: 219–37.
Robertson, O. H. Transfusion with preserved red blood cells. Br Med J, 1918; 1: 691–5.
Rous, P. & Robertson, O. H. The normal fate of erythrocytes I. The findings in healthy animals. J Exp Med, 1917; 25: 651–64.
Fantus, B. The therapy of the Cook County Hospital: blood preservation. JAMA, 1937; 109: 128–131.
Gardner, F. H., Howell, D. H., & Hirsch, E. O. Platelet transfusion utilizing plastic equipment. J Lab Clin Med, 1954; 43: 196–207.
McGovern, J. J. Platelet transfusions in pediatrics. New Engl J Med, 1957; 256: 922–7.
Rundles, R. W., Wyngarden, J. B., Hitchings, G. H., et al. Effects of the xanthine oxidase inhibitor, allopurinol, on thiopurine metabolism, hyperuricemia and gout. Trans Assoc Am Phy, 1963; 76: 126–40.
Pui, C.-H., Mahmond, H. H., Wiley, J. M., et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol, 2001; 19: 697–704.
Pinkel, D. Chickenpox and leukemia. J Pediatr, 1961; 58: 729–37.
Feldman, S., Hughes, W. T., & Daniel, C. B. Varicella in children with cancer. Seventy-seven cases. Pediatrics, 1975; 56: 388–97.
Zaia, J. A., Levin, M. J., & Preblud, S. R., et al. Evaluation of varicella-zoster immune globulin: protection of immunosuppressed children after household exposure to varicella. J Infect Dis, 1983; 147: 737–43.
Biron, K. K. & Elion, G. B. In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother, 1980; 18: 443–7.
Prober, C. G., Kirk, L. E., & Keeney, R. E. Acyclovir therapy of chickenpox in immunosuppressed children: a collaborative study. J Pediatr, 1982; 101: 622–5.
Johnson, H. D. & Johnson, W. W. Pneumocystis carinii pneumonia in children with cancer. Diagnosis and treatment. JAMA, 1970; 214: 1067–73.
Perera, D. R., Western, K. A., Johnson, H. D., et al. Pneumocystis carinii pneumonia in a hospital for children. Epidemiologic aspects. JAMA, 1970; 214: 1074–8.
Ivady, G. & Paldy, L. A new method of treating interstitial plasma cell pneumonia in premature infants with pentavalent antimony and aromatic diamidines. Mschr Kinderheilk, 1958; 106: 10–14.
Hughes, W. T., Kuhn, S., Chaudhary, S., et al. Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med, 1977; 297: 1419–26.
Frei, E., Levin, R. H., Bodey, G. P., et al. The nature and control of infections in patients with acute leukemia. Cancer Res, 1965; 25: 1511–15.
Bodey, G. P., Buckley, M., Sathe, Y. S., et al. Quantitative relationships between circulating leucocytes and infection in patients with acute leukemia. Ann Intern Med, 1966; 64: 328–40.
Pizzo, P. A., Ladisch, S., Simon, R. M., et al. Increasing incidence of gram-positive sepsis in cancer patients. Med Pediatr Oncol, 1978; 5: 241–4.
Young, R. C., Bennett, J. E., Geelhoed, G. W., et al. Fungemia with compromised host resistance. Ann Intern Med, 1974; 80: 605–12.
Procknow, J. J. & Loosli, C. G. Treatment of the deep mycoses. AMA Arch Intern Med, 1958; 101: 765–802.
Galgiani, J. N. Fluconazole, a new antifungal agent. Ann Intern Med, 1990; 113: 177–9.
Vernick, V. & Karon, M. Who's afraid of death on a leukemia ward ? Am J Dis Child, 1965; 109: 393–7.
Soni, S. S., Marten, G. W., Pitner, S. E., et al. Effects of central nervous system irradiation on neuropsychologic functioning of children with acute lymphocytic leukemia. N Engl J Med, 1975; 293: 113–18.
Pinkel, D. Selecting treatment for children with acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 4–6.
Mathé, G., Amiel, J. L., Schwarzenberg, L., et al. Active immunotherapy for acute lymphoblastic leukemia. Lancet, 1969; 1: 697–9.
Kay, H. Treatment of acute lymphoblastic leukemia. Comparison of immunotherapy (BCG), intermittent methotrexate, and no therapy after a 5 month intensive cytotoxic regimen (Concord trial). Br Med J, 1971; 4: 189–94.
Heyn, R. M., Joo, P., Karon, M., et al. BCG in the treatment of acute lymphocytic leukemia. Blood, 1975; 46: 431–42.

Reference Title: References

Reference Type: reference-list

Miller, R. W., Young, J. L., Jr., & Novakovic, B. Childhood cancer. Cancer, 1995; 75: 395–405.
Hasle, H., Niemeyer, C. M., Chessells, J. M., et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia, 2003; 17: 277–2.
Casey, T. P. Chronic lymphocytic leukaemia in a child presenting at the age of two years and eight months. Australas Ann Med, 1968; 17: 70–4.
Sardemann, H. Chronic lymphocytic leukemia in an infant. Acta Paediatr Scand, 1972; 61, 213–6.
Sonnier, J. A., Buchanan, G. R., Howard-Peebles, P. N., Rutledge, J., & Smith, R. G. Chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia. N Engl J Med, 1983; 309: 590–4.
Yoffe, G., Howard-Peebles, P. N., Smith, R. G., Tucker, P. W., & Buchanan, G. R. Childhood chronic lymphocytic leukemia with (2;14) translocation. J Pediatr, 1990; 116: 114–7.
Gajjar, A., Ribeiro, R., Hancock, M. L., et al. Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. Blood, 1995; 86: 1292–5.
Ellis, L. D., Johnson, B. J., & Westerman, M. P. Needle biopsy of bone and marrow: an experience with 1,445 biopsies. Arch Intern Med, 1964; 114: 213–21.
Jamshidi, K. & Swaim, W. R. Bone marrow biopsy with unaltered architecture: a new biopsy device. J Lab Clin Med, 1971; 77: 335–42.
Goldenberg, A. S. & Tiesinga, J. J. Clinical experience with a new specimen capturing bone marrow biopsy needle. Am J Hematol, 2001; 68: 189–93.
Aboul-Nasr, R., Estey, E. H., Kantarjian, H. M., et al. Comparison of touch imprints with aspirate smears for evaluating bone marrow specimens. Am J Clin Pathol, 1999; 111: 753–8.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group. Br J Haematol, 1976; 33: 451–8.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 620–5.
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Tumours of Haematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).
Vardiman, J. W., Harris, N. L., & Brunning, R. D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations. Br J Haematol, 1981; 47: 553–61.
Lilleyman, J. S., Hann, I. M., Stevens, R. F., Richards, S. M., & Eden, O. B. Blast cell vacuoles in childhood lymphoblastic leukaemia. Br J Haematol, 1988; 70: 183–6.
Lilleyman, J. S., Hann, I. M., Stevens, R. F., et al. Cytomorphology of childhood lymphoblastic leukaemia: a prospective study of 2000 patients. United Kingdom Medical Research Council's Working Party on Childhood Leukaemia. Br J Haematol, 1992; 81: 52–7.
Potter, V. P., Sorell, M., Baglivo, J. A., Sather, H., & Miller, D. R. Prognostic significance of vacuoles in L1 lymphoblasts in childhood acute lymphoblastic leukaemia: a report from Children's Cancer Study Group. Br J Haematol, 1984; 56: 215–22.
Cantu-Rajnoldi, A., Invernizzi, R., Biondi, A., et al. Biological and clinical features of acute lymphoblastic leukaemia with cytoplasmic granules or inclusions: description of eight cases. Br J Haematol, 1989; 73: 309–14.
Cerezo, L., Shuster, J. J., Pullen, D. J., et al. Laboratory correlates and prognostic significance of granular acute lymphoblastic leukemia in children. A Pediatric Oncology Group study. Am J Clin Pathol, 1991; 95: 526–31.
Darbyshire, P. J. & Lilleyman, J. S. Granular acute lymphoblastic leukaemia of childhood: a morphological phenomenon. J Clin Pathol, 1987; 40: 251–3.
Stein, P., Peiper, S., Butler, D., et al. Granular acute lymphoblastic leukemia. Am J Clin Pathol, 1983; 79: 426–30.
Miller, D. R., Steinherz, P. G., Feuer, D., Sather, H., & Hammond, D. Unfavorable prognostic significance of hand mirror cells in childhood acute lymphoblastic leukemia. A report from the childrens Cancer Study Group. Am J Dis Child, 1983; 137: 346–50.
Schumacher, H. R., Champion, J. E., Thomas, W. J., Pitts, L. L., & Stass, S. A. Acute lymphoblastic leukemia – hand mirror variant. An analysis of a large group of patients. Am J Hematol, 1979; 7: 11–17.
Sjogren, U. & Garwicz, S. Prognostic significance of amoeboid movement configuration in lymphoid cells from children with acute lymphoblastic leukaemia. Scand J Haematol, 1980; 24: 335–9.
Hayhoe, F. G., Quaglino, D., & Flemans, R. J. Consecutive use of Romanowsky and periodic-acid-Schiff techniques in the study of blood and bone marrow cells. Br J Haematol, 1960; 6: 23–5.
Kowal-Vern, A., Cotelingam, J., & Schumacher, H. R. The prognostic significance of proerythroblasts in acute erythroleukemia. Am J Clin Pathol, 1992; 98: 34–40.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 460–2.
Huang, M. J., Li, C. Y., Nichols, W. L., Young, J. H., & Katzmann, J. A. Acute leukemia with megakaryocytic differentiation: a study of 12 cases identified immunocytochemically. Blood, 1984; 64: 427–39.
Penchansky, L., Taylor, S. R., & Krause, J. R. Three infants with acute megakaryoblastic leukemia simulating metastatic tumor. Cancer, 1989; 64: 1366–71.
Pui, C. H., Rivera, G., Mirro, J., et al. Acute megakaryoblastic leukemia. Blast cell aggregates simulating metastatic tumor. Arch Pathol Lab Med, 1985; 109: 1033–5.
Head, D. R., Cerezo, L., Savage, R. A., et al. Institutional performance in application of the FAB classification of acute leukemia. The Southwest Oncology Group experience. Cancer, 1985; 55: 1979–86.
Hanker, J. S., Ambrose, W. W., James, C. J., et al. Facilitated light microscopic cytochemical diagnosis of acute myelogenous leukemia. Cancer Res, 1979; 39: 1635–9.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol, 1991; 78: 325–9.
Venditti, A., Del Poeta, G., Stasi, R., et al. Minimally differentiated acute myeloid leukaemia (AML-M0): cytochemical, immunophenotypic and cytogenetic analysis of 19 cases. Br J Haematol, 1994; 88: 784–93.
Charak, B. S., Advani, S. H., Karandikar, S. M., et al. Sudan black B positivity in acute lymphoblastic leukemia. Acta Haematol, 1988; 80: 199–202.
Stass, S. A., Pui, C. H., Melvin, S., et al. Sudan black B positive acute lymphoblastic leukaemia. Br J Haematol, 1984; 57: 413–21.
Tricot, G., Broeckaert-Van Orshoven, A., Hoof, A. Van, & Verwilghen, R. L. Sudan Black B positivity in acute lymphoblastic leukaemia. Br J Haematol, 1982; 51: 615–21.
Li, C. Y., Lam, K. W., & Yam, L. T. Esterases in human leukocytes. J Histochem Cytochem, 1973; 21: 1–12.
Koike, T. Megakaryoblastic leukemia: the characterization and identification of megakaryoblasts. Blood, 1984; 64: 683–92.
Peterson, B. A. & Levine, E. G. Uncommon subtypes of acute nonlymphocytic leukemia: clinical features and management of FAB M5, M6 and M7. Semin Oncol, 1987; 14: 425–34.
Pombo De Oliveira, M. S., Gregory, C., Matutes, E., Parreira, A., & Catovsky, D. Cytochemical profile of megakaryoblastic leukaemia: a study with cytochemical methods, monoclonal antibodies, and ultrastructural cytochemistry. J Clin Pathol, 1987; 40: 663–9.
Pui, C. H., Williams, D. L., Scarborough, V., et al. Acute megakaryoblastic leukaemia associated with intrinsic platelet dysfunction and constitution ring 21 chromosome in a young boy. Br J Haematol, 1982; 50: 191–200.
Ribeiro, R. C., Oliveira, M. S., Fairclough, D., et al. Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leuk Lymphoma, 1993; 10: 299–306.
Yam, L. T., Li, C. Y., & Crosby, W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol, 1971; 55: 283–90.
Neiman, R. S., Barcos, M., Berard, C., et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer, 1981; 48: 1426–37.
Keifer, J., Abromowitch, M., & Stass, S. A. Chloroacetate esterase positivity in acute lymphoblastic leukemia. Am J Clin Pathol, 1985; 83: 647–9.
Bennett, J. M. & Dutcher, T. F. The cytochemistry of acute leukemia: observations on glycogen and neutral fat in bone marrow aspirates. Blood, 1969; 33: 341–7.
Hayhoe, F. G. J. & Cawley, J. C. Acute leukemia:cellular morphology, cytochemistry and fine structure. Clin Haematol, 1972; 1: 49–94.
Snower, D. P., Smith, B. R., Munz, U. J., & McPhedran, P. Reevaluation of the periodic acid-Schiff stain in acute leukemia with immunophenotypic analyses. Arch Pathol Lab Med, 1991; 115: 346–50.
Quaglino, D. & Hayhoe, F. G. Periodic-acid-Schiff positivity in erythroblasts with special reference to Di Guglielmo's disease. Br J Haematol, 1960; 6: 26–33.
Skinnider, L. F. & Ghadially, F. N. Glycogen in erythroid cells. Arch Pathol, 1973; 95: 139–41.
Catovsky, D., Cherchi, M., Greaves, M. F., et al. Acid-phosphatase reaction in acute lymphoblastic leukaemia. Lancet, 1978; 1: 749–51.
Head, D. R., Borowitz, M., Cerezo, L., et al. Acid phosphatase positivity in childhood acute lymphocytic leukemia. Am J Clin Pathol, 1986; 86: 650–3.
Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemias. Report of the workshop held in Leuven, Belgium, April 22–23, 1985. First MIC Cooperative Study Group. Cancer Genet Cytogenet, 1986; 23: 189–97.
Morphologic, immunologic and cytogenetic (MIC) working classification of the acute myeloid leukaemias. Second MIC Cooperative Study Group. Br J Haematol, 1988; 68: 487–94.
Cline, M. J. The molecular basis of leukemia. N Engl J Med, 1994; 330: 328–36.
Kersey, J., Nesbit, M., Hallgren, H., et al. Evidence for origin of certain childhood acute lymphoblastic leukemias and lymphomas in thymus-derived lymphocytes. Cancer, 1975; 36: 1348–52.
Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science, 1997; 278: 1059–64.
Pui, C. H., Raimondi, S. C., Dodge, R. K., et al. Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (greater than 50 chromosomes) acute lymphoblastic leukemia. Blood, 1989; 73: 1963–7.
Pui, C. H., Behm, F. G., Singh, B., et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.
Pui, C. H., Behm, F. G., & Crist, W. M. Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 343–62.
Rubin, C. M., Le Beau, M. M., Mick, R., et al. Impact of chromosomal translocations on prognosis in childhood acute lymphoblastic leukemia. J Clin Oncol, 1991; 9: 2183–92.
Secker-Walker, L. M., Lawler, S. D., & Hardisty, R. M. Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br Med J, 1978; 2: 1529–30.
Sen, L. & Borella, L. Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Engl J Med, 1975; 292: 828–32.
Trueworthy, R., Shuster, J., Look, T., et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.
Williams, D. L., Tsiatis, A., Brodeur, G. M., et al. Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood, 1982; 60: 864–71.
Dyment, P. G., Savage, R. A., & McMahon, J. T. Anomalous azurophilic granules in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol, 1982; 4: 207–11.
Hecht, J. L. & Aster, J. C. Molecular biology of Burkitt's lymphoma. J Clin Oncol, 2000; 18: 3707–21.
Bene, M. C., Castoldi, G., Knapp, W., et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, 1995; 9: 1783–6.
Brouet, J. C. & Seligmann, M. The immunological classification of acute lymphoblastic leukemias. Cancer, 1978; 42: 817–27.
Campana, D., Dongen, J. J. van, Mehta, A., et al. Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood, 1991; 77: 1546–54.
Rothe, G. & Schmitz, G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia, 1996; 10: 877–95.
Drexler, H. G., Thiel, E., & Ludwig, W. D. Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia, 1991; 5: 637–45.
Fink, F. M., Koller, U., Mayer, H., et al. Prognostic significance of myeloid-associated antigen expression on blast cells in children with acute lymphoblastic leukemia. The Austrian Pediatric Oncology Group. Med Pediatr Oncol, 1993; 21: 340–6.
Kurec, A. S., Belair, P., Stefanu, C., et al. Significance of aberrant immunophenotypes in childhood acute lymphoid leukemia. Cancer, 1991; 67: 3081–6.
Pui, C. H., Behm, F. G., Singh, B., et al. Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood, 1990; 75: 198–202.
Uckun, F. M., Nachman, J. B., Sather, H. N., et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children's Cancer Group. Cancer, 1998; 83: 2030–9.
Pui, C. H., Rubnitz, J. E., Hancock, M. L., et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol, 1998; 16: 3768–73.
Putti, M. C., Rondelli, R., Cocito, M. G., et al. Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88–91 studies. Blood, 1998; 92: 795–801.
Pui, C. H. Acute lymphoblastic leukemia in children. Curr Opin Oncol, 2000; 12: 3–12.
Pui, C. H., Campana, D., & Evans, W. E. Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.
Ferrando, A. A. & Look, A. T. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol, 2000; 37: 381–95.
Harrison, C. J., Martineau, M., & Secker-Walker, L. M. The Leukaemia Research Fund/United Kingdom Cancer Cytogenetics Group Karyotype Database in acute lymphoblastic leukaemia: a valuable resource for patient management. Br J Haematol, 2001; 113: 3–10.
Recommendations for a morphologic, immunologic, and cytogenetic (MIC) working classification of the primary and therapy-related myelodysplastic disorders. Report of the workshop held in Scottsdale, Arizona, USA, on February 23–25, 1987. Third MIC Cooperative Study Group. Cancer Genet Cytogenet, 1988; 32: 1–10.
Harrison, C. J. The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev, 2001; 15: 49–59.
Pui, C. H., Williams, D. L., Raimondi, S. C., et al. Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood, 1987; 70: 247–53.
Pui, C. H., Williams, D. L., Roberson, P. K., et al. Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia. J Clin Oncol, 1988; 6: 56–61.
Pui, C. H., Carroll, A. J., Head, D., et al. Near-triploid and near-tetraploid acute lymphoblastic leukemia of childhood. Blood, 1990; 76: 590–6.
Pui, C. H., Carroll, A. J., Raimondi, S. C., et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood, 1990; 75: 1170–7.
Raimondi, S. C., Pui, C. H., Hancock, M. L., et al. Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 213–24.
Secker-Walker, L. M., Chessells, J. M., Stewart, E. L., et al. Chromosomes and other prognostic factors in acute lymphoblastic leukaemia: a long-term follow-up. Br J Haematol, 1989; 72: 336–42.
Heerema, N. A., Nachman, J. B., Sather, H. N., et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 4036–45.
Look, A. T., Melvin, S. L., Williams, D. L., et al. Aneuploidy and percentage of S-phase cells determined by flow cytometry correlate with cell phenotype in childhood acute leukemia. Blood, 1982; 60: 959–67.
Look, A. T., Roberson, P. K., Williams, D. L., et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 1985; 65: 1079–86.
Ito, C., Kumagai, M., Manabe, A., et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood, 1999; 93: 315–20.
Pui, C. H., Crist, W. M., & Look, A. T. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood, 1990; 76: 1449–63.
Rubnitz, J. E., Downing, J. R., Pui, C. H., et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.
Shurtleff, S. A., Buijs, A., Behm, F. G., et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.
Filatov, L. F., Behm, F. G., & Pui, C. H. Childhood acute lymphoblastic leukemias with equivocal chromosome markers of the t(1;19) translocation. Genes Chromosom Cancer, 1995; 13: 99–103.
Privitera, E., Kamps, M. P., Hayashi, Y., et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.
Pui, C. H., Raimondi, S. C., Hancock, M. L., et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.
Rieder, H., Kolbus, U., Koop, U., et al. Translocation t(1;22) mimicking t(1;19) in a child with acute lymphoblastic leukemia as revealed by chromosome painting. Leukemia, 1993; 7: 1663–6.
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.
Raimondi, S. C., Frestedt, J. L., Pui, C. H., et al. Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.
Loh, M. L. & Rubnitz, J. E. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol, 2002; 9: 345–52.
Romana, S. P., Poirel, H., Leconiat, M., et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, 1995; 86: 4263–9.
Romana, S. P., Le Coniat, M., & Berger, R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1994; 9: 186–91.
Baruchel, A., Cayuela, J. M., Ballerini, P., et al. The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol, 1997; 99: 101–6.
Weir, E. G. & Borowitz, M. J. Flow cytometry in the diagnosis of acute leukemia. Semin Hematol, 2001; 38: 124–38.
Ramakers-van Woerden, N. L., Pieters, R., Loonen, A. H., et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 1094–9.
Hunger, S. P., Galili, N., Carroll, A. J., et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood, 1991; 77: 687–93.
Izraeli, S., Henn, T., Strobl, H., et al. Expression of identical E2A/PBX1 fusion transcripts occurs in both pre-B and early pre-B immunological subtypes of childhood acute lymphoblastic leukemia. Leukemia, 1993; 7: 2054–6.
Arico, M., Valsecchi, M. G., Camitta, B., et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.
Silva, M. L., Fernandez, T. S., de Souza, M. H., et al. M-BCR rearrangement in a case of T-cell childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 1999; 32: 455–6
Ribeiro, R. C., Abromowitch, M., Raimondi, S. C., et al. Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood, 1987; 70: 948–53.
Borkhardt, A., Wuchter, C., Viehmann, S., et al. Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia, 2002; 16: 1685–90.
Chessells, J. M., Harrison, C. J., Watson, S. L., Vora, A. J., & Richards, S. M. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol, 2002; 117: 306–14.
Chessells, J. M., Harrison, C. J., Kempski, H., et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia, 2002; 16: 776–84.
Heerema, N. A., Sather, H. N., Ge, J., et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia, 1999; 13: 679–86.
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.
Hilden, J. M., Smith, F. O., Frestedt, J. L., et al. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood, 1997; 89: 3801–5.
Smith, F. O., Rauch, C., Williams, D. E., et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood, 1996; 87: 1123–33.
Pieters, R., den Boer, M. L., Durian, M., et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia, 1998; 12: 1344–8.
Stam, R. W., Boer, M. L. den, Meijerink, J. P., et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood, 2003; 101: 1270–6.
Schneider, N. R., Carroll, A. J., Shuster, J. J., et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood, 2000; 96: 2543–9.
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.
Ulich, T. R., del Castillo, J., Yin, S. M., & Egrie, J. C. The erythropoietic effects of interleukin 6 and erythropoietin in vivo. Exp Hematol, 1991; 19: 29–34.
Kotylo, P. K., Seo, I. S., Smith, F. O., et al. Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-M0). Am J Clin Pathol, 2000; 113: 193–200.
Roumier, C., Eclache, V., Imbert, M., et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2003; 101: 1277–83.
Arber, D. A., Stein, A. S., Carter, N. H., et al. Prognostic impact of acute myeloid leukemia classification. Importance of detection of recurring cytogenetic abnormalities and multilineage dysplasia on survival. Am J Clin Pathol 2003; 119: 672–80.
Cantu-Rajnoldi, A., Biondi, A., Jankovic, M., et al. Diagnosis and incidence of acute promyelocytic leukemia (FAB M3 and M3 variant) in childhood. Blood, 1993; 81: 2209–10.
Chan, K. W., Steinherz, P. G., & Miller, D. R. Acute promyelocytic leukemia in children. Med Pediatr Oncol, 1981; 9: 5–15.
Rovelli, A., Biondi, A., Cantu, R. A., et al. Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol, 1992; 10: 1413–18.
Biondi, A., Rovelli, A., Cantu-Rajnoldi, A., et al. Acute promyelocytic leukemia in children: experience of the Italian Pediatric Hematology and Oncology Group (AIEOP). Leukemia, 1994; 8: 1264–8.
Biondi, A., Luciano, A., Bassan, R., et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia, 1995; 9: 1461–6.
Guglielmi, C., Martelli, M. P., Diverio, D., et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol, 1998; 102: 1035–41.
Falini, B., Flenghi, L., Fagioli, M., et al. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood, 1997; 90: 4046–53.
Chen, Z., Brand, N. J., Chen, A., et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J, 1993; 12: 1161–7.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Hypergranular promyelocytic leukemia: correlation between morphology and chromosomal translocations including t(15;17) and t(11;17). Leukemia, 2000; 14: 1197–200.
Sainty, D., Liso, V., Cantu-Rajnoldi, A., et al. on behalf of Group Français d'Haematologie Cellulaire, Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood, 2000; 96: 1287–96.
Baer, M. R., Stewart, C. C., Lawrence, D., et al. Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia, 1998; 12: 317–25.
Malkin, D. & Freedman, M. H. Childhood erythroleukemia: review of clinical and biological features. Am J Pediatr Hematol Oncol, 1989; 11: 348–59.
Mirchandani, I. & Palutke, M. Acute megakaryoblastic leukemia. Cancer, 1982; 50: 2866–72.
Dastugue, N., Lafage-Pochitaloff, M., Pages, M. P., et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2002; 100: 618–26.
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.
Byrd, J. C., Dodge, R. K., Carroll, A., et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol, 1999; 17: 3767–75.
Grimwade, D., Walker, H., Oliver, F., et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998; 92: 2322–33.
Raimondi, S. C., Chang, M. N., Ravindranath, Y., et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood, 1999; 94: 3707–16.
Rubnitz, J. E., Raimondi, S. C., Hall, S., et al. Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia, 2002; 16: 2072–7.
Felice, M. S., Zubizarreta, P. A., Alfaro, E. M., et al. Good outcome of children with acute myeloid leukemia and t(8;21)(q22;q22), even when associated with granulocytic sarcoma: a report from a single institution in Argentina. Cancer, 2000; 88: 1939–44.
Andrieu, V., Radford-Weiss, I., Troussard, X., et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol, 1996; 92: 855–65.
Haferlach, T., Bennett, J. M., Loffler, H., et al. Acute myeloid leukemia with translocation (8;21). Cytomorphology, dysplasia and prognostic factors in 41 cases. AML Cooperative Group and ECOG. Leuk Lymphoma, 1996; 23: 227–34.
Nucifora, G., Dickstein, J. I., Torbenson, V., et al. Correlation between cell morphology and expression of the AML1/ETO chimeric transcript in patients with acute myeloid leukemia without the t(8;21). Leukemia, 1994; 8: 1533–8.
Swirsky, D. M., Li, Y. S., Matthews, J. G., et al. 8;21 translocation in acute granulocytic leukaemia: cytological, cytochemical and clinical features. Br J Haematol, 1984; 56: 199–213.
Hurwitz, C. A., Raimondi, S. C., Head, D., et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood, 1992; 80: 3182–8.
Ferrara, F., Di Noto, R., Annunziata, M., et al. Immunophenotypic analysis enables the correct prediction of t(8;21) in acute myeloid leukaemia. Br J Haematol, 1998; 102: 444–8.
Arthur, D. C. & Bloomfield, C. D. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood, 1983; 61: 994–8.
Bitter, M. A., Le Beau, M. M., Larson, R. A., et al. A morphologic and cytochemical study of acute myelomonocytic leukemia with abnormal marrow eosinophils associated with inv(16)(p13q22). Am J Clin Pathol, 1984; 81: 733–41.
Le Beau, M. M., Larson, R. A., Bitter, M. A., et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–6.
Haferlach, T., Winkemann, M., Loffler, H., et al. The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization. Blood, 1996; 87: 2459–63.
Adriaansen, H. J., te Boekhorst, P. A., Hagemeijer, A. M., et al. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 81: 3043–51.
Byrd, J. C., Mrozek, K., Dodge, R. K., et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002; 100: 4325–36.
Haferlach, T., Schoch, C., Loffler, H., et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol, 2003; 21: 256–65.
Razzouk, B. I., Raimondi, S. C., Srivastava, D. K., et al. Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia, 2001; 15: 1326–30.
Tosi, P., Visani, G., Ottaviani, E., et al. Inv(16) acute myeloid leukemia cells show an increased sensitivity to cytosine arabinoside in vitro. Eur J Haematol, 1998; 60: 161–5.
Harbott, J., Mancini, M., Verellen-Dumoulin, C., Moorman, A. V., & Secker-Walker, L. M. Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 823–7.
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.
Pui, C. H. & Relling, M. V. Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol, 2000; 109: 13–23.
Dann, E. J. & Rowe, J. M. Biology and therapy of secondary leukaemias. Best Pract Res Clin Haematol, 2001; 14: 119–37.
Foucar, K., McKenna, R. W., Bloomfield, C. D., Bowers, T. K., & Brunning, R. D. Therapy-related leukemia: a panmyelosis. Cancer, 1979; 43: 1285–96.
Leone, G., Voso, M. T., Sica, S., Morosetti, R., & Pagano, L. Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma, 2001; 41: 255–76.
Michels, S. D., McKenna, R. W., Arthur, D. C., & Brunning, R. D. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood, 1985; 65: 1364–72.
Armitage, J. O., Carbone, P. P., Connors, J. M., et al. Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J Clin Oncol, 2003; 21: 897–906.
Le Deley, M. C., Leblanc, T., Shamsaldin, A., et al. Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Societe Francaise d'Oncologie Pediatrique. J Clin Oncol, 2003; 21: 1074–81.
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.
Block, A. W., Carroll, A. J., Hagemeijer, A., et al. Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 401–12.
Beaumont, M., Sanz, M., Carli, P. M., et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol, 2003; 21: 2123–37.
Detourmignies, L., Castaigne, S., Stoppa, A. M., et al. Therapy-related acute promyelocytic leukemia: a report on 16 cases. J Clin Oncol, 1992; 10: 1430–5.
Quesnel, B., Kantarjian, H., Bjergaard, J. P., et al. Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol, 1993; 11: 2370–9.
Andersen, M. K., Larson, R. A., Mauritzson, N., et al. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 395–400.
Matutes, E., Morilla, R., Farahat, N., et al. Definition of acute biphenotypic leukemia. Haematologica, 1997; 82: 64–6.
Reinhardt, D., Zimmermann, M., Langebrake, C., et al. Acute mixed lineage leukemia in childhood. Blood, 2002; 100: 69a.
Carbonell, F., Swansbury, J., Min, T., et al. Cytogenetic findings in acute biphenotypic leukaemia. Leukemia, 1996; 10: 1283–7.
Killick, S., Matutes, E., Powles, R. L., et al. Outcome of biphenotypic acute leukemia. Haematologica, 1999; 84: 699–706.
Pui, C. H., Raimondi, S. C., Head, D. R., et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.
Pane, F., Frigeri, F., Camera, A., et al. Complete phenotypic and genotypic lineage switch in a Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia, 1996; 10: 741–5.
Bierings, M., Szczepanski, T., van Wering, E. R., et al. Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol, 2001; 113: 757–62.
Tsimberidou, A. M., Kantarjian, H. M., Estey, E., et al. Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. Leukemia, 2003; 17: 1100–3.
Tallman, M. S., Hakimian, D., Shaw, J. M., et al. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol, 1993; 11: 690–7.
Jenkin, R. D., Al Shabanah, M., Al Nasser, A., et al. Extramedullary myeloid tumors in children: the limited value of local treatment. J Pediatr Hematol Oncol, 2000; 22: 34–40.
Johansson, B., Gray, A., Kullendorff, C. M., et al. Granulocytic sarcoma in body cavities in childhood acute myeloid leukemias with 11q23/MLL rearrangements. Genes Chromosomes Cancer, 2000; 27: 136–42.
Peterson, L., Dehner, L. P., & Brunning, R. D. Extramedullary masses as presenting features of acute monoblastic leukemia. Am J Clin Pathol, 1981; 75: 140–8.
Bown, N. P., Rowe, D., & Reid, M. M. Granulocytic sarcoma with translocation (9;11)(p22;q23): two cases. Cancer Genet Cytogenet, 1997; 96: 115–7.
Menasce, L. P., Banerjee, S. S., Beckett, E., & Harris, M. Extra-medullary myeloid tumour (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology, 1999; 34: 391–8.
Oliva, E., Ferry, J. A., Young, R. H., et al. Granulocytic sarcoma of the female genital tract: a clinicopathologic study of 11 cases. Am J Surg Pathol, 1997; 21: 1156–65.
Ritter, J. H., Goldstein, N. S., Argenyi, Z., & Wick, M. R. Granulocytic sarcoma: an immunohistologic comparison with peripheral T-cell lymphoma in paraffin sections. J Cutan Pathol, 1994; 21: 207–16.
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol, 1982; 51: 189–99.
Estey, E. H., Keating, M. J., Smith, T. L., et al. Prediction of complete remission in patients with refractory acute leukemia treated with AMSA. J Clin Oncol, 1984; 2: 102–6.
Seymour, J. F., & Estey, E. H. The prognostic significance of auer rods in myelodysplasia. Br J Haematol, 1993; 85: 67–76.
Forty-four cases of childhood myelodysplasia with cytogenetics, documented by the Groupe Francais de Cytogenetique Hematologique. Leukemia, 1997; 11: 1478–85.
Hasle, H., Jacobsen, B. B., & Pedersen, N. T. Myelodysplastic syndromes in childhood: a population based study of nine cases. Br J Haematol, 1992; 81: 495–8.
Hasle, H., Wadsworth, L. D., Massing, B. G., McBride, M., & Schultz, K. R. A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol, 1999; 106: 1027–32.
Luna-Fineman, S., Shannon, K. M., Atwater, S. K., et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood, 1999; 93: 459–66.
Mielot, F. Childhood myelodysplastic syndromes. Pediatr Hematol Oncol, 1999; 16: 283–4.
Mandel, K., Dror, Y., Poon, A., & Freedman, M. H. A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hematol Oncol, 2002; 24: 596–605.
Sasaki, H., Manabe, A., Kojima, S., et al. Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia, 2001; 15: 1713–20.
Passmore, S. J., Hann, I. M., Stiller, C. A., et al. Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood, 1995; 85: 1742–50.
Passmore, S. J., Chessells, J., Kempski, H., et al. Pediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol, 2003; 121: 758–67.
Arceci, R. J., Longley, B. J., & Emanuel, P. D. Atypical cellular disorders. In V. C. Broudy, J. L. Abkowitz, & J. M. Vose, eds. Hematology, American Society of Hematology Education Program Book, 2002, pp. 297–314. http://www.asheducationbook.org/cgi/content/full/2002/11297.
Emanuel, P. D., Shannon, K. M., & Castleberry, R. P. Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today, 1996; 2: 468–75.
Niemeyer, C. M., Arico, M., Basso, G., et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood, 1997; 89: 3534–43.
Tartaglia, M., Niemeyer, C. M., Song, X., et al. Somatic PTPN11 mutations in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Blood, 2002; 100: 141a.
Arico, M., Biondi, A., & Pui, C. H. Juvenile myelomonocytic leukemia. Blood, 1997; 90: 479–88.
Castro-Malaspina, H., Schaison, G., Briere, J., et al. Philadelphia chromosome-positive chronic myelocytic leukemia in children. Survival and prognostic factors. Cancer, 1983; 52: 721–7.
Golub, T. R., Slonim, D. K., Tamayo, P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999; 286: 531–7.
Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet, 2002; 30: 41–7.
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.
Ross, M. E., Zhou, X., Song, G., et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 2003; 102: 2951–9.
Cheok, M. H., Yang, W., Pui, C. H., et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet, 2003; 34: 85–90.
Pui, C.-H., Relling, M. V., & Downing, J. R. Acute lymphoblastic leukemia. N Engl J Med, 2004; 350: 1535–48.
Cario, G., Stanulla, M., Fine, B. M., et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood, 2005; 105: 821–6.
Zaza, G., Cheok, M., Yang, M., et al. Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood, 2005; May 19 [Epub ahead of print] PMID: 15905191.
Bullinger, L., Dohner, K., Bair, E., et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med, 2004; 350, 1605–16.
Ross, M. E., Mahfouz, R., Onciu, M., et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–87.
Valk, P. J., Verhaak, R. G., Beijen, M. A., et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, 2004; 350: 1617–28.
Lacayo, N. J., Meshinchi, S., Kinnunen, P., et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004; 104: 2646–54.
Lu, J., Getz, G., Miska, E. A., et al. MicroRNA expression profiles classify human cancers. Nature, 2005; 439: 834–8.

Reference Title: References

Reference Type: reference-list

Gurney, J. G., Severson, R. K., Davis, S., et al. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer, 1995; 75: 2186–95.
Linet, M. S. & Devesa, S. S. Descriptive epidemiology of childhood leukaemia. Br J Cancer, 1991; 63: 424–9.
Glazer, E. R., Perkins, C. I., Young, J. L., Jr., et al. Cancer among Hispanic children in California, 1988–1994: comparison with non-Hispanic white children. Cancer, 1999; 86: 1070–9.
Douer, D., Preston-Martin, S., Chang, E., et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.
Ferlay, J., Bray, F., Pisani, P., & Parkin, D. M. GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence Worldwide. (Lyon, France: IARC Press, 2001).
Gurney, J. G., Davis, S., Severson, R. K., et al. Trends in cancer incidence among children in the U. S. Cancer, 1996; 78: 532–41.
Blair, V. & Birch, J. M. Patterns and temporal trends in the incidence of malignant disease in children: I. Leukaemia and lymphoma. Eur J Cancer, 1994; 30A: 1490–8.
McWhirter, W. R. & Petroeschevsky, A. L. Incidence trends in childhood cancer in Queensland, 1973–1988. Med J Aust, 1991; 154: 453–5.
Bunin, G. R., Feuer, E. J., Witman, P. A., & Meadows, A. T. Increasing incidence of childhood cancer: report of 20 years experience from the greater Delaware Valley Pediatric Tumor Registry. Paediatr Perinat Epidemiol, 1996; 10: 319–38.
Kaatsch, P., Haaf, G., & Michaelis, J. Childhood malignancies in Germany – methods and results of a nationwide registry. Eur J Cancer, 1995; 31A: 993–9.
Linet, M. S., Ries, L. A., Smith, M. A., Tarone, R. E., & Devesa, S. S. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst, 1999; 91: 1051–8.
Taylor, G. M. & Birch, J. M. The hereditary basis of human leukemia. In Henderson, E. S., Lister, T. A., & Greaves, M. F., eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 210–45.
Norppa, H. Cytogenetic markers of susceptibility: influence of polymorphic carcinogen-metabolizing enzymes. Environ Health Perspect, 1997; 105(Suppl. 4): 829–35.
Spector, L. G., Xie, Y., Robison, L. L., et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. Cancer Epidemiol Biomarkers Prev, 2005; 14: 651–5.
Puchkova, G. P., Prigogina, E. L., Fleischmann, E. W., Drosdova, T. S., & Mayakwa, S. A. Chromosome abnormalities in chronic myeloid leukemia in children. Hum Genet, 1983; 64: 257–62.
Woods, W. G., Nesbit, M. E., Buckley, J., et al. Correlation of chromosome abnormalities with patient characteristics, histologic subtype, and induction success in children with acute nonlymphocytic leukemia. J Clin Oncol, 1985; 3: 3–11.
Cimino, G., Lo Coco, F., Biondi, A., et al. ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood, 1993; 82: 544–6.
Pui, C. H., Raimondi, S. C., Murphy, S. B., et al. An analysis of leukemic cell chromosomal features in infants. Blood, 1987; 69: 1289–93.
Stone, R. M. & Mayer, R. J., The unique aspects of acute promyelocytic leukemia. J Clin Oncol, 1990; 8: 1913–21.
Secker-Walker, L. M., Berger, R., Fenaux, P., et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia, 1992; 6: 363–9.
Crist, W., Carroll, A., Shuster, J., et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood, 1990; 76: 489–94.
Shurtleff, S. A., Buijs, A., Behm, F. G., et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.
Robison, L. L. & Neglia, J. P. Epidemiology of Down syndrome and childhood acute leukemia. Prog Clin Biol Res, 1987; 246: 19–32.
Fong, C. T. & Brodeur, G. M. Down's syndrome and leukemia: epidemiology, genetics, cytogenetics, and the mechanisms of leukemogenesis. Cancer Genet Cytogenet, 1987; 28: 55–76.
Zipursky, A., Thorner, P., De Harven, E., Christensen, H., & Doyle, J. Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res, 1994; 18: 163–71.
Sacchi, N. Down syndrome and chromosome 21 abnormalities in leukaemia. Baillieres Clin Haematol, 1992; 5: 815–31.
Mullvihill, J. J. Congenital and genetic diseases. In J. F. Fraumeni, Jr., ed., Persons at High Risk of Cancer (San Diego, CA: Academic Press, 1975), pp. 3–31.
Bader, J. L. & Miller, R. W. Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.
German, J., Bloom, D., & Passarge, E. Bloom's syndrome. Ⅶ. Progress report for 1978. Clin Genet, 1979; 15: 361–7.
Woods, W. G., Roloff, J. S., Lukens, J. N., & Krivit, W. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr, 1981; 99: 425–8.
Hecht, F. & Hecht, B. K. Cancer in ataxia-telangiectasia patients. Cancer Genet Cytogenet, 1990; 46: 9–19.
Linet, M. The Leukemias: Epidemiological Aspects (New York: Oxford University Press, 1985).
Bloomfield, C. D. & Brunning, R. D. Acute leukemia as a terminal event in nonleukemic hematopoietic disorders. Semin Oncol, 1976; 3: 297–317.
Zeidler, C., Reiter, A., Yakisan, E., et al. Long-term treatment with recombinant human granulocyte colony stimulating factor in patients with severe congenital neutropenia. Klin Padiatr, 1993; 205: 264–71.
Shannon, K. M., Turhan, A. G., Rogers, P. C., & Kan, Y. W. Evidence implicating heterozygous deletion of chromosome 7 in the pathogenesis of ftreatial leukemia associated with monosomy 7. Genomics, 1992; 14: 121–5.
Narod, S. A., Stiller, C., & Lenoir, G. M. An estimate of the heritable fraction of childhood cancer. Br J Cancer, 1991; 63: 993–9.
Robison, L. L., Nesbit, M. E., Jr., Sather, H. N., et al. Down syndrome and acute leukemia in children: a 10-year retrospective survey from Children's Cancer Study Group. J Pediatr, 1984; 105: 235–42.
Watson, M. S., Carroll, A. J., Shuster, J. J., et al. Trisomy 21 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study (8602). Blood, 1993; 82: 3098–102.
Mertens, A. C., Wen, W., Davies, S. M., et al. Congenital abnormalities in children with acute leukemia: a report from the Children's Cancer Group. J Pediatr, 1998; 133: 617–23.
Narod, S. A., Hawkins, M. M., Robertson, C. M., & Stiller, C. A. Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet, 1997; 60: 474–85.
Anderson, R. Familial leukemia. Am J Dis Child, 1951; 81: 313–322.
Maklin, M. Inheritance of cancer of the stomach and large intestine in man. J Natl Cancer Inst, 1960; 24: 551–571.
Gunz, F. W., Gunz, J. P., Vincent, P. C., et al. Thirteen cases of leukemia in a family. J Natl Cancer Inst, 1978; 60: 1243–50.
Farwell, J. & Flannery, J. T. Cancer in relatives of children with central-nervous-system neoplasms. N Engl J Med, 1984; 311: 749–53.
MacMahon, B. & Levy, M. A. Prenatal origin of leukemia: evidence from twins. N Engl J Med, 1964; 270: 1082–1085.
Keith, L., Brown, E. R., Ames, B., Stotsky, M., & Keith, D. M. Leukemia in twins: antenatal and postnatal factors. Acta Genet Med Gemellol, 1976; 25: 336–41.
Chaganti, R. S., Miller, D. R., Meyers, P. A., & German, J. Cytogenetic evidence of the intrauterine origin of acute leukemia in monozygotic twins. N Engl J Med, 1979; 300: 1032–4.
Hartley, S. E. & Sainsbury, C. Acute leukaemia and the same chromosome abnormality in monozygotic twins. Hum Genet, 1981; 58: 408–10.
Strong, L. C. Genetics, etiology, and epidemiology of childhood cancer. In W. W. Sutow, T. J. Vietti & D. J. Ferrbach, eds., Clinical Pediatric Oncology (St. Louis, MO: Mosby, 1984), pp. 14–41.
Elwood, P. C. Possible explanation of the high concordance for acute leukemia in monozygotic twins. Lancet, 1971; 1: 699.
Buckley, J. D., Buckley, C. M., Breslow, N. E., et al. Concordance for childhood cancer in twins. Med Pediatr Oncol, 1996; 26: 223–9.
Ford, A. M., Ridge, S. A., Cabrera, M. E., et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature, 1993; 363: 358–60.
Maia, A. T., Ford, A. M., Jalali, G. R., et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood, 2001; 98: 478–82.
Ford, A. M., Pombo-de-Oliveira, M. S., McCarthy, K. P., et al. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood, 1997; 89: 281–5.
Ford, A. M., Bennett, C. A., Price, C. M., et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A, 1998; 95: 4584–8.
Hawkins, M. M., Draper, G. J., & Winter, D. L. Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas. Br J Cancer, 1995; 71: 1335–9.
Bajnoczky, K., Khezri, S., Kajtar, P., et al. No chromosomal instability in offspring of survivors of childhood malignancy. Cancer Genet Cytogenet, 1999; 109: 79–80.
Perrillat, F., Clavel, J., Jaussent, I., et al. Family cancer history and risk of childhood acute leukemia (France). Cancer Causes Control, 2001; 12: 935–41.
Grenwald. Benzene and leukemia. Crit Rev Toxicol, 2002; 32: 155–210.
Stewart, A. A survey of childhood malignancies. Br Med J, 1958; 2: 1495–507.
MacMahon, B. & Newill, V. A. Birth characteristics of children dying of malignant neoplasms. J Natl Cancer Inst, 1962; 28: 231–44.
Gibson, R. W., Bross, I. D. J., Graham, S., et al. Leukemia in children exposed to multiple risk factors. N Engl J Med, 1968; 279: 906–9.
Stewart, A. & Kneale, G. W. Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet, 1970; 1: 1185–8.
Savitz, D. A., Wachtel, H., Barnes, F. A., John, E. M., & Tvrdik, J. G. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol, 1988; 128: 21–38.
London, S. J., Thomas, D. C., Bowman, J. D., et al. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol, 1991; 134: 923–37.
Linet, M. S., Hatch, E. E., Kleinerman, R. A., et al. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med, 1997; 337: 1–7.
Preston, D. L., Kusumi, S., Tomonaga, M., et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res, 1994; 137(2 Suppl.): S68–97.
Doll, R. Hazards of ionising radiation: 100 years of observations on man. Br J Cancer, 1995; 72: 1339–49.
Harvey, E. B., Boice, J. D., Jr., Honeyman, M., & Flannery, J. T. Prenatal x-ray exposure and childhood cancer in twins. N Engl J Med, 1985; 312: 541–5.
Rodvall, Y., Pershagen, G., Hrubec, Z., et al. Prenatal X-ray exposure and childhood cancer in Swedish twins. Int J Cancer, 1990; 46: 362–5.
Mole, R. H. Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain. Br J Cancer, 1990; 62: 152–68.
Boice, J. D. & Inskip, P. D. Radiation-induced leukemia. In E. S. Henderson, T. A. Lister, & M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 195–209.
Darby, S. C. & Weiss, H. A. Human studies in radiation leukemogenesis. In J. H. Hendry & B. I. Lord, eds., Radiation Toxicology: Bone Marrow and Leukemia (London: Taylor & Francis, 1995), pp. 337–53.
Doll, R. & Wakeford, R. Risk of childhood cancer from fetal irradiation. Br J Radiol, 1997; 70: 130–9.
Simpson, C. I., Hempelmann, L. H., & Fuller, L. M. Neoplasms in children treated with x-rays in infancy for thymic enlargement. Radiology, 1955; 64: 840–55.
Ron, E. & Modon, B. Thyroid and other neoplasms following childhood scalp irradiation. In J. D. Boice & J. F. Fraumeni, eds., Radiation Carcinogenesis, Epidemiology and Biological Significance (New York: Raven Press, 1984), pp. 139–51.
Tucker, M. A., Coleman, C. N., Cox, R. S., Varghese, A. & Rosenberg, S. A. Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med, 1988; 318: 76–81.
Egeler, R. M., Neglia, J. P., Arico, M., et al. Acute leukemia in association with Langerhans cell histiocytosis. Med Pediatr Oncol, 1994; 23: 81–5.
Infante-Rivard, C., Mathonnet, G., & Sinnett, D. Risk of childhood leukemia associated with diagnostic irradiation and polymorphisms in DNA repair genes. Environ Health Perspect, 2000; 108: 495–8.
Linos, A., Kyle, R. A., Elveback, L. R., & Kurland, L. T. Leukemia in Olmsted County, Minnesota, 1965–1974. Mayo Clin Proc, 1978; 53: 714–18.
Boice, J. D., Jr. The danger of X-rays – real or apparent ? N Engl J Med, 1986; 315: 828–30.
Hjalmars, U., Kulldorff, M., & Gustafsson, G. Risk of acute childhood leukaemia in Sweden after the Chernobyl reactor accident. Swedish Child Leukaemia Group. BMJ, 1994; 309: 154–7.
Auvinen, A., Hakama, M., Arvela, H., et al. Fallout from Chernobyl and incidence of childhood leukaemia in Finland, 1976–92. BMJ, 1994; 309: 151–4.
Cartwright, R. A., McKinney, P. A., Alexander, F. E., & Ricketts, J. Leukemia in young children. Lancet, 1988; 2: 960.
Gibson, B. E., Eden, O. B., Barrett, A., Stiller, C. A., & Draper, G. J. Leukaemia in young children in Scotland. Lancet, 1988; 2: 630.
Michaelis, J., Kaletsch, U., Burkart, W., & Grosche, B. Infant leukaemia after the Chernobyl accident. Nature, 1997; 387: 246.
Petridou, E., Proukakis, C., Tong, D., et al. Trends and geographical distribution of childhood leukemia in Greece in relation to the Chernobyl accident. Scand J Soc Med, 1994; 22: 127–31.
Petridou, E., Trichopoulos, D., Dessypris, N., et al. Infant leukaemia after in utero exposure to radiation from Chernobyl. Nature, 1996; 382: 352–3.
Parkin, D. M., Cardis, E., Masuyer, E., et al. Childhood leukemia following the Chernobyl accident: the European Childhood Leukemia-Lymphoma Incidence Study (ECLIS). Eur J Cancer, 1992; 29A: 87–95.
Ivanov, E. P., Tolochoko, G., Lazarev, V. S. & Shuvaeva, L. Child leukaemia after Chernobyl. Nature, 1993; 365: 702.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. New York: United Nations, 1994.
Stevens, W., Thomas, D. C., Lyon, J. L., et al. Leukemia in Utah and radioactive fallout from the Nevada test site. A case-control study. JAMA, 1990; 264: 585–91.
Cook-Mozaffari, P. J., Darby, S. C., Doll, R., et al. Geographical variation in mortality from leukaemia and other cancers in England and Wales in relation to proximity to nuclear installations, 1969–78. Br J Cancer, 1989; 59: 476–85.
Bithell, J. F., Dutton, S. J., Draper, G. J., & Neary, N. M. Distribution of childhood leukaemias and non-Hodgkin's lymphomas near nuclear installations in England and Wales. BMJ, 1994; 309: 501–5.
Hill, C. & Laplanche, A. Overall mortality and cancer mortality around French nuclear sites. Nature, 1990; 347: 755–7.
Jablon, S., Hrubec, Z. & Boice, J. D., Jr. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states. JAMA, 1991; 265: 1403–8.
Jablon, S., Hrubec, Z. & Boice, J. D., Jr. Cancer in Populations Living Near Nuclear Facilities. NIH Publication 90–874). (Bethesda, MD: Public Health Service, Department of Health and Human Services, 1990).
Michaelis, J., Keller, B., Haaf, G., & Kaatsch, P. Incidence of childhood malignancies in the vicinity of west German nuclear power plants. Cancer Causes Control, 1992; 3: 255–63.
Clarke, E. A., McLaughlin, J., & Anderson, T. W. Childhood Leukaemia Around Canadian Nuclear Facilities: Phase II. Final Report. (Ottawa, Canada: Atomic Energy Control Board, 1991).
Committee of Medical Aspects of Radiation in the Environment (COMARE). The Incidence of Cancer and Leukaemia in Young People in the Vicinity of the Sellafield Site, West Cumbria: Further Studies and an Update of the Situation Since the Publication of the Report of the Black Advisory Group in 1984. (London: Her Majesty's Stationery Office, 1996).
Gardner, M. J. Father's occupational exposure to radiation and the raised level of childhood leukemia near the Sellafield nuclear plant. Environ Health Perspect, 1991; 94: 5–7.
Shu, X. O., Reaman, G. H., Lampkin, B., et al. Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Children's Cancer Group. Cancer Epidemiol Biomarkers Prev, 1994; 3: 645–53.
McLaughlin, J. R., Clarke, E. A., Nishri, E. D., & Anderson, T. W. Childhood leukemia in the vicinity of Canadian nuclear facilities. Cancer Causes Control, 1993; 4: 51–8.
Parker, L., Craft, A. W., Smith, J., et al. Geographical distribution of preconceptional radiation doses to fathers employed at the Sellafield nuclear installation, West Cumbria. BMJ, 1993; 307: 966–71.
Henshaw, D. L., Eatough, J. P., & Richardson, R. B. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet, 1990; 335: 1008–12.
Alexander, F. E., McKinney, P. A., & Cartwright, R. A. Radon and leukaemia. Lancet, 1990; 335: 1336–7.
Lubin, J. H., Linet, M. S., Boice, J. D. Jr., et al. Case-control study of childhood acute lymphoblastic leukemia and residential radon exposure. J Natl Cancer Inst, 1998; 90: 294–300.
Steinbuch, M., Weinberg, C. R., Buckley, J. D., Robison, L. L., & Sandler, D. P. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia. Br J Cancer, 1999; 81: 900–6.
Kaletsch, U., Kaatsch, P., Meinert, R., et al. Childhood cancer and residential radon exposure – results of a population-based case-control study in Lower Saxony (Germany). Radiat Environ Biophys, 1999; 38: 211–5.
UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas. Br J Cancer, 2002; 86: 1721–6.
Axelson, O., Fredrikson, M., Akerblom, G., & Hardell, L. Leukemia in childhood and adolescence and exposure to ionizing radiation in homes built from uranium-containing alum shale concrete. Epidemiology, 2002; 13: 146–50.
Watts, G. Power to confuse. BMJ, 2005; 330: 1293.
McBride, M. L., Gallagher, R. P., Theirault, G., et al. Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol, 1999; 149: 831–42.
Anonymous. Exposure to power-frequency magnetic fields and the risk of childhood cancer. UK Childhood Cancer Study Investigators. Lancet, 1999; 354: 1925–31.
Soderberg, K. C., Naumburg, E., Anger, G., et al. Childhood leukemia and magnetic fields in infant incubators. Epidemiology, 2002; 13: 45–9.
Ahlbom, A., Day, N., Feychting, M., et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer, 2000; 83: 692–8.
Greenland, S., Sheppard, A. R., Kaune, W. T., Poole, C., & Kelsh, M. A. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology, 2000; 11: 624–34.
Lowengart, R. A., Peters, J. M., Cicioni, C., et al. Childhood leukemia and parents' occupational and home exposures. J Natl Cancer Inst, 1987; 79: 39–46.
Shu, X. O., Gao, Y. T., Brinton, L. A., et al. A population-based case-control study of childhood leukemia in Shanghai. Cancer, 1988; 62: 635–44.
Buckley, J. D., Robison, L. L., Swotinsky, R., et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children's Cancer Study Group. Cancer Res, 1989; 49: 4030–7.
Leiss, J. K. & Savitz, D. A. Home pesticide use and childhood cancer: a case-control study. Am J Public Health, 1995; 85: 249–52.
Zahm, S. H. Childhood leukemia and pesticides. Epidemiology, 1999; 10: 473–5.
Daniels, J. L., Olshan, A. F., & Savitz, D. A. Pesticides and childhood cancers. Environ Health Perspect, 1997; 105: 1068–77.
Shu, X. O., Stewart, P., Wen, W. Q., et al. Parental occupational exposure to hydrocarbons and risk of acute lymphocytic leukemia in offspring. Cancer Epidemiol Biomarkers Prev, 1999; 8: 783–91.
Steensel-Moll, H. A. van, Valkenburg, H. A., Vandenbroucke, J. P., & Zanen, G. E. van. Are maternal fertility problems related to childhood leukaemia ? Int J Epidemiol, 1985; 14: 555–9.
Gold, E. B., Diener, M. D., & Szklo, M. Parental occupations and cancer in children – a case-control study and review of the methodologic issues. J Occup Med, 1982; 24: 578–84.
McKinney, P. A., Roberts, B. E., O'Brien, C., et al. Chronic myeloid leukaemia in Yorkshire: a case control study. Acta Haematol, 1990; 83: 35–8.
Shaw, G., Lavey, R., Jackson, R., & Austin, D. Association of childhood leukemia with maternal age, birth order, and paternal occupation. A case-control study. Am J Epidemiol, 1984; 119: 788–95.
Infante-Rivard, C., Mur, P., Armstrong, B., Alvarez-Dardet, C., & Boulmar, F. Acute lymphoblastic leukaemia among Spanish children and mothers' occupation: a case-control study. J Epidemiol Community Health, 1991; 45: 11–5.
Schuz, J., Kaletsch, U., Meinert, R., Kaatsch, P., & Michaelis, J. Risk of childhood leukemia and parental self-reported occupational exposure to chemicals, dusts, and fumes: results from pooled analyses of German population-based case-control studies. Cancer Epidemiol Biomarkers Prev, 2000; 9: 835–8.
Lyons, R. A., Monaghen, S. P., Heaven, M., et al. Incidence of leukaemia and lymphoma in young people in the vicinity of the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991. Occup Environ Med, 1995; 52: 225–8.
Sans, S., Elliott, P., Kleinschmidt, I., et al. Cancer incidence and mortality near the Baglan Bay petrochemical works, South Wales. Occup Environ Med, 1995; 52: 217–24.
Freedman, D. M., Stewart, P., Kleinerman, R. A., et al. Household solvent exposures and childhood acute lymphoblastic leukemia. Am J Public Health, 2001; 91: 564–7.
Pearson, R. L., Wachtel, H., & Ebi, K. L. Distance-weighted traffic density in proximity to a home is a risk factor for leukemia and other childhood cancers. J Air Waste Manag Assoc, 2000; 50: 175–80.
Reynolds, P., Elkin, E., Scalf, R., Von Behren, J., & Neutra, R. R. A case-control pilot study of traffic exposures and early childhood leukemia using a geographic information system. Bioelectromagnetics, 2001; Suppl. 5: S58–68.
Reynolds, P., Von Behren, J., Gunier, R. B., et al. Traffic patterns and childhood cancer incidence rates in California, United States. Cancer Causes Control, 2002; 13: 665–73.
Alexander, F., Cartwright, R., McKinney, P. A., & Ricketts, T. J. Investigation of spacial clustering of rare diseases: childhood malignancies in North Humberside. J Epidemiol Community Health, 1990; 44: 39–46.
Wulff, M., Hogberg, U., & Sandstrom, A. Cancer incidence for children born in a smelting community. Acta Oncol, 1996; 35: 179–83.
Feychting, M., Plato, N., Nise, G., & Ahlbom, A. Paternal occupational exposures and childhood cancer. Environ Health Perspect, 2001; 109: 193–6.
Robison, L. L., Buckley, J. D., Daigle, A. E., et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Children's Cancer Study Group). Cancer, 1989; 63: 1904–11.
Sarasua, S. & Savitz, D. A. Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (United States). Cancer Causes Control, 1994; 5: 141–8.
Thompson, J. R., Gerald, P. F., Willoughby, M. L., & Armstrong, B. K. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet, 2001; 358: 1935–40.
Peters, J. M., Preston-Martin, S., London, S. J., et al. Processed meats and risk of childhood leukemia (California, USA). Cancer Causes Control, 1994; 5: 195–202.
Buckley, J. D., Buckley, C. M., Ruccione, K., et al. Epidemiological characteristics of childhood acute lymphocytic leukemia. Analysis by immunophenotype. The Children's Cancer Group. Leukemia, 1994; 8: 856–64.
Severson, R. K., Buckley, J. D., Woods, W. G., Benjamin, D., & Robison, L. L. Cigarette smoking and alcohol consumption by parents of children with acute myeloid leukemia: an analysis within morphological subgroups – a report from the Children's Cancer Group. Cancer Epidemiol Biomarkers Prev, 1993; 2: 433–9.
Duijn, C. M. van, Steensel-Moll, H. A. van, Coebergh, J. W., & Zanen, G. E. van. Risk factors for childhood acute non-lymphocytic leukemia: an association with maternal alcohol consumption during pregnancy ? Cancer Epidemiol Biomarkers Prev, 1994; 3: 457–60.
Shu, X. O., Ross, J. A., Pendergrass, T. W., et al. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Children's Cancer Group study. J Natl Cancer Inst, 1996; 88: 24–31.
Sorahan, T., Lancashire, R., Prior, P., Peck, I., & Stewart, A. Childhood cancer and parental use of alcohol and tobacco. Ann Epidemiol, 1995; 5: 354–9.
Stjernfeldt, M., Berglund, K., Lindsten, J., & Ludvigsson, J. Maternal smoking and irradiation during pregnancy as risk factors for child leukemia. Cancer Detect Prev, 1992; 16: 129–35.
Mucci, L. A., Granath, F., & Cnattingius, S. Maternal smoking and childhood leukemia and lymphoma risk among 1,440,542 Swedish children. Cancer Epidemiol Biomarkers Prev, 2004; 13: 1528–33.
John, E. M., Savitz, D. A., & Sandler, D. P. Prenatal exposure to parents' smoking and childhood cancer. Am J Epidemiol, 1991; 133: 123–32.
Buckley, J. D., Hobbie, W. L., Ruccione, K., et al. Maternal smoking during pregnancy and the risk of childhood cancer [letter]. Lancet, 1986; 2: 519–20.
Pershagen, G., Ericson, A., & Otterblad-Olausson, P. Maternal smoking in pregnancy: does it increase the risk of childhood cancer ? Int J Epidemiol, 1992; 21: 1–5.
McKinney, P. A. & Stiller, C. Maternal smoking during pregnancy and the risk of childhood leukaemia. Lancet, 1986; 2: 519.
Li, F. P. Maternal smoking during pregnancy and the risk of childhood cancer. Lancet, 1986; 2: 520.
Ji, B. T., Shu, X. O., Linet, M. S., et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst, 1997; 89: 238–44.
Sorahan, T., Lancashire, R. J., Hulten, M. A., Peck, I., & Stewart, A. M. Childhood cancer and parental use of tobacco: deaths from 1953 to 1955. Br J Cancer, 1997; 75: 134–8.
Brondum, J., Shu, X. O., Steinbuch, M., et al. Parental cigarette smoking and the risk of acute leukemia in children. Cancer, 1999; 85: 1380–8.
Sandler, D. P., Wilcox, A. J., & Everson, R. B. Cumulative effects of lifetime passive smoking on cancer risk. Lancet, 1985; 1: 312–5.
Kaye, S. A., Robison, L. L., Smithson, W. A., et al. Maternal reproductive history and birth characteristics in childhood acute lymphoblastic leukemia. Cancer, 1991; 68: 1351–5.
Yeazel, M. W., Buckley, J. D., Woods, W. G., Ruccione, K., & Robison, L. L. History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. A report from the Children's Cancer Group. Cancer, 1995; 75: 1718–27.
Gibson, R. W., Bross, I. D. J., & Graham, S. Leukemia in children exposed to multiple risk factors. N Engl J Med, 1968; 279: 906–9.
Ross, J. A., Potter, J. D., Shu, X. O., et al. Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukemia: a report from the Children's Cancer Group. Ann Epidemiol, 1997; 7: 172–9.
Westergaard, T., Andersen, P. K., Pedersen, J. B., et al. Birth characteristics, sibling patterns, and acute leukemia risk in childhood: a population-based cohort study. J Natl Cancer Inst, 1997; 89: 939–47.
Hemminki, K., Kyyronen, P., & Vaittinen, P. Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology, 1999; 10: 271–5.
Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D., & Bunch, K. J. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol, 2001; 30: 1428–37.
Zack, M., Adami, H. O., & Ericson, A. Maternal and perinatal risk factors for childhood leukemia. Cancer Res, 1991; 51: 3696–701.
Hjalgrim, L. L., Rostgaard, K., Hjalgrim, H., et al. Birth weight and risk for childhood leukemia in Denmark, Sweden, Norway, and Iceland. J Natl Cancer Inst, 2004; 96: 1549–56
Petridou, E., Skalkidou, A., Dessypris, N., et al. Endogenous risk factors for childhood leukemia in relation to the IGF system (Greece). The Childhood Haematologists-Oncologists Group. Cancer Causes Control, 2000; 11: 765–71.
Lei, U., Wohlfahrt, J., Hjalgrim, H., et al. Neonatal level of thyroid-stimulating hormone and acute childhood leukemia. Int J Cancer, 2000; 88: 486–8.
Gale, K. B., Ford, A. M., Repp, R., et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.
Broeker, P. L., Super, H. G., Thirman, M. J., et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood, 1996; 87: 1912–22.
Wang, J. C. DNA topoisomerases. Annu Rev Biochem, 1996; 65: 635–92.
Ross, J. A., Potter, J. D., Reaman, G. H., Pendergrass, T. W., & Robison, L. L. Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's Cancer Group. Cancer Causes Control, 1996; 7: 581–90.
Ross, J. A. Maternal diet and infant leukemia: a role for DNA topoisomerase II inhibitors ? Int J Cancer Suppl, 1998; 11: 26–8.
Strick, R., Strissel, P. L., Borgers, S., Smith, S. L., & Rowley, J. D. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A, 2000; 97: 4790–5.
Alexander, F. E., Patheal, S. L., Biondi, A., et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res, 2001; 61: 2542–6.
Ross, J. A., Potter, J. D., & Robison, L. L. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst, 1994; 86: 1678–80.
Greave, M. F. Infant leukaemia biology, aetiology and treatment. Leukemia, 1996; 10: 372–7.
Kinlen, L. J. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer, 1995; 71: 1–5.
Anderson, R. M. & May, R. M. Immunisation and herd immunity. Lancet, 1990; 335: 641–5.
Boutou, O., Guizard, A. V., Slama, R., Pottier, D., & Spira, A. Population mixing and leukaemia in young people around the La Hague nuclear waste reprocessing plant. Br J Cancer, 2002; 87: 740–5.
Langford, I. Childhood leukaemia mortality and population change in England and Wales 1969–73. Soc Sci Med, 1991; 33: 435–40.
Stiller, C. A. & Boyle, P. J. Effect of population mixing and socioeconomic status in England and Wales, 1979–85, on lymphoblastic leukaemia in children. BMJ, 1996; 313: 1297–300.
Dickinson, H. O. & Parker, L. Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster. Br J Cancer, 1999; 81: 144–51.
Koushik, A., King, W. D., & McLaughlin, J. R. An ecologic study of childhood leukemia and population mixing in Ontario, Canada. Cancer Causes Control, 2001; 12: 483–90.
Dickinson, H. O., Hammal, D. M., Bithell, J. F., & Parker, L. Population mixing and childhood leukaemia and non-Hodgkin's lymphoma in census wards in England and Wales, 1966–87. Br J Cancer, 2002; 86: 1411–3.
Parslow, R. C., Law, G. R., Feltbower, R., Kinsey, S. E., & McKinney, P. A. Population mixing, childhood leukaemia, CNS tumours and other childhood cancers in Yorkshire. Eur J Cancer, 2002; 38: 2033–40.
Baccate, E. M. Social patterns of antibody to poliovirus. Lancet, 1983; 1: 778–83.
Dworsky, M., Yow, M., Stagno, S., Pass, R. F., & Alford, C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics, 1983; 72: 295–9.
Parker, L. Breast-feeding and cancer prevention. Eur J Cancer, 2001; 37: 155–8.
Ma, X., Buffler, P. A., Selvin, S., et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br J Cancer, 2002; 86: 1419–24.
Perrillat, F., Clavel, J., Auclerc, M. F., et al. Day-care, early common infections and childhood acute leukaemia: a multicentre French case-control study. Br J Cancer, 2002; 86: 1064–9.
Gilham, C., Peto, J., Simpson, J. et at. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case-contol study. BMJ, 2005; 330: 1294.
Rosenbaum, P. F., Buck, G. M., & Brecher, M. L. Early child-care and preschool experiences and the risk of childhood acute lymphoblastic leukemia. Am J Epidemiol, 2000; 152: 1136–44.
Neglia, J. P., Linet, M. S., Shu, X. O., et al. Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br J Cancer, 2000; 82: 234–40.
Gahrton, G., Wahren, B., Killander, D., & Foley, G. E. Epstein–Barr and other herpes virus antibodies in children with acute leukemia. Int J Cancer, 1971; 8: 242–9.
Groves, F. D., Sinha, D., Kayhty, H., Goedert, J. J., & Levine, P. H. Haemophilus influenzae type b serology in childhood leukaemia: a case-control study. Br J Cancer, 2001; 85: 337–40.
Heegaard, E. D., Jensen, L., Hornsleth, A., & Schmiegelow, K. The role of parvovirus B19 infection in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol, 1999; 16: 329–34.
MacKenzie, J., Gallagher, A., Clayton, R. A., et al. Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia, 2001; 15: 415–21.
MacKenzie, J., Perry, J., Ford, A. M., Jarrett, R. F., & Greaves, M. JC and BK virus sequences are not detectable in leukaemic samples from children with common acute lymphoblastic leukaemia. Br J Cancer, 1999; 81: 898–9.
Salonen, M. J., Siimes, M. A., Salonen, E. M., Vaheri, A., & Koskiniemi, M. Antibody status to HHV-6 in children with leukaemia. Leukemia, 2002; 16: 716–9.
Dockerty, J. D., Skegg, D. C., Elwood, J. M., et al. Infections, vaccinations, and the risk of childhood leukaemia. Br J Cancer, 1999; 80: 1483–9.
McKinney, P. A., Juszczak, E., Findlay, E., Smith, K., & Thomson, C. S. Pre- and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study. Br J Cancer, 1999; 80: 1844–51.
Schuz, J., Kaatsch, P., Kaletsch, U., Meinert, R., & Michaelis, J. Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol, 1999; 28: 631–9.
McKinney, P. A., Cartwright, R. A., Saiu, J. M., et al. The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma. Arch Dis Child, 1987; 62: 279–87.
Naumburg, E., Bellocco, R., Cnattingius, S., Jonzon, A., & Ekbom, A. Perinatal exposure to infection and risk of childhood leukemia. Med Pediatr Oncol, 2002; 38: 391–7.
Chan, L. C., Lam, T. H., Li, C. K., et al. Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong ? Paediatr Perinat Epidemiol, 2002; 16: 154–65.
Greaves, M. F. & Alexander, F. E. An infectious etiology for common acute lymphoblastic leukemia in childhood ? Leukemia, 1993; 7: 349–60.
Taylor, G. M. & Birch, J. M. The hereditary basis of human leukemia. In E. S. Henderson, T. A. Lister, & M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 210–45.
Petridou, E., Kassimos, D., Kalmanti, M., et al. Age of exposure to infections and risk of childhood leukaemia. BMJ, 1993; 307: 774.
Tasaka, T., Lee, S., Spira, S., et al. Microsatellite instability during the progression of acute myelocytic leukaemia. Br J Haematol, 1997; 98: 219–21.
Takeuchi, S., Seriu, T., Tasaka, T., et al. Microsatellite instability and other molecular abnormalities in childhood acute lymphoblastic leukaemia. Br J Haematol, 1997; 98: 134–9.
Baccichet, A., Benachenhou, N., Couture, F., Leclerc, J. M., & Sinnett, D. Microsatellite instability in childhood T cell acute lymphoblastic leukemia. Leukemia, 1997; 11: 797–802.
Finette, B. A., Poseno, T., & Albertini, R. J. V(D)J recombinase-mediated HPRT mutations in peripheral blood lymphocytes of normal children. Cancer Res, 1996; 56: 1405–12.
Dorak, M. T., Lawson, T., Machulla, H. K., et al. Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood, 1999; 94: 694–700.
Taylor, G. M., Robinson, M. D., Binchy, A., et al. Preliminary evidence of an association between HLA-DPB1*0201 and childhood common acute lymphoblastic leukaemia supports an infectious aetiology. Leukemia, 1995; 9: 440–3.
Rothman, N., Wacholder, S., Caporaso, N. E., et al. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochim Biophys Acta, 2001; 1471: C1–10.
Nakachi, K., Imai, K., Hayashi, S., & Kawajiri, K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res, 1993; 53: 2994–9.
Hirvonen, A., Nylund, L., Kociba, P., Husgafvel-Pursiainen, K., & Vainio, H. Modulation of urinary mutagenicity by genetically determined carcinogen metabolism in smokers. Carcinogenesis, 1994; 15: 813–5.
Chen, H., Sandler, D. P., Taylor, J. A., et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet, 1996; 347: 295–7.
Davies, S. M., Robison, L. L., Buckley, J. D., et al. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children's Cancer Group study. Cancer Epidemiol Biomarkers Prev, 2000; 9: 563–6.
Chen, C. L., Liu, O., Pui, C. H., et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood, 1997; 89: 1701–7.
Davies, S. M., Bhatia, S., Ross, J. A., et al. Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 67–71.
Blumer, J. L., Dunn, R., Esterhay, M. D., Yamashita, T. S., & Gross, S. Lymphocyte aromatic hydrocarbon responsiveness in acute leukemia of childhood. Blood, 1981; 58: 1081–8.

Reference Title: References

Reference Type: reference-list

Williams, W. J., Beutler, E., Erslev, A. J., & Lichtman, M. A. (eds.). Hematology, 4th edn (New York: McGraw-Hill, 1990).
Killmann, S. A., Cronkite, E. P., Fliedner, T. M., & Bond, V. P. Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitoses. Blood, 1962; 19: 743–50.
Killmann, S. A., Cronkite, E. P., Fliedner, T. M., & Bond, V. P. Mitotic indices of human bone marrow cells. III. Duration of some phases of erythrocytic and granulocytic proliferation computed from mitotic indices. Blood, 1964; 24: 267–80.
Warner, H. R., & Athens, J. W. An analysis of granulocyte kinetics in blood and bone marrow. Ann N Y Acad Sci, 1964; 113: 523–36.
Dameshek, W. Some speculations on the myeloproliferative syndromes. Blood, 1951; 6: 372–5.
Barnes, D. W. H., Ford, C. E., Gray, S. M., & Loutit, J. F. Spontaneous and induced changes in cell populations in heavily irradiated mice. In J. C. Bugher, J. Coursaget, & J. F. Loutit, eds., Progress in Nuclear Energy (Series Ⅵ) (London: Pergamon Press, 1959), pp. 1–10.
Whang, J., Frei, E., III, Tjio, J. H., Carbone, P. P., & Brecher, G. The distribution of the Philadelphia chromosome in patients with chronic myelogenous leukemia. Blood, 1963; 22: 664–73.
Rastrick, J. M., Fitzgerald, P. H., & Gunz, F. W. Direct evidence for presence of Ph1 chromosome in erythroid cells. Br Med J, 1968; 1: 96–8.
Turhan, A. G., Humphries, R. K., Phillips, G. L., Eaves, A. C., & Eaves, C. J. Clonal hematopoiesis demonstrated by X-linked DNA polymorphisms after allogeneic bone marrow transplantation. N Engl J Med, 1989; 320: 1655–61.
Eaves, C. J. Myelopoiesis. In E. S. Henderson, T. A. Lister, & M. F. Greaves, eds., Leukemia, 7th edn. (Philadelphia, PA: W. B. Saunders, 2002), pp. 19–45.
Palis, J., Robertson, S., Kennedy, M., Wall, C., & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 1999; 126: 5073–84.
Moore, M. A. S. & Metcalf, D. Ontogeny of the haemopoietic system; yolk sac origin of in vivo and in vitro colony forming cell in the developing mouse embryo. Br J Haematol, 1970; 18: 279–86.
Houssaint, E. Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ, 1981; 10: 243–52.
Wong, P. M. C., Chung, S. W., Chui, D. H. K., & Eaves, C. J. Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. Proc Natl Acad Sci U S A, 1986; 83: 3851–4.
Huang, H., Zettergren, L. D., & Auerbach, R. In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. Exp Hematol, 1994; 22: 19–25.
Dzierzak, E. Hematopoietic stem cells and their precursors: developmental diversity and lineage relationships. Immunol Rev, 2002; 187: 126–38.
Peault, B. & Tavian, M. Hematopoietic stem cell emergence in the human embryo and fetus. Ann N Y Acad Sci, 2003; 996: 132–40.
Johnson, G. R. & Moore, M. A. S. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature, 1975; 258: 726–8.
Delassus, S. & Cumano, A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity, 1996; 4: 97–106.
Eaves, C. J. Manipulating hematopoietic stem cell amplification with Wnt. Nat Immunol, 2003; 4: 511–2.
Reya, T., Duncan, A. W., Ailles, L., et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003; 423: 409–14.
Rich, I. N. & Kubanek, B. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. J Embryol Exp Morphol, 1980; 58: 143–55.
Roodman, G. D. & Zanjani, E. Endogenous erythroid colony-forming cells in fetal and newborn sheep. J Lab Clin Med, 1979; 94: 699–707.
Nakano, T., Kodama, H., & Honjo, T. In vitro development of primitive and definitive erythrocytes from different precursors. Science, 1996; 272: 722–4.
Migliaccio, A. R. & Migliaccio, G. Human embryonic hemopoiesis: control mechanisms underlying progenitor differentiation in vitro. Dev Biol, 1988; 125: 127–34.
Kurata, H., Mancini, G. C., Alespeiti, G., Migliaccio, A. R., & Migliaccio, G. Stem cell factor induces proliferation and differentiation of fetal progenitor cells in the mouse. Br J Haematol, 1998; 101: 676–87.
Miller, C. L., Rebel, V. I., Lemieux, M. E., et al. Studies of W mutant mice provide evidence for alternate mechanisms capable of activating hematopoietic stem cells. Exp Hematol, 1996; 24: 185–94.
Miller, C. L., Rebel, V. I., Helgason, C. D., Lansdorp, P. M., & Eaves, C. J. Impaired steel factor responsiveness differentially affects the detection and longterm maintenance of fetal liver hematopoietic stem cells in vivo. Blood, 1997; 89: 1214–23.
Roy, V., Miller, J. S., & Verfaillie, C. M. Phenotypic and functional characterization of committed and primitive myeloid and lymphoid hematopoietic precursors in human fetal liver. Exp Hematol, 1997; 25: 387–94.
Glimm, H. & Eaves, C. J. Direct evidence for multiple self-renewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood, 1999; 94: 2161–8.
Barker, J. E. Development of the mouse hematopoietic system. Dev Biol, 1968; 18: 14–29.
Kazazian, H. H., Jr. & Woodhead, A. P. Hemoglobin A synthesis in the developing fetus. N Engl J Med, 1973; 289: 58–62.
Weissman, I. L. Developmental switches in the immune system. Cell, 1994; 76: 207–18.
Sanchez, M.-J., Holmes, A., Miles, C., & Dzierzak, E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity, 1996; 5: 513–25.
Yoder, M. C., Hiatt, K., Dutt, P., et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity, 1997; 7: 335–44.
Huang, H. & Auerbach, R. Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo. Proc Natl Acad Sci U S A, 1993; 90: 10110–4.
Morrison, S. J., Hemmati, H. D., Wandycz, A. M., & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A, 1995; 92: 10302–6.
Randall, T. D. & Weissman, I. L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood, 1997; 89: 3596–606.
Rebel, V. I., Miller, C. L., Thornbury, G. R., et al. A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp Hematol, 1996; 24: 638–48.
Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., & Dick, J. E. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med, 1998; 4: 1038–45.
Uchida, N., Dykstra, B., Lyons, K., et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood, 2004; 103: 4487–95.
Rebel, V. I., Miller, C. L., Eaves, C. J., & Lansdorp, P. M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood, 1996; 87: 3500–7.
Pawliuk, R., Eaves, C., & Humphries, R. K. Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood, 1996; 88: 2852–8.
Nicolini, F. E., Holyoake, T. L., Cashman, J. D., et al. Unique differentiation programs of human fetal liver stem cells revealed both in vitro and in vivo in NOD/SCID mice. Blood, 1999; 94: 2686–95.
Cumano, A., Paige, C. J., Iscove, N. N., & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature, 1992; 356: 612–15.
Mebius, R. E., Miyamoto, T., Christensen, J., et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. J Immunol, 2001; 166: 6593–601.
Sheridan, B. L., Weatherall, D. J., Clegg, J. B., et al. The patterns of fetal haemoglobin production in leukaemia. Br J Haematol, 1976; 32: 487–506.
Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res, 1961; 14: 213–22.
Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A, 1990; 87: 8736–40.
Conneally, E., Cashman, J., Petzer, A., & Eaves, C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci U S A, 1997; 94: 9836–41.
Fazekas, de St. Groth, S. The evaluation of limiting dilution assays. J Immunol Methods, 1982; 49: R11–23.
Fowler, J. H., Wu, A. M., Till, J. E., McCulloch, E. A., & Siminovitch, L. The cellular composition of hemopoietic spleen colonies. J Cell Physiol, 1967; 69: 65–72.
Metcalf, D. Hemopoietic Colonies: In Vitro Cloning of Normal and Leukemic Cells (Berlin, Heidelberg: Springer, 1977).
Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C., & Eaves, C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A, 1990; 87: 3584–8.
Lemieux, M. E., Rebel, V. I., Lansdorp, P. M., & Eaves, C. J. Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lympho-myeloid differentiation in long-term marrow “switch” cultures. Blood, 1995; 86: 1339–47.
Trevisan, M. & Iscove, N. Phenotypic analysis of murine long-term hematopoietic reconstituting cells quantitated competitively in vivo and comparison with more advanced colony-forming progeny. J Exp Med, 1995; 181: 93–103.
Audet, J., Miller, C. L., Rose-John, S., Piret, J., & Eaves, C. J. Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci U S A, 2001; 98: 1757–62.
Osawa, M., Hanada, K. I., Hamada, H., & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 1996; 273: 242–5.
McCulloch, E. A. Stem cells in normal and leukemic hemopoiesis. Blood, 1983; 62: 1–13.
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997; 3: 730–6.
Raskind, W. H. & Fialkow, P. J. The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res, 1987; 49: 127–67.
Fearon, E. R., Burke, P. J., Schiffer, C. A., Zehnbauer, B. A., & Vogelstein, B. Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N Engl J Med, 1986; 315: 15–24.
McCulloch, E. A., Siminovitch, L., & Till, J. E. Spleen colony formation in anemic mice of genotype W/Wv. Science, 1964; 144: 844–6.
Juraskova, V. & Tkadlecek, L. Character of primary and secondary colonies of haematopoieses in the spleen of irradiated mice. Nature, 1965; 206: 951–2.
Boggs, S. S., Chervenick, P. A., & Boggs, D. R. The effect of postirradiation bleeding or endotoxin on proliferation and differentiation of hematopoietic stem cells. Blood, 1972; 40: 375–89.
Gregory, C. J., McCulloch, E. A., & Till, J. E. Transient erythropoietic spleen colonies: effects of erythropoietin in normal and genetically anemic W/Wv mice. J Cell Physiol, 1975; 86: 1–8.
Siminovitch, L., McCulloch, E. A., & Till, J. E. The distribution of colony-forming cells among spleen colonies. J Cell Physiol, 1963; 62: 327–36.
Magli, M. C., Iscove, N. N., & Odartchenko, N. Transient nature of early haematopoietic spleen colonies. Nature, 1982; 295: 527–9.
Gregory, C. J. & Henkelman, R. M. Relationships between early hemopoietic progenitor cells determined by correlation analysis of their numbers in individual spleen colonies. In S. J. Baum & G. D. Ledney, eds., Experimental Hematology Today (New York: Springer, 1977), pp. 93–101.
Hodgson, G. S. & Bradley, T. R. Properties of hematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell ? Nature, 1979; 281: 381–2.
Worton, R. G., McCulloch, E. A., & Till, J. E. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med, 1969; 130: 91.
Bertoncello, I., Hodgson, G. S., & Bradley, T. R. Multiparameter analysis of transplantable hemopoietic stem cells. II. Stem cells of long-term bone marrow-reconstituted recipients. Exp Hematol, 1988; 16: 245–9.
Spangrude, G. J. & Johnson, G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A, 1990; 87: 7433–7.
Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity, 1994; 1: 661–73.
Hodgson, G. S. & Bradley, T. R. In vivo kinetic states of hematopoietic stem and progenitor cells as inferred from labelling with bromodeoxyuridine. Exp Hematol, 1984; 12: 683–7.
Dumenil, D., Jacquemin-Sablon, H., Neel, H., Frindel, E., & Dautry, F. Mock retroviral infection alters the developmental potential of murine bone marrow stem cells. Mol Cell Biol, 1989; 9: 4541–4.
Wolf, N. S., Kone, A., Priestley, G. V., & Bartelmez, S. H. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine123 FACS selection. Exp Hematol, 1993; 21: 614–22.
Ploemacher, R. E. & Brons, R. H. C. Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol, 1989; 17: 263–6.
Jones, R. J., Collector, M. I., Barber, J. P., et al. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood, 1996; 88: 487–91.
Metcalf, D. & Moore, M. A. S. Haematopoietic cells. In A. Neuberger & E. L. Tatum, eds., Frontiers of Biology (Amsterdam: North-Holland Publishing, 1971), p. 550.
Lahiri, S. K., Keizer, H. J., & Putten, L. M. Van. The efficiency of the assay for haemopoietic colony forming cells. Cell Tissue Kinet, 1970; 3: 355–62.
Testa, N. G., Lord, B. I., & Shore, N. A. The in vivo seeding of hemopoietic colony-forming cells in irradiated mice. Blood, 1972; 40: 654–61.
Lord, B. I. In vivo assays of multipotential and marrow repopulating cells. In N. G. Testa & G. Molineux, eds., Haemopoiesis: A Practical Approach (New York: Oxford University Press, 1993), pp. 1–20.
Wu, A. M., Till, J. E., Siminovitch, L., & McCulloch, E. A. Cytological evidence for a relationship between normal hematopoietic colony-forming cells and cells of the lymphoid system. J Exp Med, 1968; 127: 455–64.
Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell, 1985; 42: 71–9.
Keller, G., Paige, C., Gilboa, E., & Wagner, E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature, 1985; 318: 149–54.
Lemischka, I. R., Raulet, D. H., & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell, 1986; 45: 917–27.
Harrison, D. E. Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc Natl Acad Sci U S A, 1973; 70: 3184–8.
Szilvassy, S. J., Nicolini, F. E., Eaves, C. J., & Miller, C. L. Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts. In C. T. Jordon & C. A. Klug, eds. Methods in Molecular Medicine: Hematopoietic Stem Cell Protocols (Totowa, NJ: Humana Press, 2002), pp. 167–87.
Jordan, C. T. & Lemischka, I. R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev, 1990; 4: 220–32.
Zhong, R.-K., Astle, C. M., & Harrison, D. E. Distinct developmental patterns of short-term and long-term functioning lymphoid and myeloid precursors defined by competitive limiting dilution analysis in vivo. J Immunol, 1996; 157: 138–45.
Uchida, N., Dykstra, B., Lyons, K. J., Leung, F. Y. K., & Eaves, C. J. Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Exp Hematol, 2003; 31: 1338–47.
Audet, J., Miller, C. L., Eaves, C. J., & Piret, J. M. Common and distinct features of cytokine effects on hematopoietic stem and progenitor cells revealed by dose response surface analysis. Biotechnol Bioeng, 2002; 80: 393–404.
Harrison, D. E. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood, 1980; 55: 77–81.
Harrison, D. E. Evaluating functional abilities of primitive hematopoietic stem cell populations. Curr Top Microbiol Immunol, 1992; 177: 13–30.
Benveniste, P., Cantin, C., Hyam, D., & Iscove, N. N. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat Immunol, 2003; 4: 708–13.
Matsuzaki, Y., Kinjo, K., Mulligan, R. C., & Okano, H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 2004; 20: 87–93.
Szilvassy, S. J., Ragland, P. L., Miller, C. L., & Eaves, C. J. The marrow homing efficiency of murine hematopoietic stem cells remains constant during ontogeny. Exp Hematol, 2003; 31: 331–8.
Kawada, H. & Ogawa, M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood, 2001; 98: 2008–13.
McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A, 2002; 99: 1341–6.
Uchida, N., Leung, F. Y. K., & Eaves, C. J. Liver and marrow of adult mdr-1a/1b−/− mice show normal generation, function and multi-tissue trafficking of primitive hematopoietic cells. Exp Hematol, 2002; 30: 862–9.
Ramshaw, H. S., Rao, S. S., Crittenden, R. B., et al. Engraftment of bone marrow cells into normal unprepared hosts: effects of 5-fluorouracil and cell cycle status. Blood, 1995; 86: 924–9.
Habibian, H. K., Peters, S. O., Hsieh, C. C., et al. The fluctuating phenotype of the lympho-hematopoietic stem cell with cell cycle transit. J Exp Med, 1998; 188: 393–8.
Becker, A. J., McCulloch, E. A., Siminovitch, L., & Till, J. E. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood, 1965; 26: 296–308.
Toksoz, D., Dexter, T. M., Lord, B. I., Wright, E. G., & Lajtha, L. G. The regulation of hemopoiesis in long-term bone marrow cultures. II. Stimulation and inhibition of stem cell proliferation. Blood, 1980; 55: 931–6.
Wang, J. C. Y., Dorrell, C., Ito, C. Y., et al. Normal and leukemic human stem cells assayed in immune-deficient mice. In L. I. Zon, ed., Hematopoiesis: A Developmental Approach (New York: Oxford University Press, 2001), pp. 99–118.
Kollet, O., Peled, A., Byk, T., et al. β2 microglobulin-deficient (β2mnull) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood, 2000; 95: 3102–5.
Glimm, H., Eisterer, W., Lee, K., et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-b2 microglobulin-null mice. J Clin Invest, 2001; 107: 199–206.
Hiramatsu, H., Nishikomori, R., Heike, T., et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood, 2003; 102: 873–80.
Goldman, J. P., Blundell, M. P., Lopes, L., et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol, 1998; 103: 335–42.
Traggiai, E., Chicha, L., Mazzucchelli, L., et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science, 2004; 304: 104–7.
Zanjani, E. D., Almeida-Porada, G., & Flake, A. W. The human/sheep xenograft model: a large animal model of human hematopoiesis. Int J Hematol, 1996; 63: 179–92.
Bernstein, J., Boyle, D. W., Srour, E. F., et al. Variation in long-term engraftment of a large consecutive series of lambs transplanted in utero with human hematopoietic cells. Biol Blood Marrow Transplant, 1997; 3: 247–54.
Christianson, S. W., Greiner, D. L., Hesselton, R., et al. Enhanced human CD4+ T cell engraftment in b2-microglobulin-deficient NOD-scid mice. J Immunol, 1997; 158: 3578–86.
Cashman, J. D. & Eaves, C. J. High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SCID mice. Blood, 2000; 96: 3979–81.
Ballen, K. K., Valinski, K., Greiner, D., et al. Variables to predict engraftment of umbilical cord blood into immunodeficient mice: usefulness of the non-obese diabetic-severe combined immunodeficient assay. Br J Haematol, 2001; 114: 211–18.
Meyerrose, T., Herrbrich, P. E., Hess, D. A., & Nolta, J. A. Immune-deficient mouse models for analysis of human stem cells. Biotechniques, 2003; 35: 1262–71.
Srour, E. F., Zanjani, E. D., Cornetta, K., et al. Persistence of human multilineage, self-renewing lymphohematopoietic stem cells in chimeric sheep. Blood, 1993; 82: 3333–42.
Civin, C. I., Almeida-Porada, G., Lee, M.-J., et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood, 1996; 88: 4102–9.
Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Flake, A. W., & Ogawa, M. Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol, 1998; 26: 353–60.
Cashman, J. D. & Eaves, C. J. Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient mice. Blood, 1999; 93: 481–7.
Hogan, C. J., Shpall, E. J., McNulty, O., et al. Engraftment and development of human CD34+-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood, 1997; 90: 85–96.
Hogan, C. J., Shpall, E. J., & Keller, G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A, 2002; 99: 413–18.
Pflumio, F., Izac, B., Katz, A., et al. Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 1996; 88: 3731–40.
Cashman, J., Bockhold, K., Hogge, D. E., Eaves, A. C., & Eaves, C. J. Sustained proliferation, multi-lineage differentiation and maintenance of primitive human haematopoietic cells in NOD/SCID mice transplanted with human cord blood. Br J Haematol, 1997; 97: 1026–36.
Lapidot, T., Pflumio, F., Doedens, M., et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science, 1992; 255: 1137–41.
Cashman, J. D., Lapidot, T., Wang, J. C. Y., et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 1997; 89: 4307–16.
Peled, A., Petit, I., Kollet, O., et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 1999; 283: 845–8.
Holyoake, T. L., Nicolini, F. E., & Eaves, C. J. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol, 1999; 27: 1418–27.
Rossi, M. I. D., Medina, K. L., Garrett, K., et al. Relatively normal human lymphopoiesis but rapid turnover of newly formed B cells in transplanted nonobese diabetic/SCID mice. J Immunol, 2001; 167: 3033–42.
Nicolini, F. E., Cashman, J. D., Hogge, D. E., Humphries, R. K., & Eaves, C. J. NOD/SCID mice engineered to express human IL-3, GM-CSF, and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia, 2004; 18: 341–7.
Kerre, T. C., De Smet, G., De Smedt, M., et al. Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion. J Immunol, 2001; 167: 3692–8.
Mazurier, F., Doedens, M., Gan, O. I., & Dick, J. E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med, 2003; 9: 959–63.
Glimm, H., Oh, I., & Eaves, C. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter Go. Blood, 2000; 96: 4185–93.
Wang, J. C. Y., Doedens, M., & Dick, J. E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood, 1997; 89: 3919–24.
Ailles, L. E., Gerhard, B., Kawagoe, H., & Hogge, D. E. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood, 1999; 94: 1761–72.
Rombouts, W. J. C., Martens, A. C. M., & Ploemacher, R. E. Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia, 2000; 14: 889–97.
Feuring-Buske, M., Gerhard, B., Cashman, J., et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia, 2003; 17: 760–3.
Kamel-Reid, S., Letarte, M., Sirard, C., et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science, 1989; 246: 1597–600.
Nijmeijer, B. A., Mollevanger, P., van Zelderen-Bhola, S. L., et al. Monitoring of engraftment and progression of acute lymphoblastic leukemia in individual NOD/SCID mice. Exp Hematol, 2001; 29: 322–9.
Eisterer, W., Jiang, X., Bachelot, T., et al. Unfulfilled promise of endostatin in a gene therapy-xenotransplant model of human acute lymphocytic leukemia. Mol Ther, 2002; 5: 352–9.
Sawyers, C. L., Gishizky, M. L., Quan, S., Golde, D. W., & Witte, O. N. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood, 1992; 79: 2089–98.
Sirard, C., Lapidot, T., Vormoor, J., et al. Normal and leukemic SCID-repopulating cells (SRC) co-exist in the bone marrow and peripheral blood from CML patients in chronic phase while leukemic SRC are detected in blast crisis. Blood, 1996; 87: 1539–48.
Pilarski, L. M., Hipperson, G., Seeberger, K., et al. Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood, 2000; 95: 1056–65.
Matsui, W., Huff, C. A., Wang, Q., et al. Characterization of clonogenic multiple myeloma cells. Blood, 2004; 103: 2332–6.
Mitsiades, C. S., Mitsiades, N. S., Bronson, R. T., et al. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res, 2003; 63: 6689–96.
Shimoni, A., Marcus, H., Dekel, B., et al. Autologous T cells control B-chronic lymphocytic leukemia tumor progression in human-mouse radiation chimera. Cancer Res, 1999; 59: 5968–74.
Dialynas, D. P., Lee, M-J., Gold, D. P., et al. Preconditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immunodeficient mice. Neoplasia, 2001; 97: 3218–25.
Terpstra, W., Ploemacher, R. E., Prins, A., et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood, 1996; 88: 1944–50.
Guan, Y., Gerhard, B., & Hogge, D. E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood, 2003; 101: 3142–9.
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M., & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukaemia cells with long-term proliferative ability in vitro and in vivo. Blood, 1997; 89: 3104–12.
Lapidot, T., Grunberger, T., Vormoor, J., et al. Identification of human juvenile chronic myelogenous leukemia stem cells capable of initiating the disease in primary and secondary SCID mice. Blood, 1996; 88: 2655–64.
Thanopoulou, E., Cashman, J., Kakagianne, T., et al. Engraftment of NOD/SCID-b2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood, 2004; 103: 4285–93.
Lewis, I. D., McDiarmid, L. A., Samels, L. M., Bik To, L., & Hughes, T. P. Establishment of a reproducible model of chronic-phase chronic myeloid leukemia in NOD/SCID mice using blood-derived mononuclear or CD34+ cells. Blood, 1998; 91: 630–40.
Wang, J. C. Y., Lapidot, T., Cashman, J. D., et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood, 1998; 91: 2406–14.
Sutherland, H. J., Eaves, C. J., Eaves, A. C., Dragowska, W., & Lansdorp, P. M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood, 1989; 74: 1563–70.
Ploemacher, R. E., Sluijs, J. P. Van Der, Beurden, C. A. J. van, Baert, M. R. M., & Chan, P. L. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood, 1991; 78: 2527–33.
Dexter, T. M., Allen, T. D., & Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol, 1977; 91: 335–44.
Greenberger, J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature, 1978; 275: 752–4.
Gartner, S. & Kaplan, H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A, 1980; 77: 4756–9.
Greenberg, H. M., Newburger, P. E., Parker, L. M., Novak, T., & Greenberger, J. S. Human granulocytes generated in continuous bone marrow culture are physiologically normal. Blood, 1981; 58: 724–32.
Gronthos, S. & Simmons, P. J. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood, 1995; 85: 929–40.
Roecklein, B. A. & Torok-Storb, B. Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood, 1995; 85: 997–1005.
Li, J., Sensebe, L., Herve, P., & Charbord, P. Nontransformed colony-derived stromal cell lines from normal human marrows. III. The maintenance of hematopoiesis from CD34+ cell populations. Exp Hematol, 1997; 25: 582–91.
Sutherland, H. J., Eaves, C. J., Lansdorp, P. M., Thacker, J. D., & Hogge, D. E. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood, 1991; 78: 666–72.
Issaad, C., Croisille, L., Katz, A., Vainchenker, W., & Coulombel, L. A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38 progenitor cells in long-term cultures and semisolid assays. Blood, 1993; 81: 2916–24.
Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., & Péault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A, 1992; 89: 2804–8.
Thiemann, F. T., Moore, K. A., Smogorzewska, E. M., Lemischka, I. R., & Crooks, G. M. The murine stromal cell line AFT024 acts specifically on human CD34+CD38 progenitors to maintain primitive function and immunophenotype in vitro. Exp Hematol, 1998; 26: 612–19.
Wineman, J., Moore, K., Lemischka, I., & Muller-Sieburg, C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood, 1996; 87: 4082–90.
Friedrich, C., Zausch, E., Sugrue, S. P., & Gutierrez-Ramos, J.-C. Hematopoietic supportive functions of mouse bone marrow and fetal liver microenvironment: dissection of granulocyte, B-lymphocyte, and hematopoietic progenitor support at the stroma cell clone level. Blood, 1996; 87: 4596–606.
Charbord, P., Oostendorp, R., Pang, W., et al. Comparative study of stromal cell lines derived from embryonic fetal, and postnatal mouse blood-forming tissues. Exp Hematol, 2004; 30: 1202–10.
Moore, K. A., Pytowski, B., Witte, L., Hicklin, D., & Lemischka, I. R. Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc Natl Acad Sci U S A, 1997; 94: 4011–16.
Varnum-Finney, B., Purton, L. E., Yu, M., et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood, 1998; 91: 4084–91.
Karanu, F. N., Murdoch, B., Gallacher, L., et al. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med, 2000; 192: 1365–72.
Ohishi, K., Varnum-Finney, B., & Bernstein, I. D. Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38 cord blood cells. J Clin Invest, 2002; 110: 1165–74.
Gupta, P., McCarthy, J. B., & Verfaillie, C. M. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood, 1996; 87: 3229–36.
Gupta, P., Oegema, T. R. J., Brazil, J. J., et al. Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood, 1998; 92: 4641–51.
Hogge, D. E., Lansdorp, P. M., Reid, D., Gerhard, B., & Eaves, C. J. Enhanced detection, maintenance and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human Steel factor, interleukin-3 and granulocyte colony-stimulating factor. Blood, 1996; 88: 3765–73.
Miller, C. L. & Eaves, C. J. Long-term culture-initiating cell assays for human and murine cells. In C. A. Klug & C. T. Jordan, eds., Methods in Molecular Medicine: Hematopoietic Stem Cell Protocols (Totowa, NJ: Humana Press, 2002), pp. 123–41.
Hao, Q. L., Thiemann, F. T., Petersen, D., Smogorzewska, E. M., & Crooks, G. M. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood, 1996; 88: 3306–13.
Freedman, A. R., Zhu, H., Levine, J. D., Kalams, S., & Scadden, D. T. Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nat Med, 1996; 2: 46–51.
Punzel, M., Wissink, S. D., Miller, J. S., et al. The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro. Blood, 1999; 93: 3750–6.
Berardi, A. C., Meffre, E., Pflumio, F., et al. Individual CD34+CD38lowCD19CD10 progenitor cells from human cord blood generate B lymphocytes and granulocytes. Blood, 1997; 89: 3554–64.
Gan, O. I., Dorrell, C., Pereira, D. S., et al. Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma. Exp Hematol, 1999; 27: 1097–106.
Harrison, D. E., Lerner, C. P., & Spooncer, E. Erythropoietic repopulating ability of stem cells from long-term marrow culture. Blood, 1987; 69: 1021–5.
Fraser, C. C., Szilvassy, S. J., Eaves, C. J., & Humphries, R. K. Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc Natl Acad Sci U S A, 1992; 89: 1968–72.
Moore, K. A., Ema, H., & Lemischka, I. R. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood, 1997; 89: 4337–47.
Lemieux, M. E. & Eaves, C. J. Identification of properties that can distinguish primitive populations of stromal cell-responsive lympho-myeloid cells from cells that are stromal cell-responsive but lymphoid-restricted and cells that have lympho-myeloid potential but are also capable of competitively repopulating myeloablated recipients. Blood, 1996; 88: 1639–48.
Larochelle, A., Vormoor, J., Hanenberg, H., et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med, 1996; 2: 1329–37.
Hennemann, B., Oh, I.-H., Chuo, J. Y., et al. Efficient retrovirus-mediated gene transfer to transplantable human bone marrow cells in the absence of fibronectin. Blood, 2000; 96: 2432–9.
Uchida, N., Fujisaki, T., Eaves, A. C., & Eaves, C. J. Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP) phenotype. J Clin Invest, 2001; 108: 1071–7.
Eaves, C. J. & Eaves, A. C. Progenitor cell dynamics. In A. M. Carella, G. Q. Daley, C. J. Eaves, J. M. Goldman, & R. Hehlmann, eds., Chronic Myeloid Leukemia: Biology and Treatment (London: Martin Dunitz, 2001), pp. 73–100.
Coulombel, L., Eaves, C., Kalousek, D., Gupta, C., & Eaves, A. Long-term marrow culture of cells from patients with acute myelogenous leukemia. Selection in favor of normal phenotypes in some but not all cases. J Clin Invest, 1985; 75: 961–9.
Sutherland, H. J., Blair, A., & Zapf, R. W. Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood, 1996; 87: 4754–61.
Petzer, A. L., Eaves, C. J., Lansdorp, P. M., et al. Characterization of primitive subpopulations of normal and leukemic cells present in the blood of patients with newly diagnosed as well as established chronic myeloid leukemia. Blood, 1996; 88: 2162–71.
Ailles, L. E., Gerhard, B., & Hogge, D. E. Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood, 1997; 90: 2555–64.
Young, D. C., Demetri, G. D., Ernst, T. J., Cannistra, S. A., & Griffin, J. D. In vitro expression of colony-stimulating factor genes by human acute myeloblastic leukemia cells. Exp Hematol, 1988; 16: 378–82.
Jiang, X., Lopez, A., Holyoake, T., Eaves, A., & Eaves, C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A, 1999; 96: 12804–9.
Coulombel, L., Kalousek, D. K., Eaves, C. J., Gupta, C. M., & Eaves, A. C. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med, 1983; 308: 1493–8.
Guan, Y., Ralph, S., Ling, V., & Hogge, D. E. Polyclonal normal hematopoietic progenitors in patients with acute myeloid leukemia (AML). Exp Hematol, 2002; 30: 721–8.
Nara, N. & McCulloch, E. A. The proliferation in suspension of the progenitors of the blast cells in acute myeloblastic leukemia. Blood, 1985; 65: 1484–93.
Trevisan, M., Yan, X.-Q., & Iscove, N. N. Cycle initiation and colony formation in culture by murine marrow cells with long-term reconstituting potential in vivo. Blood, 1996; 88: 4149–58.
Petzer, A. L., Hogge, D. E., Lansdorp, P. M., Reid, D. S., & Eaves, C. J. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci U S A, 1996; 93: 1470–4.
Maguer-Satta, V., Oostendorp, R., Reid, D., & Eaves, C. J. Evidence that ceramide mediates the ability of tumor necrosis factor to modulate primitive human hematopoietic cell fates. Blood, 2000; 96: 4118–23.
Bradley, T. R., & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci, 1966; 44: 287–300.
Pluznik, D. H., & Sachs, L. The cloning of normal “mast” cells in tissue culture. J Cell Comp Physiol, 1965; 66: 319–24.
Senn, J. S., McCulloch, E. A., & Till, J. E. Comparison of colony-forming ability of normal and leukaemic human marrow in cell culture. Lancet, 1967; 2: 597–8.
Worton, R. G., McCulloch, E. A., & Till, J. E. Physical separation of hemopoietic stem cells from cells forming colonies in culture. J Cell Physiol, 1969; 74: 171–82.
Metcalf, D. Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science, 1991; 254: 529–33.
Metcalf, D. The granulocyte-macrophage regulators: reappraisal by gene inactivation. Exp Hematol, 1995; 23: 569–72.
Campbell, H. D., Tucker, W. Q. J., Hort, Y., et al. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5). Proc Natl Acad Sci U S A, 1987; 84: 6629–33.
Yamaguchi, Y., Suda, T., Suda, J., et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med, 1988; 167: 43–56.
Lord, B. I., Gurney, H., Chang, J., et al. Haemopoietic cell kinetics in humans treated with rGM-CSF. Int J Cancer, 1992; 50: 26–31.
Williams, G. T., Smith, C. A., Spooncer, E., Dexter, T. M., & Taylor, D. R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature, 1990; 343: 76–9.
Bol, S. & Williams, N. The maturation state of three types of granulocyte/macrophage progenitor cells from mouse bone marrow. J Cell Physiol, 1980; 102: 233–43.
Metcalf, D. & MacDonald, H. R. Heterogeneity of in vitro colony- and cluster-forming cells in the mouse marrow: segregation by velocity sedimentation. J Cell Physiol, 1975; 85: 643–54.
Cashman, J., Eaves, A. C., & Eaves, C. J. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood, 1985; 66: 1002–5.
Gregory, C. J. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol, 1976; 89: 289–301.
Stephenson, J. R., Axelrad, A. A., McLeod, D. L., & Shreeve, M. M. Induction of colonies of hemoglobin-synthesising cells by erythropoietin in vitro. Proc Natl Acad Sci U S A, 1971; 68: 1542–6.
Heath, D. S., Axelrad, A. A., McLeod, D. L., & Shreeve, M. M. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood, 1976; 47: 777–92.
Clark, B. J. & Housman, D. Characterization of an erythroid precursor cell of high proliferative capacity in normal human peripheral blood. Proc Natl Acad Sci U S A, 1977; 74: 1105–9.
Eaves, C. J. & Eaves, A. C. Erythropoietin (Ep) dose–response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood, 1978; 52: 1196–210.
Gregory, C. J. & Eaves, A. C. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood, 1978; 51: 527–37.
Eaves, C. J., Humphries, R. K., & Eaves, A. C. In vitro characterization of erythroid precursor cells and the erythropoietic differentiation process. In G. Stamatoyannopoulos & A. W. Nienhuis, eds., Cellular and Molecular Regulation of Hemoglobin Switching (New York: Grune and Stratton, 1979), pp. 251–73.
Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science, 1990; 248: 378–81.
Stopka, T., Zivny, J. H., Stopkova, P., Prchal, J. F., & Prchal, J. T. Human hematopoietic progenitors express erythropoietin. Blood, 1998; 91: 3766–72.
Prchal, J. F. & Axelrad, A. A. Bone marrow responses in polycythemia vera. N Engl J Med, 1974; 290: 1382.
Eaves, A. C., Krystal, G., Cashman, J. D., & Eaves, C. J. Polycythemia vera: in vitro analysis of regulatory defects. In E. D. Zanjani, M. Tavassoli, & J. L. Ascensao, eds., Regulation of erythropoiesis (New York: PMA Publishing, 1988), pp. 523–35.
Lemoine, F., Najman, A., Baillou, C., et al. A prospective study of the value of bone marrow erythroid progenitor cultures in polycythemia. Blood, 1986; 68: 996–1002.
Zwicky, C., Theiler, L., Zbären, K., Ischi, E., & Tobler, A. The predictive value of clonogenic stem cell assays for the diagnosis of polycythaemia vera. Br J Haematol, 2002; 117: 598–604.
Zanjani, E. D., Weinberg, R. S., Nomdedeu, B., Kaplan, M. E., & Wasserman, L. R. In vitro assessment of similarities between erythroid precursors of fetal sheep and patients with polycythemia vera. In M. J. Murphy, ed., In Vitro Aspects of Erythropoiesis (Berlin: Springer, 1978), pp. 118–122.
Eaves, A. C. & Eaves, C. J. Abnormalities in the erythroid progenitor compartments in patients with chronic myelogenous leukemia (CML). Exp Hematol, 1979; 7: 65–75.
Issaad, C. & Vainchenker, W. Growth of erythroid colonies in chronic myelogenous leukemia is independent of erythropoietin only in the presence of steel factor. Blood, 1994; 84: 3447–56.
Turhan, A. G., Cashman, J. D., Eaves, C. J., Humphries, R. K., & Eaves, A. C. Variable expression of features of normal and neoplastic stem cells in patients with thrombocytosis. Br J Haematol, 1992; 82: 50–7.
Juvonen, E., Ikkala, E., Oksanen, K., & Ruutu, T. Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complications. Br J Haematol, 1993; 83: 192–7.
Florensa, L., Besses, C., Woessner, S., et al. Endogenous megakaryocyte and erythroid colony formation from blood in essential thrombocythaemia. Leukemia, 1994; 9: 271–3.
Griesshammer, M., Klippel, S., Strunck, E., et al. PRV-1 mRNA expression discriminates two types of essential thrombocythemia. Ann Hematol, 2004; 83: 364–70.
Nakeff, A. & Daniels-McQueen, S. In vitro colony assay for a new class of megakaryocyte precursor: colony-forming unit megakaryocyte (CFU-M). Proc Soc Exp Biol Med, 1976; 151: 587–90.
Ishibashi, T., Miller, S. L., & Burstein, S. A. Type beta transforming growth factor is a potent inhibitor of murine megakaryocytopoiesis in vitro. Blood, 1987; 69: 1737–41.
Berthier, R., Valiron, O., Scheweitzer, A., & Marguerie, G. Serum-free medium allows the optimal growth of human megakaryocyte progenitors compared with human plasma supplemented cultures: role of TGF-beta. Stem Cells, 1993; 11: 120–9.
Hogge, D., Fanning, S., Bockhold, K., et al. Quantitation and characterization of human megakaryocyte colony-forming cells using a standardized serum-free agarose assay. Br J Haematol, 1997; 96: 790–800.
Briddell, R. A. & Hoffman, R. Cytokine regulation of the human burst-forming unit-megakaryocyte. Blood, 1990; 76: 516–22.
Debili, N., Wendling, F., Katz, A., et al. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors. Blood, 1986; 86: 2516–25.
Hoffman, R. Regulation of megakaryocytopoiesis. Blood, 1989; 74: 1196–212.
Debili, N., Issaad, C., Masse, J.-M., et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood, 1992; 80: 3022–35.
Johnson, G. R. & Metcalf, D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A, 1977; 74: 3879–82.
Fauser, A. A. & Messner, H. A. Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood, 1978; 52: 1243–8.
Humphries, R. K., Jacky, P. B., Dill, F. J., Eaves, A. C., & Eaves, C. J. CFU-S in individual erythroid colonies derived in vitro from adult mouse marrow. Nature, 1979; 279: 718–20.
Holyoake, T. L., Freshney, M. G., Konwalinka, G., et al. Mixed colony formation in vitro by the heterogeneous compartment of multipotential progenitors in human bone marrow. Leukemia, 1993; 7: 207–13.
McNiece, I. K., Stewart, F. M., Deacon, D. M., et al. Detection of a human CFC with a high proliferative potential. Blood, 1989; 74: 609–12.
Pragnell, I. B., Wright, E. G., Lorimore, S. A., et al. The effect of stem cell proliferation regulators demonstrated with an in vitro assay. Blood, 1988; 72: 196–201.
Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood, 1993; 81: 2844–53.
Humphries, R. K., Eaves, A. C., & Eaves, C. J. Characterization of a primitive erythropoietic progenitor found in mouse marrow before and after several weeks in culture. Blood, 1979; 53: 746–63.
Nakahata, T. & Ogawa, M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci U S A, 1982; 79: 3843–7.
Lim, B., Jamal, N., & Messner, H. A. Flexible association of hemopoietic differentiation programs in multilineage colonies. J Cell Physiol, 1984; 121: 291–7.
Suda, T., Suda, J., & Ogawa, M. Proliferative kinetics and differentiation of murine blast cell colonies in culture: evidence for variable Go periods and constant doubling rates of early pluripotent hemopoietic progenitors. J Cell Physiol, 1983; 117: 308–18.
Leary, A. G., Zeng, H. Q., Clark, S. C., & Ogawa, M. Growth factor requirements for survival in Go and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci U S A, 1992; 89: 4013–17.
Leary, A. G. & Ogawa, M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood, 1987; 69: 953–6.
Hirayama, F., Shih, J. P., Awgulewitsch, A., et al. Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc Natl Acad Sci U S A, 1992; 89: 5907–11.
Hirayama, F., Aiba, Y., Ikebuchi, K., Sekiguchi, S., & Ogawa, M. Differentiation in culture of murine primitive lymphohematopoietic progenitors toward T-cell lineage. Blood, 1999; 93: 4187–95.
Yonemura, Y., Ku, H., Hirayama, F., Souza, L. M., & Ogawa, M. Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells. Proc Natl Acad Sci U S A, 1996; 93: 4040–4.
Buick, R. N., Till, J. E., & McCulloch, E. A. Colony assay for proliferative blast cells circulating in myeloblastic leukemia. Lancet, 1977; 1: 862–3.
Moore, M. A. S., Williams, N., & Metcalf, D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst, 1973; 50: 603–23.
Izaguirre, C. A., Minden, M. D., Howatson, A. F., & McCulloch, E. A. Colony formation by normal and malignant human B-lymphocytes. Br J Cancer, 1980; 42: 430–7.
Izaguirre, C. A., Curtis, J., Messner, H., & McCulloch, E. A. A colony assay for blast cell progenitors in non-B non-T (common) acute lymphoblastic leukemia. Blood, 1981; 57: 823–9.
Oster, W., Mertelsmann, R., & Herrmann, F. Role of colony-stimulating factors in the biology of acute myelogenous leukemia. Int J Cell Cloning, 1989; 7: 13–29.
Lowenberg, B. & Touw, I. P. Hematopoietic growth factors and their receptors in acute leukemia. Blood, 1993; 81: 281–92.
Drexler, H. G. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia, 1996; 10: 588–99.
Drexler, H. G. & Quentmeier, H. Thrombopoietin: expression of its receptor MPL and proliferative effects on leukemic cells. Leukemia, 1996; 10: 1405–21.
Fialkow, P. J., Janssen, J. W. G., & Bartram, C. R. Clonal remissions in acute nonlymphocytic leukemia: evidence for a multistep pathogenesis of the malignancy. Blood, 1991; 77: 1415–17.
Tachibana, N., Raimondi, S. C., Lauer, S. J., Sartain, P., & Dow, L. W. Evidence for a multipotential stem cell disease in some childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood, 1987; 70: 1458–61.
Secker-Walker, L. M. & Craig, J. M. Prognostic implications of breakpoint and lineage heterogeneity in Philadelphia-positive acute lymphoblastic leukemia: a review. Leukemia, 1993; 7: 147–51.
Spangrude, G. J., Heimfeld, S., & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science, 1988; 241: 58–62.
Bertoncello, I., Hodgson, G. S., & Bradley, T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of Rhodamine-123 fluorescence. Exp Hematol, 1985; 13: 999–1006.
Chaudhary, P. M. & Roninson, I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell, 1991; 66: 85–94.
Zhou, S., Scheutz, J. D., Bunting, K. D., et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001; 7: 1028–34.
Jones, R. J., Barber, J. P., Vala, M. S., et al. Assessment of aldehyde dehydrogenase in viable cells. Blood, 1995; 85: 2742–6.
Storms, R. W., Trujillo, A. P., Springer, J. B., et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A, 1999; 96: 9118–23.
Lansdorp, P. M., Dragowska, W., & Mayani, H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med, 1993; 178: 787–91.
Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J Immunol Methods, 1994; 171: 131–7.
Nordon, R. E., Ginsberg, S. S., & Eaves, C. J. High resolution cell division tracking demonstrates the Flt3-ligand-dependence of human marrow CD34+CD38 cell production in vitro. Br J Haematol, 1997; 98: 528–39.
Akashi, K., Traver, D., Miyamoto, T., & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 2000; 404: 193–7.
Nakorn, T. N., Traver, D., Weissman, I. L., & Akashi, K. Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin Invest, 2002; 109: 1579–85.
Manz, M. G., Miyamoto, T., Akashi, K., & Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A, 2002; 99: 11872–7.
Sauvageau, G., Lansdorp, P. M., Eaves, C. J., et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A, 1994; 91: 12223–7.
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996; 183: 1797–806.
Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. CD34: structure, biology, and clinical utility. Blood, 1996; 87: 1–13.
Krause, D. S., Ito, T., Fackler, M. J., et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood, 1994; 84: 691–701.
Morel, F., Szilvassy, J., Travis, M., Chen, B., & Galy, A. Primitive hematopoietic cells in murine bone marrow express the CD34 antigen. Blood, 1996; 88: 3774–84.
Bhatia, M., Wang, J. C. Y., Kapp, U., Bonnet, D., & Dick, J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A, 1997; 94: 5320–5.
Kawano, Y., Takaue, Y., Watanabe, A., et al. Partially mismatched pediatric transplants with allogeneic CD34(+) blood cells from a related donor. Blood, 1998; 92: 3123–30.
Michallet, M., Philip, T., Philip, I., et al. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp Hematol, 2000; 28: 858–70.
Negrin, R. S., Atkinson, K., Leemhuis, T., et al. Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol Blood Marrow Transplant, 2000; 6: 262–71.
Fujisaki, T., Berger, M. G., Rose-John, S., & Eaves, C. J. Rapid differentiation of a rare subset of adult human linCD34CD38 cells stimulated by multiple growth factors in vitro. Blood, 1999; 94: 1926–32.
Storms, R. W., Goodell, M. A., Fisher, A., Mulligan, R. C., & Smith, C. Hoechst dye efflux reveals a novel CD7+ CD34 lymphoid progenitor in human umbilical cord blood. Blood, 2000; 96: 2125–33.
Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Zeng, H., & Ogawa, M. Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol, 2003; 31: 406–12.
Okuno, Y., Iwasaki, H., Huettner, C. S., et al. Differential regulation of the human and murine CD34 genes in hematopoietic stem cells. Proc Natl Acad Sci U S A, 2002; 99: 6246–51.
Radomska, H. S., Gonzalez, D. A., Okuno, Y., et al. Transgenic targeting with regulatory elements of the human CD34 gene. Blood, 2002; 100: 4410–19.
Deaglio, S., Mehta, K., & Malavasi, F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res, 2001; 25: 1–12.
Tajima, F., Deguchi, T., Laver, J. H., Zeng, H., & Ogawa, M. Reciprocal expression of CD38 and CD34 by adult murine hematopoietic stem cells. Blood, 2001; 97: 2618–24.
Higuchi, Y., Zeng, H., & Ogawa, M. CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia, 2003; 17: 171–4.
Terstappen, L. W. M. M., Huang, S., Safford, M., Lansdorp, P. M., & Loken, M. R. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38 progenitor cells. Blood, 1991; 77: 1218–27.
Hao, Q.-L. H., Shah, A. J., Thiemann, F. T., Smogorzewska, E. M., & Crooks, G. M. A functional comparison of CD34+CD38− cells in cord blood and bone marrow. Blood, 1995; 86: 3745–53.
Nicolini, F. E., Imren, S., Oh, I.-H., et al. Expression of a human beta-globin transgene in erythroid cells derived from retrovirally transduced transplantable human fetal liver and cord blood cells. Blood, 2002; 100: 1257–64.
Dorrell, C., Gan, O. I., Pereira, D. S., Hawley, R. G., & Dick, J. E. Expansion of human cord blood CD34+CD38 cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood, 2000; 95: 102–10.
Zhou, S., Morris, J. J., Barnes, Y., Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002; 99: 12339–44.
Scharenberg, C. W., Harkey, M. A., & Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002; 99: 507–12.
Goodell, M. A., Rosenzweig, M., Kim, H., et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med, 1997; 3: 1337–45.
Feuring-Buske, M. & Hogge, D. E. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34+CD38 progenitor cells from patients with acute myeloid leukemia. Blood, 2001; 97: 3882–9.
Gussoni, E., Soneoka, Y., Strickland, C. D., et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999; 401: 390–4.
Murayama, A., Matsuzaki, Y., Kawaguchi, A., Shimazaki, T., & Okano, H. Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J Neurosci Res, 2002; 69: 837–47.
Bhattacharya, S., Jackson, J. D., Das, A. V., et al. Direct identification and enrichment of retinal stem cells/progenitors by Hoechst dye efflux assay. Invest Ophthalmol Vis Sci, 2003; 44: 2764–73.
Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. The post-natal heart contains a myocardial stem cell population. FEBS Lett, 2002; 530: 239–43.
Asakura, A. & Rudnicki, M. A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol, 2002; 30: 1339–45.
Issarachai, S., Priestley, G. V., Nakamoto, B., & Papayannopoulou, T. Cells with hemopoietic potential residing in muscle are itinerant bone marrow-derived cells. Exp Hematol, 2002; 30: 366–73.
Morrison, S. J., Wright, D. E., & Weissman, I. L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci U S A, 1997; 94: 1908–13.
Jordan, C. T., McKearn, J. P., & Lemischka, I. R. Cellular and developmental properties of fetal hematopoietic stem cells. Cell, 1990; 61: 953–63.
Ortiz, M., Wine, J. W., Lohrey, N., et al. Functional characterization of a novel hematopoietic stem cell and its place in the c-kit maturation pathway in bone marrow cell development. Immunity, 1999; 10: 173–82.
Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A, 2001; 98: 14541–6.
Adolfsson, J., Borge, O. J., Bryder, D., et al. Upregulation of flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity, 2001; 15: 659–69.
Hasumura, M., Imada, C., & Nawa, K. Expression change of Flk-2/Flt-3 on murine hematopoietic stem cells in activating state. Exp Hematol, 2003; 31: 1331–7.
Huang, S. & Terstappen, L. W. M. M. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38− hematopoietic stem cells. Blood, 1994; 83: 1515–26.
Miller, J. S., McCullar, V., & Verfaillie, C. M. Ex vivo culture of CD34+/Lin−/DR− cells in stroma-derived soluble factors, interleukin-3, and macrophage inflammatory protein 1-alpha maintains not only myeloid but also lymphoid progenitors in a novel switch culture assay. Blood, 1998; 91: 4516–22.
Traycoff, C. M., Abboud, M. R., Laver, J., et al. Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp Hematol, 1994; 22: 215–22.
Debili, N., Robin, C., Schiavon, V., et al. Different expression of CD41 on human lymphoid and myeloid progenitors from adults and neonates. Blood, 2001; 97: 2023–30.
Lander, E. S., Linton, L. M., Birren, B., et al. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860–921.
Venter, J. C., Adams, M. D., Myers, E. W., et al. The sequence of the human genome. Science, 2001; 291: 1304–51.
Waterston, R. H., Lindblad-Toh, K., Birney, E., et al. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002; 420: 520–62.
Brady, G., Billia, F., Knox, J., et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr Biol, 1995; 5: 909–22.
Cheng, T., Shen, H., Giokas, D., et al. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc Natl Acad Sci U S A, 1996; 93: 13158–63.
Zinovyeva, M. V., Mark, J., Zijlmans, J. M., et al. Analysis of gene expression in subpopulations of murine hematopoietic stem and progenitor cells. Exp Hematol, 2000; 28: 318–34.
Oh, I.-H., Lau, A., & Eaves, C. J. During ontogeny primitive (CD34+CD38) hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts. Blood, 2000; 96: 4160–8.
Phillips, R. L., Ernst, R. E., Brunk, B., et al. The genetic program of hematopoietic stem cells. Science, 2000; 288: 1635–40.
Billia, F., Barbara, M., McEwen, J., Trevisan, M., & Iscove, N. N. Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood, 2001; 97: 2257–68.
Ivanova, N. B., Dimos, J. T., Schaniel, C., et al. A stem cell molecular signature. Science, 2002; 298: 601–4.
Akashi, K., He, X., Chen, J., et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood, 2003; 101: 383–90.
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 2002; 298: 597–600.
Terskikh, A. V., Easterday, M. C., Li, L., et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci U S A, 2001; 98: 7934–9.
Hu, M., Krause, D., Greaves, M., et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev, 1997; 11: 774–85.
Delassus, S., Titley, I., & Enver, T. Functional and molecular analysis of hematopoietic progenitors derived from the aorta-gonad-mesonephros region of the mouse embryo. Blood, 1999; 94: 1495–503.
Bruno, L., Hoffmann, R., McBlane, F., et al. Molecular signatures of self-renewal, differentiation, and lineage choice in multipotential hemopoietic progenitor cells in vitro. Mol Cell Biol, 2004; 24: 741–56.
Miyamoto, T., Iwasaki, H., Reizis, B., et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell, 2002; 3: 137–47.
Ye, M., Iwasaki, H., Laiosa, C. V., et al. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity, 2003; 19: 689–99.
Eschbach, J. W., Abdulhadi, M. H., Browne, J. K., et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease: results of a Phase III multicenter clinical trial. Ann Intern Med, 1989; 111: 992–1000.
Packham, G. Mutation of BCL-2 family proteins in cancer. Apoptosis, 1998; 3: 75–82.
Stirewalt, D. L. & Radich, J. P. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003; 3: 650–65.
Lutterbach, B. & Hiebert, S. W. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene, 2000; 245: 223–35.
Robb, L. & Begley, C. G. The SCL/TAL1 gene: roles in normal and malignant haematopoiesis. Bioessays, 1997; 19: 607–13.
Goldman, J. M. & Melo, J. V. Chronic myeloid leukemia – advances in biology and new approaches to treatment. N Engl J Med, 2003; 349: 1451–64.
Williams, G. T. & Smith, C. A. Molecular regulation of apoptosis: genetic controls on cell death. Cell, 1993; 74: 777–9.
Wickremasinghe, R. G. & Hoffbrand, A. V. Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. Blood, 1999; 93: 3587–600.
Barisic, K., Petrik, J., & Rumora, L. Biochemistry of apoptotic cell death. Acta Pharm, 2003; 53: 151–64.
Peters, R., Leyvraz, S., & Perey, L. Apoptotic regulation in primitive hematopoietic precursors. Blood, 1998; 92: 2041–52.
Veis, D. J., Sorenson, C. M., Shutter, J. R., & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell, 1993; 75: 229–40.
Nakayama, K. I., Nakayama, K., Negishi, I., et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science, 1993; 261: 1584–8.
Bouillet, P., Metcalf, D., Huang, D. C., et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science, 1999; 286: 1735–8.
Motoyama, N., Kimura, T., Takahashi, T., Watanabe, T., & Nakano, T. Bcl-× prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med, 1999; 189: 1691–8.
Hamasaki, A., Sendo, F., Nakayama, K., et al. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med, 1998; 188: 1985–92.
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999; 13: 1501–12.
Jones, S. M. & Kazlauskas, A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol, 2001; 3: 165–72.
Bartek, J. & Lukas, J. p27 destruction: Cks1 pulls the trigger. Nat Cell Biol, 2001; 3: E95–98.
Della, R. F., Borriello, A., Mastropietro, S., et al. Expression of G1-phase cell cycle genes during hematopoietic lineage. Biochem Biophys Res Commun, 1997; 231: 73–6.
Bassini, A., Pierpaoli, S., Falcieri, E., et al. Selective modulation of the cyclin B/CDK1 and cyclin D/CDK4 complexes during in vitro human megakaryocyte development. Br J Haematol, 1999; 104: 820–8.
Yaroslavskiy, B., Watkins, S., Donnenberg, A. D., Patton, T. J., & Steinman, R. A. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood, 1999; 93: 2907–17.
Taniguchi, T., Endo, H., Chikatsu, N., et al. Expression of p21Cip1/Waf1/Sdi1 and p27Kip1 cyclin-dependent kinase inhibitors during human hematopoiesis. Blood, 1999; 93: 4167–78.
Hsieh, F. F., Barnett, L. A., Green, W. F., et al. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase. Blood, 2000; 96: 2746–54.
Cheng, T., Rodrigues, N., Shen, H., et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science, 2000; 287: 1804–8.
Cheng, T., Rodrigues, N., Dombkowski, D., Stier, S., & Scadden, D. T. Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nat Med, 2000; 6: 1235–40.
Zandstra, P. W., Conneally, E., Petzer, A. L., Piret, J. M., & Eaves, C. J. Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci U S A, 1997; 94: 4698–703.
Matsunaga, T., Kato, T., Miyazaki, H., & Ogawa, M. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood, 1998; 92: 452–61.
Borge, O. J., Ramsfjell, V., Cui, L., & Jacobsen, S. E. W. Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38 bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin. Blood, 1997; 90: 2282–92.
Sitnicka, E., Lin, N., Priestley, G. V., et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood, 1996; 87: 4998–5005.
Li, C. L. & Johnson, G. R. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood, 1994; 84: 408–14.
Takatoku, M., Sellers, S., Agricola, B. A., et al. Avoidance of stimulation improves engraftment of cultured and retrovirally transduced hematopoietic cells in primates. J Clin Invest, 2001; 108: 447–55.
Fauser, A. A. & Messner, H. A. Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation. Blood, 1979; 54: 1197–200.
Jordan, C. T., Yamasaki, G., & Minamoto, D. High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations. Exp Hematol, 1996; 24: 1347–55.
Berardi, A. C., Wang, A., Levine, J. D., Lopez, P., & Scadden, D. T. Functional isolation and characterization of human hematopoietic stem cells. Science, 1995; 267: 104–8.
Gothot, A., Loo, J. C. M. Van der, Clapp, W., & Srour, E. F. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34+cells in non-obese diabetic/severe combined immune-deficient mice. Blood, 1998; 92: 2641–9.
Bradford, G. B., Williams, B., Rossi, R., & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol, 1997; 25: 445–53.
Cheshier, S. H., Morrison, S. J., Liao, X., & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A, 1999; 96: 3120–5.
Mahmud, N., Devine, S. M., Weller, K. P., et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood, 2001; 97: 3061–8.
Rufer, N., Brummendorf, T. H., Kolvraa, S., et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med, 1999; 190: 157–67.
Gordon, M. Y., Riley, G. P., Watt, S. M., & Greaves, M. F. Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature, 1987; 326: 403–5.
Roberts, R., Gallagher, J., Spooncer, E., et al. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature, 1988; 332: 376–8.
Anderson, D. M., Lyman, S. D., Baird, A., et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell, 1990; 63: 235–43.
Flanagan, J. G., Chan, D. C., & Leder, P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the SId mutant. Cell, 1991; 64: 1025–35.
Rettenmier, C. W., Roussel, M. F., Ashmun, R. A., et al. Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes. Mol Cell Biol, 1987; 7: 2378–87.
Stein, J., Borzillo, G. V., & Rettenmier, C. W. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood, 1990; 76: 1308–14.
Gidali, J. & Lajtha, L. G. Regulation of haemopoietic stem cell turnover in partially irradiated mice. Cell Tissue Kinet, 1972; 5: 147–57.
McCulloch, E. A., Siminovitch, L., Till, J. E., Russell, E. S., & Bernstein, S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/Sld. Blood, 1965; 26: 399–410.
Graham, G. J., Wright, E. G., Hewick, R., et al. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature, 1990; 344: 442–4.
Broxmeyer, H. E., Sherry, B., Lu, L., et al. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood, 1990; 76: 1110–16.
Quesniaux, V. F. J., Graham, G. J., Pragnell, I., et al. Use of 5-fluorouracil to analyze the effect of macrophage inflammatory protein-1a on long-term reconstituting stem cells in vivo. Blood, 1993; 81: 1497–504.
Eaves, C. J., Cashman, J. D., Wolpe, S. D., & Eaves, A. C. Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells. Proc Natl Acad Sci U S A, 1993; 90: 12015–9.
Cashman, J. D., Clark-Lewis, I., Eaves, A. C., & Eaves, C. J. Differentiation stage-specific regulation of primitive human hematopoietic progenitor cycling by exogenous and endogenous inhibitors in an in vivo model. Blood, 1999; 94: 3722–9.
Cashman, J. D., Eaves, C. J., Sarris, A. H., & Eaves, A. C. MCP-1, not MIP-1alpha is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood, 1998; 92: 2338–44.
Cashman, J., Clark-Lewis, I., Eaves, A., & Eaves, C. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood, 2002; 99: 792–9.
Cashman, J., Dykstra, B., Clark-Lewis, I., Eaves, A., & Eaves, C. Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med, 2002; 196: 1141–9.
Glimm, H., Tang, P., Clark-Lewis, I., Kalle, C. von, & Eaves, C. Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice. Blood, 2002; 99: 3454–7.
Till, J. E., McCulloch, E. A., & Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci U S A, 1964; 51: 29–36.
Vogel, H., Niesisch, H., & Matioli, G. The self-renewal probability of haemopoietic stem cells. J Cell Physiol, 1968; 72: 221.
Till, J. E. & McCulloch, E. A. Hemopoietic stem cell differentiation. Biochim Biophys Acta, 1980; 605: 431–59.
Humphries, R. K., Eaves, A. C., & Eaves, C. J. Expression of stem cell behaviour during macroscopic burst formation in vitro. In S. J. Baum, G. D. Ledney, & D. W. van Bekkum, eds., Experimental Hematology Today (New York: Karger, 1980), pp. 39–46.
Nakahata, T., Gross, A. J., & Ogawa, M. A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol, 1982; 113: 455–8.
Eaves, C., Miller, C., Conneally, E., et al. Introduction to stem cell biology in vitro: threshold to the future. Ann N Y Acad Sci, 1999; 872: 1–8.
Iscove, N. N. & Nawa, K. Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol, 1997; 7: 805–8.
Thorsteinsdottir, U., Sauvageau, G., & Humphries, R. K. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood, 1999; 94: 2605–12.
Pineault, N., Helgason, C. D., Lawrence, H. J., & Humphries, R. K. Differential expression of Hox, Meis1 and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 2002; 30: 49–57.
Lessard, J., Baban, S., & Sauvageau, G. Stage-specific expression of Polycomb group genes in human bone marrow cells. Blood, 1998; 91: 1216–24.
Park, I. K., Qian, D., Kiel, M., et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 2003; 423: 302–5.
Sauvageau, G., Thorsteinsdottir, U., Eaves, C. J., et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 1995; 9: 1753–65.
Buske, C., Feuring-Buske, M., Abramovich, C., et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood, 2002; 100: 862–8.
Antonchuk, J., Sauvageau, G., & Humphries, R. K. HoxB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell, 2002; 109: 39–45.
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003; 423: 255–60.
Krosl, J., Austin, P., Beslu, N., et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med, 2003; 9: 1428–32.
Tsuji, K., Lyman, S. D., Sudo, T., Clark, S. C., & Ogawa, M. Enhancement of murine hematopoiesis by synergistic interactions between Steel factor (ligand for c-kit), Interleukin-11, and other early acting factors in culture. Blood, 1992; 79: 2855–60.
Yonemura, Y., Ku, H., Lyman, S. D., & Ogawa, M. In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between Flt3/Flk-2 ligand and kit ligand. Blood, 1997; 89: 1915–21.
Ueda, T., Tsuji, K., Yoshino, H., et al. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest, 2001; 105: 1013–21.
Ramsfjell, V., Borge, O. J., Veiby, O. P., et al. Thrombopoietin, but not erythropoietin, directly stimulates multilineage growth of primitive murine bone marrow progenitor cells in synergy with early acting cytokines: distinct interactions with the ligands for c-kit and FLT3. Blood, 1996; 88: 4481–92.
Ku, H., Yonemura, Y., Kaushansky, K., & Ogawa, M. Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood, 1996; 87: 4544–51.
Petzer, A. L., Zandstra, P. W., Piret, J. M., & Eaves, C. J. Differential cytokine effects on primitive (CD34+CD38) human hematopoietic cells: novel responses to flt3-ligand and thrombopoietin. J Exp Med, 1996; 183: 2551–8.
Ebihara, Y., Wada, M., Ueda, T., et al. Reconstitution of human haematopoiesis in non-obese diabetic/severe combined immunodeficient mice by clonal cells expanded from single CD34+CD38− cells expressing Flk2/Flt3. Br J Haematol, 2002; 119: 525–34.
Sitnicka, E., Buza-Vidas, N., Larsson, S., et al. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood, 2003; 102: 881–6.
Murdoch, B., Chadwick, K., Martin, M., et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci U S A, 2003; 100: 3422–7.
Cobas, M., Wilson, A., Ernst, B., et al. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med, 2004; 199: 221–9.
Bryder, D., Ramsfjell, V., Dybedal, I., et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by fas and tumor necrosis factor receptor activation. J Exp Med, 2001; 194: 941–52.
Dybedal, I., Bryder, D., Fossum, A., Rusten, L. S., & Jacobsen, S. E. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood, 2001; 98: 1782–91.
Shivdasani, R. A. & Orkin, S. H. The transcriptional control of hematopoiesis. Blood, 1996; 87: 4025–39.
Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. Transcription factors, normal myeloid development and leukemia. Blood, 1997; 90: 489–519.
Nutt, S. L., Heavey, B., Rolink, A. G., & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 1999; 401: 556–62.
Westin, E. H., Gallo, R. C., Arya, S. K., et al. Differential expression of the amv gene in human hematopoietic cells. Proc Natl Acad Sci U S A, 1982; 79: 2194–8.
Gonda, T. J. & Metcalf, D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature, 1984; 310: 249–51.
Sheiness, D. & Gardinier, M. Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice. Mol Cell Biol, 1984; 4: 1206–12.
Buske, C. & Humphries, R. K. Homeobox genes in leukemogenesis. Int J Hematol, 2000; 71: 301–8.
Lawrence, H. J., Sauvageau, G., Largman, C., & Humphries, R. K. Homeobox gene networks and the regulation of hematopoiesis. In L. I. Zon, ed., Hematopoiesis: A Developmental Approach (New York: Oxford University Press, 2001), pp. 402–14.
Katzav, S., Martin-Zanca, D., & Barbacid, M. Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoetic cells. EMBO J, 1989; 8: 2283–90.
Adams, J. M., Houston, H., Allen, J., Lints, T., & Harvey, R. The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization. Oncogene, 1992; 7: 611–18.
Wagner, J. E., Collins, D., Fuller, S., et al. Isolation of small, primitive human hematopoietic stem cells: distribution of cell surface cytokine receptors and growth in SCID-Hu mice. Blood, 1995; 86: 512–23.
Testa, U., Fossati, C., Samoggia, P., et al. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood, 1996; 88: 3391–406.
McKinstry, W. J., Li, C. L., Rasko, J. E. J., et al. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood, 1997; 89: 65–71.
Helgason, C. D., Damen, J. E., Rosten, P., et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev, 1998; 12: 1610–20.
Voura, E. B., Billia, F., Iscove, N. N., & Hawley, R. G. Expression mapping of adhesion receptor genes during differentiation of individual hematopoietic precursors. Exp Hematol, 1997; 25: 1172–9.
Mucenski, M. L., McLain, K., Kier, A. B., et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell, 1991; 65: 677–89.
Pevny, L., Simon, M. C., Robertson, E., et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 1991; 349: 257–60.
Georgopoulos, K., Moore, D. D., & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science, 1992; 258: 808–12.
Georgopoulos, K., Bigby, M., Wang, J. H., et al. Early arrest in lymphocyte differentiation in Ikaros mutant mice. Cell, 1994; 78: 143–56.
Scott, E. W., Simon, M. C., Anastasi, J., & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science, 1994; 265: 1573–7.
Urbanek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F., & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell, 1994; 79: 901–12.
Olson, M. C., Scott, E. W., Hack, A. A., et al. PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity, 1995; 3: 703–14.
Robb, L., Elwood, N. J., Elefanty, A. G., et al. The scl gene is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J, 1996; 15: 4123–9.
Porcher, C., Swat, W., Rockwell, K., et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell, 1996; 86: 47–57.
Okuda, T., Deursen, J. van, Hiebert, S. W., Grosveld, G., & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996; 84: 321–30.
Sasaki, K., Yagi, H., Bronson, R. T., et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A, 1996; 93: 12359–63.
Wang, Q., Stacy, T., Binder, M., et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A, 1996; 93: 3444–9.
Hendriks, R. W., Nawijn, M. C., Engel, J. D., et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol, 1999; 29: 1912–18.
Valtieri, M., Tocci, A., Gabbianelli, M., et al. Enforced TAL-1 expression stimulates primitive, erythroid and megakaryocytic progenitors but blocks the granulopoietic differentiation program. Cancer Res, 1998; 58: 562–9.
Iwasaki, H., Mizuno, S., Wells, R. A., et al. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity, 2003; 19: 451–62.
Thorsteinsdottir, U., Sauvageau, G., Hough, M. R., et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol, 1997; 17: 495–505.
Sauvageau, G., Thorsteinsdottir, U., Hough, M. R., et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity, 1997; 6: 13–22.
Kulessa, H., Frampton, J., Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev, 1995; 9: 1250–62.
Thorsteinsdottir, U., Mamo, A., Kroon, E., et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood, 2002; 99: 121–9.
Taghon, T., Stolz, F., De Smedt, M., et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood, 2002; 99: 1197–204.
Hirasawa, R., Shimizu, R., Takahashi, S., et al. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med, 2002; 195: 1379–86.
Cantor, A. B. & Orkin, S. H. Hematopoietic development: a balancing act. Curr Opin Genet Dev, 2001; 11: 513–19.
Rolink, A. G., Nutt, S. L., Melchers, F., & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature, 1999; 401: 603–6.
Nerlov, C., Querfurth, E., Kulessa, H., & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood, 2000; 95: 2543–51.
Zhang, P., Behre, G., Pan, J., et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A, 1999; 96: 8705–10.
Rekhtman, N., Radparvar, F., Evans, T., & Skoultchi, A. I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev, 1999; 13: 1398–411.
Querfurth, E., Schuster, M., Kulessa, H., et al. Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev, 2000; 14: 2515–25.
Wu, A. M., Siminovitch, L., Till, J. E., & McCulloch, E. A. Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. Proc Natl Acad Sci U S A, 1968; 59: 1209–15.
Suda, T., Suda, J., & Ogawa, M. Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci U S A, 1984; 81: 2520–4.
Takano, H., Ema, H., Sudo, K., & Nakauchi, H. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med, 2004; 199: 295–302.
Pharr, P. N., Ogawa, M., Hofbauer, A., & Longmore, G. D. Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci U S A, 1994; 91: 7482–6.
Goldsmith, M. A., Mikami, A., You, Y., et al. Absence of cytokine receptor-dependent specificity in red blood cell differentiation in vivo. Proc Natl Acad Sci USA, 1998; 95: 7006–11.
Stoffel, R., Ziegler, S., Ghilardi, N., et al. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A, 1999; 96: 698–702.
Dexter, T. M., Heyworth, C. M., Spooncer, E., & Ponting, I. L. O. The role of growth factors in self-renewal and differentiation of haemopoietic stem cells. Philos Trans R Soc Lond B Biol Sci, 1990; 327: 85–98.
Borzillo, G. V., Ashmun, R. A., & Sherr, C. J. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol, 1990; 10: 2703–14.
Martin, M., Strasser, A., Baumgarth, N., et al. A novel cellular model (SPGM 1) of switching between the pre-B cell and myelomonocytic lineages. J Immunol, 1993; 150: 4395–406.
Klinken, S. P., Alexander, W. S., & Adams, J. M. Hemopoietic lineage switch: v-raf oncogene converts Emu-myc transgenic B cells into macrophages. Cell, 1988; 53: 857–67.
Kondo, M., Scherer, D. C., Miyamoto, T., et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature, 2000; 407: 383–6.
Fukunaga, R., Ishizaka-Ikeda, E., & Nagata, S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell, 1993; 74: 1079–87.
Metcalf, D. Clonal analysis of proliferation and differentiation of paired daughter cells: action of granulocyte-macrophage colony-stimulating factor on granulocyte-macrophage precursors. Proc Natl Acad Sci U S A, 1980; 77: 5327–30.
Metcalf, D. & Burgess, A. W. Clonal analysis of progenitor cell commitment to granulocyte or macrophage production. J Cell Physiol, 1982; 111: 275–83.
Metcalf, D. Lineage commitment in the progeny of murine hematopoietic preprogenitor cells: influence of thrombopoietin and interleukin 5. Proc Natl Acad Sci U S A, 1998; 95: 6408–12.
Campbell, K. H., McWhir, J., Ritchie, W. A., & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996; 380: 64–6.
Orlic, D., Kajstura, J., Chimenti, S., et al. Bone marrow cells regenerate infarcted myocardium. Nature, 2001; 410: 701–5.
Orlic, D., Kajstura, J., Chimenti, S., et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A, 2001; 98: 10 344–9.
Jackson, K. A., Majka, S. M., Wang, H., et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001; 107: 1395–402.
Strauer, B. E., Brehm, M., Zeus, T., et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002; 106: 1913–18.
Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998; 279: 1528–30.
Jackson, K. A., Mi, T., & Goodell, M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A, 1999; 96: 14482–6.
Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. Bone marrow as a potential source of hepatic oval cells. Science, 1999; 284: 1168–70.
Lagasse, E., Connors, H., Al-Dhalimy, M., et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000; 6: 1229–34.
Theise, N. D., Badve, S., Saxena, R., et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000; 31: 235–40.
Theise, N. D., Nimmakayalu, M., Gardner, R., et al. Liver from bone marrow in humans. Hepatology, 2000; 32: 11–16.
Alison, M. R., Poulsom, R., Jeffery, R., et al. Hepatocytes from non-hepatic adult stem cells. Nature, 2000; 406: 257.
Krause, D. S., Theise, N. D., Collector, M. I., et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001; 105: 369–77.
Wang, X., Ge, S., McNamara, G., et al. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 2003; 101: 4201–8.
Ishikawa, F., Drake, C. J., Yang, S., et al. Transplanted human cord blood cells give rise to hepatocytes in engrafted mice. Ann N Y Acad Sci, 2003; 996: 174–85.
Eglitis, M. A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A, 1997; 94: 4080–5.
Kopen, G. C., Prockop, D. J., & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 2000; 96: 10711–16.
Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000; 290: 1775–9.
Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000; 290: 1779–82.
Wagers, A. J., Sherwood, R. I., Christensen, J. L., & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 2002; 297: 2256–9.
Castro, R. F., Jackson, K. A., Goodell, M. A., et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science, 2002; 297: 1299.
Wang, X., Willenbring, H., Akkari, Y., et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003; 422: 897–901.
Balsam, L. B., Wagers, A. J., Christensen, J. L., et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004; 428: 668–73.
Murry, C. E., Soonpaa, M. H., Reinecke, H., et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004; 428: 664–8.
Taniguchi, H., Toyoshima, T., Fukao, K., & Nakauchi, H. Presence of hematopoietic stem cells in the adult liver. Nat Med, 1996; 2: 198–203.
Iwatani, H., Ito, T., Imai, E., et al. Hematopoietic and nonhematopoietic potentials of Hoechst/side population cells isolated from adult rat kidney. Kidney Int, 2004; 65: 1604–14.
Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. Changing potency by spontaneous fusion. Nature, 2002; 416: 545–8.
Terada, N., Hamazaki, T., Oka, M., et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002; 416: 542–5.
Weimann, J. M., Johansson, C. B., Trejo, A., & Blau, H. M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol, 2003; 5: 959–66.
Corbel, S. Y., Lee, A., Yi, L., et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med, 2003; 9: 1528–32.
Camargo, F. D., Green, R., Capetenaki, Y., Jackson, K. A., & Goodell, M. A. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med, 2003; 9: 1520–7.
Van der Loo, J. C. M., Hanenberg, H., Cooper, R. J., et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood, 1998; 92: 2556–70.
Eaves, C., Cashman, J., & Eaves, A. Defective regulation of leukemic hematopoiesis in chronic myeloid leukemia. Leuk Res, 1998; 22: 1085–96.

Reference Title: References

Reference Type: reference-list

Heard, J. M., Roussel, M. F., Rettenmier, C. W., & Sherr, C. J. Multilineage hematopoietic disorders induced by transplantation of bone marrow cells expressing the v-fms oncogene. Cell, 1987; 51: 663–73.
Socolovsky, M., Dusanter-Fourt, I., & Lodish, H. F. The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem, 1997; 272: 14009–12.
Williams, D. A., Lemischka, I. R., Nathans, D. G., & Mulligan, R. C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature, 1984; 310: 476–80.
Spangrude, G. J., Heimfeld, S., & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science, 1988; 241: 58–62.
Galli, S. J., Zsebo, K. M. & Geissler, E. N. The kit ligand, stem cell factor. Adv Immunol, 1994; 55: 1–96.
Broudy, V. C. Stem cell factor and hematopoiesis. Blood, 1997; 90: 1345–64.
Shalaby, F., Ho, J., Stanford, W. L., et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 1997; 89: 981–90.
Kaartinen, V., Voncken, J. W., Shuler, C., et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995; 11: 415–21.
Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A, 1998; 95: 9349–54.
Mackarehtschian, K., Hardin, J. D., Moore, K. A., et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity, 1995; 3: 147–61.
Stirewalt, D. L. & Radich, J. P. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003; 3: 650–65.
Levis, M. & Small, D. Small molecule FLT3 tyrosine kinase inhibitors. Curr Pharm Des, 2004; 10: 1183–93.
Heinrich, M. C. Targeting FLT3 kinase in acute myelogenous leukemia: progress, perils, and prospects. Mini Rev Med Chem, 2004; 4: 255–71.
Voutsadakis, I. A. Flt3 in acute myelogenous leukemia: biology, prognosis, and therapeutic implications. Med Oncol, 2003; 20: 311–24.
Ihle, J. N., Keller, J., Henderson, L., Klein, F., & Palaszynski, E. W. Procedures for the purification of interleukin-3 to homogeneity. J Immunol, 1982; 129: 2431–6.
Ihle, J. N. Interleukin 3: biochemistry and mechanism of action. In M. Sporn & A. Roberts, eds., Peptide Growth Factors and Their Receptors (New York: Springer, 1990), pp. 541–75.
Nishinakamura, R., Nakayama, N., Hirabayashi, Y., et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity, 1995; 2: 211–22.
Nishinakamura, R., Miyajima, A., Mee, P. J., Tybulewicz, V. L. J., & Murray, R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood, 1996; 88: 2458–64.
Eder, M., Geissler, G. & Ganser, A. IL-3 in the clinic. Stem Cells, 1997; 15: 327–33.
Metcalf, D. The Hemopoietic Colony Stimulating Factors (Amsterdam: Elsevier, 1984).
Stanley, E., Lieschke, G. J., Grail, D., et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A, 1994; 91: 5592–6.
Takatsu, K., Tominaga, A., Harada, N., et al. T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol Rev, 1988; 102: 107–35.
Krantz, S. B. Erythropoietin. Blood, 1991; 77: 419–34.
Zon, L. I. Developmental biology of hematopoiesis. Blood, 1995; 86: 2876–91.
Longmore, G. D., Pharr, P. N., & Lodish, H. F. A constitutively activated erythropoietin receptor stimulates proliferation and contributes to transformation of multipotent, committed nonerythroid and erythroid progenitor cells. Mol Cell Biol, 1994; 14: 2266–77.
Wu, H., Liu, X., Jaenisch, R., & Lodish, H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 1995; 83: 59–67.
Buemi, M., Cavallaro, E., Floccari, F., et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol, 2003; 62: 228–36.
de Sauvage, F. J., Hass, P. E., Spencer, S. D., et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the cMpl ligand [see comments]. Nature, 1994; 369: 533–8.
Kaushansky, K., Lok, S., Holly, R. D., et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature, 1994; 369: 568–71.
Bartley, T. D., Bogenberger, J., Hunt, P., et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor mpl. Cell, 1994; 77: 1117–24.
Kaushansky, K. Thrombopoietin: understanding and manipulating platelet production. Annu Rev Med, 1997; 48: 1–11.
Kaushansky, K. Thrombopoietin: in vitro predictions, in vivo realities. Am J Hematol, 1996; 53: 188–91.
Kaushansky, K. Thrombopoietin: the primary regulator of platelet production [see comments]. Blood, 1995; 86: 419–31.
Gurney, A. L., Carver-Moore, K., de Sauvage, F. J., & Moore, M. W. Thrombocytopenia in c-mpl-deficient mice. Science, 1994; 265: 1445–7.
Carver-Moore, K., Broxmeyer, H. E., Luoh, S. M., et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood, 1996; 88: 803–8.
Fielder, P. J., Gurney, A. L., Stefanich, E., et al. Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood, 1996; 87: 2154–61.
Stoffel, R., Wiestner, A., & Skoda, R. C. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood, 1996; 87: 567–73.
McCarty, J. M., Sprugel, K. H., Fox, N. E., Sabath, D. E., & Kaushansky, K. Murine thrombopoietin mRNA levels are modulated by platelet count. Blood, 1995; 86: 3668–75.
Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood, 1991; 78: 2791–808.
Lieschke, G. J., Grail, D., Hodgson, G., et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood, 1994; 84: 1737–46.
Liu, F., Wu, H. Y., Wesselschmidt, R., Kornaga, T., & Link, D. C. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity, 1996; 5: 491–501.
Lowenberg, B., Dale, D. C. & Sheridan, W. P. Clinical use of hematopoietic growth factors. Rev Invest Clin, 1994; Suppl.: 33–40.
Kawasaki, E. S., Ladner, M. B., Wang, A. M., et al. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science, 1985; 230: 291–6.
Sherr, C. J. Colony-stimulating factor-1 receptor. Blood, 1990; 75: 1–12.
Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W. J., et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse [published erratum appears in Proc Natl Acad Sci U S A, 1991; 88: 5937]. Proc Natl Acad Sci U S A, 1990; 87: 4828–32.
Yoshida, H., Hayashi, S., Kunisada, T., et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature, 1990; 345: 442–4.
Freeden-Jeffry, U. von, Vieria, P., Lucian, L. A., et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med, 1995; 181: 1519–26.
Murray, R., Suda, T., Wrighton, N., Lee, F., & Zlotnik, A. IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int Immunol, 1989; 1: 526–31.
Smith, K. A. Interleukin-2: inception, impact, and implications. Science, 1988; 240: 1169–76.
Schorle, H., Holtschke, T., Hunig, T., Schimpl, A., & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature, 1991; 352: 621–4.
Lee, F., Yokota, T., Otsuka, T., et al. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci U S A, 1986; 83: 2061–5.
Kuhn, R., Rajewsky, K., & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science, 1991; 254: 707–10.
Kopf, M., Le Gros, G., Bachmann, M., et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, 1993; 362: 245–8.
Gordon, S. Alternative activation of macrophages. Nat Rev Immunol, 2003; 3: 23–35.
Renauld, J.-C., Houssiau, F., Louahed, J., et al. Interleukin 9. Adv Immunol, 1993; 54: 79–97.
Renauld, J.-C., Lugt, N. M. Vink, A. van der, et al. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene, 1994; 9: 1327–32.
Gruss, H.-J., Brach, M., Drexler, H.-G., Bross, K., & Herrmann, F. Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res, 1992; 52: 1026–31.
Merz, H., Houssiau, F., Orscheschek, K., et al. IL-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood, 1991; 78: 1311–17.
McMillan, S. J., Bishop, B., Townsend, M. J., McKenzie, A. N., & Lloyd, C. M. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J Exp Med, 2002; 195: 51–7.
Grabstein, K. H., Eisenman, J., Shanebeck, K., et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 1994; 264: 965–8.
Cosman, D., Kumaki, S., Ahdieh, M. et al. Interleukin 15 and its receptor. Ciba Found Symp, 1995; 195: 221–9, discussion 229–33.
Giri, J. G., Anderson, D. M., Kumaki, S., et al. IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol, 1995; 57: 763–6.
Tagaya, Y., Bamford, R. N., DeFilippis, A. P., & Waldmann, T. A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity, 1996; 4: 329–36.
Giri, J. G., Ahdieh, M., Eisenman, J., et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J, 1994; 13: 2822.
Ma, A., Boone, D. L., & Lodolce, J. P. The pleiotropic functions of interleukin 15: not so interleukin-2-like after all. J Exp Med, 2000; 191: 753–6.
Cooper, M. A., Bush, J. E., Fehniger, T. A., et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 2002; 100: 3633–8.
Becker, T. C., Wherry, E. J., Boone, D., et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med, 2002; 195: 1541–8.
Habib, T., Nelson, A., & Kaushansky, K. IL-21: a novel IL-2-family lymphokine that modulates B, T, and natural killer cell responses. J Allergy Clin Immunol, 2003; 112: 1033–45.
Sivakumar, P. V., Foster, D. C., & Clegg, C. H. Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology, 2004; 112: 177–82.
Ozaki, K., Spolski, R., Feng, C. G., et al. A critical role for IL-21 in regulating immunoglobulin production. Science, 2002; 298: 1630–4.
Brady, J., Hayakawa, Y., Smyth, M. J., & Nutt, S. L. IL-21 induces the functional maturation of murine NK cells. J Immunol, 2004; 172: 2048–58.
Leonard, W. J. TSLP: finally in the limelight. Nat Immunol, 2002; 3: 605–7.
Vosshenrich, C. A., Cumano, A., Muller, W., Di Santo, J. P. & Vieira, P. Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat Immunol, 2003; 4: 773–9.
Carpino, N., Thierfelder, W. E., Chang, M. S., et al. Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development. Mol Cell Biol, 2004; 24: 2584–92.
Schijns, V. E., Haagmans, B. L., Wierda, C. M., et al. Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol, 1998; 160: 3958–64.
Chan, S. H., Kobayashi, M., Santoli, D., Perussia, B., & Trinchieri, G. Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). J. Immunology, 1992; 148: 92–8.
Thierfelder, W. E., Deursen, J. van, Yamamoto, K., et al. Stat4 is required for IL-12 mediated responses of NK and T-cells. Nature, 1996; 382: 171–4.
Heinrich, P. C., Behrmann, I., Haan, S., et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J, 2003; 374: 1–20.
Zhang, Y., Proenca, R., Maffei, M., et al. Positional cloning of the mouse obese gene and its human homologue [published erratum appears in Nature, 1995; 374: 479]. Nature, 1994; 372: 425–32.
Kishimoto, T. The biology of interleukin-6. Blood, 1989; 74: 1–10.
Kopf, M., Baumann, H., Freer, G., et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature, 1994; 368: 339–42.
Bernad, A., Kopf, M., Kulbacki, R., et al. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity, 1994; 1: 725–31.
Trikha, M., Corringham, R., Klein B., Rossi J. F. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res, 2003; 9: 4653–65.
Ito, H. Anti-interleukin-6 therapy for Crohn's disease. Curr Pharm Des, 2003; 9: 295–305.
Yang, Y. C. Interleukin-11 (IL-11) and its receptor: biology and potential clinical applications in thrombocytopenic states. Cancer Treat Res, 1995; 80: 321–40.
Nandurkar, H. H., Robb, L., Tarlinton, D., et al. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood, 1997; 90: 2148–59.
Tanaka, M., Hirabayashi, Y., Sekiguchi, T. et al. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood, 2003; 102: 3154–62.
Pestka, S., Langer, J. A., Zoon, K. C., & Samuel, C. E. Interferons and their actions. Ann Rev Biochem, 1987; 56: 727–77.
Hwang, S. Y., Hertzog, P. J., Holland, K. A., et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses [published erratum appears in Proc Natl Acad Sci U S A, 1996; 93: 4519]. Proc Natl Acad Sci U S A, 1995; 92: 11284–88.
Muller, U., Steinhoff, U., Reis, L. F., et al. Functional role of type I and type II interferons in antiviral defense. Science, 1994; 264: 1918–21.
Ealick, S. E., Cook, W. J., Vijay-Kumar, S., et al. Three-dimensional structure of recombinant human interferon-gamma. Science, 1991; 252: 698–702.
Farrar, M. A. & Schreiber, R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 1993; 11: 571–611.
Dalton, D. K., Pitts-Meek, S., Keshav, S. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes [see comments]. Science, 1993; 259: 1739–42.
Moore, K. W., O'Garra, A., de Waal, M. R., Vieira, P., & Mosmann, T. R. Interleukin-10. Annu Rev Immunol, 1993; 11: 165–90.
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 1993; 75: 263–74.
Conti, P., Kempuraj, D., Frydas, S., et al. IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26. Immunol Lett, 2003; 88: 171–4.
Kotenko, S. V. The family of IL-10-related cytokines and their receptors: related, but to what extent ? Cytokine Growth Factor Rev, 2002; 13: 223–40.
Moser, B., Wolf, M., Walz, A., & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004; 25: 75–84.
Laing, K. J. & Secombes, C. J. Chemokines. Dev Comp Immunol, 2004; 28: 443–60.
Nagasawa, T., Hirota, S., Tachibana, K., et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996; 382: 635–8.
Cook, D. N. The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol, 1996; 59: 61–6.
Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D., & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med, 1997; 185: 785–90.
Gao, J. L., Wynn, T. A., Chang, Y., et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1–type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med, 1997; 185: 1959–68.
Kurihara, T., Warr, G., Loy, J., & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med, 1997; 186: 1757–62.
Horuk, R., Chitnis, C. E., Darbonne, W. C., et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science, 1993; 261: 1182–4.
Tournamille, C., Colin, Y., Cartron, J. P., & Kim, C. van. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet, 1995; 10: 224–8.
De Caestecker, M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev, 2004; 15: 1–11.
Shull, M. M., Ormsby, I., Kier, A. B., et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 1992; 359: 693–9.
Kim, S. J. & Letterio, J. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 2003; 17: 1731–7.
Sanford, L. P., Ormsby, I., Gittenberger-de Groot, A. C., et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 1997; 124: 2659–70.
Proetzel, G., Pawlowski, S. A., Wiles, M. V., et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995; 11: 409–14.
Chang, H., Lau, A. L., & Matzuk, M. M. Studying TGF-beta superfamily signaling by knockouts and knockins. Mol Cell Endocrinol, 2001; 180: 39–46.
Radtke, F., Wilson, A., Mancini, S. J., & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nat Immunol, 2004; 5: 247–53.
Maillard, I., Adler, S. H., & Pear, W. S. Notch and the immune system. Immunity, 2003; 19: 781–91.
Saito, T., Chiba, S., Ichikawa, M., et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity, 2003; 18: 675–85.
Hozumi, K., Negishi, N., Suzuki, D., et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol, 2004; 5: 638–44.
Gaur, U. & Aggarwal, B. B. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol, 2003; 66: 1403–8.
Nagata, S. & Golstein, P. The fas death factor. Science, 1995; 267: 1449–56.
Fisher, G. H., Rosenberg, F. J., Straus, S. E., et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell, 1995; 81: 935–46.
Rieux-Laucat, F., Deist, F., Hivroz, C., et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science, 1995; 268: 1347–9.
Grewai, I. S., Xu, J., & Flavell, R. A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature, 1995; 378: 617–20.
Noelle, R. J. CD40 and its ligand in host defense. Immunity, 1996; 4: 415–19.
Essen, D. van, Kikutani, H., & Gray, D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature, 1995; 378: 620–3.
Pfeffer, K., Matsuyama, T., Kundig, T. M., et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succum to L. monocytogenes infection. Cell, 1993; 73: 457–67.
Rothe, J., Lesslauer, W., Lotscher, H., et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature, 1993; 364: 798–802.
Togni, P., Goellner, J., Ruddle, N. H., et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin [see comments]. Science, 1994; 264: 703–7.
Dinarello, C. A. Interleukin-1 and interleukin-1 antagonism. Blood, 1991; 77: 1627–52.
Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood, 1996; 87: 2095–147.
Li, P., Allen, H., Banerjee, S., et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell, 1995; 80: 401–11.
Zheng, H., Fletcher, D., Kozak, W., et al. Resistance to fever induction and impaired acute-phase response in interleukin-1 beta-deficient mice. Immunity, 1995; 3: 9–19.
Horai, R., Asano, M., Sudo, K., et al. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion. J Exp Med, 1998; 187: 1463–75.
Stoll, S., Muller, G., Kurimoto, M., et al. Production of IL-18 (IFN-gamma-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol, 1997; 159: 298–302.
Okamura, H., Tsutsui, M., Komatsu, T., et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 1995; 378: 88–91.
Takeda, K., Tsutsui, H., Yoshimoto, T., et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity, 1998; 8: 383–90.
Peritt, D., Aste-Amezaga, M., Gerosa, F., Paganin, C., & Trinchieri, G. Interleukin-10 induction by IL-12: a possible modulatory mechanism ? Ann N Y Acad Sci, 1996; 795: 387–9.
Yao, Z., Painter, S. L., Fanslow, W. C., et al. Human IL-17: a novel cytokine derived from T cells. J Immunol, 1995; 155: 5483–6.
Yao, Z., Fanslow, W. C., Seldin, M. F., et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 1995; 3: 811–21.
Zhou, P., Goldstein, S., Devadas, K., Tewari, D., & Notkins, A. L. Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nat Med 1997; 3: 659–64.
Maciaszek, J. W., Parada, N. A., Cruikshank, W. W., et al. IL-16 represses HIV-1 promoter activity. J Immunol, 1997; 158: 5–8.
Baier, M., Bannert, N., Werner, A., Lang, K., & Kurth, R. Molecular cloning, sequence, expression, and processing of the interleukin 16 precursor. Proc Natl Acad Sci U S A, 1997; 94: 5273–7.

Reference Title: References

Reference Type: reference-list

Howard, O. M., Ben-Baruch, A., & Oppenheim, J. J. Chemokines: progress toward identifying molecular targets for therapeutic agents. Trends Biotechnol, 1996; 14: 46–51.
Baggiolini, M., Dewald, B., & Moser, B. Human chemokines: an update. Annu Rev Immunol, 1997; 15: 675–705.
Strosberg, A. D. G protein-coupled R7G receptors. Cancer Surveys, 1997; 27: 65–83.
Taub, D. D. & Oppenheim, J. J. Chemokines, inflammation and the immune system. Ther Immunol, 1994; 1: 229–46.
Cameron, M. J. & Kelvin, D. J. Cytokines and chemokines – their receptors and their genes: an overview. Adv Exp Med Biol, 2003; 520: 8–32.
Moser, B., Wolf, M., Walz, A., & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004; 25: 75–84.
Murdoch, C. & Finn, A. The role of chemokines in sepsis and septic shock. Contrib Microbiol, 2003; 10: 38–57.
Balter, M. A. second coreceptor for HIV in early stages of infection [news]. Science, 1996; 272: 1740.
Deng, H., Liu, R., Ellmeier, W., et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996; 381: 661–6.
Doranz, B. J., Rucker, J., Yi, Y., et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996; 85: 1149–58.
Dragic, T., Litwin, V., Allaway, G. P., et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996; 381: 667–73.
Liu, R., Paxton, W. A., Choe, S., et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996; 86: 367–77.
Samson, M., Libert, F., Doranz, B. J., et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996; 382: 722–5.
Cacalano, G., Lee, J., Kikly, K., et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science, 1994; 265: 682–4.
Forster, R., Mattis, A. E., Kremmer, E., et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell, 1996; 87: 1037–47.
Hancock, W. W., Lu, B., Gao, W., et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med, 2000; 192: 1515–20.
Tachibana, K., Hirota, S., Iizasa, H., et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature, 1998; 393: 591–4.
Boring, L., Gosling, J., Chensue, S. W., et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest, 1997; 100: 2552–61.
Humbles, A. A., Lu, B., Friend, D. S., et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A, 2002; 99: 1479–84.
Chvatchko, Y., Hoogewerf, A. J., Meyer, A., et al. A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J Exp Med, 2000; 191: 1755–64.
Cook, D. N., Prosser, D. M., Forster, R., et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity, 2000; 12: 495–503.
Zhou, Y., Kurihara, T., Ryseck, R. P., et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol, 1998; 160: 4018–25.
Offermanns, S. & Simon, M I. Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv, 1996; 27: 177–98.
Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., & Schlessinger, J. A role for Pyk2 and Src in linking g-protein-coupled receptors with MAP kinase activation. Nature, 1996; 383: 547–50.
Mellado, M., Rodriguez-Frade, J. M., Manes, S., & Martinez, A. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol, 2001; 19: 397–421.
Rijsewijk, F., Schuermann, M., Wagenaar, E., et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987; 50: 649–57.
Nusse, R., Ooyen, A. van, Cox, D., Fung, Y. K., & Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984; 307: 131–6.
Nusse, R. A versatile transcriptional effector of Wingless signaling. Cell, 1997; 89: 321–3.
Siegfried, E., Wilder, E. L., & Perrimon, N. Components of wingless signalling in Drosophila. Nature, 1994; 367: 76–80.
Cadigan, K. M. & Nusse, R. Wingless signaling in the Drosophila eye and embryonic epidermis. Development, 1996; 122: 2801–12.
Huber, O., Korn, R., McLaughlin, J., et al. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev, 1996; 59: 3–10.
Behrens, J., Kries, J. P. von, Kuhl, M., et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 1996; 382: 638–42.
Wang, H. Y. & Malbon, C. C. Wnt-frizzled signaling to G-protein-coupled effectors. Cell Mol Life Sci, 2004; 61: 69–75.
Wang, H. Y. & Malbon, C. C. Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science, 2003; 300: 1529–30.
Wang, H. Y. WNT-frizzled signaling via cyclic GMP. Front Biosci, 2004; 9: 1043–7.
He, X., Semenov, M., Tamai, K., & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development, 2004; 131: 1663–77.
Slusarski, D. C., Corces, V. G., & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 1997; 390: 410–13.
Verbeek, S., Izon, D., Hofhuis, F., et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature, 1995; 374: 70–74.
Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell, 2003; 11: 293–302.
Medzhitov, R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001; 1: 135–45.
Yamamoto, M., Takeda, K., & Akira, S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol, 2004; 40: 861–8.
Li, T., Hu, J., & Li, L. Characterization of Tollip protein upon lipopolysaccharide challenge. Mol Immunol, 2004; 41: 85–92.
Suzuki, N., Suzuki, S., Duncan, G. S., et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature, 2002; 416: 750–6.
Massague, J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell, 1996; 85: 947–50.
Shi, Y., Hata, A., Lo, R. S., Massague, J., & Pavletich, N. P. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997; 388: 87–93.
Hahn, S. A., Schutte, M., Hoque, A. T., et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996; 271: 350–3.
Lo, R. S., Chen, Y. G., Shi, Y., Pavletich, N. P., & Massague, J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J, 1998; 17: 996–1005.
Heldin, C. H., Miyazono, K., & Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997; 390: 465–71.
Nakao, A., Afrakhte, M., Moren, A., et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 1997; 389: 631–5.
Imamura, T., Takase, M., Nishihara, A., et al. Smad6 inhibits signalling by the TGF-beta superfamily. [see comments]. Nature, 1997; 389: 622–6.
Bazan, J. F. Emerging families of cytokines and receptors. Curr Biol, 1997; 3: 603–6.
Locksley, R. M., Killeen, N., & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001; 104: 487–501.
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003; 114: 181–90.
Kabra, N. H., Kang, C., Hsing, L. C., Zhang, J., & Winoto, A. T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci U S A, 2001; 98: 6307–12.
Varfolomeev, E. E., Schuchmann, M., Luria, V., et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity, 1998; 9: 267–76.
Stanger, B. Z., Leder, P., Lee, T-H., & Seed, B. RIP: a novel “death domain”-containing protein kinase that interacts with Fas/APO-1 (CD95) and causes cell death. Cell, 1995; 81: 513–23.
Kelliher, M. A., Grimm, S., Ishida, Y., et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 1998; 8: 297–303.
Yeh, W. C., Shahinian, A., Speiser, D., et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity, 1997; 7: 715–25.
Degterev, A., Boyce, M., & Yuan, J. A decade of caspases. Oncogene, 2003; 22: 8543–67.
Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 2004; 117: 561–74.
Cerretti, D. P., Kozlosky, C. J., Mosley, B., et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science, 1992; 256: 97–100.
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell, 1993; 75: 641–52.
Li, P., Allen, H., Banerjee, S., et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell, 1995; 80: 401–11.
Wang, S., Miura, M., Jung, Y. K., et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell, 1998; 92: 501–9.
Gu, Y., Kuida, K., Tsutsui, H., et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science, 1997; 275: 206–9.
Nakagawa, T., Zhu, H., Morishima, N., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000; 403: 98–103.
Kuida, K., Zheng, T. S., Na, S., et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 1996; 384: 368–72.
Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature, 1996; 383: 443–6.
Xu, Y., Cheng, G., & Baltimore, D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity, 1996; 5: 407–15.
Wu, H. & Arron, J. R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays, 2003; 25: 1096–105.
Yeh, W. C., Itie, A., Elia, A. J., et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity, 2000; 12: 633–42.
Lee, E. G., Boone, D. L., Chai, S., et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science, 2000; 289: 2350–4.
Heldin, C. H. Protein tyrosine kinase receptors. Cancer Surv, 1996; 27: 7–24.
Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell, 1995; 80: 213–23.
Heldin, C. H. & Ostman, A. Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev, 1996; 7: 3–10.
Weiss, F. U., Daub, H., & Ullrich, A. Novel mechanisms of RTK signal generation. Curr Opin Genet Dev, 1997; 7: 80–6.
Lemmon, M. A. & Schlessinger, J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci, 1994; 19: 459–63.
Hubbard, S. R., Wei, L., Ellis, L., & Hendrickson, W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 1994; 372: 746–54.
Mohammadi, M., Schlessinger, J., & Hubbard, S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell, 1996; 86: 577–87.
Pawson, T. Protein modules and signalling networks. Nature, 1995; 373: 573–80.
Booker, G. W., Breeze, A. L., Downing, A. K., et al. Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. Nature, 1992; 358: 684–7.
Waksman, G., Kominos, D., Robertson, D. R., et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature, 1992; 358: 646–53.
Kavanaugh, W. M., & Williams, L. T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science, 1995; 266: 1862–5.
Geer, P. van der & Pawson, T. The PTB domain: a new protein module implicated in signal transduction. Trends Biochem sci, 1995; 20: 277–80.
Ellisen, L. W., Bird, J., West, D. C., et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991; 66: 649–61.
Artavanis-Tsakonas, S., Matsuno, K., & Fortini, M. E. Notch signaling. Science, 1995; 268: 225–32.
Girard, L., Hanna, Z., Beaulieu, N., et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev, 1996; 10: 1930–44.
Joutel, A., Corpechot, C., Ducros, A., et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia [see comments]. Nature, 1996; 383: 707–10.
Jarriault, S., Brou, C., Logeat, F., et al. Signalling downstream of activated mammalian Notch. Nature, 1995; 377: 355–8.
Oka, C., Nakano, T., Wakeham, A., et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development, 1995; 121: 3291–301.
Pear, W. S. & Radtke, F. Notch signaling in lymphopoiesis. Semin Immunol, 2003; 15: 69–79.
Conlon, R. A., Reaume, A. G., & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development, 1995; 121: 1533–45.
Pompa, J. L., Wakeham, A., Correia, K. M., et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development, 1997; 124: 1139–48.
Bazan, J. F. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem Biophys Res Commun, 1989; 164: 788–95.
Somers, W., Ultsch, M., De Vos, A. M., & Kossiakoff, A. A. The X-ray structure of a growth hormone-prolactin receptor complex. Nature, 1994; 372: 478–81.
Murakami, M., Narazaki, M., Hibi, M., et al. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci U S A, 1991; 88: 11349–53.
Pellegrini, S., John, J., Shearer, M., Kerr, I. M., & Stark, G. R. Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol Cell Biol, 1989; 9: 4605–12.
Witthuhn, B., Quelle, F. W., Silvennoinen, O., et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following EPO stimulation. Cell, 1993; 74: 227–36.
Artgetsinger, L. S., Campbell, G. S., Yang, X., et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell, 1993; 74: 237–44.
Feng, J., Witthuhn, B. A., Matsuda, T., et al. Activation of jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol, 1997; 17: 2497–501.
Freeden-Jeffry, U. von, Vieria, P., Lucian, L. A., et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med, 1995; 181: 1519–26.
Nosaka, T., Deursen, J. M. A. van, Tripp, R. A., et al. Defective lymphoid development in mice lacking Jak3. Science, 1995; 270: 800–2.
Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., & Berg, L. J. Mice lacking Jak3 have defects in B lymphocyte maturation and T lymphocyte activation. Science, 1995; 270: 794–7.
Asao, H., Tanaka, N., Ishii, N., et al. Interleukin 2-induced activation of JAK3: possible involvement in signal transduction of c-myc induction and cell proliferation. FEBS Letters, 1994; 351: 201–6.
Macchi, P., Villa, A., Giliani, S., et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature, 1995; 377: 65–8.
Russell, S. M., Tayebi, N., Nakajima, H., et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science, 1995; 270: 797–800.
Bunting, K. D., Sangster, M. Y., Ihle, J. N., & Sorrentino, B. P. Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat Med, 1998; 4: 58–64.
Rodig, S. J., Meraz, M. A., White, J. M., et al. Targeted disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of Janus kinases in mediating cytokine induced biologic responses. Cell, 1998; 93: 373–83.
Parganas, E., Wang, D., Stravopodis, D., et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell, 1998; 93: 385–95.
Wu, H., Liu, X., Jaenisch, R., & Lodish, H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 1995; 83: 59–67.
Klingmuller, U., Lorenz, U., Cantley, L. C., Neel, B. G., & Lodish, H. F. Specific recruitment of the hematopoietic protein tyrosine phosphatase SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell, 1995; 80: 729–38.
Shultz, L. D., Schweitzer, P. A., Rajan, T. V., et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein tyrosine phosphatase (Hcph) gene. Cell, 1993; 73: 1445–54.
Tsui, H. W., Siminovitch, K. A., de Souza, L., & Tsui, F. W. L. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Gen, 1993; 4: 124–9.
Daeron, M. Fc receptor biology. Annu Rev Immunol, 1997; 15: 203–34.
Davis, R. S., Dennis, G, Jr., Odom, M. R., et al. Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev, 2002; 190: 123–36.
Nadler, M. J., Matthews, S. A., Turner, H., & Kinet, J. P. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv Immunol, 2000; 76: 325–55.
Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu Rev Immunol, 2001; 19: 275–90.
Monteiro, R. C. & Winkel, J. G. van de IgA Fc receptors. Annu Rev Immunol, 2003; 21: 177–204.
Zamoyska, R., Basson, A., Filby, A., et al. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev, 2003; 191: 107–18.
Miller, A. T. & Berg, L. J. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr Opin Immunol, 2002; 14: 331–40.
Schaeffer, E. M., Debnath, J., Yap, G., et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science, 1999; 284: 638–41.
Isakov, N. ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol Res, 1997; 16: 85–100.
Watson, S. P. & Gibbins, J. Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol Today, 1998; 19: 260–4.
Elder, M. E. ZAP-70 and defects of T-cell receptor signaling. Semin Hematol, 1998; 35: 310–20.
Chu, D. H., Morita, C. T., & Weiss, A. The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol Rev, 1998; 165: 167–80.
Pappu, R., Cheng, A. M., Li, B., et al. Requirement for B cell linker protein (BLNK) in B cell development. Science, 1999; 286: 1949–54.
Minegishi, Y., Rohrer, J., Coustan-Smith, E., et al. An essential role for BLNK in human B cell development. Science, 1999; 286: 1954–7.
Clements, J. L., Yang, B., Ross-Barta, S. E., et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science, 1998; 281: 416–19.
Fruman, D. A. & Cantley, L C. Phosphoinositide 3-kinase in immunological systems. Semin Immunol, 2002; 14: 7–18.
Darnell, J. E., Jr., Kerr, I. M., & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994; 264: 1415–21.
Stahl, N., Farruggella, T. J., Boulton, T. G., et al. Modular tyrosine-based motifs in cytokine receptors specify choice of stats and other substrates. Science, 1995; 267: 1349–53.
Meraz, M. A., White, J. M., Sheehan, K. C. F., et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell, 1996; 84: 431–42.
Takeda, K., Noguchi, K., Shi, W., et al. Targeted disruption of the mouse stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci, 1997; 94: 3801–4.
Yamamoto, K., Quelle, F. W., Thierfelder, W. E., et al. Stat4: a novel GAS binding protein expressed in early myeloid differentiation. Mol Cell Biol, 1994; 14: 4342–9.
Jacobson, N. G., Szabo, S., Weber-Nordt, R. M., et al. Interleukin 12 activates Stat3 and Stat4 by tyrosine phosphorylation in T cells. J Exp Med, 1995; 181: 1755–62.
Bacon, C. M., McVicar, D. W., Ortaldo, J. R., et al. Interleukin-12 induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus tyrosine kinases by interleukin-2 and interleukin-12. J Exp Med, 1995; 181: 399–404.
Kaplan, M. H., Sun, Y.-L., Hoey, T., & Grusby, M J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature, 1996; 382: 174–7.
Thierfelder, W. E., Deursen, J. van, Yamamoto, K., et al. Stat4 is required for IL-12 mediated responses of NK and T-cells. Nature, 1996; 382: 171–4.
Wolf, S. F., Sieburth, D., & Sypek, J. Interleukin-12: a key modulator of immune function. Stem Cells, 1994; 12: 154–68.
Hou, J., Schindler, U., Henzel, W. J., Wong, S. C., & McKnight, S. L. Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity, 1995; 2: 321–9.
Quelle, F. W., Shimoda, K., Thierfelder, W., et al. Cloning of murine Stat6 and human Stat6, stat proteins that are tyrosine phosphorylated in response to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol, 1995; 15: 3336–43.
Shimoda, K., Deursen, J. van, Sangster, M. Y., et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature, 1996; 380: 630–3.
Kaplan, M. H., Schindler, U., Smiley, S. T., & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity, 1996; 4: 313–19.
Kopf, M., Le Gros, G., Bachmann, M., et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, 1993; 362: 245–8.
Ihle, J. N. STATs: signal tranducers and activators of transcription. Cell, 1996; 84: 331–4.
Liu, X., Robinson, G. W., Wagner, K. U., et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev, 1997; 11: 179–86.
Udy, G. B., Snell, R. G., Wilkins, R. J., et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A, 1997; 94: 7239–44.
Teglund, S., McKay, C., Schuetz, E., et al. Stat5a and Stat5b proteins have essential and non-essential, or redundant, roles in cytokine responses. Cell, 1998; 93: 841–50.
Whitman, M., Kaplan, D., Roberts, T., & Cantley, L. Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. Biochem J, 1987; 247: 165–74.
Chang, H. W., Aoki, M., Fruman, D., et al. Transformation of chicken cells by the gene encoding the catalytic subunit of Pl 3-kinase. Science, 1997; 276: 1848–50.
Divecha, N. & Irvine, R. F. Phospholipid signaling. Cell, 1997; 80: 269–78.
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G., & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci, 1997; 22: 267–72.
Vanhaesebroeck, B., Stein, R. C., & Waterfield, M D. The study of phosphoinositide 3-kinase function. Cancer Surv, 1996; 27: 249–70.
Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D., & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J, 1996; 15: 2442–51.
Katzav, S., Martin-Zanca, D., & Barbacid, M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J, 1989; 8: 2283–90.
Gulbins, E., Coggeshall, K., Baier, G., et al. Tyrosine kinase-stimulated guanine nucleotide exchange activity of vav in T cell activation. Science, 1993; 260: 822–5.
Shigematsu, H., Iwasaki, H., Otsuka, T., et al. Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity. J Biol Chem, 1997; 272: 14 334–40.
Fischer, K.-D., Zmuidzinas, A., Gardner, S., et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CD8+ thymocytes. Nature, 1995; 374: 474–7.
Tarakhovsky, A., Turner, M., Schall, S., et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature, 1995; 374: 467–70.
Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H., & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature, 1995; 374: 470–3.
Myers, M. G., Jr., Xiao, J. S., & White, M. F. The IRS-1 signaling system. Trends Biochem Sci, 1994; 19: 289–93.
Yenush, L. & White, M. F. The IRS-signalling system during insulin and cytokine action. Bioessays, 1997; 19: 491–500.
Keegan, A. D., Nelms, K., White, M., et al. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell, 1994; 76: 811–20.
Araki, E., Lipes, M. A., Patti, M. E., et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature, 1994; 372: 186–90.
Tamemoto, H., Kadowaki, T., Tobe, K., et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature, 1994; 372: 182–6.
Withers, D. J., Gutierrez, J. S., Towery, H., et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 1998; 391: 900–4.
Bruning, J. C., Winnay, J., Bonner-Weir, S., et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell, 1997; 88: 561–72.
Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K., Morse, H. C, III. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci U S A, 1989; 86: 1168–72.

Reference Title: References

Reference Type: reference-list

Mason, D., Andre, P., Bensussan, A., et al., eds., Leucocyte Typing Ⅶ. White Cell Differentiation Antigens (New York: Oxford University Press, 2002).
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues. (Lyon, France: IARC Press, 2001).
LeBein, T. W. Fates of human B-cell precursors. Blood, 2000; 96: 9–23.
Campana, D., Janossy, G., Bofill, M., et al. Human B cell development. I. Phenotypic differences of B lymphocytes in the bone marrow and peripheral lymphoid tissues. J Immunol, 1985; 134: 1524–9.
Lochem, E. G. van, Velden, V. H. J. van der, Wind, H. K., et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry, 2004; 60B: 1–13.
Loken, M. R., Shah, V. O., Hollander, Z., et al. Flow cytometric analysis of normal lymphoid development. Pathol Immunopathol Res, 1988; 7: 357–70.
Caldwell, C. W. & Patterson, W. P. Relationship of T200 antigen expression to stages of B-cell differentiation in resurgent hyperplasia of bone marrow. Blood, 1987; 70: 1165–72.
Burrows, P. D., Stephan, R. F., Wang, Y.-H., et al. The transient expression of pre-B cell receptors governs B cell development. Immunology, 2002; 14: 343–9.
Meffre, E., Fougereau, M., Argenson, J.-N., et al. Cell surface expression of surrogate light chain (ψL) in the absence of μ on human pro-B cell lines and normal pro-B cells. Eur J Immunol, 1996; 26: 2172–80.
Melchers, F., Boekel, E. ten, Seidl, T., et al. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev, 2000; 175: 33–46.
Sabbattini, P. & Dillon, N. The λ5-VpreB1 locus – a model system for studying gene regulation during early B cell development. Semin Immunol, 2005; 17: 121–7.
Ghia, P., Boekel, E. ten, Sanz, E., et al. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement of the immunoglobulin H and L chain gene loci. J Exp Med, 1996; 184: 2217–29.
Young, F., Mizoguchi, E., Bhan, A. K., et al. Constitutive Bcl-2 expression during immunoglobulin heavy chain-promoted B cell differentiation expands novel precursor B cells. Immunity, 1997; 6: 23–33.
Muljo, S. A. & Schlissel, M. S. Pre-B and pre-T-cell receptors: conservation strategies in regulating early lymphocyte development. Immunol Rev, 2000; 175: 80–93
Schiff, C., Milili, M., Bossy, D., et al. λ-like and Vpre-B genes expression: an early B-lineage marker of human leukemias. Blood, 1991; 78: 1516–25.
Clark, M. R., Campbell, K. S., Kazlauskas, A., et al. The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. Science, 1992; 258: 123–6.
Duchosal, M. A. B-cell development and differentiation. Sem Hematol, 1997; 34(Suppl. 1): 2–12.
McHeyzer-Williams, L. J., Driver, D. J., & McHeyzer-Williams, M. G. Germinal center reaction. Curr Opin Hematol, 2001; 8: 52–9.
Kurtzberg, J., Denning, S. M., Nycum, L. M., et al. Immature human thymocytes can be driven to differentiate into nonlymphoid lineages by cytokines and thymic epithelial cells. Proc Natl Acad Sci U S A, 1989; 86: 5829.
Blom, B., Res, P., Noteboom, E., et al. Prethymic CD34+ progenitors capable of developing into T cells are not committed to the T cell lineage. J Immunol, 1997; 158: 3571–7.
Prockop, S. & Petrie, H. Cell migration and the anatomic control of thymocyte precursor differentiation. Semin Immunol, 2000; 12: 435–44.
Anderson, G., Harman, B. C., Hare, K. J., & Jenkins, E. J. Microenvironmental regulation of T cell development in the thymus. Semin Immunol, 2000; 12: 457–64.
Hao, Q. L., Zhu, J., Price, M. L., et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood, 2001; 97: 3683–90.
Res, P., Martinez-Cáceres, E., Jaleco, A. C., et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood, 1996; 87: 5196–206.
Res, P. & Spits, H. Developmental stages in the human thymus. Semin Immunol, 1999; 11: 39–46.
Campana, D. The developmental stages of the human T cell receptors. Thymus, 1989; 13: 3–18.
Michie, A. M. & Zuniga-Pflucker, J. C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Immunology, 2002; 14: 311–23.
Carrasco, Y. R., Navarro, M. N., de Yebenes, V. G., et al. Regulation of surface expression of the human pre-T cell receptor complex. Immunology, 2002; 14: 325–34.
Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., et al. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines ? Trends Immunol, 2002; 23: 305–13.
Mari, B., Breittmayer, J.-P., Guerin, S., et al. High levels of functional endopeptidase 24.11 (CD10) activity on human thymocytes: preferential expression on immature subsets. Immunology, 1994; 82: 433–8.
Fischer, E. M., Mouhoub, A., Maillet, F., et al. Expression of CD21 is developmentally regulated during thymic maturation of human T lymphocytes. Int Immunol, 1999; 11: 1841–9.
Kussick, S. J., Fromm, J. R., Rossini, A., et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol, 2005; 124: 170–81.
Gaipa, G., Coustan-Smith, E., Todisco, E., et al. Characterization of CD34+, CD13+, CD33− cells, a rare subset of immature human hematopoietic cells. Hematologica, 2002; 87: 347–56.
Lübbert, M., Herrmann, F., Koeffler, H. P. Expression and regulation of myeloid-specific genes in normal and leukemic myeloid cells. Blood, 1991; 77: 909–24.
Parravicini, C. L., Soligo, D., Berti, E., et al. Immunohistochemical reactivity of anti-platelet mAb in normal human tissues and bone marrow. In W. Knapp, B. Dörken, W. R. Gilks, et al., eds., Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 981–5.
Borne, A. E. G. Kr. von dem, Modderman, P. W., Admiraal, L. G., et al. Platelet antibodies, the overall results. In W. Knapp, B. Dörken, W. R. Gilks, et al., eds, Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 951–66.
Erber, W. N., Breton-Gorius, J., Villeval, J. L., et al. Detection of cells of megakaryocytic lineage in haematopoietic malignancies by immuno-alkaline phosphatase labeling of cell smears with a panel of monoclonal antibodies. Br J Haematol, 1987; 65: 87–94.
Ayala, I. A., Tomer, A., & Kellar, K. L. Flow cytometric analysis of megakaryocyte-associated antigens on CD34 cells and their progeny in liquid culture. Stem Cells, 1996; 14: 320–9.
Basch, R. S., Dolzhanskiy, A., Zhang, X.-M., et al. The development of human megakaryocytes. II. CD4 expression occurs during haematopoietic differentiation and is an early step in megakaryocyte maturation. Br J Haematol, 1996; 94: 433–42.
Dolzhanskiy, A., Basch, R. S., & Karpatkin, S. Development of human megakaryocytes: I. Hematopoietic progenitors (CD34+ bone marrow cells) are enriched with megakaryocytes expressing CD4. Blood, 1996; 87: 1353–60.
Bellucci, S., Han, Z. C., Pidard, D., et al. Identification of a normal human bone marrow cell population co-expressing megakaryocytic and erythroid markers in culture. Eur J Haematol, 1992; 48: 259–65.
Bettaieb, A., Villeval, J. L., Kieffer, N., et al. Early erythroid markers as probes for normal and leukemic erythroid differentiation. Ann Inst Pasteur Immunol, 1987; 138: 877–83.
Debili, N., Kieffer, N., Mitjavila, M. T., et al. Expression of platelet glycoproteins by erythroid blasts in four cases of trisomy 21. Leukemia, 1989; 3: 669–78.
Loken, M. R., Shah, V. O., Dattilo, K. L., et al. Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood, 1987; 69: 255–63.
Chuang, S.-S. & Li, C.-Y. Useful panel of antibodies for the classification of acute leukemia by immunohistochemical methods in bone marrow trephine biopsy specimens. Am J Clin Pathol, 1997; 107: 410–18.
Bavikatty, N. R., Ross, C. W., Finn, W. G., et al. Anti-CD10 immunoperoxidase staining of paraffin-embedded acute leukemias: comparison with flow cytometric immunophenotyping. Hum Pathol, 2000; 31: 1051–4.
Manaloor, E. J., Neiman, R. S., Heilman, D. K., et al. Immunohistochemistry can be used to subtype acute myeloid leukemia in routinely processed bone marrow biopsy specimens. Comparison with flow cytometry. Am J Clin Pathol, 2000; 113: 814–22.
Kurec, A. S., Cruz, V. E., Barrett, D., et al. Immunophenotyping of acute leukemias using paraffin-embedded tissue sections. Am J Clin Pathol, 1990; 93: 502–9.
Orazi, A., Cotton, J., Cattaretti, G., et al. Terminal deoxynucleotidyl transferase staining in acute leukemia and normal bone marrow in routinely processed paraffin sections. Am J Clin Pathol, 1994; 102: 640–5.
Hanson, C. A., Ross, C. W., & Schnitzer, B. Anti-CD34 immunoperoxidase staining in paraffin sections of acute leukemia: comparison with flow cytometric immunophenotyping. Hum Pathol, 1992; 23: 26–32.
Pileri, S. A., Ascani, S., Milani, M., et al. Acute leukaemia immunophenotyping in bone-marrow routine sections. Br J Haematol, 1999; 105: 394–401.
Toth, B., Wehrmann, M., Kaiserling, E., et al. Immunophenotyping of acute lymphoblastic leukemia in routinely processed bone marrow biopsy specimens. J Clin Pathol, 1999; 52: 688–92.
Krober, S. M., Greschniok, A., Kaiserling, E., et al. Acute lymphoblastic leukemia: correlation between morphologic/immunohistochemical and molecular biological findings in bone marrow biopsy specimens. Mol Pathol, 2000; 53: 83–7.
Hashimoto, M., Yamashita, Y., & Mori, N. Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukemia. J Pathol, 2002; 197: 341–7.
Dunphy, C. H., Polski, J. M., Evans, H. L., et al. Evaluation of bone marrow specimens with acute myelogenous leukemia for CD34, CD15, CD117, and myeloperoxidase. Arch Pathol Lab Med, 2001; 125: 1063–9.
Huang, M.-J., Li, C.-Y., Nichols, W. L., et al. Acute leukemia with megakaryocytic differentiation: a study of 12 cases identified immunocytochemically. Blood, 1984; 64: 427–39.
Wong, K. F. & Chan, J. K. C. Antimyeloperoxidase: antibody of choice for labeling of myeloid cells including diagnosis of granulocytic sarcoma. Adv Anat Pathol, 1995; 2: 65–8.
Menasce, L. P., Bancrjee, S. S., Beckett, E., et al. Extra-medullary myeloid tumour (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology, 1999; 34: 391–8.
Chen, J., Yanuck, R. R., III, Abbondanzo, S. L., et al. c-Kit (CD117) reactivity in extramedullary myeloid tumor/granulocytic sarcoma. Arch Pathol Lab Med, 2001; 125: 1448–52.
Steltzer, G. T., Shults, K. E., & Loken, M. R. CD45 gating for routine flow cytometric analysis of human bone marrow specimens. Ann N Y Acad Sci, 1993; 677: 265–80.
Borowitz, M. J., Guenther, K. L., Shults, K. E., et al. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol, 1993; 100: 534–40.
Rainer, R. O., Hodges, L., & Stelzer, G. T. CD45 gating correlates with bone marrow differential. Cytometry, 1995; 22: 139–45.
Sun, T., Sangaline, R., Ryder, J., et al. Gating strategy for immunophenotyping of leukemia and lymphoma. Am J Clin Pathol, 1997; 108: 152–7.
Paietta, E. Proposals for the immunological classification of acute leukemias. Leukemia, 1995; 9: 2147–57.
Rothe, G. & Schmitz, G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Leukemia, 1996; 10: 877–95.
Knapp, W., Strobl, H., & Majdic, O. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis. Cytometry, 194; 18: 187–98.
Verschuren, M. C. M., Comans-Bitter, W. M., Kapteijn, C. A. C., et al. Transcription and protein expression of mb-1 and B26 genes in human hematopoietic malignancies and cell lines. Leukemia, 1993; 7: 1939–47.
Groeneveld, K., te Marvelde, J. G., Beemd, M. W. M. van den, et al. Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes. Leukemia, 1996; 10: 1383–9.
Irie-Sasaki, J., Sasaki, T., & Penninger, J. M. CD45 regulated signaling pathways. Curr Top Med Chem, 2003; 3: 783–96.
Behm, F. G., Raimondi, S. C., Schell, M. J., et al. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosome hyperdiploidy and other favorable prognostic features. Blood, 1992; 79: 1011–16.
Borowitz, M. J., Shuster, J., Carroll, A. J., et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor ALL. A Pediatric Oncology Group study. Blood, 1997; 89: 3960–6.
Boue, D. R. & LeBein, T. W. Expression and structure of CD22 in acute leukemia. Blood, 1988; 71: 1480–6.
Dworzak, M. N., Fritsch, G., Froschl, G., et al. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood, 1998; 91: 3203–9.
Mason, D. Y., Cordell, J. L., Tse, A. G. D., et al. The IgM-associated protein mb-1 as a marker of normal and neoplastic B cells. J Immunol, 1991; 147: 2474–82.
Astsaturov, I. A., Matutes, E., Morilla, R., et al. Differential expression of B29 (CD79b) and mb-1 (CD79a) proteins in acute lymphoblastic leukaemia. Leukemia, 1996; 10: 769–73.
Arber, D. A., Jenkins, K. A., & Slovak, M. L. CD79 alpha expression in acute myeloid leukemia. High frequency of expression in acute promyelocytic leukemia. Am J Pathol, 1996; 149: 1105–10.
Arber, D. A. & Jenkins, K. A. Paraffin section immunophenotyping of acute leukemias in bone marrow specimens. Am J Clin Pathol, 1996; 109: 116–17.
Pilozzi, E., Pulford, K., Jones, M., et al. Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol, 1998; 186: 140–3.
Pilozzi, E., Muller-Hermelink, H.-K., De Wolf-Peters, C., et al. Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol, 1999; 188: 267–70.
Lai, R., Juco, J., Lee, S. F., et al. Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am J Clin Pathol, 2000; 113: 823–30.
Ben-Ezra, J., Weinberg, C. D., Wu, A., et al. Leu-9 (CD7) positivity in acute leukemias: a marker of T-cell lineage ? Hematol Pathol, 1987; 1: 147–56.
Jensen, A. W., Hokland, M., Jorgensen, H., et al. Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor beta and delta rearrangements and course of disease suggestive of poor prognosis. Blood, 1991; 78: 1292–1300.
Kita, K., Mina, H., Nakase, K., et al. Clinical importance of CD7 expression in acute myeloid leukemia. Blood, 1993; 81: 2399–405.
Del Pota, G., Stasi, R., Venditti, A., et al. Prognostic value of cell marker analysis in de novo acute myeloid leukemia. Leukemia, 1994; 8: 388–94.
Spits, H., Lanier, L. L., & Phillips, J. H. Development of human T and natural killer cells. Blood, 1995; 85: 2654–70.
Campana, D., Thompson, J. S., Amlot, P., et al. The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol, 1987; 138: 648–55.
Janossy, G., Coustan-Smith, E., & Campana, D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases. Leukemia, 1989; 3: 170–81.
Dongen, J. J. M. van Krissansen, G. W., Wolvers-Tettero, I. L. M., et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988; 71: 603–12.
Salmerón, A., Sánchez-Madrid, F., Ursa, M. A., et al. A conformational epitope expressed upon association of CD3-epsilon with either CD3-delta or CD3-gamma is the main target for recognition by anti-CD3 monoclonal antibodies. J Immunol, 1991; 147: 3047–52.
Peiper, S. C. & Guo, H.-H. CD33 workshop panel report. In T. Kishimoto, H. Kikutani, A. E. G. Kr. von dem Borne, et al., eds., Leucocyte Typing Ⅵ. White Cell Differentiation Antigens (New York: Garland Publishing Inc., 1997), pp. 972–4.
Goyert, S. M. CD13 workshop panel report. In T. Kishimoto, H. Kikutani, A. E. G. Kr. von dem Borne, et al. eds., Leucocyte Typing Ⅵ. White Cell Differentiation Antigens (New York: Garland Publishing Inc., 1997), pp. 962–3.
Orfao, C. S., Vidriales, B., Macedo, A., et al. Immunophenotypic analysis of CD19+ precursors in normal adult bone marrow: implications for minimal residual disease detection. Haematology, 1998; 83: 1069–75.
Rieman, D., Kehlen, A., Thiele, K., et al. Induction of aminopeptidase N/CD13 on human lymphocytes after adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells, and monocytes/macrophages. J Immunol, 1997; 158: 3425–32.
Makrynikola, V., Favaloro, E. J., Browning, T., et al. Functional and phenotypic up regulation of CD13/aminopeptidase-N on precursor-B acute lymphoblastic leukemia after in vitro stimulation. Exp Hematol, 1995; 23: 1173–9.
Casasnovas, R. O., Slimane, F. K., Garand, R., et al. Immunological classification of acute myeloblastic leukemias: relevance to patient outcome. Leukemia, 2003; 17: 515–27.
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 626–9.
Zaki, S. R., Austin, G. E., Swan, D. C., et al. Studies of myeloperoxidase gene expression at the cellular level by in situ hybridization. Leukemia, 1990; 4: 813–18.
Austin, G. E., Chan, W. C., Zhao, W., et al. Myeloperoxidase gene expression in normal granulopoiesis and acute leukemias. Leuk Lymphoma, 1994; 15: 209–26.
Strobl, H., Takimoto, M., Majdic, O., et al. Myeloperoxidase expression in CD34+ normal hematopoietic cells. Blood, 1993; 82: 2069–78.
Tien, H.-F., Chou, C.-C., Wang, C.-H., et al. Putative normal counterparts of leukaemic cells from CD7-positive acute myeloid leukaemia can be demonstrated in human haemopoietic tissues. Br J Haematol, 1996; 94: 501–6.
Bello-Fernández, C., Matyash, M., Strobl, H., et al. Analysis of myeloid-associated genes in human hematopoietic progenitor cells. Exp Hematol, 1997; 251: 1158–66.
Stoor, J., Dolan, G., Coustan-Smith, E., et al. Value of monoclonal anti-myeloperoxidase (MPO7) for diagnosing acute leukaemia. J Clin Pathol, 1990; 43: 847–9.
Buccheri, V., Shetty, V., Yoshida, N., et al. The role of an anti-myeloperoxidase antibody in the diagnosis and classification of acute leukaemia: a comparison with light and electron microscopy cytochemistry. Br J Haematol, 1992; 80: 62–8.
Immamura, N. & Kuramoto, A. Analysis of peroxidase negative acute leukemias by monoclonal antibodies: III. Acute lymphoblastic leukemia. J Clin Lab Anal, 1989; 3: 88–94.
Shoot, C. E. van der, Daams, G. M., Pinkster, J., et al. Monoclonal antibodies against myeloperoxidase are valuable immunological reagents for the diagnosis of acute myeloid leukemia. Br J Haematol, 1990; 74: 173–8.
Nguyen, P. L., Olszak, I., Haris, N. L., & Prefer, F. I. Myeloperoxidase detection by three-color flow cytometry and by enzyme cytochemistry in the classification of acute leukemia. Am J Clin Pathol, 1998; 110: 163–9.
Kheiri, S. A., Mackerrell, T., Bonagura, V. R., et al. Flow cytometry with or without cytochemistry for the diagnosis of acute leukemias. Cytometry, 1998; 34: 82–6.
DeLatour, R. P., LeGrand, O., Moreau, D., et al. Comparison of flow cytometry and enzyme cytochemistry for the detection of myeloperoxidase in acute myeloid leukaemia: interests of a new positivity threshold. Br J Haematol, 2003; 122: 211–16.
Dijkstra, K. & Kluin-Nelemans, H. C. No difference between cytochemical and immunological detection of myeloperoxidase in AML. Br J Haematol, 1990; 75: 630.
Nakase, K., Sartor, M., & Bradstock, K. Detection of myeloperoxidase by flow cytometry in acute leukemia. Cytometry, 1998; 34: 198–202.
Hammer, R. D., Collins, R. D., Ebrahimi, S., & Casey, T. K. Rapid immunocytochemical analysis of acute leukemias. Am J Clin Pathol, 1992; 97: 876–84.
Escribano, L., Ocqueteau, M., Almeida, J., et al. Expression of the c-kit (CD117) molecule in normal and malignant hematopoiesis. Leuk Lymphoma, 1998; 30: 459–66.
Ashman, L. K. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol, 1999; 31: 1037–51.
Reuss-Borst, M. A., Bühring, H. J., Schmidt, H., et al. AML: immunophenotypic heterogeneity and prognostic significance of c-kit expression. Leukemia, 1994; 8: 258–63.
Ashman, L. K., Roberts, M. M., Gadd, S. J., et al. Expression of a 150-kD cell surface antigen identified by monoclonal antibody YB5.B8 is associated with poor prognosis in acute non-lymphoblastic leukaemia. Leuk Res, 1988; 12: 923–8.
Morita, S., Tsuchiya, S., Fujie, H., et al. Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture. Leukemia, 1996; 10: 102–5.
Di Noto, R., Lo Pardo, C., Schiavone, E. M., et al. Stem cell factor receptor (c-kit, CD117) is expressed on blast cells from most immature types of acute myeloid malignancies but is also a characteristic of a subset of acute promyelocytic leukaemia. Br J Haematol, 1996; 92: 562–4.
Valverde, L. R., Matutes, E., Farahat, N., et al. C-kit receptor (CD117) expression in acute leukemia. Ann Hematol, 1996; 72: 11–15.
Nomdedeu, J. F., Mateu, R., Altes, A., et al. Enhanced myeloid specificity of CD117 compared with CD13 and CD33. Leukemia Res, 1999; 23: 341–4.
Knankura, Y., Ikeda, H., Kitayama, H., et al. Expression, function and activation of the proto-oncogene c-kit product in human leukemia cells. Leuk Lymphoma, 1993; 10: 35–41.
Thalhammer-Scherrer, R., Mitterbauer, G., Simonitsch, I., et al. The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol, 2002; 117: 380–9.
Smith, F. O., Broudy, V. C., Zsebo, K. M., et al. Cell surface expression of c-kit by childhood acute myeloid leukemia blasts is not of prognostic value: a report for the Children's Cancer Group. Blood, 1994; 84: 847–52.
Komori, T., Okada, A., Stewart, V., et al. Lack of N regions in antigen receptor variable region genes of TDT-deficient lymphocytes. Science, 1993; 261: 1171–5.
Bollum, F. J. Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood, 1979; 54: 1203–15.
McCaffrey, R., Harrison, T. A., Parkman, P., et al. Terminal deoxynucleotidyl transferase in human leukemic cells and in normal thymocytes. N Engl J Med, 1975; 292: 775–80.
Strauchen, J. A. & Miller, L. K. Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol, 2001; 116: 12–16.
Onciu, M., Lorsbach, R. B., Henry, E. C., & Behm, F. G. Terminal deoxynucleotidyl transferase-positive lymphoid cells in reactive lymph nodes from children with malignant tumors: incidence, distribution pattern, and immunophenotyping in 26 patients. Am J Clin Pathol, 2002; 118: 348–54.
Kung, P. C., Long, J. C., McCaffery, R. P., et al. Terminal deoxynucleotidyl transferase in the diagnosis of leukemia and malignant lymphoma. Am J Med, 1978; 64: 788–94.
Faber, J., Kantarjian, H., Roberts, M. W., et al. Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch Pathol Lab Med, 2000; 124: 92–7.
Drexler, H. G., Sperling, C., & Ludwig, W. Terminal deoxynucleotidyl transferase (TdT) expression in acute myeloid leukemia. Leukemia, 1993; 7: 1142–50.
Stass, S. A., Dean, L., Peiper, S. C., et al. Determination of terminal deoxynucleotidyl transferase on bone marrow smears by immunoperoxidase. Am J Clin Pathol, 1982; 77: 174–6.
Campana, D., Coustan-Smith, E., & Behm, F. G. The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplant, 1991; 8: 429–37.
Civin, C. I., Trischmann, T. M., Fackler, M. J., et al. Report of the CD34 cluster workshop. In W. Knapp, ed., Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 818–25.
Fina, L., Molgaard, H. V., Robertson, D., et al. Expression of the CD34 gene in vascular endothelial cells. Blood, 1990; 75: 2417–28.
Simmons, P. J. & Torok-Storb, B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood, 1991; 78: 2848–53.
Weiss, S. W. & Nickoloff, B. J. CD34+ is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol, 1993; 17: 1039–45.
Kurihara, N., Civin, C., & Roodman, G. D. Multipotent hematopoietic colony forming cells are early precursors for osteoclasts. Exp Hematol, 1988; 16: 473a.
Macedo, A., Orfao, A., Ciudad, I., et al. Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia, 1995; 9: 1896–1901.
Selleri, C., Notaro, R., Catalando, L., et al. Prognostic irrelevance of CD34 in acute myeloid leukemia. Br J Haematol, 1992; 82: 479–82.
Lee, E. J., Yang, J., Leavitt, R. D., et al. The significance of CD34 and TdT determination in patients with untreated de novo acute myeloid leukemia. Leukemia, 1992; 6: 1203–9.
Myint, H. & Lucie, N. P. The prognostic significance of the CD34 antigen in acute myeloid leukemia. Leuk Lymphoma, 1992; 7: 425–9.
Solary, E., Casanovas, R.-O., Campos, L., et al. Surface markers in adult acute myeloblastic leukemia: correlation of CD19+, CD34+ and CD14+/DR– phenotypes with shorter survival. Leukemia, 1992; 6: 393–9.
Geller, R. B., Zahurak, M., Hurwitz, C. A., et al. Prognostic importance of immunophenotyping in adults with acute myelocytic leukaemia: the significance of the stem-cell glycoprotein CD34 (My10). Br J Haematol, 1990; 76: 340–7.
Smith, F. O., Lampkin, B. C., Versteeg, C., et al. Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cell lacks prognostic significance. Blood, 1992; 79: 2415–22.
Kuerbitz, S. J., Civin, C. I., Krischer, J. P., et al. Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol, 1992; 9: 1419–29.
Borowitz, M. J., Shuster, J. J., Civin, C. I., et al. Prognostic significance of CD34 expression in childhood B-precursor acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1990; 8: 1389–98.
Pui, C.-H., Hancock, M. L., Head, D. R., et al. Clinical significance of CD34 expression in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 889–94.
Pui, C.-H., Behm, F. G., & Crist, W. M. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 343–62.
Bene, M. C., Castoldi, G., Knapp, W., et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, 1995; 9: 1783–6.
Tsugaqnezawa, K., Kiyokawa, N., Matsuo, Y., et al. Flow cytometric diagnosis of the cell lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal antibodies specific to human pre-B-cell receptor. Blood, 1998; 92: 4317–24.
Lemers, B., Arnoulet, C., Fossat, C., et al. Fine characterization of childhood and adult acute lymphoblastic leukemia (ALL) by a proB and preB surrogate light chain-specific mAb and a proposal for a new B cell ALL classification. Leukemia, 2000; 14: 2103–11.
Ludwig, W.-D., Haferlach, T., & Schoch, C. Classification of acute leukemias: perspective 1. In C.-H. Pui, ed., Treatment of Acute Leukemias: New Directions for Clinical Research. (Totowa, NJ: Humana Press, 2003), pp. 3–41.
Lo Coco, F., di Celle, P. F., Alimena, G., et al. Acute lymphoblastic leukemia with the 4:11 translocation exhibiting early T cell features. Leukemia, 1989; 3: 79–82.
Pui, C.-H., Frankel, L. S., Carroll, A. J., et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood, 1991; 77: 440–7.
Pui, C.-H. Acute leukemias with the t(4;11)(q21;q23). Leuk Lymphoma, 1991; 7: 173–9.
Rubnitz, J. E., Camitta, B. M., Mahmoud, H., et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol, 1999; 17: 191–6.
Behm, F. G., Smith, F. O., Raimondi, S. C., et al. The human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood, 1996; 87: 1134–9.
Smith, F. O., Rauch, C., Williams, D. E., et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor prognosis patients with abnormalities of chromosome band 11q23. Blood, 1996; 87: 1123–33.
Hilden, J. M., Smith, F. O., Frestedt, J. L., et al. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood, 1997; 89: 3801–5.
Mauvieux, L., Delabesse, E., Bourquelot, P., et al. NG2 expression in MLL rearranged acute myeloid leukaemia is restricted to monoblastic cases. Br J Haematol, 1999; 107: 674–6.
Wuchter, C., Harbott, J., Schoch, C., et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia, 2000; 14: 1232–8.
Cantu-Rajnoldi, A., Putti, M. C., Schiro, R., et al. Biological and clinical features of B-precursor childhood acute lymphoblastic leukemia showing CD2 and/or E-rosette co-expression. Haematol, 1992; 77: 384–9.
Dunphy, C. H. & Chu, J. Y. Aberrant CD2 expression in precursor-B acute lymphoblastic leukemia of childhood. Am J Hematol, 1996; 52: 224–6.
Manabe, A., Mori, T., Ebihara, Y., et al. Characterization of leukemic cells in CD2/CD19 double positive acute lymphoblastic leukemia. Int J Hematol, 1998; 67: 45–52.
Volger, L. B., Crist, W. M., Bockman, D. E., et al. Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med, 1978; 298: 872–8.
Pui, C.-H., Rivera, G. K., Hancock, M. L., et al. Clinical significance of CD10 expression in childhood acute lymphoblastic leukemia. Leukemia, 1993; 7: 35–40.
Borowitz, M. J., Hunger, S. P., Carroll, A. J., et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood, 1993; 82: 1086–91.
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol, 1990; 8: 1380–8.
Pui, C.-H., Raimondi, S. C., Hancock, M. L., et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.
Privitera, E., Kamps, M. P., Hayashi, Y., et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.
Sang, B.-C., Shi, L., Dias, P., et al. Monoclonal antibodies to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein characterization and diagnostic utility. Blood, 1997; 89: 2909–14.
Rubnitz, J. E., Downing, J. R., Pui, C.-H., et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.
Borkhardt, A., Cazzaniga, G., Viehmann, S., et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemias enrolled in the German and Italian multicenter therapy trials. Blood, 1997; 90: 571–7.
Baruchel, A., Cayuela, J. M., Ballerini, P., et al. The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol, 1997; 99: 101–6.
Borowitz, M. J., Rubnitz, J., Nash, M., et al. Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia, 1998; 12: 1764–70.
De Zen, I., Orfao, A., Cazzaniga, G., et al. Quantitative multiparameter immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML-1 ALLs identification. Leukemia, 2000; 14: 1225–31.
Koehler, M., Behm, F. G., Shuster, J., et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia, 1993; 7: 2064–8.
Shaffer, A. L., RosenWald, A., & Staudt, L. M. Lymphoid malignancies: dark side of B-cell differentiation. Nat Rev Immunol, 2002; 2: 920–32.
Drexler, H. G., Messmore, H. L., Menon, M., et al. A case of Tdt-positive B-cell acute lymphoblastic leukemia. Am J Clin Pathol, 1986; 85: 735–8.
Nakamura, F., Tatsumi, E., Tani, A., et al. Coexpression of cell-surface immunoglobulin (sIg), terminal deoxynucleotidyl transferase (TdT) and recombination activating gene 1 (RAG-1): two cases and derived cell lines. Leukemia, 1996; 10: 1159–63.
Secker-Walker, L. M., Stewart, E., Norton, E., et al. Multiple chromosome abnormalities in a drug resistant Tdt positive B-cell leukemia. Leuk Res, 1987; 11: 155–61.
Walle, A. J., AI-Katib, A., Wong, G. Y., et al. Multiparameter characterization of L3 leukemia cell population. Leuk Res, 1987; 11: 73–83.
Del Vecchio, L., Fasanaro, A., Schavone, E. M., et al. B-cell acute lymphoblastic leukemia (B-ALL) heterogeneity. Br J Haematol, 1989; 72: 291–300.
Sullivan, M. P., Pullen, D. J., Crist, W. M., et al. Clinical and biological heterogeneity of childhood B cell acute lymphocytic leukemia: implications for clinical trials. Leukemia, 1990; 4: 6–11.
Mufti, G. J., Hamblin Oscier, P. G., & Johnson, S. Common ALL with pre-B features showing (8;14) and (14;18) chromosome translocations. Blood, 1983; 62: 1142–6.
Granick, D. J. & Finlay, J. L. Acute lymphoblastic leukemia with Burkitt cell morphology and cytoplasmic immunoglobulin. Blood, 1980; 56: 311–14.
Gluck, W. L., Bigner, S. H., Borowitz, M. J., et al. Acute lymphoblastic leukemia of Burkitt's type (L3 ALL) with 8;22 and 14;18 translocations and absent surface immunoglobulins. Am J Clin Pathol, 1986; 85: 636–40.
Navid, F., Mosijczuk, A. D., Head, D. R., et al. Acute lymphoblastic leukemia with the t(8;14)(q24;q32) translocation and FAB-L3 morphology associated with B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia, 1999; 13: 135–41.
Kaplinsky, C. & Rechavi, G. Acute lymphoblastic leukemia of Burkitt type (L3 ALL) with t(8;14) lacking surface and cytoplasmic immunoglobulins. Med Pediatr Oncol, 1998; 31: 36–8.
Komrokji, R., Lancet, J., Felgar, R., et al. Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leukemia Res, 2003; 27: 561–6.
Matsuo, Y., Drexler, H. G., Takeuchi, M., & Orita, K. Establishment of novel B-cell precursor leukemia sister cell lines NALM-36 and NALM-37: shift of immunoglobulin phenotypes to double light chain positive B-cell. Leukemia Res, 2002; 26: 1–10.
Navid, F., Mosijczuk, A. D., Head, D. R., et al. Acute lymphoblastic leukemia with the t(8;14)(q24:32) translocation. Leukemia, 1999; 13: 135–41.
Kansal, R., Deeb, G., Barcos, M., et al. Precursor B lymphoblastic leukemia with surface light chain immunoglobulin restriction. Am J Clin Pathol, 2004; 121: 512–25.
Frater, J. L., Batanian, J. R., O'Connor, D. M., & Grosso, L. E. Lymphoblastic leukemia with mature B-cell phenotype in infancy. J Pediatr Hematol Oncol, 2004; 26: 672–7.
Komrokji, R., Lancet, J., Felgar, R., et al. Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leukemia Res, 2003; 27: 561–6.
Chan, N. P. H., Ma, E. S. K., Wan, T. S. K., & Chan, L. C. The spectrum of acute lymphoblastic leukemia with mature B-cell phenotype. Leukemia Res, 2003; 27: 231–4.
Pui, C.-H., Behm, F. G., Singh, B., et al. Heterogeneity of presenting prognostic features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.
Behm, F. G., Fitzgerald, T. J., Patton, D., et al. CD21 (CR2) is frequently expressed on blasts of childhood T-cell acute lymphoblastic leukemia (T-ALL). In W. Knapp, B. Dörken, W. R. Giltcs, et al., eds. Leukocyte Typing IV. White cell differentiation antigens. (New York: Oxford University Press, 1989), pp. 61–62.
Behm, F. G., Pui, C.-H., Rivera, G. R., et al. Acute lymphoblastic leukemia (ALL) expressing NK cell-associated CD56 does not arise from NK cell progenitors. Mod Pathol, 1995; 8: 106a.
Reinherz, E. L., Kung, P. C., Goldstein, G., et al. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A, 1980; 77: 1588–92.
Shuster, J. J., Falletta, J. M., Pullen, D. J., et al. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1990; 75: 166–73.
Garand, R., Voisin, P., Papin, S., et al. Characteristics of pro-T ALL subgroups: comparison with late T-ALL. The Groupe d' Etude Immunologique des Leucemies. Leukemia, 1993; 7: 161–7.
Niehues, T., Kapaun, P., Harms, D. O., et al. A classification on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcomes in the COALL studies. Leukemia, 1999; 13: 614–17.
Ludwig, W. D., Harbott, J., Bartram, C. R., et al. Incidence and prognosis of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of the BFM study 86. Recent Results Cancer Res, 1993; 131: 269–82.
Pullen, J., Shuster, J. J., Link, M., et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphoblastic leukemia (ALL) as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia, 1999; 13: 1696–707.
Uckun, F. M., Steinherz, P. G., Sather, H., et al. CD2 expression on leukemic cells as a predictor of event-free survival after chemotherapy for T-lineage acute lymphoblastic leukemia: a Children's Cancer Group study. Blood, 1996; 88: 4288–95.
Alfsen, G. C., Beiske, K., Holte, H., et al. T-cell receptor taudelta+/CD3+4-8-T-cell acute lymphoblastic leukemias: a distinct subgroup of leukemias in children. A report of five cases. Blood, 1991; 77: 2023–30.
Gouttefangeas, C., Bensusan, A., & Boumsell, L. Study of CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood, 1990; 75: 931–4.
Schott, G., Sperling, C., Schrappe, M., et al. Immunophenotypic and clinical features of T-cell receptor gammadelta+ T-lineage acute lymphoblastic leukaemia. Br J Haematol, 1998; 101: 753–5.
Raimondi, S. C., Behm, F. C., Roberson, R. K., et al. Cytogenetics of childhood T-cell leukemia. Blood, 1988; 72: 1560–6.
Heerema, N. A., Sather, H. N., Sensel, M. G., et al. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol, 1998: 16: 1270–8.
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.
Yeoh, E.-J., Ross, M. B., Shurtleff, S., et al. Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.
Suzuki, R., Nakamura, S., Suzumiya, J., et al. Blastic natural killer cell lymphoma/leukemia (CD56-positive blastic tumor). Cancer, 2005; 104: 1022–31.
Susuk, R., Yamamoto, K., Seto, M., et al. CD7+ and CD56+ myeloid/natural killer cell precursor acute leukemia: a distinct hematolymphoid disease entity. Blood, 1997; 90: 2417–28.
Yamada, O., Ichikawa, M., Okamoto, T., et al. Killer T-cell induction in patients with blastic natural killer cell lymphoma/leukaemia: implications for successful treatment and possible therapeutic strategies. Br J Haematol, 2001; 113: 153–60.
Susuki, R. & Nakamura, S. Malignancies of natural killer (NK) cell precursor: myeloid/NK cell precursor acute leukemia and blastic NK cell lymphoma/leukemia. Leuk Res, 1999; 23: 615–24.
Inaba, T., Shimazuki, C., Sumikuma, T., & Nakagawa, M. Myeloid/natural killer cell precursor leukemia seems not rare among acute myeloid leukemia of M0 subtype. Leuk Res, 2000; 24: 551.
Natkunam, Y., Cherry, A. M., & Cornblett, P. J. Natural killer cell precursor acute lymphoma/leukemia presenting in an infant. Arch Pathol Lab Med, 2001; 125: 413–18.
Chan, J. K., Sin, V. C., Wong, K. F., et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood, 1997; 89: 4501–13.
Ino, T., Tsuzuki, M., Okamoto, M., et al. Acute leukemia with the phenotype of a natural killer cell/T cell bipotential precursor. Ann Hematol, 1999; 78: 43–7.
Nagata, T., Higashigawa, M., Naga, M., et al. A child case of CD34+, CD33−, HLA-DR-, CD7+, CD56+ stem cell leukemia with thymic involvement. Leuk Res, 1996; 20: 983–5.
Mori, K. L., Egashira, M., & Oshimi, K. Differentiation stage of natural killer cell-lineage lymphoproliferative disorders based on phenotypic analysis. Br J Haematol, 2001; 115: 225–8.
Feuillard, J., Jacob, M.-C., Valensi, F., et al. Clinical and biologic features of CD4+CD56+ malignancies. Blood, 2002; 99: 1556–63.
Caldwell, C. W., Poje, E., & Helikson, M. A. B-cell precursors in normal pediatric bone marrow. Am J Clin Pathol, 1991; 95: 816–23.
Foucar, K. Bone Marrow Pathology, 2nd edn. (Chicago, IL: ASCP Press, 2001), pp. 352–5.
Kroft, S. H. Role of flow cytometry in pediatric hematopathology. Am J Clin Pathol, 2004; 122(Suppl.): S19–32.
Cornelius, A. S., Campbell, D., Schwartz, E., et al. Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura. Am J Pediatr Hematol Oncol, 1991; 13: 57–61.
Hirt, A., Morell, A., Frei, H., et al. Proliferation of lymphoid precursor cells in the bone marrow of patients with various disorders of the immune system. Exp Hematol, 1988; 16: 38–41.
Mandel, M., Rechavi, G., Neumann, Y., et al. Bone marrow cell populations mimicking common acute lymphoblastic leukemia in infants with stage IV-S neuroblastoma. Acta Haematol, 1991; 86: 86–9.
Foot, A. B. M., Potter, M. N., Ropner, J. E., et al. Transient erythroblastopenia of childhood with CD10, TdT, and cytoplasmic μ lymphocyte positivity in bone marrow. J Clin Pathol, 1990; 43: 857–9.
Vandersteenhoven, A. M., Williams, J. E., & Borowitz, M. J. Marrow B-cell precursors are increased in lymphomas or systemic diseases associated with B-cell dysfunction. Am J Clin Pathol, 1993; 100: 60–6.
Kobayashi, S. D., Seki, K., Suwa, N., et al. The transient appearance of small blastoid cells in the marrow after bone marrow transplantation. Am J Clin Pathol, 1991; 96: 191–5.
Fisgin, T., Yarali, N., Duru, F., & Kara, A. CMV-induced immune thrombocytopenia and excessive hematogones mimicking an acute B-precursor lymphoblastic leukemia. Leuk Res, 2003; 27: 193–6.
Rimsza, L. M., Larson, R. S., Winters, S. S., et al. Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am J Clin Pathol, 2000; 114: 66–75.
Stass, S. A., McGraw, T. P., Folds, J. D., et al. Terminal transferase in acute lymphoblastic leukemia in remission. Am J Clin Pathol, 1981; 75: 838–41.
Stekhoven, J. H. S., Langenhuysen, C. A. M., Bakkeren, J. A. J. M., et al. Morphology and incidence of the “post-therapeutic lymphoid cell” in the bone marrow of children with acute lymphoblastic leukemia. Am J Clin Pathol, 1986; 124: 46–52.
Doel, L. J. van den, Pieters, R., Huismans, D. R., et al. Immunological phenotype of lymphoid cells in regenerating bone marrow of children after treatment for acute lymphoblastic leukemia. Eur J Haematol, 1988; 41: 170–5.
Longacre, T. A., Foucar, K., Crago, S., et al. Hematogones: a multiparameter analysis of bone marrow precursor cells. Blood, 1993; 73: 543–52.
McKenna, R. W., Asplund, S. L., & Kroft, S. H. Immunophenotype analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma, 2004; 45: 277–85.
Hurwitz, C. A., Loken, M. R., Graham, M. L., et al. Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood, 1988; 72: 299–307.
Weir, E. G., Cowan, K., LeBeau, P., et al. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four-color flow cytometry: implications for residual disease detection. Leukemia, 1999; 13: 558–67.
Lochem, E. G. van, Wiegers, Y. M., Beemd, R. van den, et al. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patient depends on the type of preceding chemotherapy. Leukemia, 2000; 14: 688–95.
Wegelius, R. Preleukaemic states in children. Scand J Haematol, 1986; 36(Suppl. 45): 133–9.
Breatnach, F., Chessells, J. M., & Greaves, M. F. The aplastic presentation of childhood leukemia: a feature of common-ALL. Br J Haematol, 1981; 49: 387–93.
Sills, R. H. & Stockman, J. A., III. Preleukemic states in children with acute lymphoblastic leukemia. Cancer, 1981; 48: 110–12.
Liang, R., Chan, T. K., & Todd, D. Childhood acute lymphoblastic leukemia and aplastic anemia. Leuk Lymphoma, 1994; 13: 411–15.
Matloub, Y. H., Brunning, R. D., Arthur, D. C., et al. Severe aplastic anemia preceding acute lymphoblastic leukemia. Cancer, 1993; 71: 264–8.
Saarinen, U. M. & Wegelius, R. Preleukemic syndrome in children. Am J Pediatr Hematol Oncol, 1984; 6: 137–45.
Schwartz, C. L. & Cohen, H. J. Preleukemic syndromes and other syndromes predisposing to leukemia. Pediatr Clin North Am, 1988; 35: 853–71.
Stewart, C. C., Behm, F. G., Carey, J. L., et al. U.S.-Canadian consensus recommendations on the immunophenotype analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry, 1997; 30: 231–5.
Neame, P. B., Soamboonsrup, P., Browman, G. P., et al. Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood, 1986; 68: 1255–62.
San Miguel, J. F., Gonzalez, M., Canizo, M. C., et al. Surface marker analysis in acute myeloid leukemia and correlation with FAB classification. Br J Haematol, 1986; 64: 547–60.
Drexler, H. G. Classification of acute myeloid leukemias: a comparison of FAB and immunophenotyping. Leukemia, 1987; 10: 697–705.
Griffin, J. D., Mayer, H. J., Weinstein, H. J., et al. Surface marker analysis of acute myeloblastic leukemia: identification of differentiation-associated phenotypes. Blood, 1983; 62: 557–63.
Orfao, A., Chillon, M. C., Bortoluci, A. M., et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica, 1999; 84: 405–12.
Smith, L. J., Curtis, J. E., Messner, H. A., et al. Lineage infidelity in acute leukemia. Blood, 1983; 61: 1138–45.
Porwitt-MacDonald, A., Jannossy, G., Ivory, K., et al. Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood, 1996; 87: 1162–9.
Terstappen, L. W. M. M., Safford, M., Konemann, S., et al. Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. Leukemia, 1991; 5: 757–67.
Terstappen, L. W. M. M. & Loken, M. R. Myeloid differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol, 1990; 2: 229–40.
Jennings, C. D. & Foon, K. A. Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood, 1997; 90: 2863–92.
Lacombe, F., Durrieu, F., Briais, A., et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia, 1997; 11: 1878–86.
Krasinskas, A. M., Wasik, M. A., Kamoun, M., et al. The usefulness of CD64, other monocyte-associated antigens, and CD45 gating in the subclassification of acute myeloid leukemias with monocytic differentiation. Am J Clin Pathol, 1998; 110: 797–805.
Behm, F. G. Diagnosis of childhood acute myeloid leukemia. In S. M. Geagan, ed., Clinics in Laboratory Medicine. Diagnosis of Pediatric Hematology, vol. 19 (Philadelphia, PA: W. B. Saunders, 1999), pp. 187–237.
Piedras, J., Lopez-Karpovitch, X., & Cardenas, R. Light scatter and immunophenotypic characteristics of blast cells in typical acute promyelocytic leukemia and its variant. Cytometry, 1998; 32: 286–90.
Bitter, M. A., Le Beau, M. M., Rowley, J. D., et al. Associations between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol, 1987; 18: 211–25.
Hurwitz, C. A., Raimondi, S. C., Head, D., et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood, 1992; 80: 3182–8.
Kita, K., Nakase, K., Miwa, H., et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood, 1992; 80: 470–7.
Tsuchiya, H., ElSonbaty, S. S., Nagano, K., et al. Acute myeloblastic leukemia (ANLL-M2) with t(8;21)(q22;q22) variant expressing lymphoid but not myeloid surface antigens with a high number of G-CSF receptors. Leuk Res, 1993; 17: 375–7.
Arber, D. A., Glackin, C., Lowe, G., et al. Presence of t(8;21)(q22;22) in myeloperoxidase-positive myeloid surface antigen-negative acute myeloid leukemia. Am J Clin Pathol, 1997; 107: 68–73.
Khalil, S. H., Jackson, J. M., Quri, M. H., et al. Acute myeloblastic leukemia (AML-M2) expressing CD19 B-cell lymphoid antigen without myeloid surface antigens. Leuk Res, 1994; 18: 145.
Seymour, S. A., Pierce, H. M., Kantarijian, M. J., et al. Investigation of karyotypic, morphologic and clinical features in patients with acute myeloid leukemia blast cells expressing neural cell adhesion molecule (CD56). Leukemia, 1994; 8: 623–6.
Seshi, B., Kashyap, A., & Bennett, J. M. Acute myeloid leukaemia with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−) and CD33 (−). Br J Haematol, 1992; 81: 374–7.
Garcia-Vela, J. A., Martin, M., Delgado, I., et al. Acute myeloid leukemia M2 and t(8;21)(q22;q22) with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−), and CD33(−). Ann Hematol, 1999; 78: 237–40.
Lee, J. J., Chung, I. J., Yang, D. H., et al. Clinical significance of CD56 expression in patients with acute myeloid leukemia. Leuk Lymphoma, 202; 43: 1897–9.
Rubnitz, J. E., Raimondi, S. C., Halbert, A. R., et al. Characteristics and outcome of t(8;21) positive childhood acute myeloid leukemia: a single institution's experience. Leukemia, 2002; 16: 2072–7.
Baer, M. R., Stewart, C. C., Lawrence, D., et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood, 1997; 90: 1643–8.
Pui, C.-H., Raimondi, S. C., Head, D. R., et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.
Creutzig, U., Harbott, J., Sperling, C., et al. Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood, 1995; 86: 3097–108.
Paietta, E., Goloubeva, O., Neuberg, D., et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic markers and molecular subtypes. Cytometry, 2004; 59B: 1–9.
Lo Coco, F., Avvisati, G., Diverio, D., et al. Rearrangements of the RAR-α gene in acute promyelocytic leukaemia: correlations with morphology and immunophenotype. Br J Haematol, 1991; 78: 494–9.
Stasi, R., Bruno, A., Venditti, A., et al. A microgranular variant of acute promyelocytic leukemia with atypical morpho-cytochemical features and an early myeloid immunophenotype. Leuk Res, 1997; 21: 575–80.
Exner, M., Thalhammer, R., Kapiotis, S., et al. The “typical” immunophenotype of acute promyelocytic leukemia (APL-M3): does it prove true for the M3-variant ? Cytometry, 2000; 42: 106–9.
Foley, R., Soamboonsrup, P., Carter, R. F., et al. CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol, 2001; 67: 34–41.
Krause, J. R., Stolc, V., Kaplan, S. S., et al. Microgranular promyelocytic leukemia: a multiparameter examination. Am J Hematol, 1989; 30: 158–63.
Vidriales, M. B., Orfao, A., González, M., et al. Expression of NK and lymphoid-associated antigens in blasts of acute myeloblastic leukemia. Leukemia, 1993; 7: 2026–9.
Claxton, D. F., Reading, C. L., Nagarajan, L., et al. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood, 1992; 80: 582–6.
Maslak, P., Miller, W. H., Heller, G., et al. CD2 expression and PML/RAR-α transcripts in acute promyelocytic leukemia. Blood, 1993; 81: 1666.
Rovelli, A., Biondi, A., Rajnoldi, A. C., et al. Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol, 1992; 10: 413–18.
Dunphy, C. H. Comprehensive review of adult acute myelogenous leukemia: cytomorphological, enzyme cytochemical, flow cytometric immunophenotypic, and cytogenetic findings. J Clin Lab Anal, 1999; 13: 19–26.
Murray, C. K., Estey, E., Paietta, E., et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome. J Clin Oncol, 1999; 17: 293–7.
Ferrara, F., Morabito, F., Martino, B., et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol, 2000; 18: 1295–300.
Di Bona, E., Sartori, R., Zambello, R., et al. Prognostic significance of CD56 antigen expression in acute myeloid leukemia. Haematologica, 2002; 87: 250–6.
Guglielmi, C., Martelli, M. P., Diverio, D., et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 1196 cases. Br J Haematol, 1998; 102: 1035–41.
Biondi, A., Luciano, A., Bassan, R., et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML breakpoint. Leukemia, 1995; 9: 1461–6.
Nagendra, S., Meyerson, H., Skallerud, G., & Rosenthal, N. Leukemias resembling acute promyelocytic leukemia, microgranular variant. Am J Clin Pathol, 2002; 117: 651–7.
Borrow, J., Shipley, J., Howe, K., et al. Molecular analysis of simple variant translocations in acute promyelocytic leukemia. Genes Chromosomes Cancer, 1994; 9: 234–43.
Rizzatti, E. G., Portieres, F. L., Martins, S. L. R., et al. Microgranular and t(11;17)/PLZF-RARα variants of acute promyelocytic leukemia also present the flow cytometric pattern of CD13, CD34, and CD15 expression characteristic of PML-RARα gene rearrangement. Am J Hematol, 2004; 76: 44–51.
Head, D. R., Behm, F. G., Raimondi, S. C., et al. Genetic heterogeneity of acute myeloid leukemia (AML) with FAB-AML M3 morphology. Mod Pathol, 1995; 8: 112A.
Licht, J. D., Chomienne, C., Goy, A., et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood, 1995; 85: 1083–94.
Scott, A. A., Head, D. R., Kopecky, K. J., et al. HLA-DR−, CD33+, CD56+, CD16− myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood, 1994; 84: 244–55.
Rizzatti, E. G., Garcia, A. B., Portieres, F. L., et al. Expression of CD117 and CD11b in bone marrow can differentiate acute promyelocytic leukemia for recovering benign myeloid proliferation. Am J Clin Pathol, 2002; 118: 31–7.
Boccuni, P., Di Noto, R., Lo Pardo, C., et al. CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens, 1998; 52: 1–8.
Veillon, D. M., Nordberg, M. L., Neupane, P., & Cotelingam, J. D. Spontaneous resolution of RARalpha rearrangement in bone marrow recovery with a predominance of CD117- and CD11b-negative promyelocytes. Am J Clin Pathol, 2002; 118: 956–6.
Falni, B., Flenghi, L., Fagioli, M., et al. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood, 1997; 90: 4046–53.
Samoszuk, M. K., Tynan, W., Sallash, G., et al. An immunofluorescent assay for acute promyelocytic leukemia cells. Am J Clin Pathol, 1998; 109: 205–10.
Villamor, N., Costa, D., Aymerich, M., et al. Rapid diagnosis of acute promyelocytic leukemia by analyzing the immunocytochemical pattern of the PML protein with the monoclonal antibody PG-M3. Am J Clin Pathol, 2000; 114: 786–92.
Adriaansen, H. J., te Boekhorst, P. A. W., Hagemeijer, A. M., et al. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 81: 3043–51.
Paietta, E., Wiernik, P. H., Andersen, J., et al. Acute myeloid leukemia M4 with inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 82: 2595.
Liu, P. P., Wijmenga, C., Hajra, A., et al. Identification of the chimeric protein product of the CBFB-MYHII fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer, 1996; 16: 77–87.
Viswanatha, D. S., Chen, I., Liu, P. P., et al. Characterization and use of an antibody to the CBFβ-SMMHC protein in inv(16)/t(16;16)-associated acute myeloid leukemias. Blood, 1998; 91: 1882–90.
Haferlach, T., Winkemann, H., Loffler, H., et al. The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization. Blood, 1996; 87: 2459–63.
Alsavbeh, R., Brynes, R. K., Slovak, M. L., & Arber, D. A. Acute myeloid leukemia with t(6;9)(p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol, 1997; 107: 430–7.
Khalidi, H. S., Medeiros, L. J., Chang, K. L., et al. The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities. Am J Clin Pathol, 1998; 109: 211–20.
Lillington, D. M., MacCallum, P. K., Lister, T. A., & Gibbon, B. Translocation t(6;9)(p23;q34) in acute myeloid leukemia without myelodysplasia or basophilia: two cases and a review of the literature. Leukemia, 1993; 7: 527–31.
Adriaansen, H. J., Dongen, J. J. M. van, Hooijkaas, H., et al. Translocation (6;9) may be associated with a specific TdT-positive immunological phenotype in ANLL. Leukemia, 1988; 2: 136–40.
Ross, M. E., Mahfouz, R., Onciu, M., et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 2004; 104: 3679–87.
Betz, S. A., Foucar, K., Head, D. R., et al. False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts. Blood, 1992; 79: 2399–403.
Breton-Gorius, J., Lewis, J. C., Guichard, J., et al. Monoclonal antibodies specific for human platelet membrane glycoproteins bind to monocytes by focal absorption of platelet membrane fragments: an ultrastructural immunogold study. Leukemia, 1987; 1: 131–41.
Krissansen, G. W., Lucas, C. M., Stomski, F. C., et al. Blood leukocytes bind platelet glycoprotein (IIb-IIIa) but do not express the vitronectin receptor. Int Immunol, 1990; 2: 267–77.
Dercksen, M. W., Weimar, I. S., Rihel, D. J., et al. The value of flow cytometric analysis of platelet glycoprotein expression on CD34+ cells measured under conditions that prevent p-selectin-mediated binding of platelets. Blood, 1995; 86: 3771–82.
Baer, M. R., Stewart, C. C., Lawrence, D., et al. Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia, 1998; 12: 317–25.
Mann, K. P., DeCastro, C. M., Liu, J., et al. Neural cell adhesion molecule (CD56)-positive acute myelogenous leukemia and myelodysplastic and myeloproliferative syndromes. Am J Clin Pathol, 1997; 107: 653–60.
Delgado, J., Morado, M., Jimenez, M. C., et al. CD56 expression in myeloperoxidase-negative FAB M5 acute myeloid leukemia. Am J Hematol, 2002; 69: 28–30.
Raspadori, D., Damiani, D., Lenoci, M., et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia, 2001; 15: 1161–4.
Mazzella, F. & Schumacher, H. R. Acute erythroleukemia, M6b. Arch Pathol Lab Med, 2000; 124: 330–1.
Shichishima, T. Minimally differentiated erythroleukemia: recognition of erythroid precursors and progenitors. Intern Med, 2000; 39: 761–2.
Hasserjain, R. P., Howard, J., Wood, A., et al. Acute erythremic myelosis (true erythroleukemia): a variant of AML FAB-M6. J Clin Pathol, 2001; 54: 205–9.
Mazzella, F. M. & Schumacher, H. R. Acute erythremic myelosis (true erythroleukaemia): a variant of AML FAB-M6. J Clin Pathol, 2002; 55: 800.
Malkin, D. & Freedman, M. H. Childhood erythroleukemia: review of clinical and biological features. Am J Pediatr Hematol Oncol, 1989; 11: 348–59.
Yamada, S., Hongo, T., Okada, S., et al. Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int J Hematol, 2001; 74: 428–36.
Hadjiyannakis, A., Fletcher, W. A., Lebrun, D. P., et al. Congenital erythroleukemia in a neonate with severe hypoxic ischemic encephalopathy. Am J Perinatol, 1998; 15: 689–94.
Villeval, J. L., Cramer, P., Lemoine, F., et al. Phenotype of early erythroblastic leukemias. Blood, 1986; 68: 1167–74.
Breton-Gorius, J., Villeval, J. L., Mitjavila, M. T., et al. Ultrastructural and cytochemical characterization of blasts from early erythroblastic leukemias. Leukemia, 1987; 1: 173–81.
Garand, R., Duchayne, E., Blanchard, D., et al. Minimally differentiated erythroleukemia (AML M6 ‘variant’): a rare subset of AML distinct from AML M6. Br J Haematol, 1995; 90: 868–75.
Day, D. S., Gay, J. N., Kraus, J. S., et al. Erythroleukemia of childhood and infancy: a report of two cases. Ann Clin Lab Sci, 1997; 27: 142–50.
Breton-Gorius, J., Villeval, J. L., Kieffer, N., et al. Limits of phenotypic markers for the diagnosis of megakaryoblastic leukemia. Blood Cells, 1989; 15: 259–77.
Debili, N., Coulombel, L., Croisille, L., et al. Characterization of a bipotent erythromegkaryocytic progenitor in human bone marrow. Blood, 1996; 88: 1284–96.
Muroi, K., Tarumoto, T., Akioka, T., et al. Sialyl-Tn- and neuron-specific enolase-positive minimally differentiated erythroleukemia. Intern Med, 2000; 39: 761–2.
Koike, T., Aoki, S., Maruyama, S., et al. Cell surface phenotyping of megakaryoblasts. Blood, 1987; 69: 957–60.
Ribeiro, R. C., Oliveira, M. S. P., Fairclough, D., et al. Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leuk Lymphoma, 1993; 10: 299–306.
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al. Biology and outcome of acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.
Kafer, G., Willer, A., Ludwig, W., et al. Intracellular expression of CD61 precedes surface expression. Ann Hematol, 1999; 78: 472–4.
Duchayne, E., Fenneteau, O., Pages, M.-P., et al. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d'Hematologie Cellulaire (GFHC). Leuk Lymphoma, 2003; 44: 39–58.
Quentmeier, H., Zaborski, M., Graf, G., et al. Expression of the receptor for MPL and proliferative effects of its ligand thrombopoietin on human leukemic cells. Leukemia, 1996; 10: 297–310.
Lion, T., Haas, O. A., Harbott, J., et al. The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood, 1992; 79: 3325–30.
Chan, W. C., Carroll, A., Alvarado, C. S., et al. Acute megakaryoblastic leukemia in infants with t(1;22)(p13;q13) abnormality. Am J Clin Pathol, 1992; 98: 214–21.
Helleberg, C., Knudsen, H., Hansen, P. B., et al. CD34+ megakaryoblastic leukaemic cells are CD38−, but CD61+ and glycophorin A+; improved criteria for diagnosis of AML-M7 ? Leukemia, 1997; 11: 830–4.
Athale, U. H., Kaste, S. C., Razzouk, B. T., et al. Skeletal manifestations of pediatric acute megakaryoblastic leukemia. J Pediatr Hematol Oncol, 2002; 24: 561–5.
Das, D. K., Shome, D. K., Garg, A., et al. Pediatric acute leukemia presenting as bilateral renal enlargement. Report of a case with fine aspiration cytologic features suggestive of megakaryocytic differentiation. Acta Cytol, 2000; 44: 819–23.
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al. Proposals for the classification of acute leukemia. Br J Haematol, 1976; 33: 451–8.
Campos, L., Guyotat, D., Archimbaus, E., et al. Surface marker expression in adult acute myeloid leukemia: correlations with initial characteristics, morphology and response to therapy. Br J Haematol, 1989; 72: 161–2.
Lee, E. J., Pollack, A., Leavitt, R. D., et al. Minimally differentiated acute nonlymphocytic leukemia: a distinct entity. Blood, 1987; 70: 1400–6.
Matutes, E., Pombo de Oliveira, M., Foroni, L., et al. The role of ultrastructural cytochemistry and monoclonal antibodies in clarifying the nature of undifferentiated cells in acute leukaemia. Br J Haematol, 1988; 69: 205–11.
Wering, E. R. van, Brederoo, P., Dijk-de Leeuw, J. H. van, et al. Electron microscopy: a contribution to further classification of acute unclassifiable childhood leukemia. Blut, 1990; 60: 291–6.
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al. Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML-MO). Br J Haematol, 1991; 78: 325–9.
Matutes, E., Buccheri, V., Morilla, R., et al. Immunological, ultrastructural and molecular features of unclassifiable acute leukaemia. Recent Results Cancer Res, 1993; 131: 41–52.
Stasi, R., Del Poeta G., Venditti, A., et al. Lineage identification of acute leukemias: relevance of immunologic and ultrastructural techniques. Hematol Pathol, 1995; 9: 79–94.
Thalhammer-Scherrer, R., Mitterbauer, G., Simonitsch, I., et al. The immunophenotype of 325 acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol, 2002; 117: 380–9.
Kaleem, Z. & White, G. Diagnostic criteria for minimally differentiated acute myeloid leukemia (AML-M0). Evaluation and a proposal. Am J Clin Pathol, 2001; 115: 876–84.
Stasi, R. & Amadori, S. AML-M0: a review of laboratory features and proposal of new diagnostic criteria. Blood Cells Mol Dis, 1999; 25: 120–9.
Praxedes, M. K., de Oliveira, L. Z., Pereira, W. D. V., et al. Monoclonal antibody anti-MPO is useful in recognizing minimally differentiated acute myeloid leukaemia. Leuk Lymphoma, 1994; 12: 233–9.
Venditti, A., Del Poeta, G., Stasi, R., et al. Biological profile of 23 cases of minimally differentiated acute myeloid leukemia (AML-MO) and its clinical implications. Blood, 1996; 87: 418–20.
Venditti, A., Del Poeta, G., Buccisano, F., et al. Minimally differentiated acute myeloid leukemia (AML-MO): comparison of 25 cases with other French-American-British subtypes. Blood, 1997; 89: 621–9.
Villamor, N., Zarco, M. A., Rozman, M., et al. Acute myeloblastic leukemia with minimal myeloid differentiation: phenotypical ultrastructural characteristics. Leukemia, 1998; 12: 1071–5.
Kotylo, P. K., Seo, I. S., Smith, F. O., et al. Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-MO). Am J Clin Pathol, 2000; 113: 193–200.
Huang, S. Y., Tang, J. L., Jou, S. T., et al. Minimally differentiated acute myeloid leukemia in Taiwan: predominantly occurs in children less than 3 years and adults between 51 and 70 years. Leukemia, 1999; 13: 1506–12.
Cohen, P. L., Hoyer, J. D., Kurtin, P. J., et al. Acute myeloid leukemia with minimal differentiation. A multiple parameter study. Am J Clin Pathol, 1998; 109: 32–8.
Segeren, C. M., de Jong-Gerrits, G. C., Veer, M. B. van't. AML-MO: clinical entity or waste basket for immature blastic leukemias ? A description of 14 patients. Dutch Slide Review Committee of Leukemias in Adults. Ann Hematol, 1995; 70: 297–300.
Béné, M. C., Bernier, M., Casasnovas, R. O., et al. Acute myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol, 2001; 113: 737–45.
Amadori, S., Venditti, A., Del Poeta, G., et al. Minimally differentiated acute myeloid leukemia (AML MO): a distinct clinico-biologic entity with poor prognosis. Ann Hematol, 1996; 72: 208–15.
Venditti, A., Del Poeta, G., Stasi, R., et al. Minimally differentiated acute myeloid leukemia (AML MO): cytochemical, immunophenotypic and cytogenetic analysis of 19 cases. Br J Haematol, 1994; 88: 784–93.
Carlson, K. M., Vignon, C., Bohlander, S., et al. Identification and molecular characterization of CALM/AF10 fusion subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Leukemia, 2000; 14: 100–4.
Dreyling, M. H., Schrader, K., Fonatsch, C., et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood, 1998; 91: 4662–7.
Traweek, S. T., Liu, J., Braziel, R. M., et al. Detection of myeloperoxidase gene expression in minimally differentiated acute myelogenous leukemia (AML-MO) using in situ hybridization. Diagn Mol Pathol, 1995; 4: 212–19.
Cascavilla, N., Melillo, L., D'Arena, G., et al. Minimally differentiated acute myeloid leukemia (AML MO): clinico-biological findings of 29 cases. Leuk Lymphoma, 2000; 37: 105–13.
Cuneo, A., Ferrant, A., Michaux, J. L., et al. Cytogenetic profile of minimally differentiated (FAB MO) acute myeloid leukemia: correlation with clinicobiologic findings. Blood, 1995; 85: 3688–94.
Stasi, R., Del Poeta, G., Venditti, A., et al. Analysis of treatment failure in patients with minimally differentiated acute myeloid leukemia (AML-MO). Blood, 1994; 83: 1619–25.
Fujisawa, S., Tanabe, J., Harano, H., et al. Acute minimally differentiated myeloid leukemia (M0) with inv (3)(q21q26). Leuk Lymphoma, 1999; 35: 627–30.
Costello, R., Mallet, F., Chambost, H., et al. The immunophenotype of minimally differentiated acute myeloid leukemia (AML-MO): reduced immunogenicity and high frequency of CD34+/CD38− leukemic progenitors. Leukemia, 1999; 13: 1513–18.
Yokose, N., Ogata, K., Ito, T., et al. Chemotherapy for minimally differentiated acute myeloid leukemia (AML-MO). Ann Hematol, 1993; 66: 67–70.
Segeren, C. M., de Jong-Gerritis, G. C. M. M., & Veer, M. B. van't. AML-MO: clinical utility or waste basket for immature blastic leukemias ? A description of 14 patients. Ann Hematol, 1995; 70: 297–300.
Sempere, A., Jarque, I., Guinot, M., et al. Acute myeloblastic leukemia with minimal myeloid differentiation (FAB AML-MO): a study of eleven cases. Leuk Lymphoma, 1993; 12: 103–8.
Kanda, Y., Hamaki, T., Yamamoto, R., et al. The clinical significance of CD34 expression in response to therapy of patients with acute myeloid leukemia: an overview of 2483 patients from 22 studies. Cancer, 2000; 88: 2529–33.
Campana, D., Hansen-Hagge, T. E., Matutes, E., et al. Phenotypic, genotypic, cytochemical, and ultrastructural characterization of acute undifferentiated leukemia. Leukemia, 1990; 4: 620–4.
Brito-Babapulle, F., Pullon, H., Layton, D. M., et al. Clinicopathological features of acute undifferentiated leukaemia with a stem cell phenotype. Br J Hematol, 1990; 76: 210–4.
Asou, N., Suzushima, H., Hattori, T., et al. Acute unclassifiable leukemia originating from undifferentiated cells with the aberrant rearrangement and expression of immunoglobulin and T-cell receptors genes. Leukemia, 1991; 5: 293–9.
Veer, M. B. van't. The diagnosis of acute leukemia with undifferentiated or minimally differentiated blasts. Ann Hematol, 1992; 64: 161–5.
Shende, A. C., Bonagura, V. R., Cheah, M. S., et al. Acute undifferentiated leukemia (AUL): a case report and a proposed system of classification. Ann J Hematol, 1992; 40: 234–7.
Heil, G., Gunsilius, E., Hoelzer, D., et al. Peroxidase expression in acute unclassified leukemias: ultrastructural studies in combination with immunophenotyping. Leuk Lymphoma, 1994; 14: 103–9.
Bernier, M., Massy, M., Deleeuw, N., et al. Immunologic definition of acute minimally differentiated myeloid leukemia (M0) and acute undifferentiated leukemia (AUL). Leuk Lymphoma, 1995; 18: 13–17.
Cuneo, A., Ferrant, A., Michaux, J.-L., et al. Cytogenetic and clinicobiological features of acute leukemia with stem cell phenotype: study of nine cases. Cancer Genet Cytogenet, 1996; 92: 31–6.
Béné, M. C., Bernier, M., Casasnovas, R. O., et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemia and undifferentiated leukemias. Blood, 1998; 92: 596–9.
Testa, U., Torelli, G. F., Riccioni, R., et al. Human acute stem cell leukemia with multilineage differentiation potential via cascade activation of growth factor receptors. Blood, 2002; 99: 4634–7.
Heil, G., Ganser, A., Raghavachar, A., et al. Induction of myeloperoxidase in five cases of acute unclassified leukemia. Br J Haematol, 1988; 68: 23–32.
Schoot, C. E. van der, Visser, F. J., Tetteroo, P. A. T., et al. In-vitro differentiation of cells of patients with acute undifferentiated leukemia. Br J Haematol, 1989; 71: 351–5.
Reuss-Borst, M. A., Jaschonek, K., & Muller, C. A. Acute undifferentiated leukemia with an unusual CD7+CD56+CD33+ immunophenotype of NK progenitors. Leukemia, 1996; 10: 923–4.
Ben-Bassat, I. & Gale, R. P. Hybrid acute leukemia. Leuk Res, 1986; 8: 929–36.
Das Gupta, A., Advani, S. H., Nair, C. N., et al. Acute leukemia and coexpression of lymphoid and myeloid phenotypes. Hematol Oncol, 1987; 5: 189–96.
Mirro, J., Zipf, T. F., Pui, C.-H., et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood, 1985; 66: 1115–23.
Stass, S. & Mirro, J. Unexpected heterogeneity in acute leukemia: mixed lineages and lineage switch. Hum Pathol, 1985; 16: 864–6.
Kuerbitz, S. J., Civin, C. I., Krischer, J. P., et al. Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol, 1992; 9: 1419–29.
Matutes, E., Morilla, R., Owusu-Ankomah, K., et al. Definition of acute biphenotypic leukemia. Haematologica, 1997; 82: 64–6.
Drexler, H. G., Theil, E., & Ludwig, W.-D. Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia, 1991; 5: 637–45.
Drexler, H. G., Theil, E., & Ludwig, W.-D. Acute myeloid leukemia expressing lymphoid-associated antigens: diagnostic incidence and prognostic significance. Leukemia, 1993; 7: 489–98.
Behm, F. G. Classification of acute leukemias. Perspective 2. In C.-H. Pui, ed., Treatment of Acute Leukemias: New Directions for Clinical Research (Totowa, NJ: Humana Press, 2002).
Borowitz, M. J., Shuster, J. J., Land, V. J., et al. Myeloid antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1379–80.
Ludwig, W.-D., Harbott, J., Bartram, C. D., et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of BFM Study 86. In W.-D. Ludwig & E. Thiel, eds., Recent Advances in Cell Biology of Acute Leukemia (New York: Springer, 1993), pp. 269–82.
Pui, C.-H., Behm, F. G., Singh, B., et al. Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood, 1990; 75: 198–202.
Pui, C.-H., Raimondi, S. C., Head, D. R., et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.
Pui, C.-H., Schell, M. J., Raimondi, S. C., et al. Myeloid-antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1378–9.
Uckun, F. M., Sather, H. N., Gaynon, P. S., et al. Clinical features and treatment outcomes of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1997; 90: 28–35.
Wiersma, S. R., Ortega, J., Sobel, E., et al. Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med, 1991; 324: 800–8.
Fink, F. M., Köller, U., Mayer, H., et al. Prognostic significance of myeloid-associated antigen expression on blast cells in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 1993; 21: 340–6.
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 84: 2870–7.
Sobol, R. E., Mick, R., Royson, I., et al. Clinical importance of myeloid antigen expression in adult lymphoblastic leukemia. N Engl J Med, 1987; 316: 1111–17.
Boldt, D. H., Kopecky, K. J., Head, D., et al. Expression of myeloid antigens by blast cells in acute lymphoblastic leukemia of adults. The Southwest Oncology Group experience. Leukemia, 1994; 8: 2118–26.
Lauria, F., Raspadori, D., Martinelli, G., et al. Increased expression of myeloid antigen markers in adult acute lymphoblastic leukaemia patients: diagnostic and prognostic implications. Br J Haematol, 1994; 87: 286–92.
Larson, R. A., Dodge, R. K., Burns, C. P., et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: Cancer and Leukemia Group B study 8811. Blood, 1995; 85: 2025–37.
Saxena, A., Sheridan, D. P., Card, R. T., et al. Biologic and clinical significance of CD7 expression in acute myeloid leukemia. Am J Hematol, 1998; 58: 278–84.
Jensen, A. W., Hokland, M., Jorgensen, H., et al. Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor β and δ rearrangements and course of disease suggestive of poor prognosis. Blood, 1991; 78: 1292–300.
Kita, K., Miwa, H., Nakase, K., et al. Clinical importance of CD7 expression in acute myelocytic leukemia. The Japan Cooperative Group of Leukemia/Lymphoma. Blood, 1993; 81: 2399–405.
Kristensen, J. S., Ellegaard, J., Bendix, K., et al. First-line diagnosis based on immunological phenotyping in suspected acute leukemia: a prospective study. Leuk Res, 1988; 12: 773–82.
Cuneo, A., Boogaerts, M., Ferrant, A., et al. Cytogenetics of hybrid leukemias. Leuk Lymphoma, 1995; 18: 19–23.
Zomas, A. P., Swanbury, G. J., Matutes, E., et al. Bilineal acute leukemia of B and T lineage with a novel translocation t(9;17)(p11;q11). Leuk Lymphoma, 1997; 25: 179–85.
Akashi, K., Harada, M., Shibuya, T., et al. Clinical characteristics of hybrid leukemia: report of five cases. Leuk Res, 1990; 14: 145–53.
Akashi, K., Shibuya, T., Harada, M., et al. Acute ‘bilineal-biphenotypic’ leukaemia. Br J Haematol, 1990; 74: 402–4.
Lawlor, E., McGirl, A., Jackson, F., McCann, S. R., & Secker-Walker, L. M. Acute ‘bilineal-biphenotypic’ leukaemia. Br J Haematol, 1991; 77: 566–7.
Marco, F., Bureo, E., Ortega, J. J., et al. High survival rate in infant acute leukemia treated with early high-dose chemotherapy and stem-cell support. J Clin Oncol, 2000; 18: 3256–61.
Issacs, H., Jr. Fetal and neonatal leukemia. J Pediatr Hematol Oncol, 2003; 25: 348–61.
Pui, C.-H., Ribeiro, R. C., Campana, D., et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.
Greaves, M. F. Infant leukemia biology, aetiology, and treatment. Leukemia, 1996; 10: 372–7.
Gill Super, H. J., Rothberg, P. G., Kobayashi, H., et al. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood, 1994; 83: 641–4.
Mahmoud, H. H., Ridge, S. A., Behm, F. G., et al. Intrauterine monoclonal origin of neonatal concordant acute lymphoblastic leukemia in monozygotic twins. Med Pediatr Oncol, 1995; 24: 77–81.
Bayer, E., Kurczynski, T. W., Robinson, M. G., et al. Monozygotic twins with congenital acute lymphoblastic leukemia (ALL) and t(4;11)(q21;q23). Cancer Genet Cytogenet, 1996; 89: 177–80.
Pui, C. H., Kane, J. R., & Crist, W. M. Biology and treatment of infant leukemias. Leukemia, 1995; 9: 762–9.
Heikinheimo, M., Pakkala, S., Juvonen, E., et al. Immuno- and cytochemical characterization of congenital leukemia. Med Pediatr Oncol, 1994; 22: 279–82.
Tao, J., Valderrama, E., & Kahn, L. Congenital acute T lymphoblastic leukemia: report of a case with immunohistochemical and molecular characterization. J Clin Pathol, 2000; 53: 150–2.
McCoy, J. P. & Overton, W. R. Immunophenotyping of congenital leukemia. Cytometry, 1995; 22: 85–8.
McCoy, J. P., Travis, S. F., Blumstein, L., et al. Congenital leukemia: report of two cases. Cytometry, 1995; 22: 89–92.
Bresters, D., Reus, A. C., Veerman, A. J., et al. Congenital leukaemia: the Dutch experience and review of the literature. Br J Haematol, 2002; 117: 513–24.
Cimino, G., Rapanotti, M. C., Rivolta, A., et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia, 1995; 9: 391–5.
Biondi, A., Cimino, G., Pieters, R., & Pui, C.-H. Biologic and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.
Carroll, A., Civin, C., Schneider, N., et al. The t(1;220)(p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group study. Blood, 191; 78: 48–52.
Zipursky, A., Brown, E. J., Christensen, H., & Doyle, J. Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Diag Pediatr Hematol, 1999; 19: 157–67.
Pui, C.-H., Raimondi, S. C., Borowitz, M. J., et al. Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukemia. J Clin Oncol, 1993; 11: 1361–7.
Levitt, G. A., Stiller, C. A., & Chessells, J. M. Prognosis of Down's syndrome with acute leukemia. Arch Dis Child, 1990; 65: 212–16.
Litz, C. E., Davies, S., Brunning, R. D., et al. Acute leukemia and the transient myeloproliferative disorder associated with Down syndrome: morphology, immunophenotypic and cytogenetic manifestations. Leukemia, 1995; 9: 1432–9.
Creutzig, J., Ritter, J., Vormoor, J., et al. Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia, 1996; 10: 1677–86.
Zipursky, A., Peeters, M., & Poon, A. Megakaryoblastic leukemia and Down's syndrome. A review. Pediatr Hematol Oncol, 1987; 4: 211–30.
Zipursky, A., Poon, A., & Doyle, J. Leukemia in Down's syndrome: a review. Pediatr Hematol Oncol, 1992; 9: 139–49.
Ravindranath, Y., Abella, E., Krischer, J. P., et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML study 8498. Blood, 1992; 80: 2210–14.
Zipursky, A., Thorner, P., De Harven, E., et al. Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res, 1994; 18: 163–71.
Yumura-Yagi, K., Hara, J., Kurahashi, H., et al. Mixed phenotype of blasts in acute megakaryocytic leukaemia and transient abnormal myelopoiesis in Down's syndrome. Br J Haematol, 1992; 81: 520–5.
Brodeur, G. M., Dahl, G. V., Williams, D. L., et al. Transient leukemoid reaction and trisomy 21 mosaicism in a phenotypically normal newborn. Blood, 1980; 57: 883–7.
Ridgway, D., Benda, G. I., Magenis, E., et al. Transient myeloproliferative disorder of the Down type in the normal newborn. Am J Dis Child, 1990; 144: 1117–19.
Worth, L. L., Zipursky, A., Christensen, H., & Tubergen, D. Transient leukemia with extreme basophilia in a phenotypically normal infant with blast cells containing a pseudodiploid clone, 46,XY, i(21)(q10). J Pediatr Hematol Oncol, 1999; 21: 63–6.
Wu, S.-Q., Loh, K. T., Chen, X.-R., et al. Transient myeloproliferative disorder in a phenotypically normal infant with i(21q) mosaicism. Cancer Genet Cytogenet, 2002; 136: 138–40.
Zipursky, A. Transient leukemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol, 2003; 120: 930–8.
Foucar, K., Friedman, K., Llewellyn, A., et al. Prenatal diagnosis of myeloproliferative disorder via percutaneous umbilical blood sampling. Report of two cases in fetuses affected by Down's syndrome. Am J Pathol, 1992; 97: 584–90.
Avet-Loiseau, H., Mechinaud, F., & Harousseau, J. L. Clonal hematologic disorders in Down syndrome. A review. J Pediatr Hematol Oncol, 1995; 17: 19–24.
Coulombel, K., Derycke, M., Villeval, J. L., et al. Characterization of the blast population in two neonates with Down's syndrome and transient myeloproliferative disorder. Br J Haematol, 1987; 66: 69–76.
Besso, F., Hayashi, Y., Hayashi, Y., & Ohga, K. Ultrastructural studies of peripheral blood of neonates with Down's syndrome and transient abnormal myelopoiesis. Am J Clin Pathol, 1988; 89: 627–33.
Eguchi, M., Sakakibara, H., Suda, J., et al. Ultrastructural and ultracytochemical differences between transient myeloproliferative disorder and megkaryoblastic leukaemia in Down's syndrome. Br J Haematol, 1989; 73: 315–22.
Fernandez de Castro, M., Salas, S., Martinez, A., et al. Transitory T-lymphoblastic leukemoid reaction in a neonate with Down syndrome. Am J Pediatr Hematol Oncology, 1990; 12: 71–3.
Bozner, P. Transient myeloproliferative disorder with erythroid differentiation in Down syndrome. Arch Pathol Lab Med, 2002; 126: 474–7.
Svaldi, M., Moroder, W., Messner, H., et al. Transient myeloproliferative disorder with a CD7+ and CD56+ myeloid/natural killer cell precursor phenotype in a newborn. J Pediatr Hematol Oncol, 2002; 24: 394–6.
Wechsler, J., Greene, M., McDevitt, M. A., et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.
Shivdasani, R. A. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells, 2001; 19: 397–407.
Gurbuxani, S., Vyas, P., & Crispino, J. D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood, 2004; 103: 399–406.
Hitzler, J. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer, 2005; 5: 11–20.
Groet, J., McElwaine, S., Spinelli, M., et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet, 2003; 361: 1617–20.
Xu, G., Nagano, M., Kanezak, R., et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood, 2003; 102: 2960–8.
Hayashi, Y., Eguchi, M., Sugita, K., et al. Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood, 1988; 72: 15–23.
Shen, J. J., Williams, B. J., Zipursky, A., et al. Cytogenetic and molecular studies of Down syndrome individuals with leukemia. Am J Hum Genet, 1995; 56: 915–25.
Doyle, J. J., Thorner, P., Poon, A., et al. Transient leukemia followed by megakaryoblastic leukemia in a child with mosaic Down syndrome. Leuk Lymphoma, 1995; 17: 345–50.
Kurahashi, H., Hara, J., Yumura-Yagi, K., et al. Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood, 1991; 77: 1161–3.
Miyashita, Y., Asada, M., Fujimoto, J.-I., et al. Clonal analysis of transient myeloproliferative disorder in Down's syndrome. Leukemia, 1991; 5: 56–9.
Holt, S. E., Brown, E. J., & Zipursky, A. Telomerase and the benign and malignant megakaryoblastic leukemia of Down syndrome. J Pediatr Hematol Oncol, 2002; 24: 14–17.
Malkin, D., Brown, E. J., & Zipursky, A. The role of p53 in megakaryocytic leukemia of Down syndrome. Cancer Genet Cytogenet, 2000; 116: 1–5.
Martin-Henao, G. A., Quiroga, R., Sureda, A., & Garcia, J. CD7 expression on CD34+ cells from chronic myeloid leukemia in chronic phase. Am J Hematol, 1999; 61: 178–86.
Cho, E. K., Heo, D. S., Seol, J. G., et al. Ontogeny of natural-killer cells and T cells by analysis of BCR-ABL rearrangement from patients with chronic myelogenous leukemia. Br J Haematol, 2000; 111: 216–22.
Takahashi, N., Miura, I., Saitoh, K., & Miura, A. B. Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood, 1998; 92: 4758–63.
Rambaldi, A., Masuhara, K., Boleri, G.-M., et al. Flow cytometry of leucocyte alkaline phosphatase in normal and pathologic leucocytes. Br J Haematol, 1997; 96: 815–22.
Kant, A. M., Advani, S. H., & Zingde, S. M. Heterogeneity in the expression of FcγRIII in morphologically mature granulocytes from patients with chronic myeloid leukemia. Leuk Res, 1997; 21: 225–34.
Kabutomori, O., Iwatani, Y., Koh, T., et al. CD16 antigen density on neutrophils in chronic myeloproliferative disorders. Am J Clin Pathol, 1997; 197: 661–4.
Kasimir-Bauer, S., Ottinger, H., Wuttke, M., et al. Chronic myelogenous leukemia: effect of interferon-alpha treatment on phagocytic activity and capacity of circulating neutrophils. Leuk Res, 1998; 22: 115–17.
Valiron, O., Clemancy-Marcilla, G., Troesch, A., et al. Immunophenotype of blast cells in chronic myeloid leukemia. Leuk Res, 1988; 12: 861–72.
Wadhwa, J., Szydlo, R. M., Apperley, J. F., et al. Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood, 2002; 99: 2304–9.
Chan, L. C., Furley, A. J., Ford, A. M., et al. Clonal rearrangement and expression of the T cell receptor gene and involvement of the breakpoint cluster region in blast crisis of CGL. Blood, 1986; 67: 533–6.
Urbano-Ispizura, A., Cervantes, F., Matutes, E., et al. Immunophenotypic characteristics of blasts crisis of chronic myeloid leukemia: correlations with clinico-biological features and survival. Leukemia, 1993; 7: 1349–54.
Cortes, J. E., Talpaz, M., & Kantarjian, H. Chronic myelogeneous leukemia: a review. Am J Med, 1996; 100: 555–70.
Saikia, T., Advani, S., Dasgupta, A., et al. Characterization of blast cells during blast phase of chronic myeloid leukemia by immunophenotyping – experience in 60 patients. Leuk Res, 1988; 12: 499–506.
Nair, C., Chopra, H., Shinde, S., et al. Immunophenotype and ultrastructural studies in blast crisis of chronic myeloid leukemia. Leuk Lymphoma, 1995; 19: 309–13.
Khalidi, H., Brynes, R. K., Medeiros, L. J., et al. The immunophenotype of blast transformation of chronic myelogeneous leukemia: a high frequency of mixed lineage phenotype in “lymphoid” blasts and a comparison of morphologic, immunophenotypic, and molecular findings. Mod Pathol, 1998; 11: 1211–21.
Dorfman, D. M., Longtine, J. A., Fox, E. A., et al. T-cell blast crisis in chronic myelogenous leukemia. Immunophenotypic and molecular biologic findings. Am J Clin Pathol, 1997; 107: 168–76.
Blattner, W. A., Takatsuki, Y., & Gallo, R. Human T-cell leukemia/lymphoma virus and adult T-cell leukemia. JAMA, 1983; 250: 1074–80.
Manns, A., Hisada, M., La Grenada, L. Human T-lymphotropic virus type 1 infection. Lancet, 1999; 353: 1051–8.
Siegel, R. S., Gartenhaus, R. B., & Kuzel, T. M. Human T-cell lymphotropic-I-associated leukemia/lymphoma. Curr Treat Options Oncol, 2001; 2: 291–300.
Takatsuki, K. Adult T-cell leukemia. Intern Med, 1995; 34: 947–52.
Ohshima, K., Suzumiya, J., Sato, K., et al. Nodal T-cell lymphoma in HTLV-1-endemic area: proviral HTLV-1 DNA, histologic classification and clinical evaluation. Br J Haematol, 1998; 101: 703–11.
Fort, J. A., Graham-Pole, J., & Mottshaw, G. Adult-type T-cell lymphoma in an adolescent with human T-lymphotropic virus type 1 seropositivity. Med Pediatr Oncol, 1989; 17: 236–8.
Lin, B. T., Musset, M., Székely, A.-M., et al. Human T-cell lymphotropic virus-1-positive T-cell leukemia/lymphoma in a child. Arch Pathol Lab Med, 1997; 121: 182–6.
Vilmer, E., Le Deist, F., Fischer, A., et al. Smouldering T lymphoma related to HTLV-1 in a Sicilian child. Lancet, 1985; 2: 1301.
De Oliveira, P., Matutes, E., Famadas, L. C., et al. Adult T-cell leukaemia/lymphoma in Brazil and its relation to HTLV-1. Lancet, 1990; 336: 987–90.
Foucar, K., Carroll, T. J., Tannous, R., et al. Nonendemic adult T-cell leukemia/lymphoma in the United States: report of two cases and review of the literature. Am J Clin Pathol, 1985; 83: 18–26.
Broniscer, A., Ribeiro, R. C., Srinivas, R. V., et al. An adolescent with HTLV-1-associated adult T cell leukemia treated with interferon-alpha and zidovudine. Leukemia, 1996; 10: 1244–54.
Pombo-de-Oliveira, M. S., Dobbin, J. A., Laureiro, P., et al. Genetic mutation and early onset of T-cell leukemia in pediatric patients infected at birth with HTLV-I. Leuk Res, 2002; 26: 155–61.
Wilks, R. J., LaGrenade, L., Hanchard, B., et al. Sibling adult T-cell leukemia/lymphoma and clustering of human T-cell lymphotropic type I infection in a Jamaican family. Cancer, 1993; 72: 2700–4.
Takeshita, M., Akamatsu, M., Ohshima, K., et al. CD30 (Ki-1) expression in adult T-cell leukemia/lymphoma is associated with distinctive immunohistochemical and clinical characteristics. Histopathology, 1995; 26: 539–46.
McKenna, R. W., Parkin, J., Kersey, J. H., et al. Chronic lymphoproliferative disorder with unusual clinical, morphologic, ultrastructural and membrane surface marker characteristics. Am J Med, 1977; 62: 588–96.
Loughran, T. P., Kadin, M. E., Starkebaum, G., et al. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann Intern Med, 1985; 102: 169–75.
Loughran, T. Clonal diseases of large granular lymphocytes. Blood, 1993; 82: 1–14.
Dhodapkar, M. V., Li, C.-Y., Lust, J. A., Tefferi, A., & Phyliki, R. L. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance. Blood, 1994; 84: 1620–7.
Tefferi, A. Chronic natural killer cell lymphocytosis. Leuk Lymphoma, 1996; 20: 245–8.
Gianpietro, S., Zambello, R., Starkebaum, G., et al. The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood, 1997; 89: 256–60.
Lamy, T., Loughan, T. P., Jr. Current concepts: large granular lymphocyte leukemia. Blood Rev, 1999; 13: 230–40.
Gentile, T. C., Uner, A. H., Hutchison, R. E., et al. CD3−, CD56+ aggressive variant of large granular lymphocyte leukemia. Blood, 1994; 84: 2315–21.
Sun, T., Brody, J., Susin, M., et al. Aggressive natural killer cell lymphoma/leukemia. A recently recognized clinicopathologic entity. Am J Surg Pathol, 1993; 17: 1289–99.
Emile, J.-F., Bouiland, M.-L., Haioun, C., et al. CD5− CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas. Blood, 1996; 87: 1466–73.
Macon, W. R., Williams, M. E., Greer, J. P., et al. Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood, 1996; 87: 1474–83.
Le Deist, F., Basile, G., Coulombel, L., et al. A familial occurrence of natural killer cell-T-lymphocyte proliferation disease in two children. Cancer, 1991; 67: 2510–7.
Plantanias, L. C., Larson, R. A., Vardiman, J. W., et al. Complex rearrangement of the T cell receptor in large granular lymphocytosis associated with myeloid suppression. Leukemia, 1990; 4: 863–5.
Imumura, N., Kusunoki, Y., Kawa-Ha, K., et al. Aggressive natural killer cell leukemia/lymphoma: report of four cases and review of the literature. Br J Haematol, 1990; 75: 49–59.
Morice, W. G., Kurtin, P. J., Leison, P. J., et al. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocyte leukaemia. Br J Haematol, 2003; 120: 1026–36.
Langerak, A. W., Beemd, R. van den, Wolvers-Tettero, I. L. M., et al. Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalpha/beta T-cell proliferations. Blood, 2001; 98: 165–73.
Lima, M., Almeida, J., Santos, A. H., et al. Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes. Am J Clin Pathol, 2001; 159: 1861–8.
Weidmann, E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia, 2000; 14: 991–7.
Lai, R., Larratt, L. M., Etches, W., et al. Hepatosplenic T-cell lymphoma of alphabeta lineage in a 16-year-old boy presenting with hemolytic anemia and thrombocytopenia. Am J Surg Pathol, 2000; 24: 45–63.
Suarez, F., Wlodarska, I., Rigal-Huguet, F., et al. Hepatosplenic alphabeta T-cell lymphoma: an unusual case with clinical, histologic, and cytogenetic features of gammadelta hepatosplenic T-cell lymphoma. Am J Surg Pathol., 2000; 24: 1027–32.
Cooke, C. B., Krenacs, L., Steltler-Stevenson, M., et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood, 1996; 88: 4265–74.
Macon, W. R., Levy, N. B., Kurtin, P. J., et al. Hepatosplenic αβ T-cell lymphomas. Am J Surg Pathol, 2001; 25: 285–96.
Farcet, J., Gaulard, P., Marolleau, J., et al. Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor αβ. Blood, 1990; 75: 2213–19.
Francosis, A., Lesesve, J.-F., Stamatoullas, A., et al. Hepatosplenic gamma/delta T-cell lymphoma: a report of two cases in immunocompromised patients associated with isochromosome 7q. Am J Surg Pathol, 1997; 21: 781–90.
Garcia-Sanchez, F., Menarguez, J., Cristobal, E., et al. Hepatosplenic gamma-delta T-cell malignant lymphoma: report of the first case in childhood, including molecular minimal residual disease follow-up. Br J Haematol, 1995; 90: 943–46.
Nosari, A., Oreste, P. L., Biondi, A., et al. Hepato-splenic gammadelta T-cell lymphoma: a rare entity mimicking the hemophagocytic syndrome. Am J Hematol, 1999; 60: 61–5.
Coventry, S., Punnett, H. H., Tomczak, E. Z., et al. Consistency of isochromosome 7q and trisomy 8 in hepatosplenic gamma/delta T-cell lymphoma: detection by fluorescence in situ hybridization of a splenic touch-preparation from a pediatric patient. Pediatr Dev Pathol, 1999; 2: 478–83.
Rossbach, H. C., Chamizo, W., Dumont, D. P., et al. Hepatosplenic gamma/delta T-cell lymphoma with isochromosome 7q, translocation t(7;21), and tetrasomy 8 in a 9-year-old girl. J Pediatr Hematol Oncol., 2002; 24: 154–7.
Wang, C. C., Tien, H. F., Kin, M. T., et al. Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosomes Cancer, 1995; 12: 161–4.
Vega, F., Medeiros, L. J., Bueso-Ramos, C., et al. Hepatosplenic gamma/delta T-cell lymphoma in bone marrow. A sinusoidal neoplasm with blastic cytologic features. Am J Clin Pathol, 2001; 116: 410–9.
Salhany, K. E., Feldman, M., Kahn, M. J., et al. Hepatosplenic gamma/delta T-cell lymphoma: ultrastructural, immunophenotypic, and functional evidence for cytotoxic T lymphocyte differentiation. Hum Pathol, 1997; 28: 674–85.
Felger, R. E., Macon, W. R., Kinney, M. C., et al. TIA-1 expression in lymphoid neoplasms. Identification of subsets with cytotoxic T lymphocyte or natural killer cell differentiation. Am J Pathol, 1997; 150: 1893–1900.
Boulland, M. L., Kanavaros, P., Wechsler, J., et al. Cytotoxic protein expression in natural killer cell lymphomas and in alpha beta and gamma delta peripheral T-cell lymphomas. J Pathol, 1997; 183: 432–9.
Przybylski, G. K., Wu, H., Macon, W. R., et al. Hepatosplenic and subcutaneous panniculitis-like gamma/delta T cell lymphomas are derived from different Vdelta subsets of gamma/delta T lymphocytes. J Mol Diagn, 2000; 2: 11–19.
Weidmann, E., Hinz, T., Klein, S., et al. Cytotoxic hepatosplenic gammadelta T-cell lymphoma following acute myeloid leukemia bearing two distinct gamma chains of the T-cell receptor. Biologic and clinical features. Haematologica, 2000; 85: 1024–31.
Ohshima, K., Haraoka, S., Harada, N., et al. Hepatosplenic gammadelta T-cell lymphoma: relation to Epstein-Barr virus and activated cytotoxic molecules. Histopathology, 2000; 36: 127–35.
Joneaux, P., Daniel, M. T., Martel, V., et al. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia, 1996; 10: 1453–55.
Wlodarska, I., Martin-Garcia, N., Achten, R., et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer, 2002; 33: 243–51.
Sandlund, J. T. & Behm, F. G. Pediatric non-Hodgkin lymphoma. In J. P. Greer, J. Foerster, J. N. Lukens, et al., eds., Wintrobe's Clinical Hematology, 11th edn. (Philadelphia, PA: Lippincott Williams & Wilkins, 2003).
Stein, H., Foss, H.-D., Durkop, H., et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic and clinical features. Blood, 2000; 96: 3681–95.
Morris, S. W., Kirstein, M. N., Valentine, M. B., et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 1994; 263: 1281–4.
Kinney, M. C., Collins, R. D., Greer, J. P., et al. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol, 1993; 17: 859–68.
Anderson, M. M., Ross, C. W., Singleton, T. P., et al. Ki-1 anaplastic large cell lymphoma with a prominent leukemic phase. Hum Pathol, 1996; 27: 1093–5.
Villamor, N., Rozman, M., Esteve, J., et al. Anaplastic large-cell lymphoma with rapid evolution to leukemic phase. Ann Hematol, 1999; 78: 478–82.
Bayle, C., Charpentier, A., Duchayne, E., et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol, 1999; 104: 680–8.
Meech, S. J., McGavran, K., Odom, L. F., et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomysin 4-anaplastic lymphoma kinase gene fusion. Blood, 2001; 98: 1209–16.
Awaya, N., Mori, S., Takeuchi, H., et al. CD30 and NPM-ALK fusion protein (p80) are differentially expressed between peripheral blood and bone marrow in primary small cell variant of anaplastic large cell lymphoma. Am J Hematol, 2002; 69: 200–4.
Onciu, M., Behm, F. G., Raimondi, S. C., et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement. Report of three cases and review of the literature. Am J Clin Pathol, 2003; 120: 617–25.
Greer, J. P., Kinney, M. C., Collins, R. D., et al. Clinical features of 31 patients with Ki-1 anaplastic large-cell lymphoma. J Clin Oncol, 1991; 9: 539–47.
Gordon, B. G., Weisenburger, D. D., Warkentin, P. I., et al. Peripheral T-cell lymphoma in childhood and adolescence. Cancer, 1993; 71: 257–63.
Chhanabhai, M., Britten, C., Klasa, R., & Gascoyne, R. D. t(2;5) positive lymphoma with peripheral blood involvement. Leuk Lymphoma, 1997; 28: 415–22.
Wong, K. F., Chan, J. K. C., Ng, C. S., et al. Anaplastic large cell Ki-1 lymphoma involving bone marrow: marrow findings and association with reactive hemophagocytosis. Am J Hematol, 1991; 37: 112–19.

Reference Title: References

Reference Type: reference-list

Borst, J., Brouns, G. S., de Vries, E. et al. Antigen receptors on T and B lymphocytes: parallels in organization and function. Immunol Rev, 1993; 132: 49–84.
Owen, M. J. & Lamb, J. R., eds. Immune Recognition (Oxford, UK: IRL Press, 1988).
Dongen, J. J. M. van & Wolvers-Tettero, I. L. M. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta, 1991; 198: 1–91.
Janossy, G., Bollum, F. J., Bradstock, K. F., & Ashley, J. Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood, 1980; 56: 430–41.
Foon, K. A. & Todd, R. F. Immunologic classification of leukemia and lymphoma. Blood, 1986; 68: 1–31.
Greaves, M. F. Differentiation-linked leukemogenesis in lymphocytes. Science, 1986; 234: 697–704.
Dongen, J. J. M. van, Adriaansen, H. J., & Hooijkaas, H. Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med, 1988; 33: 298–314.
Dongen, J. J. M. van & Wolvers-Tettero, I. L. M. Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta, 1991; 198: 93–174.
Klaus, G. G. B. B lymphocytes (Oxford, UK: Oxford University Press, 1990).
Tonegawa, S. Somatic generation of antibody diversity. Nature, 1983; 302: 575–81.
Davis, M. M. & Björkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature, 1988; 334: 395–402.
Dongen, J. J. M. van, Comans-Bitter, W. M., Wolvers-Tettero, I. L. M., & Borst, J. Development of human T lymphocytes and their thymus-dependency. Thymus, 1990; 16: 207–34.
Chen, J. & Alt, F. W. Gene rearrangement and B-cell development. Curr Opin Immunol, 1993; 5: 194–200.
Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T., & Leder, P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell, 1981; 27: 583–91.
Ichihara, Y., Matsuoka, H., & Kurosawa, Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J, 1988; 7: 4141–50.
Matsuda, F., Shi, E. K., Nagaoka, H., et al. Structure and physical map of 64 variable segments in the 3′0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet, 1993; 3: 88–94.
Hieter, P. A., Max, E. E., Seidman, J. G., Maize, J. V., Jr., & Leder, P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell, 1980; 22: 197–207.
Schäble, K. F. & Zachau, H. G. The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler, 1993; 374: 1001–22.
Vasicek, T. J. & Leder, P. Structure and expression of the human immunoglobulin lambda genes. J Exp Med, 1990; 172: 609–20.
Bauer, T. R., Jr. & Blomberg, B. The human lambda L chain Ig locus. Recharacterization of JC lambda 6 and identification of a functional JC lambda 7. J Immunol, 1991; 146: 2813–20.
Williams, S. C. & Winter, G. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur J Immunol, 1993; 23: 1456–61.
Yoshikai, Y., Clark, S. P., Taylor, S., et al. Organization and sequences of the variable, joining and constant region genes of the human T-cell receptor alpha-chain. Nature, 1985; 316: 837–40.
Griesser, H., Champagne, E., Tkachuk, D., et al. The human T cell receptor alpha-delta locus: a physical map of the variable, joining and constant region genes. Eur J Immunol, 1988; 18: 641–4.
Toyonaga, B., Yoshikai, Y., Vadasz, V., Chin, B., & Mak, T. W. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A, 1985; 82: 8624–8.
Quertermous, T., Strauss, W. M., Dongen, J. J. M. van, & Seidman, J. G. Human T cell gamma chain joining regions and T cell development. J Immunol, 1987; 138: 2687–90.
Lefranc, M. P. & Rabbitts, T. H. The human T-cell receptor gamma (TRG) genes. Trends Biochem Sci, 1989; 14: 214–18.
Zhang, X. M., Tonnelle, C., Lefranc, M. P., & Huck, S. T cell receptor gamma cDNA in human fetal liver and thymus: variable regions of gamma chains are restricted to V gamma I or V9, due to the absence of splicing of the V10 and V11 leader intron. Eur J Immunol, 1994; 24: 571–8.
Takihara, Y., Tkachuk, D., Michalopoulo, E., et al. Sequence and organization of the diversity, joining, and constant region genes of the human T-cell delta-chain locus. Proc Natl Acad Sci U S A, 1988; 85: 6097–101.
Breit, T. M., Wolvers-Tettero, I. L. M., Beishuizen, A., et al. Southern blot patterns, frequencies and junctional diversity of T-cell receptor D gene rearrangements in acute lymphoblastic leukemia. Blood, 1993; 82: 3063–74.
Davodeau, F., Peyrat, M. A., Hallet, M. M., Vie, H., & Bonneville, M. Characterization of a new functional TCR J delta segment in humans. Evidence for a marked conservation of J delta sequences between humans, mice, and sheep. J Immunol, 1994; 153: 137–42.
Schatz, D. G., Oettinger, M. A., & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell, 1989; 59: 1035–48.
Oettinger, M. A., Schatz, D. G., Gorka, C., & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science, 1990; 248: 1517–23.
McBlane, J. F., Gent, D. C. van, Ramsden, D. A., et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell, 1995; 83: 387–95.
Lieber, M. R. The mechanism of V(D)J recombination: a balance of diversity, specificity, and stability. Cell, 1992; 70: 873–6.
Lieber, M. R. The role of site-directed recombinases in physiologic and pathologic chromosomal rearrangements. In I. R. Kirsch, ed., The Causes and Consequences of Chromosomal Aberrations (Boca Raton, FL: CRC Press, 1993).
Gent, D. C. van, Ramsden, D. A., & Gellert, M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell, 1996; 85: 107–13.
Lefranc, M. P. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 2001; 29: 207–9.
Alt, F. W., Blackwell, T. K., & Yancopoulos, G. D. Development of the primary antibody repertoire. Science, 1987; 238: 1079–87.
Schroeder, H. W., Jr., Hillson, J. L., & Perlmutter, R. M. Early restriction of the human antibody repertoire. Science, 1987; 238: 791–3.
Leiden, J. M., Dialynas, D. P., Duby, A. D., et al. Rearrangement and expression of T-cell antigen receptor genes in human T-lymphocyte tumor lines and normal human T-cell clones: evidence for allelic exclusion of Ti beta gene expression and preferential use of a J beta 2 gene segment. Mol Cell Biol, 1986; 6: 3207–14.
Triebel, F. & Hercend, T. Subpopulations of human peripheral T gamma delta lymphocytes. Immunol Today, 1989; 10: 186–8.
Borst, J., Wicherink, A., Dongen, J. J. M. van, et al. Non-random expression of T cell receptor gamma and delta variable gene segments in functional T lymphocyte clones from human peripheral blood. Eur J Immunol, 1989; 19: 1559–68.
Breit, T. M., Wolvers-Tettero, I. L., & Dongen, J. J. van. Unique selection determinant in polyclonal V delta 2-J delta 1 junctional regions of human peripheral gamma delta T lymphocytes. J Immunol, 1994; 152: 2860–4.
Desiderio, S. V., Yancopoulos, G. D., & Paskind, M., et al. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature, 1984; 311: 752–5.
Landau, N. R., Schatz, D. G., Rosa, M., & Baltimore, D. Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol, 1987; 7: 3237–43.
Elliott, J. F., Rock, E. P., Patten, P. A., Davis, M. M., & Chien, Y. H. The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature, 1988; 331: 627–31.
Breit, T. M., Wolvers-Tettero, I. L., Bogers, A. J., et al. Rearrangements of the human TCRD-deleting elements. Immunogenetics, 1994; 40: 70–5.
Victor, K. D. & Capra, J. D. An apparently common mechanism of generating antibody diversity: length variation of the VL-JL junction. Mol Immunol, 1994; 31: 39–46.
Reth, M. G., Jackson, S., & Alt, F. W. VHDJH formation and DJH replacement during pre-B differentiation: non-random usage of gene segments. EMBO J, 1986; 5: 2131–8.
Marolleau, J. P., Fondell, J. D., Malissen, M., et al. The joining of germ-line V alpha to J alpha genes replaces the preexisting V alpha-J alpha complexes in a T cell receptor alpha, beta positive T cell line. Cell, 1988; 55: 291–300.
Reth, M., Gehrmann, P., Petrac, E., & Wiese, P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature, 1986; 322: 840–2.
Kleinfield, R., Hardy, R. R., Tarlinton, D., et al. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature, 1986; 322: 843–6.
Covey, L. R., Ferrier, P., & Alt, F. W. VH to VHDJH rearrangement is mediated by the internal VH heptamer. Int Immunol, 1990; 2: 579–83.
Fondell, J. D., Marolleau, J. P., Primi, D., & Marcu, K. B. On the mechanism of non-allelically excluded V alpha-J alpha T cell receptor secondary rearrangements in a murine T cell lymphoma. J Immunol, 1990; 144: 1094–103.
Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev, 1987; 96: 23–41.
Rajewsky, K., Forster, I., & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science, 1987; 238: 1088–94.
Raffeld, M., Wright, J. J., Lipford, E., et al. Clonal evolution of t(14;18) follicular lymphomas demonstrated by immunoglobulin genes and the 18q21 major breakpoint region. Cancer Res, 1987; 47: 2537–42.
Cleary, M. L., Galili, N., Trela, M., Levy, R., & Sklar, J. Single cell origin of bigenotypic and biphenotypic B cell proliferations in human follicular lymphomas. J Exp Med, 1988; 167: 582–97.
Romanow, W. J., Langerak, A. W., Goebel, P., et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell, 2000; 5: 343–53.
Langerak, A. W., Wolvers-Tettero, I. L. M., Gastel-Mol, E. J. van, Oud, M. E., & Dongen, J. J. M. van. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood, 2001; 98: 2456–65.
Hieter, P. A., Korsmeyer, S. J., Waldmann, T. A., & Leder, P. Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature, 1981; 290: 368–72.
Korsmeyer, S. J., Hieter, P. A., Sharrow, S. O., et al. Normal human B cells display ordered light chain gene rearrangements and deletions. J Exp Med, 1982; 156: 975–85.
Klobeck, H. G. & Zachau, H. G. The human CK gene segment and the kappa deleting element are closely linked. Nucleic Acids Res, 1986; 14: 4591–603.
Siminovitch, K. A., Bakhshi, A., Goldman, P., & Korsmeyer, S. J. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature, 1985; 316: 260–2.
Graninger, W. B., Goldman, P. L., Morton, C. C., O'Brien, S. J., & Korsmeyer, S. J. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J Exp Med, 1988; 167: 488–501.
Dongen, J. J. M. van, Krissansen, G. W., Wolvers-Tettero, I. L., et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988; 71: 603–12.
Verschuren, M. C., Comans-Bitter, W. M., Kapteijn, C. A., et al. Transcription and protein expression of mb-1 and B29 genes in human hematopoietic malignancies and cell lines. Leukemia, 1993; 7: 1939–47.
Buccheri, V., Mihaljevic, B., Matutes, E., et al. Mb-1: a new marker for B-lineage lymphoblastic leukemia. Blood, 1993; 82: 853–7.
Gathings, W. E., Lawton, A. R., & Cooper, M. D. Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol, 1977; 7: 804–10.
Vogler, L. B., Crist, W. M., Bockman, D. E., et al. Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med, 1978; 298: 872–8.
Koehler, M., Behm, F. G., Shuster, J., et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia, 1993; 7: 2064–8.
Melchers, F., Karasuyama, H., Haasner, D., et al. The surrogate light chain in B-cell development. Immunol Today, 1993; 14: 60–8.
Dik, W. A., Pike-Overzet, K., Weerkamp, F., et al. New insights on human T-cell development by quantitative T-cell receptor gene rearrangement studies and gene expression profiling. J Exp Med, 2005; 201: 1715–23.
De Villartay, J. P., Hockett, R. D., Coran, D., Korsmeyer, S. J., & Cohen, D. I. Deletion of the human T-cell receptor delta-gene by a site-specific recombination. Nature, 1988; 335: 170–4.
Hockett, R. D., de Villartay, J. P., Pollock, K., et al. Human T-cell antigen receptor (TCR) delta-chain locus and elements responsible for its deletion are within the TCR alpha-chain locus. Proc Natl Acad Sci U S A, 1988; 85: 9694–8.
Groettrup, M., Ungewiss, K., Azogui, O., et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell, 1993; 75: 283–94.
Sambrook, J., Fritsch, E. F., & Maniatis, T. Molecular Cloning, a Laboratory Manual (New York: Cold Spring Harbor Laboratory, 1989).
Beishuizen, A., Verhoeven, M. A., Mol, E. J., et al. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1993; 7: 2045–53.
Beishuizen, A., Verhoeven, M. A., Mol, E. J., & Dongen, J. J. M. van. Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis. Leukemia, 1994; 8: 2228–36.
Tümkaya, T., Comans-Bitter, W. M., Verhoeven, M. A., & Dongen, J. J. M. van. Southern blot detection of immunoglobulin lambda light chain gene rearrangements for clonality studies. Leukemia, 1995; 9: 2127–32.
Tümkaya, T., Beishuizen, A., Wolvers-Tettero, I. L. M., & Dongen J. J. M. van. Identification of immunoglobulin lambda isotype gene rearrangements by Southern blot analysis. Leukemia, 1996; 10: 1834–9.
Langerak, A. W., Wolvers-Tettero, I. L. M., & Dongen, J. J. M. van. Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia, 1999; 13: 965–74.
Moreau, E. J., Langerak, A. W., Gastel-Mol, E. J. van, et al. Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1999; 13: 1620–26.
Tümkaya, T., Burg, M. van der, Garcia Sanz, R., et al. Immunoglobulin lambda isotype gene rearrangements in B-cell malignancies. Leukemia, 2001; 15: 121–7.
White, T. J., Arnheim, N., & Erlich, H. A. The polymerase chain reaction. Trends Genet, 1989; 5: 185–9.
Newton, C. R. & Graham, A. PCR (Oxford, UK: BIOS Scientific Publishers, 1994).
Yamada, M., Hudson, S., Tournay, O., et al. Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc Natl Acad Sci USA, 1989; 86: 5123–7.
d'Auriol, L., Macintyre, E., Galibert, F., & Sigaux, F. In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia, 1989; 3: 155–8.
Macintyre, E. A., d'Auriol, L., Duparc, N. et al. Use of oligonucleotide probes directed against T cell antigen receptor gamma delta variable-(diversity)-joining junctional sequences as a general method for detecting minimal residual disease in acute lymphoblastic leukemias. J Clin Invest, 1990; 86: 2125–35.
Breit, T. M., Wolvers-Tettero, I. L. M., Hählen, K., Wering, E. R. van, & Dongen, J. J. M. van. Extensive junctional diversity of gd T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia, 1991; 5: 1076–86.
Deane, M. & Norton, J. D. Immunoglobulin heavy chain variable region family usage is independent of tumor cell phenotype in human B lineage leukemias. Eur J Immunol, 1990; 20: 2209–17.
Deane, M., Pappas, H., & Norton, J. D. Immunoglobulin heavy chain gene fingerprinting reveals widespread oligoclonality in B-lineage acute lymphoblastic leukaemia. Leukemia, 1991; 5: 832–8.
Veelken, H., Tycko, B., & Sklar, J. Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood, 1991; 78: 1318–26.
Hansen-Hagge, T. E., Yokota, S., & Bartram, C. R. Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood, 1989; 74: 1762–7.
Jonsson, O. G., Kitchens, R. L., Scott, F. C., & Smith, R. G. Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood, 1990; 76: 2072–9.
Dongen, J. J. M. van, Langerak, A. W., Brüggemann, M., et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene rearrangements in suspect lymphoproliferations. Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–317.
Langerak, A. W., San Miguel, J. F., Parreira, A., et al. Clonality analysis in malignant lymphoma: the BIOMED-2 experience. Histopathology, 2002; 41S2: 506–8.
Oksenberg, J. R., Stuart, S., Begovich, A. B., et al. Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature, 1991; 353: 94.
Broeren, C. P., Verjans, G. M., Eden, W. van, et al. Conserved nucleotide sequences at the 5′ end of T cell receptor variable genes facilitate polymerase chain reaction amplification. Eur J Immunol, 1991; 21: 569–75.
Doherty, P. J., Roifman, C. M., Pan, S. H., et al. Expression of the human T cell receptor V beta repertoire. Mol Immunol, 1991; 28: 607–12.
Wei, S., Charmley, P., Robinson, M. A., & Concannon, P. The extent of the human germline T-cell receptor V beta gene segment repertoire. Immunogenetics, 1994; 40: 27–36.
Oostveen, J. W. van, Breit, T. M., de Wolf, J. T., et al. Polyclonal expansion of T-cell receptor-gd+ T lymphocytes associated with neutropenia and thrombocytopenia. Leukemia, 1992; 6: 410–18.
Davis, T. H., Yockey, C. E., & Balk, S. P. Detection of clonal immunoglobulin gene rearrangements by polymerase chain reaction amplification and single-strand conformational polymorphism analysis. Am J Pathol, 1993; 142: 1841–7.
Koch, O. M., Volkenandt, M., Goker, E., et al. Molecular detection and characterization of clonal cell populations in acute lymphocytic leukemia by analysis of conformational polymorphisms of cRNA molecules of rearranged T-cell-receptor-gamma and immunoglobulin heavy-chain genes. Leukemia, 1994; 8: 946–52.
Bourguin, A., Tung, R., Galili, N., & Sklar, J. Rapid, nonradioactive detection of clonal T-cell receptor gene rearrangements in lymphoid neoplasms. Proc Natl Acad Sci U S A, 1990; 87: 8536–40.
Wood, G. S., Tung, R. M., Haeffner, A. C., et al. Detection of clonal T-cell receptor gamma gene rearrangements in early mycosis fungoides/Sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J Invest Dermatol, 1994; 103: 34–41.
Linke, B., Pyttlich, J., Tiemann, M., et al. Identification and structural analysis of rearranged immunoglobulin heavy chain genes in lymphomas and leukemias. Leukemia, 1995; 9: 840–7.
Bottaro, M., Berti, E., Biondi, A., Migone, N., & Crosti, L. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood, 1994; 83: 3271–8.
Langerak, A. W., Szczepanski, T., Burg, M. van der, Wolvers-Tettero, I. L. M., & Dongen, J. J. M. van. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia, 1997; 11: 2192–9.
Kneba, M., Bolz, I., Linke, B., & Hiddemann, W. Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood, 1995; 86: 3930–7.
Linke, B., Bolz, I., Fayyazi, A., et al. Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia, 1997; 11: 1055–62.
Visser, O., Coebergh, J. W. W., Schouten, L. J., & Dijck, J. A. A. M. Incidence of Cancer in the Netherlands 1995 (Utrecht, the Netherlands: Vereniging van Integrale Kankercentra, 1998).
Dongen, J. J. M. van, Szczepanski, T., & Adriaansen, H. J. Immunobiology of leukemia. In E. S. Henderson, T. A. Lister, & M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 2002), pp. 85–129.
Sandlund, J. T., Downing, J. R., & Crist, W. M. Non-Hodgkin's lymphoma in childhood. N Engl J Med, 1996; 334: 1238–48.
Gouttefangeas, C., Bensussan, A., & Boumsell, L. Study of the CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood, 1990; 75: 931–4.
Korsmeyer, S. J., Arnold, A., Bakhshi, A., et al. Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell and B cell precursor origins. J Clin Invest, 1983; 71: 301–13.
Felix, C. A., Wright, J. J., Poplack, D. G., et al. T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest, 1987; 80: 545–56.
Foroni, L., Catovsky, D., & Luzzatto, L. Immunoglobulin gene rearrangements in hairy cell leukemia and other chronic B cell lymphoproliferative disorders. Leukemia, 1987; 1: 389–92.
Williams, M. E., Innes, D. J., Jr., Borowitz, M. J., et al. Immunoglobulin and T cell receptor gene rearrangements in human lymphoma and leukemia. Blood, 1987; 69: 79–86.
Furley, A. J., Mizutani, S., Weilbaecher, K., et al. Developmentally regulated rearrangement and expression of genes encoding the T cell receptor-T3 complex. Cell, 1986; 46: 75–87.
Foroni, L., Foldi, J., Matutes, E., et al. Alpha, beta and gamma T-cell receptor genes: rearrangements correlate with haematological phenotype in T cell leukaemias. Br J Haematol, 1987; 67: 307–18.
Dongen, J. J. M. van, Quertermous, T., Bartram, C. R., et al. T cell receptor-CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J Immunol, 1987; 138: 1260–9.
Greaves, M. F., Chan, L. C., Furley, A. J., Watt, S. M., & Molgaard, H. V. Lineage promiscuity in hemopoietic differentiation and leukemia. Blood, 1986; 67: 1–11.
Adriaansen, H. J., Soeting, P. W., Wolvers-Tettero, I. L. M., Dongen, J. J. M. van. Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia, 1991; 5: 744–51.
Szczepanski, T., Beishuizen, A., Pongers-Willemse, M. J., et al. Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia, 1999; 13: 196–205.
Beishuizen, A., Hählen, K., Hagemeijer, A., et al. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia, 1991; 5: 657–67.
Beishuizen, A., Wering, E. R. van, Breit, T. M., et al. Molecular biology of acute lymphoblastic leukemia: implications for detection of minimal residual disease. In W. Hiddeman, T. Büchner, B. Wörmann, eds., Acute Leukemias V (Berlin: Springer, 1996), pp. 460–74.
Bird, J., Galili, N., Link, M., Stites D., & Sklar, J. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med, 1988; 168: 229–45.
Steward, C. G., Goulden, N. J., Katz, F., et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 1994; 83: 1355–62.
Wasserman, R., Yamada, M., Ito, Y., et al. VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood, 1992; 79: 223–8.
Kitchingman, G. R. Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood, 1993; 81: 775–82.
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F. van, Borne, A. E. von dem, Schoot, C. E. van der Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood, 1993; 82: 581–9.
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F. van, et al. Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood, 1995; 86: 692–702.
Ghali, D. W., Panzer, S., Fischer, S., et al. Heterogeneity of the T-cell receptor delta gene indicating subclone formation in acute precursor B-cell leukemias. Blood, 1995; 85: 2795–801.
Hansen-Hagge, T. E., Yokota, S., Reuter, H. J., Schwarz, K., & Bartram, C. R. Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway. Blood, 1992; 80: 2353–62.
Taylor, J. J., Rowe, D., Kylefjord, H., et al. Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia, 1994; 8: 60–6.
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.
Velden, V. H. J. van der, Willemse, M. J., Schoot, C. E. van der, Wering, E. R. van, & Dongen, J. J. M. van. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia, 2002; 16: 928–36.
Chapman, C. J., Zhou, J. X., Gregory, C., Rickinson, A. B., & Stevenson, F. K. VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection. Blood, 1996; 88: 3562–8.
Burg, M. van der, Barendregt, B. H., Wering, E. R. van, et al. The presence of somatic mutations in immunoglobulin genes of B-cell acute lymphoblastic leukemia (ALL-L3) supports assignment as Burkitt's leukemia-lymphoma rather than B-lineage ALL. Leukemia, 2001; 15: 1141–3.
Langerak, A. W., Wolvers-Tettero, I. L. M., Beemd, M. W. M. van den, et al. Immunophenotypic and immunogenotypic characteristics of TCR gammadelta+ T cell acute lymphoblastic leukemia. Leukemia, 1999; 13: 206–14.
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor ab lineage. Blood, 1999; 93: 4079–85.
Breit, T. M., Verschuren, M. C. M., Wolvers-Tettero, I. L. M., et al. Human T cell leukemias with continuous V(D)J recombinase activity for TCR-delta gene deletion. J Immunol, 1997; 159: 4341–9.
Schmidt, C. A., Oettle, H., Neubauer, A., et al. Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia, 1992; 6: 1263–7.
Boeckx, N., Willemse, M. J., Szczepanski, T., et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 2002; 16: 368–75.
Willis, T. G. & Dyer, M. J. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood, 2000; 96: 808–22.
Hinz, T., Allam, A., Wesch, D., Schindler, D., & Kabelitz, D. Cell-surface expression of transrearranged Vgamma-Cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br J Haematol, 2000; 109: 201–10.
Kobayashi, Y., Tycko, B., Soreng, A. L., & Sklar, J. Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol, 1991; 147: 3201–9.
Retiere, C., Halary, F., Peyrat, M. A., et al. The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR. J Immunol, 1999; 162: 903–10.
Stern, M. H., Lipkowitz, S., Aurias, A., et al. Inversion of chromosome 7 in ataxia telangiectasia is generated by a rearrangement between T-cell receptor beta and T-cell receptor gamma genes. Blood, 1989; 74: 2076–80.
Bernard, O., Groettrup, M., Mugneret, F., Berger, R., & Azogui, O. Molecular analysis of T-cell receptor transcripts in a human T-cell leukemia bearing a t(1;14) and an inv(7); cell surface expression of a TCR-beta chain in the absence of alpha chain. Leukemia, 1993; 7: 1645–53.
Begley, C. G., Aplan, P. D., Denning, S. M., et al. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A, 1989; 86: 10 128–32.
Breit, T. M., Mol, E. J., Wolvers-Tettero, I. L. M., et al. Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med, 1993; 177: 965–77.
Fitzgerald, T. J., Neale, G. A., Raimondi, S. C., & Goorha, R. M. c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood, 1991; 78: 2686–95.
Boehm, T., Foroni, L., Kaneko, Y., Perutz, M. F., & Rabbitts, T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A, 1991; 88: 4367–71.
Garcia, I. S., Kaneko, Y., Gonzalez-Sarmiento, R., et al. A study of chromosome 11p13 translocations involving TCR beta and TCR delta in human T cell leukaemia. Oncogene, 1991; 6: 577–82.
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–1504.
Mauvieux, L., Leymarie, V., Helias, C., et al. High incidence of Hox11L2 expression in children with T-ALL. Leukemia, 2002; 16: 2417–22.
Przybylski, G., Oettle, H., Ludwig, W. D., Siegert, W., & Schmidt, C. A. Molecular characterization of illegitimate TCR delta gene rearrangements in acute myeloid leukaemia. Br J Haematol, 1994; 87: 301–7.
O'Connor, N., Gatter, K. C., Wainscoat, J. S., et al. Practical value of genotypic analysis for diagnosing lymphoproliferative disorders. J Clin Pathol, 1987; 40: 147–150.
Korsmeyer, S. J. Antigen receptor genes as molecular markers of lymphoid neoplasms. J Clin Invest, 1987; 79: 1291–5.
Kneba, M., Bolz, I., Linke, B., et al. Characterization of clone-specific rearranged T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood, 1994; 84: 574–81.
Siegelman, M. H., Cleary, M. L., Warnke, R., & Sklar, J. Frequent biclonality and Ig gene alterations among B cell lymphomas that show multiple histologic forms. J Exp Med, 1985; 161: 850–63.
Wering, E. R. van, Beishuizen, A., Roeffen, E. T., et al. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia, 1995; 9: 1523–33.
Szczepanski, T., Willemse, M. J., Kamps, W. A., et al. Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia – proposal for an easy strategy. Med Pediatr Oncol, 2001; 36: 352–8.
Smedmyr, B., Bengtsson, M., Jakobsson, A., et al. Regeneration of CALLA (CD10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation. Eur J Haematol, 1991; 46: 146–51.
Wering, E. R. van, Linden-Schrever, B. E. van der, Szczepanski, T., et al. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol, 2000; 110: 139–46.
Knulst, A. C., Adriaansen, H. J., Hahlen, K., et al. Early diagnosis of smoldering acute lymphoblastic leukemia using immunological marker analysis. Leukemia, 1993; 7: 532–6.
Campana, D., Yokota, S., Coustan-Smith, E., et al. The detection of residual acute lymphoblastic leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia, 1990; 4: 609–14.
Pongers-Willemse, M. J., Verhagen, O. J. H. H, Tibbe, G. J. M., et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia, 1998; 12: 2006–14.
Dongen, J. J. M. van, Seriu, T., Panzer-Grumayer, E. R., et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 1998; 352: 1731–8.
Velden, V. H. J. van der, Wijkhuijs, J. M., Jacobs, D. C. H., et al. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia, 2002; 16: 1372–80.

Reference Title: References

Reference Type: reference-list

Rowley, J. D. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer, 2001; 1: 245–50.
Wang, T. L., Maierhofer, C., Speicher, M. R., et al. Digital karyotyping. Proc Natl Acad Sci U S A, 2002; 99: 16 156–61.
Kolomietz, E., Al-Maghrabi, J., Brennan, S., et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood, 2001; 97: 3581–8.
Godon, C., Proffitt, J., Dastugue, N. et al. Large deletions 5′ to the ETO breakpoint are recurrent events in patients with t(8;21) acute myeloid leukemia. Leukemia, 2002; 16: 1752–4.
Kearney, L. The impact of the new FISH technologies on the cytogenetics of haematological malignancies. Br J Haematol, 1999; 104: 648–58.
Gozzetti, A., & Le Beau, M. M. Fluorescence in situ hybridization: uses and limitations. Semin Hematol, 2000; 37: 320–33.
Raimondi, S. C. Fluorescence in situ hybridization: molecular probes for diagnosis of pediatric neoplastic diseases. Cancer Invest, 2000; 18: 135–47.
Speicher, M. R., Ballard, S. G., & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-color FISH. Nat Genet, 1996; 12: 368–75.
Schrock, E., du Manoir, S., Veldman, T. et al. Multicolor spectral karyotyping of human chromosomes. Science, 1996; 273: 494–7.
Rowley, J. D., Reshmi, S., Carlson, K., & Roulston, D. Spectral karyotype analysis of T-cell acute leukemia. Blood, 1999; 93: 2038–42.
Mathew, S., Rao, P. H., Dalton, J., Downing, J. R., & Raimondi, S. C. Multicolor spectral karyotyping identifies novel translocations in childhood acute lymphoblastic leukemia. Leukemia, 2001; 15: 468–72.
Nordgren, A., Farnebo, F., Johansson, B., et al. Identification of numerical and structural chromosome aberrations in 15 high hyperdiploid childhood acute lymphoblastic leukemias using spectral karyotyping. Eur J Haematol, 2001; 66: 297–304.
Limbergen, H. van, Poppe, B., Michaux, L., et al. Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer, 2002; 33: 60–72.
Elghezal, H., Le Guyader, G., Radford-Weiss, I., et al. Reassessment of childhood B-lineage lymphoblastic leukemia karyotypes using spectral analysis. Genes Chromosomes Cancer, 2001; 30: 383–92.
Aurich-Costa, J., Vannier, A., Gregoire, E., Nowak, F., & Cherif, D. IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines. Genes Chromosomes Cancer, 2001; 30: 143–60.
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–504.
Helias, C., Leymarie, V., Entz-Werle, N., et al. Translocation t(5;14)(q35;q32) in three cases of childhood T cell acute lymphoblastic leukemia: a new recurring and cryptic abnormality. Leukemia, 2002; 16: 7–12.
Scurto, P., Hsu, R. M., Kane, J. R., et al. A multiplex RT-PCR assay for the detection of chimeric transcripts encoded by the risk-stratifying translocations of pediatric acute lymphoblastic leukemia. Leukemia, 1998; 12: 1994–2005.
Dongen, J. J. van, Macintyre, E. A., Gabert, J. A., et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–28.
Willis, T. G., Jadayel, D. M., Coignet, L. J., et al. Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction. Blood, 1997; 90: 2456–64.
Blanco, J. G., Dervieux, T., Edick, M. J., et al. Molecular emergence of acute myeloid leukemia during treatment for acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2001; 98: 10 338–43.
Raffini, L. J., Slater, D. J., Rappaport, E. F., et al. Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci U S A, 2002; 99: 4568–73.
Andersson, A., Hoglund, M., Johansson, B., et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia, 2001; 15: 1293–300.
Grimwade, D., Biondi, A., Mozziconacci, M. J., et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d'Hématologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “molecular cytogenetic diagnosis in haematological malignancies”. Blood, 2000; 96: 1297–308.
Mrozek, K., Prior, T. W., Edwards, C., et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol, 2001; 19: 2482–92.
Mitelman, F., ed. International System for Human Cytogenetic Nomenclature (1995) ISCN (1995). (Basel, Switzerland: Karger, 1995).
Pui, C. H., Carroll, A. J., Head, D., et al. Near-triploid and near-tetraploid acute lymphoblastic leukemia of childhood. Blood, 1990; 76: 590–6.
Raynaud, S. D., Dastugue, N., Zoccola, D., et al. Cytogenetic abnormalities associated with the t(12;21): a collaborative study of 169 children with t(12;21)-positive acute lymphoblastic leukemia. Leukemia, 1999; 13: 1325–30.
Williams, D. L., Tsiatis, A., Brodeur, G. M., et al. Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood, 1982; 60: 864–71.
Look, A. T., Roberson, P. K., Williams, D. L., et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 1985; 65: 1079–86.
Trueworthy, R., Shuster, J., Look, T., et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.
Martin, P. L., Look, A. T., Schnell, S., et al. Comparison of fluorescence in situ hybridization, cytogenetic analysis, and DNA index analysis to detect chromosomes 4 and 10 aneuploidy in pediatric acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol, 1996; 18: 113–21.
Heerema, N. A., Sather, H. N., Sensel, M. G., et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol, 2000; 18: 1876–87.
Raimondi, S. C., Pui, C.-H., Hancock, M. L., et al. Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 213–24.
Moorman, A. V., Hawkins, J. M., Clark, R., Martineau, M., & Secker-Walker, L. M. Duplication of the long arm of chromosome 1 in acute lymphoblastic leukaemia in the LRF UKCCG karyotype database. Br J Haematol, 1997; 97(Suppl. 1): 51, abstract 193.
Whitehead, V. M., Vuchich, M. J., Carroll, A. J., et al. Accumulation of methotrexate polyglutamates (MTX PGS) in lymphoblastic ploidy and trisomy of both chromosomes 4 and 10 in childhood B-progenitor cell acute lymphoblastic leukemia (ALL): a Pediatric Oncology Group Study. Blood, 1994; 84 (Suppl. 1): 515a, abstract 2046.
Moorman, A. V., Clark, R., Farrell, D. M., et al. Probes for hidden hyperdiploidy in ALL. Genes Chromosomes Cancer, 1996; 16: 40–5.
Panzer-Grumayer, E. R., Fasching, K., Panzer, S., et al. Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood, 2002; 100: 347–9.
Gale, K. B., Ford, A. M., Repp, R., et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.
Ford, A. M., Bennett, C. A., Price, C. M., et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A, 1998; 95: 4584–8.
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–503.
Wiemels, J. L., Ford, A. M., Wering, E. R. van, Postma, A., & Greaves, M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 1999; 94: 1057–62.
Mitelman, F., Johansson, B., & Mertens, F. Mitelman database of chromosome aberrations in cancer. (http://cgap.nci.nih.gov/Chromosomes/Mitelman).
Raimondi, S. C., Roberson, P. K., Pui, C. H., Behm, F. G., & Rivera, G. K. Hyperdiploid (47–50) acute lymphoblastic leukemia in children. Blood, 1992; 79: 3245–52.
Raimondi, S. C., Pui, C. H., Head, D., et al. Trisomy 21 as the sole acquired chromosomal abnormality in children with acute lymphoblastic leukemia. Leukemia, 1992; 6: 171–5.
Watson, M. S., Carroll, A. J., Shuster, J. J., et al. Trisomy 21 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study (8602). Blood, 1993; 82: 3098–102.
Raimondi, S. C. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood, 1993; 81: 2237–51.
Rivera, G. K., Raimondi, S. C., Hancock, M. L., et al. Improved outcome in childhood acute lymphoblastic leukemia with reinforced early treatment and rotational combination chemotherapy. Lancet, 1991; 337: 61–6.
Romana, S. P., Manuchauffe, M., Le Coniat, M., et al. The t(12;21) of acute lymphoblastic leukemia results in a TEL-AML1 gene fusion. Blood, 1995; 85: 3662–70.
Shurtleff, S. A., Buijs, A., Behm, F. G., et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al. Cytogenetics of childhood T-cell leukemia. Blood, 1988; 72: 1560–6.
Pui, C. H., Carroll, A. J., Raimondi, S. C., et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood, 1990; 75: 1170–7.
Heerema, N. A., Nachman, J. B., Sather, H. N., et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 4036–45.
Raimondi, S. C., Zhou, Y., Mathew, S., et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer, 2003; 98: 2715–22.
Paietta, E., Gucalp, R., & Wiernik, P. H. Monosomy 7 in multilineage and acute lymphoblastic leukemia. Br J Haematol, 1991; 79: 152–5.
Williams, D. L., Look, A. T., Melvin, S. L., et al. New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia. Cell, 1984; 36: 101–9.
Carroll, A. J., Crist, W. M., Parmley, R. T., et al. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood, 1984; 63: 721–4.
Pui, C. H., Raimondi, S. C., Hancock, M. L., et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.
Wiemels, J. L., Leonard, B. C., Wang, Y., et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2002; 99: 15101–6.
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol, 1990; 8: 1380–8.
Privitera, E., Kamps, M. P., Hayashi, Y., et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.
Hunger, S. P., Sun, T., Boswell, A. F., Carroll, A. J., & McGavran, L. Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature. Genes Chromosomes Cancer, 1997; 20: 392–8.
Uckun, F. M., Sensel, M. G., Sather, H. N., et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group. J Clin Oncol, 1998; 16: 527–35.
Secker-Walker, L. M., Berger, R., Fenaux, P., et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia, 1992; 6: 363–9.
Mellentin, J. D., Murre, C., Donlon, T. A., et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 1989; 246: 379–82.
Kamps, M. P., Murre, C., Sun, X. H., & Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell, 1990; 60: 547–55.
Hunger, S. P. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood, 1996; 87: 1211–24.
Izraeli, S., Kovar, H., Gadner, H., & Lion, T. Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood, 1992; 80: 1413–17.
Privitera, E., Luciano, A., Ronchetti, D., et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia, 1994; 8: 554–9.
Filatov, L. V., Behm, F. G., Pui, C.-H., et al. Childhood acute lymphoblastic leukemia with equivocal chromosome markers of the t(1;19) translocation. Genes Chromosomes Cancer, 1995; 13: 99–103.
Boomer, T., Varella-Garcia, M., McGavran, L., et al. Detection of E2A translocations in leukemias via fluorescence in situ hybridization. Leukemia, 2001; 15: 95–102.
Raimondi, S. C., Privitera, E., Williams, D. L., et al. New recurring chromosomal translocations in childhood acute lymphoblastic leukemia. Blood, 1991; 77: 2016–22.
Inaba, T., Roberts, W. M., Shapiro, L. H., et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science, 1992; 257: 531–4.
Inukai, T., Inaba, T., Ikushima, S., & Look, A. T. The AD1 and AD2 transactivation domains of E2A are essential for the antiapoptotic activity of the chimeric oncoprotein E2A-HLF. Mol Cell Biol, 1998; 18: 6035–43.
Brambillasca, F., Mosna, G., Colombo, M., et al. Identification of a novel molecular partner of the E2A gene in childhood leukemia. Leukemia, 1999; 13: 369–75.
Ribeiro, R. C., Broniscer, A., Rivera, G. K., et al. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts. Leukemia, 1997; 11: 1493–6.
Schrappe, M., Arico, M., Harbott, J., et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood, 1998; 92: 2730–41.
Chase, A., Huntly, B. J., & Cross, N. C. Cytogenetics of chronic myeloid leukaemia. Best Pract Res Clin Haematol, 2001; 14: 553–71.
Honda, H., Oda, H., Suzuki, T., et al. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: a novel transgenic model for human Ph1-positive leukemias. Blood, 1998; 91: 2067–75.
Uckun, F. M., Nachman, J. B., Sather, H. N., et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children's Cancer Group. Cancer, 1998; 83: 2030–9.
Arico, M., Valsecchi, M. G., Camitta, B., et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.
Russo, C., Carroll, A., Kohler, S., et al. Philadelphia chromosome and monosomy 7 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1991; 77: 1050–6.
Morris, C. M., Heisterkamp, N., Kennedy, M. A., Fitzgerald, P. H., & Groffen, J. Ph-negative chronic myeloid leukemia: molecular analysis of ABL insertion into M-BCR on chromosome 22. Blood, 1990; 76: 1812–18.
Storlazzi, C. T., Specchia, G., Anelli, L., et al. Breakpoint characterization of der(9) deletions in chronic myeloid leukemia patients. Genes Chromosomes Cancer, 2002; 35: 271–6.
Huntly, B. J., Reid, A. G., Bench, A. J., et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood, 2001; 98: 1732–8.
Huntly, B. J., Bench, A. J., Delabesse, E., et al. Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood, 2002; 99: 4547–53.
Reid, A. G., Huntly, B. J., Hennig, E., et al. Deletions of the derivative chromosome 9 do not account for the poor prognosis associated with Philadelphia-positive acute lymphoblastic leukemia. Blood, 2002; 99: 2274–5.
Gorre, M. E., Mohammed, M., Ellwood, K., et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001; 293: 876–80.
Hofmann, W. K., Jones, L. C., Lemp, N. A., et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood, 2002; 99: 1860–2.
Branford, S., Rudzki, Z., Walsh, S., et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood, 2002; 99: 3472–5.
Selle, B., Bar, C., Hecker, S., et al. ABL-specific tyrosine kinase inhibitor imatinib as salvage therapy in a child with Philadelphia chromosome-positive acute mixed lineage leukemia (AMLL). Leukemia, 2002; 16: 1393–5.
Hofmann, W. K., de Vos, S., Elashoff, D., et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet, 2002; 359: 481–6.
Chen, C.-S., Sorensen, P. H., Domer, P. H., et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biological variables and poor outcome. Blood, 1993; 81: 2386–93.
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.
Raimondi, S. C., Frestedt, J. L., Pui, C. H., et al. Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.
Johansson, B., Moorman, A. V., Haas, O. A., et al. Hematologic malignancies with t(4;11)(q21;q23) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 779–87.
Rubnitz, J. E., Camitta, B. M., Mahmoud, H., et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol, 1999; 17: 191–6.
Harrison, C. J., Cuneo, A., Clark, R., et al. Ten novel 11q23 chromosomal partner sites. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 811–22.
Raimondi, S. C., Chang, M. N., Ravindranath, Y., et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood, 1999; 94: 3707–16.
Carlson, K. M., Vignon, C., Bohlander, S., et al. Identification and molecular characterization of CALM/AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia, 2000; 14: 100–4.
Swansbury, G. J., Slater, R., Bain, B. J., Moorman, A. V., & Secker-Walker, L. M. Hematological malignancies with t(9;11)(p21–22;q23) – a laboratory and clinical study of 125 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 792–800.
Zieman-van der Poel, S., McCabe, N. R., Gill, H. J., et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A, 1991; 88: 10 735–9.
Cimino, G., Moir, D. T., Canaani, O., et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res, 1991; 51: 6712–14.
Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001; 20: 5695–707.
Huret, J. L., Dessen, P., & Bernheim, A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia, 2001; 15: 987–9.
Dupont, M. Rapid identification of frequent MLL rearrangements in hematologic malignancies by multiplex RT-PCR in a single assay. Leukemia, 2002; 16: 1574–6.
Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet, 2002; 30: 41–7.
Mathew, S., Behm, F., Dalton, J., & Raimondi, S. Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities. Leukemia, 1999; 13: 1713–20.
Harbott, J., Mancini, M., Verellen-Dumoulin, C., Moorman, A. V., & Secker-Walker, L. M. Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. European 11q23 Workshop participants. Leukemia, 1998; 12: 823–7.
Tanaka, K., Eguchi, M., Eguchi-Ishimae, M., et al. Restricted chromosome breakpoint sites on 11q22–q23.1 and 11q25 in various hematological malignancies without MLL/ALL-1 gene rearrangement. Cancer Genet Cytogenet, 2001; 124: 27–35.
Giugliano, E., Rege-Cambrin, G., Scaravaglio, P., et al. Two new translocations involving the 11q23 region map outside the MLL locus in myeloid leukemias. Haematologica, 2002; 87: 1014–20.
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.
Levis, M., Allebach, J., Tse, K. F., et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood, 2002; 99: 3885–91.
Heerema, N. A., Sather, H. N., Ge, J., et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia, 1999; 13: 679–86.
Biondi, A., Cimino, G., Pieters, R., & Pui, C. H. Biological and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.
Nilson, I., Reichel, M., Ennas, M. G., et al. Exon/intron structure of the human AF-4 gene, a member of the AF-4/LAF- 4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. Br J Haematol, 1997; 98: 157–69.
Chami, I., Perot, C., Portnoi, M. F., et al. Molecular analysis of an unusual rearrangement between chromosomes 4 and 11 in adult pre-B-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet, 2002; 133: 129–33.
Raimondi, S. C., Williams, D. L., Callihan, T., et al. Nonrandom involvement of the 12p12 breakpoint in chromosome abnormalities of childhood acute lymphoblastic leukemia. Blood, 1986; 68: 69–75.
Behrendt, H., Charrin, C., Gibbons, B., et al. Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia, 1995; 9: 102–6.
United Kingdom Cancer Cytogenetics Group. Translocation involving 9p and/or 12p in acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1992; 5: 255–9.
Tosi, S., Harbott, J., Teigler-Schlegel, A., et al. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer, 2000; 29: 325–32.
Krance, R. A., Raimondi, S. C., Dubowy, R., et al. t(12;17)(p13;q21) in early pre-B acute lymphoid leukemia. Leukemia, 1992; 6: 251–5.
Raimondi, S. C., Shurtleff, S. A., Downing, J. R., et al. 12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood, 1997; 90: 4559–66.
Golub, T. R., Barker, G. F., Lovett, M., & Gilliland, D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 1994; 77: 307–16.
Odero, M. D., Carlson, K., Calasanz, M. J., et al. Identification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes Cancer, 2001; 31: 134–42.
Cools, J., Mentens, N., Odero, M. D., et al. Evidence for position effects as a variant ETV6-mediated leukemogenic mechanism in myeloid leukemias with a t(4;12)(q11–q12;p13) or t(5;12)(q31;p13). Blood, 2002; 99: 1776–84.
Golub, T. R., Barker, G. F., Bohlander, S. K., et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 1995; 92: 4917–21.
Raynaud, S., Mauvieux, L., Cayuela, J. M., et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia, 1996; 10: 1529–30.
Borowitz, M. J., Rubnitz, J., Nash, M., Pullen, D. J., & Camitta, B. Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia, 1998; 12: 1764–70.
Loncarevic, I. F., Roitzheim, B., Ritterbach, J., et al. Trisomy 21 is a recurrent secondary aberration in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion. Genes Chromosomes Cancer, 1999; 24: 272–7.
Harbott, J., Viehmann, S., Borkhardt, A., Henze, G., & Lampert, F. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood, 1997; 90: 4933–7.
Kempski, H., Chalker, J., Chessells, J., et al. An investigation of the t(12;21) rearrangement in children with B-precursor acute lymphoblastic leukaemia using cytogenetic and molecular methods. Br J Haematol, 1999; 105: 684–9.
Mathew, S., Shurtleff, S. A., & Raimondi, S. C. Novel cryptic, complex rearrangements involving ETV6-CBFA2 (TEL-AML1) genes identified by fluorescence in situ hybridization in pediatric patients with acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2001; 32: 188–93.
Andreasson, P., Johansson, B., Strombeck, B., et al. Childhood acute lymphoblastic leukaemia with ider(21) (q10)t(12;21)(p12;q22): a new recurrent abnormality showing ETV6/CBFA2 fusion. Br J Haematol, 1997; 98: 216–18.
Jarosova, M., Holzerova, M., Mihal, V., et al. Additional evidence of genetic changes in children with ALL and TEL/AML1 fusion gene. Leukemia, 2002; 16: 1873–5.
Dal Cin, P., Atkins, L., Ford, C., et al. Amplification of AML1 in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer, 2001; 30: 407–9.
Martini, A., La Starza, R., Janssen, H., et al. Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res, 2002; 62: 5408–12.
Pietenpol, J. A., Bohlander, S. K., Sato, Y., et al. Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res, 1995; 55: 1206–10.
Ponce-Castaneda, M. V., Lee, M. H., Latres, E., et al. p27Kip1: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res, 1995; 55: 1211– 14.
Fero, M. L., Rivkin, M., Tasch, M., et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell, 1996; 85: 733–44.
Aissani, B., Bonan, C., Baccichet, A., & Sinnett, D. Childhood acute lymphoblastic leukemia: is there a tumor suppressor gene in chromosome 12p12.3 ? Leuk Lymphoma, 1999; 34: 231–9.
Rieder, H., Schnittger, S., Bodenstein, H., et al. dic(9;20): a new recurrent chromosome abnormality in adult acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1995; 13: 54–61.
Clark, R., Byatt, S. A., Bennett, C. F., et al. Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia. Leukemia, 2000; 14: 241–6.
Hayashi, Y., Raimondi, S. C., Look, A. T., et al. Abnormalities of the long arm of chromosome 6 in childhood acute lymphoblastic leukemia. Blood, 1990; 76: 1626–30.
Takeuchi, S., Koike, M., Seriu, T., et al. Frequent loss of heterozygosity on the long arm of chromosome 6: identification of two distinct regions of deletion in childhood acute lymphoblastic leukemia. Cancer Res, 1998; 58: 2618–23.
Li, H., Lahti, J. M., Valentine, M., et al. Molecular cloning and chromosomal localization of the human cyclin C (CCNC) and cyclin E (CCNE) genes: deletion of the CCNC gene in human tumors. Genomics, 1996; 32: 253–9.
Jackson, A., Carrara, P., Duke, V., et al. Deletion of 6q16–q21 in human lymphoid malignancies: a mapping and deletion analysis. Cancer Res, 2000; 60: 2775–9.
Lai, J. L., Fenaux, P., Zandecki, M., et al. Cytogenetic studies in 30 patients with Burkitt's lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormalities. Ann Genet, 1989; 32: 26–32.
Ueda, Y., Matsuda, F., Misawa, S., & Taniwaki, M. Tumor-specific rearrangements of the immunoglobulin heavy-chain gene in B-cell non-Hodgkin's lymphoma detected by in situ hybridization. Blood, 1996; 87: 292–8.
Martin-Subero, J. I., Harder, L., Gesk, S., et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer, 2002; 98: 470–4.
Patte, C., Auperin, A., Michon, J., et al. The Société Française d'Oncologie Pédiatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood, 2001; 97: 3370–9.
Navid, F., Mosijczuk, A. D., Head, D. R., et al. Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia, 1999; 13: 135–41.
Croce, C. M. & Nowell, P. C. Molecular basis of human B cell neoplasia. Blood, 1985; 65: 1–7.
Secker-Walker, L. M., Hawkins, J. M., Prentice, H. G., et al. Two Down syndrome patients with an acquired translocation, t(8;14)(q11;q32), in early B-lineage acute lymphoblastic leukemia. Cancer Genet Cytogenet, 1993; 70: 148–50.
Kaleem, Z., Shuster, J. J., Carroll, A. J., et al. Acute lymphoblastic leukemia with an unusual t(8;14)(q11.2;q32): a Pediatric Oncology Group Study. Leukemia, 2000; 14: 238–40.
Pullen, J., Shuster, J. J., Link, M., et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia, 1999; 13: 1696–707.
Uckun, F. M., Sensel, M. G., Sun, L., et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood, 1998; 91: 735–46.
Schneider, N. R., Carroll, A. J., Shuster, J. J., et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood, 2000; 96: 2543–9.
Heerema, N. A., Sather, H. N., Sensel, M. G., et al. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol, 1998; 16: 1270–8.
Okuda, T., Shurtleff, S. A., Valentine, M. B., et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood, 1995; 85: 2321–30.
Rubnitz, J. E., Behm, F. G., Pui, C. H., et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study Ⅻ. Leukemia, 1997; 11: 1201–6.
Moorman, A. V., Richards, S., & Harrison, C. J. Involvement of the MLL gene in T-lineage acute lymphoblastic leukemia. Blood, 2002; 100: 2273–4.
Hayette, S., Tigaud, I., Maguer-Satta, V., et al. Recurrent involvement of the MLL gene in adult T-lineage acute lymphoblastic leukemia. Blood, 2002; 99: 4647–9.
Finger, L. R., Kagan, J., Christopher, G., et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci U S A, 1989; 86: 5039–43.
Fitzgerald, T. J., Neale, G. A., Raimondi, S. C., & Goorha, R. M. c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood, 1991; 78: 2686–95.
Aplan, P. D., Johnson, B. E., Russell, E., Chervinsky, D. S., & Kirsch, I. R. Cloning and characterization of TCTA, a gene located at the site of a t(1;3) translocation. Cancer Res, 1995; 55: 1917–21.
Francois, S., Delabesse, E., Baranger, L., et al. Deregulated expression of the TAL1 gene by t(1;5)(p32;31) in patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1998; 23: 36–43.
Brown, L., Cheng, J. T., Chen, Q., et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J, 1990; 9: 3343–51.
Burg, M. van der, Smit, B., Brinkhof, B., et al. A single split-signal FISH probe set allows detection of TAL1 translocations as well as SIL-TAL1 fusion genes in a single test. Leukemia, 2002; 16: 755–61.
Delabesse, E., Bernard, M., Meyer, V., et al. TAL1 expression does not occur in the majority of T-ALL blasts. Br J Haematol, 1998; 102: 449–57.
Bash, R. O., Hall, S., Timmons, C. F., et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia ? A pediatric oncology group study. Blood, 1995; 86: 666–76.
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.
Cave, H., Suciu, S., Preudhomme, C., et al. Expression linked to t(5;14)(q35;q32) is not associated with poor prognosis in childhood T-ALL treated in EORTC trials 58 881 and 58 951. Blood, 2002; 100: 153a, abstract 576.
Xia, Y., Brown, L., Yang, C. Y., et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci U S A, 1991; 88: 11 416–20.
Mellentin, J. D., Smith, S. D., & Cleary, M. L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell, 1989; 58: 77–83.
Carroll, A. J., Castleberry, R. R., & Crist, W. M. Lack of association between abnormalities of the chromosome 9 short arm and either “lymphomatous” features or T cell phenotype in childhood acute lymphocytic leukemia. Blood, 1987; 69: 735–8.
Murphy, S. B., Raimondi, S. C., Rivera, G. K., et al. Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood, 1989; 74: 409–15.
Heerema, N. A., Sather, H. N., Sensel, M. G., et al. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 1537–44.
Diaz, M. O., Rubin, C. M., Harden, A., et al. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med, 1990; 322: 77–82.
Gardie, B., Cayuela, J. M., Martini, S., & Sigaux, F. Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood, 1998; 91: 1016–20.
Ramakers-van Woerden, N. L., Pieters, R., Slater, R. M., et al. In vitro drug resistance and prognostic impact of p16INK4A/p15INK4B deletions in childhood T-cell acute lymphoblastic leukaemia. Br J Haematol, 2001; 112: 680–90.
Tutor, O., Diaz, M. A., Ramirez, M., et al. Loss of heterozygosity of p16 correlates with minimal residual disease at the end of the induction therapy in non-high risk childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res, 2002; 26: 817–20.
Graf, E. H., Taube, T., Hartmann, R., et al. Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia. Blood, 2002; 99: 4629–31.
Cazzaniga, G., Daniotti, M., Tosi, S., et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res, 2001; 61: 4666–70.
Rack, K. A., Cornelis, F., Radford-Weiss, I., et al. A chromosome 14q11/TCR alpha/delta specific yeast artificial chromosome improves the detection rate and characterization of chromosome abnormalities in T-lymphoproliferative disorders. Blood, 1997; 90: 1233–40.
Yoffe, G., Schneider, N., Dyk, L. van, et al. The chromosome translocation (11;14)(p13;q11) associated with T-cell acute lymphocytic leukemia: an 11p13 breakpoint cluster region. Blood, 1989; 74: 374–9.
McGuire, E. A., Hockett, R. D., Pollock, K. M., et al. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol, 1989; 9: 2124–32.
Dube, I. D., Raimondi, S. C., Pi, D., & Kalousek, D. K. A new translocation, t(10;14)(q24;q11), in T cell neoplasia. Blood, 1986; 67: 1181–4.
Dube, I. D., Kamel-Reid, S., Yuan, C. C., et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood, 1991; 78: 2996–3003.
Kahl, C., Gesk, S., Harder, L., et al. Detection of translocations involving the HOX11/TCL3-locus in 10q24 by interphase fluorescence in situ hybridization. Cancer Genet Cytogenet, 2001; 129: 80–4.
Dear, T. N., Colledge, W. H., Carlton, M. B., et al. The Hox11 gene is essential for cell survival during spleen development. Development, 1995; 121: 2909–15.
Erikson, J., Finger, L., Sun, L., et al. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science, 1986; 232: 884–6.
Byrd, J. C., Mrozek, K., Dodge, R. K., et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002; 100: 4325–36.
Creutzig, U. & Reinhardt, D. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation ? – a European view. Br J Haematol, 2002; 118: 365–77.
Luna-Fienman, S., Shannon, K. M., & Lange, B. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.
Hasle, H., Arico, M., Basso, G., et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia, 1999; 13: 376–85.
Renneboog, B., Hansen, V., Heimann, P., et al. Spontaneous remission in a patient with therapy-related myelodysplastic syndrome (t-MDS) with monosomy 7. Br J Haematol, 1996; 92: 696–8.
Schoch, C., Haase, D., Fonatsch, C., et al. The significance of trisomy 8 in de novo acute myeloid leukaemia: the accompanying chromosome aberrations determine the prognosis. Br J Haematol, 1997; 99: 605–11.
Wolman, S. R., Gundacker, H., Appelbaum, F. R., & Slovak, M. L. Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood, 2002; 100: 29–35.
Virtaneva, K., Wright, F. A., Tanner, S. M., et al. Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc Natl Acad Sci U S A, 2001; 98: 1124–9.
Ohsaka, A., Hisa, T., Watanabe, N., Kojima, H., & Nagasawa, T. Tetrasomy 21 as a sole chromosome abnormality in acute myeloid leukemia: fluorescence in situ hybridization and spectral karyotyping analyses. Cancer Genet Cytogenet, 2002; 134: 60–4.
Preudhomme, C., Warot-Loze, D., Roumier, C., et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood, 2000; 96: 2862–9.
Lange, B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol, 2000; 110: 512–24.
Wu, S. Q., Loh, K. T., Chen, X. R., Joo, W. J., & Mascarenhas, L. Transient myeloproliferative disorder in a phenotypically normal infant with i(21q) mosaicism. Cancer Genet Cytogenet, 2002; 136: 138–40.
Taketani, T., Taki, T., Takita, J., et al. Mutation of the AML1/RUNX1 gene in a transient myeloproliferative disorder patient with Down syndrome. Leukemia, 2002; 16: 1866–7.
Wechsler, J., Greene, M., McDevitt, M. A., et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.
Schichman, S. A., Caligiuri, M. A., Gu, Y., et al. ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci U S A, 1994; 91: 6236–9.
McGrattan, P., Alexander, H. D., Humphreys, M. W., & Kettle, P. J. Tetrasomy 13 as the sole cytogenetic abnormality in acute myeloid leukemia M1 without maturation. Cancer Genet Cytogenet, 2002; 135: 192–5.
Slater, R. M., Drunen, E. von, Kroes, W. G., et al. t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia, 2001; 15: 915–20.
Gad, S. G., Callen, D. F., Kuss, B., et al. Identification of an inversion 16 coexisting with an isochromosome 22q by in situ hybridization in a case of childhood AML M4e. Leukemia, 1993; 7: 1658–62.
Ferrara, F. & Del Vecchio, L. Acute myeloid leukemia with t(8;21)/AML1/ETO: a distinct biological and clinical entity. Haematologica, 2002; 87: 306–19.
Kalwinsky, D. K., Raimondi, S. C., Schell, M. J., et al. Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J Clin Oncol, 1990; 8: 75–83.
Gallego, M., Carroll, A. J., Gad, G. S., et al. Variant t(8;21) rearrangements in acute myeloblastic leukemia of childhood. Cancer Genet Cytogenet, 1994; 75: 139–44.
Downing, J. R. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999; 106: 296–308.
Krauter, J., Peter, W., Pascheberg, U., et al. Detection of karyotypic aberrations in acute myeloblastic leukaemia: a prospective comparison between PCR/FISH and standard cytogenetics in 140 patients with de novo AML. Br J Haematol, 1998; 103: 72–8.
Andrieu, V., Radford-Weiss, I., Troussard, X., et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol, 1996; 92: 855–65.
Rowe, D., Cotterill, S. J., Ross, F. M., et al. Cytogenetically cryptic AML1-ETO and CBF beta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol, 2000; 111: 1051–6.
Urioste, M., Martinez-Ramirez, A., Cigudosa, J. C., et al. Identification of ins(8;21) with AML1/ETO fusion in acute myelogenous leukemia M2 by molecular cytogenetics. Cancer Genet Cytogenet, 2002; 133: 83–6.
Marcucci, G., Livak, K. J., Wi, B., et al. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia, 1998; 12: 1482–9.
Basecke, J., Cepek, L., Mannhalter, C., et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood, 2002; 100: 2267–8.
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood, 2002; 100: 4298–302.
Soignet, S. L., Maslak, P., Wang, Z. G., et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med, 1998; 339: 1341–8.
Kogan, S. C., Hong, S. H., Shultz, D. B., Privalsky, M. L., & Bishop, J. M. Leukemia initiated by PML-RARɑ: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood, 2000; 95: 1541–50.
Rolston, R., Weck, K. E., Tersak, J. M., et al. New cytogenetic variant, insertion (15;17)(q22;q12q21), in an adolescent with acute promyelocytic leukemia. Cancer Genet Cytogenet, 2002; 134: 55–9.
Mozziconacci, M. J., Liberatore, C., Brunel, V., et al. In vitro response to all-trans retinoic acid of acute promyelocytic leukemias with nonreciprocal PML/RARA or RARA/PML fusion genes. Genes Chromosomes Cancer, 1998; 22: 241–50.
Grimwade, D., Gorman, P., Duprez, E., et al. Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood, 1997; 90: 4876–85.
Redner, R. L., Rush, E. A., Faas, S., Rudert, W. A., & Corey, S. J. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood, 1996; 87: 882–6.
Wells, R. A. & Kamel-Reid, S. NuMA-RARA, a new gene fusion in acute promyelocytic leukaemia. Blood, 1996(Supp1.1); 88: 365a, abstract 1449.
Chen, Z., Brand, N. J., Chen, A., et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J, 1993; 12: 1161–7.
Arnould, C., Philippe, C., Bourdon, V., et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet, 1999; 8: 1741–9.
Wells, R. A., Catzavelos, C., & Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet, 1997; 17: 109–13.
Redner, R. L., Corey, S. J., & Rush, E. A. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia, 1997; 11: 1014–16.
Licht, J. D., Chomienne, C., Goy, A., et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood, 1995; 85: 1083–94.
He, L. Z., Bhaumik, M., Tribioli, C., et al. Two critical hits for promyelocytic leukemia. Mol Cell, 2000; 6: 1131–41.
Schoch, C., Kohlmann, A., Schnittger, S., et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A, 2002; 99: 10 008–13.
Schnittger, S., Schoch, C., Dugas, M., et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 2002; 100: 59–66.
Razzouk, B. I., Raimondi, S. C., Srivastava, D. K., et al. Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia, 2001; 15: 1326–30.
Liu, P. P., Hajra, A., Wijmenga, C., & Collins, F. S. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of AML. Blood, 1995; 85: 2289–302.
Lutterbach, B. & Hiebert, S. W. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene, 2000; 245: 223–35.
Adya, N., Stacy, T., Speck, N. A., & Liu, P. P. The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates. Mol Cell Biol, 1998; 18: 7432–43.
Batanian, J. R., Huang, Y., & Fallon, R. Deletion of 3′-CBFB gene in association with an inversion (16)(p13q22) and a loss of the Y chromosome in a 2-year-old child with acute myelogenous leukemia-M4. Cancer Genet Cytogenet, 2000; 121: 216–19.
Aventin, A., La Starza, R., Nomdedeu, J., et al. Typical CBFbeta/MYH11 fusion due to insertion of the 3′-MYH11 gene into 16q22 in acute monocytic leukemia with normal chromosomes 16 and trisomies 8 and 22. Cancer Genet Cytogenet, 2000; 123: 137–9.
Laczika, K., Mitterbauer, G., Mitterbauer, M., et al. Prospective monitoring of minimal residual disease in acute myeloid leukemia with inversion(16) by CBFbeta/MYH11 RT-PCR: implications for a monitoring schedule and for treatment decisions. Leuk Lymphoma, 2001; 42: 923–31.
Pui, C.-H., Behm, F., Raimondi, S. C., et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.
Martinez-Climent, J., Espinosa, R., III, Thirman, M. J., Le Beau, M. M., & Rowley, J. D. Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias: identification of the t(9;11) as an indicator of long survival. J Ped Hematol Oncol, 1995; 17: 277–83.
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.
Pui, C.-H., Ribeiro, R. C., Campana, D., et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.
Satake, N., Maseki, N., Nishiyama, M., et al. Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants. Leukemia, 1999; 13: 1013–17.
Pui, C. H., Raimondi, S. C., Srivastava, D. K., et al. Prognostic factors in infants with acute myeloid leukemia. Leukemia, 2000; 14: 684–7.
Bloomfield, C. D., Archer, K. J., Mrozek, K., et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 362–78.
Domer, P. H., Head, D. R., Renganathan, N., et al. Molecular analysis of thirteen cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia, 1995; 8: 1305–12.
Rowley, J. D., Reshmi, S., Sobulo, O., et al. All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood, 1997; 90: 535–41.
Ida, K., Kitabayashi, I., Taki, T., et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;p13). Blood, 1997; 90: 4699–704.
Gamou, T., Kitamura, E., Hosoda, F., et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG9(ETO) family. Blood, 1998; 91: 4028–37.
Caligiuri, M. A., Strout, M. P., Lawrence, D., et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res, 1998; 58: 55–9.
Schnittger, S., Kinkelin, U., Schoch, C., et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia, 2000; 14: 796–804.
Cuthbert, G., Thompson, K., McCullough, S., et al. MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. Leukemia, 2000; 14: 1885–91.
Kobayashi, H., Espinosa, R., III, Fernald, A. A., et al. Analysis of deletions of the long arm of chromosome 11 in hematological malignancies with fluorescence in situ hybridization. Genes Chromosomes Cancer, 1993; 8: 246–52.
Kobayashi, H., Espinosa, R., III, Thirman, M. J., et al. Do terminal deletions of 11q23 exist ? Identification of undetected translocations with fluorescence in situ hybridization. Genes Chromosomes Cancer, 1993; 7: 204–8.
Martineau, M., Berger, R., Lillington, D. M., Moorman, A. V., & Secker-Walker, L. M. The t(6;11)(q27;q23) translocation in acute leukemia: a laboratory and clinical study of 30 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 788–91.
Takatsuki, H., Yufu, Y., Tachikawa, Y., & Uike, N. Monitoring minimal residual disease in patients with MLL-AF6 fusion transcript-positive acute myeloid leukemia following allogeneic bone marrow transplantation. Int J Hematol, 2002; 75: 298–301.
Taki, T., Shibuya, N., Taniwaki, M., et al. ABI-1, a human homolog to mouse ABI-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood, 1998; 92: 1125–30.
Chaplin, T., Bernard, O., Beverloo, H. B., et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood, 1995; 86: 2073–6.
Limbergen, H. van, Poppe, B., Janssens, A., et al. Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia. Leukemia, 2002; 16: 344–51.
Dreyling, M. H., Schrader, K., Fonatsch, C., et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood, 1998; 91: 4662–7.
Bohlander, S. K., Muschinsky, V., Schrader, K., et al. Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia, 2000; 14: 93–9.
Carroll, A. J., Civin, S., Schneider, N. R., et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood, 1991; 78: 748–52.
Mercher, T., Coniat, M. B., Monni, R., et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A, 2001; 98: 5776–9.
Ma, Z., Morris, S. W., Valentine, V., et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet, 2001; 28: 220–1.
Testoni, N., Borsaru, G., Martinelli, G., et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica, 1999; 84: 690–4.
Keung, Y. K., Buss, D., Powell, B. L., & Pettenati, M. Central diabetes insipidus and inv(3)(q21q26) and monosomy 7 in acute myeloid leukemia. Cancer Genet Cytogenet, 2002; 136: 78–81.
Morishita, K., Parganas, E., Willman, C. L., et al. Activation of EVI-1 gene expression in human acute myelogenous leukemias by translocation spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A, 1992; 89: 3937–41.
Levy, E. R., Parganas, E., Morishita, K., et al. EVI-1 DNA rearrangements proximal to the EVI-1 locus associated with rearrangements of the 3q21q26 syndrome. Blood, 1994; 83: 1348–53.
Jolkowska, J. & Witt, M. The EVI-1 gene – its role in pathogenesis of human leukemias. Leuk Res, 2000; 24: 553–8.
Nucifora, G., Begy, C. R., Kobayashi, H., et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21) (q26;q22) translocations. Proc Natl Acad Sci U S A, 1994; 91: 4004–8.
Raynaud, S. D., Baens, M., Grosgeorge, J., et al. Fluorescence in situ hybridization analysis of t(3;12)(q26;p13): a recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood, 1996; 88: 682–9.
Raimondi, S. C., Dube, I. D., Valentine, M. B., et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia, 1989; 3: 42–7.
Yoneda-Kato, N., Look, A. T., Kirstein, M. N., et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene, 1996; 12: 265–75.
Jaju, R. J., Haas, O. A., Neat, M., et al. A new recurrent translocation, t(5;11)(q35;p15.5), associated with del(5q) in childhood acute myeloid leukemia. The UK Cancer Cytogenetics Group (UKCCG). Blood, 1999; 94: 773–80.
Jaju, R. J., Fidler, C., Haas, O. A., et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood, 2001; 98: 1264–7.
Brown, J., Jawad, M., Twigg, S. R., et al. A cryptic t(5;11) (q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood, 2002; 99: 2526–31.
Panarello, C., Rosanda, C., & Morerio, C. Cryptic translocation t(5;11)(q35;p15.5) with involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute myeloid leukemia. Genes Chromosomes Cancer, 2002; 35: 277–81.
Lindern, M. von, Fornerod, M., Baal, S. van, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol, 1992; 12: 1687–97.
Fornerod, M., Boer, J., Baal, S. van, et al. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 1995; 10: 1739–48.
Borrow, J., Stanton, V. P., Jr., Andresen, J. M., et al. The translocation t(8;16)(p11;q13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet, 1996; 14: 33–41.
Carapeti, M., Aguiar, R. C., Goldman, J. M., & Cross, N. C. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood, 1998; 91: 3127–33.
Tasaka, T., Nagai, M., Matsuhashi, Y., et al. Secondary acute monocytic leukemia with a translocation t(8;22)(p11;q13). Haematologica, 2002; 87: e-case report 19 (ECR19).
Champagne, N., Pelletier, N., & Yang, X. J. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene, 2001; 20: 404–9.
Lam, D. H. & Aplan, P. D. NUP98 gene fusions in hematologic malignancies. Leukemia, 2001; 15: 1689–95.
Ahuja, H. G., Hong, J., Aplan, P. D., et al. t(9;11)(p22;p15) in acute myeloid leukemia results in a fusion between NUP98 and the gene encoding transcriptional coactivators p52 and p75-lens epithelium-derived growth factor (LEDGF). Cancer Res, 2000; 60: 6227–9.
Ahuja, H. G., Felix, C. A., & Aplan, P. D. Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer, 2000; 29: 96–105.
Beverloo, H. B., Panagopoulos, I., Isaksson, M., et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res, 2001; 61: 5374–7.
Cross, N. C. & Reiter, A. Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia, 2002; 16: 1207–12.
Vieira, L., Marques, B., Ambrosio, A. P., et al. TEL and MN1 fusion in myelodysplastic syndrome: new evidence for a therapy-related event. Br J Haematol, 2000; 110: 238–9.
Buijs, A., Sherr, S., Baal, S. van, et al. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene, 1995; 10: 1511–19.
Cho, H., Orphanides, G., Sun, X., et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol, 1998; 18: 5355–63.
Blobel, G. A. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood, 2000; 95: 745–55.
Panagopoulos, I., Fioretos, T., Isaksson, M., et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet, 2001; 10: 395–404.
Taki, T., Sako, M., Tsuchida, M., & Hayashi, Y. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood, 1997; 89: 3945–50.
Morgan, R., Riske, C. B., Meloni, A., et al. t(16;21)(p11.2;q22): a recurrent primary rearrangement in ANLL. Cancer Genet Cytogenet, 1991; 53: 83–90.
Ichikawa, H., Shimizu, K., Hayashi, Y., & Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused in ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res, 1994; 54: 2865–8.
La Starza, R., Sambani, C., Crescenzi, B., et al. AML1/MTG16 fusion gene from a t(16;21)(q24;q22) translocation in treatment-induced leukemia after breast cancer. Haematologica, 2001; 86: 212–13.
Kondoh, K., Nakata, Y., Furuta, T., et al. A pediatric case of secondary leukemia associated with t(16;21)(q24;q22) exhibiting the chimeric AML1-MTG16 gene. Leuk Lymphoma, 2002; 43: 415–20.
Friedman, A. D. Leukemogenesis by CBF oncoproteins. Leukemia, 1999; 13: 1932–42.
Osato, M., Asou, N., Abdalla, E., et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, 1999; 93: 1817–24.
Michaud, J., Wu, F., Osato, M., et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 2002; 99: 1364–72.
Song, W. J., Sullivan, M. G., Legare, R. D., et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.
Roulston, D., Nucifora, G., Dietz-Band, J., Le Beau, M. M., & Rowley, J. Detection of rare 21q22 translocation breakpoints within the AML1 gene in myeloid neoplasms by fluorescence in situ hybridization. Blood, 1993; 82(Supp1. 1): 532a, abstract 2114.
Bohlander, S. K. Fusion genes in leukemia: an emerging network. Cytogenet Cell Genet, 2000; 91: 52–6.
Harris, N. L., Jaffe, E. S., Diebold, J., et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting – Airlie House, Virginia, November 1997. J Clin Oncol, 1999; 17: 3835–49.
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).
Golub, T. R., Slonim, D. K., Tamayo, P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999; 286: 531–7.
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.

Reference Title: References

Reference Type: reference-list

Bishop, J. M. The molecular genetics of cancer. Science, 1987; 235: 305–11.
Solomon, E., Borrow, J., & Goddard, A. D. Chromosome aberrations and cancer. Science, 1991; 254: 1153–60.
Rowley, J. D. Molecular cytogenetics: Rosetta stone for understanding cancer – twenty-ninth G. H. A. Clowes memorial award lecture. Cancer Res, 1990; 50: 3816–25.
Rabbitts, T. H. Chromosomal translocations in human cancer. Nature, 1994; 372: 143–9.
Ferrando, A. A. & Look, A. T. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol, 2000; 37: 381–95.
Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science, 1997; 278: 1059–64.
Pui, C.-H. Childhood leukemias. N Engl J Med, 1995; 332: 1618–30.
Okuda, T., Fisher, R., & Downing, J. R. Molecular diagnostics in pediatric acute lymphoblastic leukemia. Mol Diagn, 1996; 1: 139–51.
Cleary, M. L. Oncogenic conversion of transcription factors by chromosomal translocations. Cell, 1991; 66: 619–22.
Sawyers, C. L. Molecular genetics of acute leukaemia. Lancet, 1997; 349: 196–200.
O'Connor, N. T. J., Weatherall, D. J., Feller, A. C., et al. Re arrangement of the T cell-receptor beta-chain gene in the diagnosis of lymphoproliferative disorders. Lancet, 1985; 1: 1295–7.
Ribeiro, R. C., Abromowitch, M., Raimondi, S. C., et al. Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood, 1987; 70: 948–53.
Bartram, C. R., de Klein, A., Hagemeijer, A., et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature, 1983; 306: 277–80.
Gale, R. P. & Canaani, E. An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proc Natl Acad Sci U S A, 1984; 81: 5648–52.
Collins, S. J., Kubonishi, I., Miyoshi, I., & Groudine, M. T. Altered transcription of the c-abl oncogene in K562 and other chronic myelogenous leukemia cells. Science, 1984; 225: 72–4.
Stam, K., Heisterkamp, N., Grosveld, G., et al. Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N Engl J Med, 1985; 313: 1429–33.
Canaani, E., Gale, R. P., Steiner-Saltz, D., et al. Altered transcription of an oncogene in chronic myeloid leukemia. Lancet, 1984; 1(8377): 593–5.
Shtivelman, E., Lifshitz, B., Gale, R. P., & Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature, 1985; 315: 550–4.
Heisterkamp, N., Stephenson, J. R., Groffen, J., et al. Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature, 1983; 306: 239–42.
Leibowitz, D., Schaefer-Rego, K., Popenoe, D. W., et al. Variable breakpoints on the Philadelphia chromosome in chronic myelogenous leukemia. Blood, 1985; 66: 243–5.
Grosveld, G., Verwoerd, T., Agthoven, T. van, et al. The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. Mol Cell Biol, 1986; 6: 607–16.
Groffen, J., Stephenson, J. R., Heisterkamp, N., et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell, 1984; 36: 93–9.
Heisterkamp, N., Stam, K., Groffen, J., et al. Structural organization of the bcr gene and its role in Ph1 translocation. Nature, 1985; 315: 758.
Chan, L. C., Karhi, K. K., Rayter, S. I., et al. A novel abl protein expressed in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Nature, 1987; 325: 635–7.
Clark, S. S., McLaughlin, J., Crist, W. M., et al. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science, 1987; 235: 85.
Kurzrock, R., Shtalrid, M., Romero, P., et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukemia. Nature, 1987; 325: 631–5.
Etten, R. A. van, Jackson, P., & Baltimore, D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell, 1989; 58: 669–78.
Kharbanda, S., Ren, R., Pandey, P., et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature, 1995; 376: 785–8.
Sawyers, C. L., McLaughlin, J., Goga, A., Havlik, M., & Witte, O. The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell, 1994; 77: 121–31.
Mattioni, T., Jackson, P. K., Bchini-Hooft van Huijsduijnen, O., & Picard, D. Cell cycle arrest by tyrosine kinase Abl involves altered early mitogenic response. Oncogene, 1995; 10: 1325–33.
Goga, A., Liu, X., Hambuch, T. M., et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase. Oncogene, 1995; 11: 791–9.
Wang, J. Y. Regulation of cell death by Abl tyrosine kinase. Oncogene, 2003; 19: 5643–50.
Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T., & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell, 1991; 65: 1153–63.
Schwartzberg, P. L., Stall, A. M., Hardin, J. D., et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell, 1991; 65: 1165–75.
Lugo, T. G., Pendergast, A. M., Muller, A. J., & Witte, O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990; 247: 1079–82.
Daley, G. Q., McLaughlin, J., Witte, O. N., & Baltimore, D. The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science, 1987; 237: 532–5.
Daley, G. Q. & Baltimore, D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A, 1988; 85: 9312–16.
Elefanty, A. G., Hariharan, I. K., & Cory, S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J, 1990; 9: 1069–78.
Gishizky, M. L., Johnson-White, J., & Witte, O. N. Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci U S A, 1993; 90: 3755–9.
Kelliher, M., Knott, A., McLaughlin, J., Witte, O. N., & Rosenberg, N. Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene. Mol Cell Biol, 1991; 11: 4710–16.
Etten, R. A. van. Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene, 2002; 21: 8643–51.
Cortez, D., Reuther, G., & Pendergast, A. M. The Bcr-Abl tyrosine activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene, 1997; 15: 2333–42.
Varticovski, L., Daley, G. Q., Jackson, P., Baltimore, D., & Cantley, L. C. Activation of phosphatidylinositol 3-Kinase in cells expressing abl oncogene variants. Mol Cell Biol, 1991; 11: 11017–113.
Reuther, J. Y., Reuther, G. W., Cortez, D., Pendergast, A. M., & Baldwin, A. S., Jr. A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev, 1998; 12: 968–81.
Carlesso, N., Frank, D. A., & Griffin, J. D. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med, 1996; 183: 811–20.
Raitano, A. B., Halpern, J. R., Hambuch, T. M., & Sawyers, C. L. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A, 1995; 92: 11746–50.
Sawyers, C. L., McLaughlin, J., & Witte, O. N. Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med, 1995; 181: 307–13.
Skorski, T., Kanakaraj, P., Nieborowska-Skorska, M., et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood, 1995; 86: 726–36.
Skorski, T., Bellacosa, A., Nieborowska-Skorska, M., et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J, 1997; 16: 6151–61.
Skorski, T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene, 2002; 21: 8591–604.
Crist, W., Carroll, A., Shuster, J., et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood, 1990; 76: 489–94.
Fletcher, J. A., Lynch, E. A., Kimball, V. M., et al. Translocation (9;22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia. Blood, 1991; 77: 435–9.
Roberts, W. M., Rivera, G. K., Raimondi, S. C., et al. Intensive chemotherapy for Philadelphia-chromosome-positive acute lymphoblastic leukaemia. Lancet, 1994; 343: 331–2.
Ribeiro, R. C., Broniscer, A., Rivera, G. K., et al. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts. Leukemia, 1997; 11: 1493–6.
Buchdunger, E., Zimmermann, J., Mett, H., et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res; 1996; 56: 100–4.
Druker, B. J. & Lydon, N. B. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogen ous leukemia. J Clin Invest, 2000; 105: 3–7.
Druker, B. J., Talpaz, M., Resta, D. J., et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 2001; 344: 1031–7.
Druker, B. J., Sawyers, C. L., Kantarjian, H., et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med, 2001; 344: 1038–42.
Kantarjian, H., Sawyers, C., Hochhaus, A., et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med, 2002; 346: 645–52.
Sawyers, C. L., Hochhaus, A., Feldman, E., et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002; 99: 3530–9.
Talpaz, M., Silver, R. T., Druker, B. J., et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002; 99: 1928–37.
Bubnoff, N. von, Peschel, C., & Duyster, J. Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): a targeted oncoprotein strikes back. Leukemia, 2003; 17: 829–38.
Gorre, M. E. & Sawyers, C. L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol, 2002; 9: 303–7.
Guilhot, F., Gardembas, M., Rousselot, P., et al. Imatinib in combination with cytarabine for the treatment of Philadelphia-positive chronic myelogenous leukemia chronic-phase patients: rationale and design of phase I/II trials. Semin Hematol, 2003; 40: 92–7.
Thiesing, J. T., Ohno-Jones, S., Kolibaba, K. S., & Druker, B. J. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood, 2000; 96: 3195–9.
Huron, D. R., Gorre, M. E., Kraker, A. J., et al. A novel pyridopyrimidine inhibitor of Abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin Cancer Res, 2003; 9: 1267–73.
Wisniewski, D., Lambek, C. L., Liu, C., et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res, 2002; 62: 4244–55.
Privitera, E., Kamps, M. P., Hayashi, Y., et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.
Crist, W. M., Carroll, A. J., Shuster, J. J., et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood, 1990; 76: 117–22.
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol, 1990; 8: 1380–8.
Hunger, S. P. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood, 1996; 87: 1211–24.
Rauskolb, C. & Wieschaus, E. Coordinate regulation of downstream genes by extradenticle and the homeotic selector proteins. EMBO J, 1994; 13: 3561–9.
Flegel, W. A., Singson, A. W., Margolis, J. S., et al. Dpbx, a new homeobox gene closely related to the human proto-oncogene pbx1 molecular structure and developmental expression. Mech Dev, 1993; 41: 155–61.
Rauskolb, C., Peifer, M., & Weischaus, E. Extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell, 1993; 74: 1101–12.
Dijk, M. A. van & Murre, C. Extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell, 1994; 78: 617–24.
Mellentin, J. D., Murre, C., Donlon, T. A., et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 1989; 246: 379–82.
Kamps, M. P., Murre, C., Sun, X. H., & Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell, 1990; 60: 547–55.
Nourse, J., Mellentin, J. D., Galili, N., et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell, 1990; 60: 535–45.
Peifer, M. & Wieschaus, E. Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev, 1990; 4: 1209–23.
Kamps, M. P. E2A-Pbx1 induces growth, blocks differentiation, and interacts with other homeodomain proteins regulating normal differentiation. Curr Top Microbiol Immunol, 1997; 220: 25–43.
Sigvardsson, M., O'Riordan, M., & Grosschedl, R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity, 1997; 7: 25–36.
Murre, C., McCaw, P. S., & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989; 56: 777–83.
Murre, C., McCaw, P. S., Vaessin, H., et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell, 1989; 58: 537–44.
Henthorn, P., Kiledjian, M., & Kadesch, T. Two distinct transcription factors that bind the immunoglobulin enhancer E5/E2 motif. Science, 1990; 247: 467–70.
Sun, X. H. & Baltimore, D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell, 1991; 64: 459–70.
Aronheim, A., Shiran, R., Rosen, A., & Walker, M. D. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci U S A, 1993; 90: 8063–7.
Dedera, D. A., Waller, E. K., LeBrun, D. P., et al. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell, 1993; 74: 833–43.
LeBrun, D. L. & Cleary, M. L. Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene, 1994; 9: 1641–7.
Bain, G., Robanus-Maandag, E. C., Izon, D. J., et al. E2A proteins are required for proper B-cell development and initiation of immunoglobulin gene rearrangements. Cell, 1994; 79: 885–92.
Bain, G., Romanow, W. J., Albers, K., Havran, W. L., & Murre, C. Positive and negative regulation of V (D) J recombination by the E2A proteins. J Exp Med, 1999; 189: 289–300.
Zhuang, Y., Soriano, P., & Weintraub, H. The helix-loop-helix gene E2A is required for B-cell formation. Cell, 1994; 79: 875–84.
Aspland, S. E., Bendall, H. H., & Murre, C. The role of E2A-PBX1 in leukemogenesis. Oncogene, 2001; 20: 5708–17.
Kamps, M. P. & Baltimore, D. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol, 1993; 13: 351–7.
Kamps, M. P. & Wright, D. D. Oncoprotein E2A-Pbx1 immortalizes a myeloid progenitor in primary marrow cultures without abrogating its factor-dependence. Oncogene, 1994; 9: 3159–66.
Monica, K., LeBrun, D. P., Dedera, D. A., Brown, R., & Cleary, M. L. Transformation properties of the E2A-PBX1 chimeric oncoprotein: fusion with E2A is essential, but the PBX1 homeo domain is dispensable. Mol Cell Biol, 1994; 14: 8304–14.
LeBrun, D. P., Matthews, B. P., Feldman, B. J., & Cleary, M. L. The chimeric oncoproteins E2A-PBX1 and E2A-HLF are concentrated within spherical nuclear domains. Oncogene, 1997; 15: 2059–67.
Chang, C. P., Shen, W. F., Rozenfeld, S., et al. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev, 1995; 9: 663–74.
Kamps, M. P., Wright, D. D., & Lu, Q. DNA-binding by oncoprotein E2a-Pbx1 is important for blocking differentiation but dispensable for fibroblast transformation. Oncogene, 1996; 12: 19–30.
Chang, C. P., DeVivo, I., & Cleary, M. L. The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol, 1997; 17: 81–8.
Lu, Q. & Kamps, M. P. Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specificities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain – demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo. Oncogene, 1997; 14: 75–83.
Chang, C. P., Jacobs, Y., Nakamura, T., et al. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol, 1997; 17: 5679–87.
Fu, X. & Kamps, M. P. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol Cell Biol, 1997; 17: 1503–12.
Smith, K. S., Jacobs, Y., Chang, C. P., & Cleary, M. L. Chimeric oncoprotein E2a-Pbx1 induces apoptosis of hematopoietic cells by a p53-independent mechanism that is suppressed by Bcl-2. Oncogene, 1997; 14: 2917–26.
McWhirter, J. R., Neuteboom, S. T. C., Wancewicz, E. V., et al. Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci U S A, 1999; 96: 11464–9.
Borowitz, M. J., Hunger, S. P., Carroll, A. J., et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype. Implications for screening cases of childhood ALL for molecular analysis. A Pediatric Oncology Group study. Blood, 1993; 82: 1086–91.
Pui, C. H. & Crist, W. M. Cytogenetic abnormalities in childhood acute lymphoblastic leukemia correlates with clinical features and treatment outcome. Leuk Lymphoma, 1992; 7: 259–74.
Rivera, G. K., Raimondi, S. C., Hancock, M. L., et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. Lancet, 1991; 337: 61–6.
Hunger, S. P., Ohyashiki, K., Toyama, K., & Cleary, M. L. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev, 1992; 6: 1608–20.
Inaba, T., Roberts, W. M., Shapiro, L. H., et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science, 1992; 257: 531–4.
Landschulz, W. H., Johnson, P. F., & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 1988; 240: 1759–64.
O'Shea, E. K., Klemm, J. D., Kim, P. S., & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science, 1991; 254: 539–44.
Drolet, D. W., Scully, K. M., Simmons, D. M., et al. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev, 1991; 5: 1739–53.
Wasylyk, B., Hahn, S. L., & Giovane, A. The Ets family of transcription factors [published erratum appears in Eur J Biochem, 1993; 215: 907]. Eur J Biochem, 1993; 211: 7–18.
Falvey, E., Fleury-Olela, F., & Schibler, U. The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences. EMBO J, 1995; 14: 4307–17.
Hunger, S. P., Brown, R., & Cleary, M. L. DNA-binding and transcriptional regulatory properties of hepatic leukemia factor (HLF) and the t(17;19) acute lymphoblastic leukemia chimera E2A-HLF. Mol Cell Biol, 1994; 14: 5986–96.
Inaba, T., Shapiro, L. H., Funabiki, T., et al. DNA-binding specificity and trans-activating potential of the leukemia-associated E2A-hepatic leukemia factor fusion protein. Mol Cell Biol, 1994; 14: 3403–13.
Yoshihara, T., Inaba, T., Shapiro, L. H., Kato, J., & Look, A. T. E2A-HLF-mediated cell transformation requires both the trans-activation domain of E2A and the leucine zipper dimerization domain of HLF. Mol Cell Biol, 1995; 15: 3247–55.
Inukai, T., Inaba, T., Yoshihara, T., & Look, A. T. Cell transformation mediated by homodimeric E2A-HLF transcription factors. Mol Cell Biol, 1997; 17: 1417–24.
Inaba, T., Inukai, T., Yoshihara, T., et al. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature, 1996; 382: 541–4.
Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E., & Horvitz, H. R. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature, 1996; 382: 545–7.
Metzstein, M. & Horvitz, H. R. The C. elegans cell-death specification gene ces-1 encodes a Snail-family zinc-finger protein. Mol Cell, 1999; 4: 309–19.
Inukai, T., Inoue, A., Kurosawa, H., et al. SLUG, a ces-1-related zinc-finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell, 1999; 4: 343–52.
Inoue, A., Seidel, M. G., Wu, W., et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell, 2002; 2: 279–88.
Hunger, S. P., Devaraj, P. E., Foroni, L., Secker-Walker, L. M., & Cleary, M. L. Two types of genomic rearrangements create alternative E2A-HLF fusion proteins in t(17;19)-ALL. Blood, 1994; 83: 2261–7.
Ohyashiki, K., Fujieda, H., Miyauchi, J., et al. Establishment of a novel heterotransplantable acute lymphoblastic leukemia cell line with a t(17;19) chromosomal translocation, the growth of which is inhibited by interleukin-3. Leukemia, 1991; 5: 322–31.
Devaraj, P. E., Foroni, L., Sekhar, M., et al. E2A/HLF fusion cDNAs and the use of RT-PCR for the detection of minimal residual disease in t(17;19)(q22;p13) acute lymphoblastic leukemia. Leukemia, 1994; 8: 1131–8.
Kaneko, Y., Maseki, N., Takasaki, M., et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood, 1986; 67: 484–8.
Raimondi, S. C., Kalwinsky, D. K., Hayashi, Y., et al. Cytogen etics of childhood acute nonlymphocytic leukemia. Cancer Genet Cytogenet, 1989; 40: 13–27.
Pui, C.-H., Frankel, L. S., Carroll, A. J., et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11) (q21:q23): a collaborative study of 40 cases. Blood, 1991; 77: 440–7.
Raimondi, S. C. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood, 1993; 81: 2237–51.
Heerema, N. A., Arthur, D. C., Sather, H., et al. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome. A Report of the Children's Cancer Group. Blood, 1994; 83: 2274–84.
Pui, C. H., Kane, J. R., & Crist, W. M. Biology and treatment of infant leukemias. Leukemia, 1995; 9: 762–9.
Chen, C.-S., Sorensen, P. H. B., Domer, P. H., et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood, 1993; 81: 2386–93.
Pui, C.-H., Behm, F. G., Raimondi, S. C., et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.
Rubnitz, J. E., Behm, F. G., & Downing, J. R. 11q23 rearrangements in acute leukemia. Leukemia, 1996; 10: 74–82.
Ziemin-van der Poel, S., McCabe, N. R., Gill, H. J., et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A, 1991; 88: 10735–9.
Tkachuk, D. C., Kohler, S., & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell, 1992; 71: 691–700.
Gu, Y., Nakamura, T., Alder, H., et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell, 1992; 71: 701–8.
Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001; 20: 5695–707.
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.
Rubnitz, J. E., Link, M. P., Shuster, J. J., et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood, 1994; 84: 570–3.
Pui, C.-H., Behm, F. G., Downing, J. R., et al. 11q23/MLL re arrangment confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol, 1994; 12: 909–15.
Cimino, G., Rapanotti, M. C., Rivolta, A., et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia, 1995; 9: 391–5.
Cimino, G., Lo Coco, F., Biondi, A., et al. ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood, 1993; 82: 544–6.
Raimondi, S. C., Pui, C.-H., Downing, J. R., Head, D. R., & Behm, F. G. Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.
Mazo, A. M., Huang, D. H., Mozer, B. A., & Dawid, I. B. The trithorax gene, a trans-acting regulator of the bithorax-complex in Drosophila, encodes a protein with zinc-binding domains. Proc Natl Acad Sci U S A, 1990; 87: 2112–16.
Reeves, R. & Nissen, M. S. The A-T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. J Biol Chem, 1990; 265: 8573–82.
Ma, Q., Alder, H., Nelson, K. K., et al. Analysis of the murine ALL-1 gene reveals conserved domains with human ALL-1 and identified a motif shared with DNA methyltransferases. Proc Natl Acad Sci U S A, 1993; 90: 6350–4.
Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L., & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood, 2002; 100: 3710–18.
Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P., & Korsmeyer, S. J. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol, 2003; 23: 186–94.
Jones, R. S. & Gelbart, W. M. The Drosophila polycomb-group gene enhancer of zeste contains a region with sequence similarity to trithorax. Mol Cell Biol, 1993; 13: 6357–66.
Cui, X., de Vivo, I., Slany, R., et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet, 1998; 18: 331–7.
Milne, T. A., Briggs, S. D., Brock, H. W., et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell, 2002; 10: 1107–17.
Nakamura, T., Mori, T., Tada, S., et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell, 2002; 10: 1119–28.
Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A., & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 1995; 378: 505–8.
Hess, J. L., Yu, B. D., Li, B., Hanson, R., & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood, 1997; 90: 1799–1806.
Rowley, J. D. The critical role of chromosome translocations in human leukemias. Annu Rev Genet, 1998; 32: 495–519.
Morrissey, J., Tkachuk, D. C., Milatovich, A., et al. A serine/ proline-rich protein is fused to HRX in t(4;11) acute leukemias. Blood, 1993; 81: 1124–31.
Rubnitz, J. E., Morrissey, J., Savage, P. A., & Cleary, M. L. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood, 1994; 84: 1747–52.
Corral, J., Lavenir, I., Impey, H., et al. An MLL-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell, 1996; 85: 853–61.
Lavau, C., Szilvassy, S. J., Slany, R., & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J, 1997; 16: 4426–37.
Forster, A., Pannell, R., Drynan, L. F., et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell, 2003; 3: 449–58.
DiMartino, J. F., Miller, T., Ayton, P. M., et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood, 2000; 96: 3887–93.
Lavau, C., Du, C., Thirman, M., & Zeleznik-Le, N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J, 2000; 19: 4655–64.
DiMartino, J. F., Ayton, P. M., Chen, E. H., et al. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood, 2002; 99: 3780–5.
So, C. W., Lin, M., Ayton, P. M., Chen, E. H., & Cleary, M. L. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell, 2003; 4: 99–110.
Dobson, C. L., Warren, A. J., Pannell, R., Forster, A., & Rabbitts, T. H. Tumorigenesis in mice with a fusion of the leukaemia oncogene mll and the bacterial lacZ gene. EMBO J, 2000; 19: 843–51.
Martin, M. E., Milne, T. A., Bloyer, S., et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell, 2003; 4: 197–207.
Hsu, K. & Look, A. T. Turning on a dimer: new insights into MLL chimeras. Cancer Cell, 2003; 4: 81–3.
Thirman, M. J., Gill, H. J., Burnett, R. C., et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med, 1993; 329: 909–14.
Downing, J. R., Head, D. R., Raimondi, S. C., et al. The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. Blood, 1994; 83: 330–5.
Yamamoto, K., Seto, M., Iida, S., et al. A reverse transcriptase-polymerase chain reaction detects heterogeneous chimeric mRNAs in leukemias with 11q23 abnormalities. Blood, 1994; 83: 2912–21.
Repp, R., Borkhardt, A., Haupt, E., et al. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia, 1995; 9: 210–15.
Biondi, A., Rambaldi, A., Rossi, V., et al. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood, 1993; 82: 2943–7.
Rappaport, H. Tumors of the hematopoietic system. In Atlas of Tumor Pathology, Section III, Fascicle 8 (Washington, DC: Armed Forces Institute of Pathology, 1966), pp. 97–161.
Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet, 2002; 30: 41–7.
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.
Ferrando, A. A., Herblot, S., Palomero, T., et al. Biallelic transcription activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood, 2004; 103: 1909–11.
Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev, 2003; 17: 2298–307.
Armstrong, S. A., Kung, A. L., Mabon, M. E., et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell, 2003; 3: 173–83.
Romana, S. P., Mauchauffe, M., Le Coniat, M., et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood, 1995; 85: 3662–70.
Borkhardt, A., Cazzaniga, G., Viehmann, S., et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Blood, 1997; 90: 571–7.
Liang, D.-C., Chou, T.-B., Chen, J.-S., et al. High incidence of TEL/AML1 fusion resulting from a cryptic t(12;21) in childhood B-lineage acute lymphoblastic leukemia in Taiwan. Leukemia, 1996; 10: 991–3.
McLean, T. W., Ringold, S., Neuberg, D., et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood, 1996; 88: 4252–8.
Nakao, M., Yokota, S., Horiike, S., et al. Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 1463–70.
Romana, S. P., Poirel, H., Leconiat, M., et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, 1995; 86: 4263–9.
Rubnitz, J. E., Behm, F. G., Pui, C. H., et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study Ⅻ. Leukemia, 1997; 11: 1201–6.
Rubnitz, J. E., Downing, J. R., Pui, C.-H., et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.
Rubnitz, J. E., Shuster, J. J., Land, V. J., et al. Case-control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group study. Blood, 1997; 89: 1143–6.
Raimondi, S. C., Privitera, E., Williams, D. L., et al. New recurring chromosomal translocations in childhood acute lymphoblastic leukemia. Blood, 1991; 77: 2016–22.
Golub, T. R., Barker, G. F., Lovett, M., & Gilliland, D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 1994; 77: 307–16.
Golub, T. R., Barker, G. F., Stegmaier, K., & Gilliland, D. G. The TEL gene contributes to the pathogenesis of myeloid and lymphoid leukemias by diverse molecular genetic mechanisms. Curr Top Microbiol Immunol, 1997; 220: 67–79.
Okuda, T., Deursen, J. van, Hiebert, S. W., Grosveld, G., & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996; 84: 321–30.
Song, W. J., Sullivan, M. G., Legare, R. D., et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.
Roumier, C., Fenaux, P., Lafage, M., et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia, 2003; 17: 9–16.
Hiebert, S. W., Sun, W., Davis, J. N., et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol, 1996; 16: 1349–55.
Jousset, C., Carron, C., Boureux, A., et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerizaton interface essential to the mitogenic properties of the TEL-PDGFRβ oncoprotein. EMBO J, 1997; 16: 69–82.
Guidez, F., Petrie, K., Ford, A. M., et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood, 2000; 96: 2557–61.
Wang, L. C., Kuo, F., Fujiwara, Y., et al. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J, 1997; 16: 4374–83.
Cave, H., Cacheux, V., Raynaud, S., et al. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia, 1997; 11: 1459–64.
Takeuchi, S., Seriu, T., Bartram, C. R., et al. TEL is one of the targets for deletion on 12p in many cases of childhood B-lineage acute lymphoblastic leukemia. Leukemia, 1997; 11: 1220–3.
Wang, Q., Stacy, T., Binder, M., et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A, 1996; 93: 3444–9.
Sasaki, K., Yagi, H., Bronson, R. T., et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A, 1996; 93: 12359–63.
Wang, Q., Stacy, T., Miller, J. D., et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell, 1996; 87: 697–708.
Niki, M., Okada, H., Takano, H., et al. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci U S A, 1997; 94: 5697–702.
Dalla-Favera, R., Bregni, M., Erikson, J., et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A, 1982; 79: 7824–7.
Taub, R., Kirsch, I., Morton, C., et al. Translocation of the C-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A, 1982; 79: 7837–41.
Adams, J. M., Gerondakis, S., Webb, E., et al. Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in Burkitt lymphomas. Proc Natl Acad Sci U S A, 1983; 80: 1982–6.
Erikson, J., Nishikura, K., ar-Rushdi, A., et al. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci U S A, 1983; 80: 7581–5.
Croce, C. M., Thierfelder, W., Erikson, J., et al. Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C lambda locus in Burkitt. Proc Natl Acad Sci U S A, 1983; 80: 6922–6.
Emanuel, B. S., Selden, J. R., Chaganti, R. S. K., et al. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrups the V kappa locus. Proc Natl Acad Sci U S A, 1984; 81: 2444.
Hollis, G. F., Mitchell, K. F., Battey, J., et al. A variant translocation places the lambda immunoglobulin genes 3′ to the c-myc oncogene in Burkitt's lymphoma. Nature, 1984; 307: 752–5.
Rappold, G. A., Hameister, H., Cremer, T., et al. c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. EMBO J, 1984; 3: 2951–5.
Taub, R., Kelly, K., Battey, J., et al. A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell, 1984; 37: 511–20.
Amati, B., Dalton, S., Brooks, M. W., et al. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature, 1992; 359: 423–6.
Kato, G. J., Lee, W. M., Chen, L. L., & Dang, C. V. Max: functional domains and interaction with c-Myc. Genes Dev, 1992; 6: 81–92.
Amati, B., Brooks, M. W., Levy, N., et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell, 1993; 72: 233–45.
Blackwell, T. K., Huang, J., Ma, A., et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol, 1993; 13: 5216–24.
Grandori, C., Mac, J., Siebelt, F., Ayer, D. E., & Eisenman, R. N. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J, 1996; 15: 4344–57.
Ayer, D. E., Kretzner, L., & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell, 1993; 72: 211–22.
Foley, K. P. & Eisenman, R. N. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. Biochim Biophys Acta, 1999; 1423: M37–47.
Hurlin, P. J., Queva, C., & Eisenman, R. N. Mnt: a novel Max-interacting protein and Myc antagonist. Curr Top Microbiol Immunol, 1997; 224: 115–21.
Schreiber-Agus, N., Chin, L., Chen, K., et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell, 1995; 80: 777–86.
Ayer, D. E., Lawrence, Q. A., & Eisenman, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell, 1995; 80: 767–76.
Alland, L., Muhle, R., Hou, H. J., et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature, 1997; 387: 49–55.
Wolffe, A. P. Transcriptional control. Sinful repression. Nature, 1997; 387: 16–17.
Laherty, C. D., Yang, W. M., Sun, J. M., et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 1997; 89: 349–56.
Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell, 1997; 89: 341–7.
Grignani, F., De Matteis, S., Nervi, C., et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature, 1998; 391: 815–18.
Lin, R. J., Nagy, L., Inoue, S., et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 1998; 391: 811–14.
Guidez, F., Ivins, S., Zhu, J., et al. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood, 1998; 91: 2634–42.
Collins, S. J. Acute promyelocytic leukemia: relieving repression induces remission. Blood, 1998; 91: 2631–3.
Coller, H. A., Grandori, C., Tamayo, P., et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A, 2000; 97: 3260–5.
Mateyak, M. K., Obaya, A. J., & Sedivy, J. M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol, 1999; 19: 4672–83.
Muller, D., Bouchard, C., Rudolph, B., et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene, 1997; 15: 2561–76.
Galaktionov, K., Chen, X., & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature, 1996; 382: 511–17.
Zindy, F., Eischen, C. M., Randle, D. H., et al. MYC signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev, 1998; 12: 2424–33.
Wang, J., Xie, L. Y., Allan, S., Beach, D., & Hannon, G. J. Myc activates telomerase. Genes Dev, 1998; 12: 1769–74.
Wu, K. J., Grandori, C., Amacker, M., et al. Direct activation of TERT transcription by c-MYC. Nat Genet, 1999; 21: 220–4.
Bello-Fernandez, C., Packham, G., & Cleveland, J. L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A, 1993; 90: 7804–8.
Mai, S. & Jalava, A. c-Myc binds to 5′ flanking sequence motifs of the dihydrofolate reductase gene in cellular extracts: role in proliferation. Nucleic Acids Res, 1994; 22: 2264–73.
Miltenberger, R. J., Sukow, K. A., & Farnham, P. J. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol, 1995; 15: 2527–35.
Boyd, K. E. & Farnham, P. J. Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol, 1997; 17: 2529–37.
Pusch, O., Soucek, T., Hengstschlager-Ottnad, E., Bernaschek, G., & Hengstschlager, M. Cellular targets for activation by c-Myc include the DNA metabolism enzyme thymidine kinase. DNA Cell Biol, 1997; 16: 737–47.
Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M., & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc Natl Acad Sci U S A, 1998; 95: 13887–92.
Bush, A., Mateyak, M., Dugan, K., et al. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets. Genes Dev, 1998; 12: 3797–802.
Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J., & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci U S A, 1993; 90: 6175–8.
Schuldiner, O., Eden, A., Ben Yosef, T., et al. ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast. Proc Natl Acad Sci U S A, 1996; 93: 7143–8.
Jones, R. M., Branda, J., Johnston, K. A., et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol, 1996; 16: 4754–64.
McKeithan, T. W., Shima, E. A., Le Beau, M. M., et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3′ side of MYC. Proc Natl Acad Sci U S A, 1986; 83: 6636–40.
Finger, L. R., Harvey, R. C., Moore, R. C., Showe, L. C., & Croce, C. M. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science, 1986; 234: 982–5.
Shima, E. A., Le Beau, M. M., Mckeithan, T. W., et al. Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci U S A, 1986; 83: 3439–43.
Chen, Q., Cheng, J. T., Tasi, L. H., et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J, 1990; 9: 415–24.
Xia, Y., Brown, L., Yang, C. Y., et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci U S A, 1991; 88: 11416–20.
Mellentin, J. D., Smith, S. D., & Cleary, M. L. Lyl-l, a novel gene altered by chromosomal translocation in T-cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell, 1989; 58: 77–83.
Wang, J., Jani-Sait, S. N., Escalon, E. A., et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci U S A, 2000; 97: 3497–502.
McGuire, E. A., Hockett, R. D., Pollock, K. M., et al. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including tg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol, 1989; 9: 2124–32.
Boehm, T., Foroni, L., Kaneko, Y., Perutz, M. F., & Rabbitts, T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A, 1991; 88: 4367–71.
Royer-Pokora, B., Loos, U., & Ludwig, W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene, 1991; 6: 1887–93.
Hatano, M., Roberts, C. W., Minden, M., Crist, W. M., & Korsmeyer, S. J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science, 1991; 253: 79–82.
Kennedy, M. A., Gonzalez-Sarmiento, R., Kees, U. R., et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci U S A, 1991; 88: 8900–4.
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–504.
Brown, L., Cheng, J. T., Chen, Q., et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J, 1990; 9: 3343–51.
Aplan, P. D., Lombardi, D. P., & Kirsch, I. R. Structural characterization of SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol Cell Biol, 1991; 11: 5462–9.
Aplan, P. D., Lombardi, D. P., Reaman, G. H., et al. Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood, 1992; 79: 1327–33.
Bernard, O., Lecointe, N., Jonveaux, P., et al. Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5′ part of the tal-1 gene. Oncogene, 1991; 6: 1477–88.
Breit, T. M., Mol, E. J., Wolvers-Tettero, I. L., et al. Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med, 1993; 177: 965–77.
Baer, R. TAL1, TAL2, and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Sem Cancer Biol, 1993; 4: 341–7.
Bash, R. O., Hall, S., Timmons, C. F., et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia ? A Pediatric Oncology Group study. Blood, 1995; 86: 666–76.
Hsu, H.-L., Cheng, J.-T., Chen, Q., & Baer, R. Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol Cell Biol, 1991; 11: 3037–42.
Miyamoto, A., Cui, X., Naumovski, L., & Cleary, M. L. Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Mol Cell Biol, 1996; 16: 2394–401.
Shivdasani, R. A., Mayer, E. L., & Orkin, S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 1995; 373: 432–4.
Robb, L., Lyons, I., Li, R., et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A, 1995; 92: 7075–9.
Begley, C. G., Aplan, P. D., Denning, S. M., et al. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A, 1989; 86: 10128–32.
Porcher, C., Swat, W., Rockwell, K., et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell, 1996; 86: 47–57.
Hsu, H. L., Wadman, I., Tsan, J. T., & Baer, R. Positive and negative transcriptional control by the TAL1 helix-loop-helix protein. Proc Natl Acad Sci U S A, 1994; 91: 5947–51.
Park, S. T. & Sun, X. H. The Tal1 oncoprotein inhibits E47-mediated transcription. Mechanism of inhibition. J Biol Chem, 1998; 273: 7030–7.
Begley, C. G. & Green, A. R. The SCL gene: from case report to critical hematopoietic regulator. Blood, 1999; 93: 2760–70.
Bain, G., Engel, I., Maandag, E. C., et al. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol, 1997; 17: 4782–891.
Yan, W., Young, A. Z., Soares, V. C., et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol, 1997; 17: 7317–27.
Aplan, P. D., Jones, C. A., Chervinsky, D. S., et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J, 1997; 16: 2406–19.
Greenberg, J. M., Boehm, T., Sofroniew, M. V., et al. Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system. Nature, 1990; 344: 158–60.
Valge-Archer, V. E., Osada, H., Warren, A. J., et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci U S A, 1994; 91: 8617–21.
Wadman, I., Li, J., Bash, R. O., et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J, 1994; 13: 4831–9.
Larson, R. C., Lavenir, I., Larson, T. A., et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J, 1996; 15: 1021–7.
McGuire, E. A., Rintoul, C. E., Sclar, G. M., & Korsmeyer, S. J. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol, 1992; 12: 4186–96.
Larson, R. C., Fisch, P., Larson, T. A., et al. T cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene, 1994; 9: 3675–81.
Larson, R. C., Osada, H., Larson, T. A., Lavenir, I., & Rabbitts, T. H. The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene, 1995; 11: 853–62.
Neale, G. A., Rehg, J. E., & Goorha, R. M. Ectopic expression of rhombotin-2 causes selective expansion of CD4- CD8- lymphocytes in the thymus and T-cell tumors in transgenic mice. Blood, 1995; 86: 3060–71.
Chervinsky, D. S., Zhao, X.-F., Lam, D. U., et al. Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol Cell Biol, 1999; 19: 5025–35.
Dear, T. N., Sanchez-Garcia, I., & Rabbitts, T. H. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci, 1993; 90: 4431–5.
Allen, J. D., Lints, T., Jenkins, N. A., et al. Novel murine homeo box gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis. Genes Dev, 1991; 5: 509–20.
McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell, 1992; 68: 283–302.
Roberts, C. W. M., Shutter, J. R., & Korsmeyer, S. J. Hox11 controls the genesis of the spleen. Nature, 1994; 368: 747–9.
Dear, T. N., Colledge, W. H., Carlton, M. B., et al. The Hox11 gene is essential for cell survival during spleen development. Development, 1995; 121: 2909–15.
Shirasawa, S., Arata, A., Onimaru, H., et al. Rnx deficiency results in congenital central hypoventilation. Nat Genet, 2000; 24: 287–90.
Ferrando, A. A., Neuberg, D. S., Staunton J., et al. Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.
Grimaldi, J. C. & Meeker, T. C. The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood, 1989; 73: 2081–5.
Meeker, T. C., Hardy, D., Willman, C., Hogan, T., & Abrams, J. Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood, 1990; 76: 285–9.
Ellisen, L. W., Bird, J., West, D. C., et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991; 66: 649–61.
Weng, A. P., Ferrando, A. A., Lee, W., et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 2004; 306: 269–71.
Tycko, B., Smith, S. D., & Sklar, J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J Exp Med, 1991; 174: 867–73.
Knudson, A. G., Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U SA, 1971; 68: 820–3.
Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell, 1995; 81: 323–30.
Matlashewski, G., Lamb, P., Pim, D., et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J, 1984; 3: 3257–62.
Zakut-Houri, R., Bienz-Tadmor, B., Givol, D., & Oren, M. Human p53 cellular tumor antigen: cDNA sequence and expression in COS cells. EMBO J, 1985; 4: 1251–5.
Baker, S. J., Fearon, E. R., Nigro, J. M., et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 1989; 244: 217–21.
Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. V., & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990; 249: 912–15.
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell, 1997; 88: 323–31.
King-Underwood, L., Renshaw, J., & Pritchard-Jones, K. Mutations in the Wilms' tumor gene WT1 in leukemias. Blood, 1996; 87: 2171–9.
Haber, D. A. & Buckler, A. J. WT1: a novel tumor suppressor gene inactivated in Wilms' tumor. New Biol, 1992; 4: 97–106.
Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994; 264: 436–40.
Nobori, T., Miura, K., Wu, D. J., et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 1994; 368: 753–6.
Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., & Shay, J. W. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 1992; 12: 2866–71.
El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., & Vogelstein, B. Definition of a consensus binding site for p53. Nat Genet, 1992; 1: 45–9.
Farmer, G. E., Bargonetti, J., Zhu, H., et al. Wild-type p53 activates transcription in vitro. Nature, 1992; 358: 83–6.
Fields, S. & Jang, S. K. Presence of a potent transcription activating sequence in the p53 protein. Science, 1990; 249: 1046–9.
Kern, S. E., Kinzler, K. W., Bruskin, A., et al. Identification of p53 as a sequence-specific DNA-binding protein. Science, 1991; 252: 1708–11.
Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 1991; 51: 6304–11.
Oren, M. Decision making by p53: life, death and cancer. Cell Death Differ, 2003; 10: 431–42.
Donehower, L. A., Harvey, M., Slagle, B. L., et al. Mice deficient in p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 1992; 356: 215–21.
Li, F. P., Fraumeni, J. F., Jr., Mulvihill, J. J., et al. A cancer family syndrome in twenty-four kindreds. Cancer Res, 1988; 48: 5358–62.
Malkin, D., Li, F. P., Strong, L. C., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 1990; 250: 1233–8.
Srivastava, S., Zou, Z., Pirollo, K., Blattner, W., & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature, 1990; 348: 747–9.
Frebourg, T. & Friend, S. H. Cancer risks from germline p53 mutations. J Clin Invest, 1992; 90: 1637–41.
Varley, J. M., Evans, D. G., & Birch, J. M. Li-Fraumeni syndrome – a molecular and clinical review. Br J Cancer, 1997; 76: 1–14.
Krug, U., Ganser, A., & Koeffler, H. P. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene, 2002; 21: 3475–95.
Hsiao, M. H., Yu, A. L., Yeargin, J., Ku, D., & Haas, M. Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood, 1994; 83: 2922–30.
Diccianni, M. B., Yu, J., Hsiao, M., Mukherjee, S., Shao, L. E., & Yu, A. L. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood, 1994; 84: 3105–12.
Wada, M., Bartram, C. R., Nakamura, H., et al. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood, 1993; 82: 3163–9.
Kawamura, M., Kikuchi, A., Kobayashi, S., et al. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood, 1995; 85: 2546–52.
Hangaishi, A., Ogawa, S., Imamura, N., et al. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. Blood, 1996; 87: 4949–58.
Kawamura, M., Ohnishi, H., Guo, S. X., et al. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res, 1999; 23: 115–26.
Marks, D. I., Kurz, B. W., Link, M. P., et al. High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood, 1996; 87: 1155–61.
Marks, D. I., Kurz, B. W., Link, M. P., et al. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol, 1997; 15: 1158–62.
Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995; 9: 1149–63.
Kamijo, T., Zindy, F., Roussel, M. F., et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell, 1997; 91: 649–59.
Quelle, D. E., Zindy, F., Ashmun, R. A., & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell, 1995; 83: 993–1000.
Sidransky, D. Two tracks but one race ? Cancer genetics. Curr Biol, 1996; 6: 523–5.
Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994; 264: 436–40.
Zhang, Y., Xiong, Y., & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell, 1998; 92: 725–34.
Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell, 1998; 92: 713–23.
Ashcroft, M. & Vousden, K. H. Regulation of p53 stability. Oncogene, 1999; 18: 7637–43.
Serrano, M., Lee, H. W., Chin, L., et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell, 1996; 85: 27–37.
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A., & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature, 2001; 413: 83–6.
Sharpless, N. E., Bardeesy, N., Lee, K. H., et al. Loss of p16Ink4a with retention of the p19Arf predisposes mice to tumorigenesis. Nature, 2001; 413: 86–91.
Hebert, J., Cayuela, J. M., Berkeley, J., & Sigaux, F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood, 1994; 84: 4038–44.
Quesnel, B., Preudhomme, C., Philippe, N., et al. p16 gene homozygous deletions in acute lymphoblastic leukemia. Blood, 1995; 85: 657–63.
Haidar, M. A., Cao, X. B., Manshouri, T., et al. p16INK4A and p15INK4B gene deletions in primary leukemias. Blood, 1995; 86: 311–15.
Fizzotti, M., Cimino, G., Pisegna, S., et al. Detection of homozygous deletions of the cyclin-dependent kinase 4 inhibitor (p16) gene in acute lymphoblastic leukemia and association with adverse prognostic features. Blood, 1995; 85: 2685–90.
Rasool, O., Heyman, M., Brandter, L. B., et al. p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. Blood, 1995; 85: 3431–6.
Okuda, T., Shurtleff, S. A., Valentine, M. B., et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood, 1995; 85: 2321–30.
Hirama, T. & Koeffler, H. P. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood, 1995; 86: 841–54.
Iolascon, A., Faienza, M. F., Coppola, B., et al. Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in childhood T cell lineage acute lymphoblastic leukemias. Leukemia, 1996; 10: 255–60.
Nakao, M., Yokota, S., Kaneko, H., et al. Alterations of CDKN2 gene structure in childhood acute lymphoblastic leukemia: mutations of CDKN2 are observed preferentially in T lineage. Leukemia, 1996; 10: 249–54.
Cayuela, J. M., Madani, A., Sanhes, L., Stern, M. H., & Sigaux, F. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood, 1996; 87: 2180–6.
Takeuchi, S., Bartram, C. R., Seriu, T., et al. Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia of childhood. Blood, 1995; 86: 755–60.
Heyman, M., Rasool, O., Borgonovo, B. L., et al. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol, 1996; 14: 1512–20.
Drexler, H. G. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia, 1998; 12: 845–59.
Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C., & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science, 1984; 226: 1097–9.
Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science, 1985; 229: 1390–3.
Bakhshi, A., Jensen, J. P., Goldman, P., et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 1985; 41: 899–906.
Cleary, M. L. & Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A, 1985; 82: 7439–43.
Cleary, M. L., Smith, S. D., & Sklar, J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl- 2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell, 1986; 47: 19–28.
Miyashita, T. & Reed, J. C. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood, 1993; 81: 151–7.
Naumovski, L. & Cleary, M. L. Bcl2 inhibits apoptosis associated with terminal differentiation of HL-60 myeloid leukemia cells. Blood, 1994; 83: 2261–7.
Yang, E. & Korsmeyer, S. J. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood, 1996; 88: 386–401.
Vaux, D. L., Cory, S., & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988; 335: 440–2.
Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 1993; 74: 609–19.
Kroemer, G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med, 1997; 3: 614–20.
Coustan-Smith, E., Kitanaka, A., Pui, C. H., et al. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood, 1996; 87: 1140–6.
Findley, H. W., Gu, L., Yeager, A. M., & Zhou, M. Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood, 1997; 89: 2986–93.
Meijerink, J. P. P., Mensink, E. J., Wang, K., et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood, 1998; 91: 2991–7.
Williams, D. L., Harber, J., Murphy, S. B., et al. Chromosomal translocation plays a unique role in influencing prognosis in childhood acute lymphoblastic leukemia. Blood, 1986; 68: 205–16.
Rubin, C. M., Le Beau, M. M., Mick, R., et al. Impact of chromosomal translocations on prognosis in childhood acute lymphoblastic leukemia. J Clin Oncol, 1991; 9: 2183–92.
Fletcher, J. A., Kimball, V. M., Lynch, E., et al. Prognostic implications of cytogenetic studies in an intensively treated group of children with acute lymphoblastic leukemia. Blood, 1989; 74: 2130–5.
Trueworthy, R., Shuster, J., Look, T., et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.
Look, A. T., Roberson, P. K., Williams, D. L., et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 1979; 65: 1079–86.
Williams, D. L., Tsiatis, A., Brodeur, G. M., et al. Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood, 1982; 60: 864–71.
Harris, M. B., Shuster, J. J., Carroll, A., et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood, 1992; 79: 3316–24.
Pui, C. H. & Crist, W. M. Biology and treatment of acute lymphoblastic leukemia. J Pediatr, 1994; 124: 491–503.
Smith, M., Arthur, D., Camitta, B., et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 18–24.
Campana, D. & Pui, C. H. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood, 1995; 85: 1416–34.
Moppett, J., Burke, G. A., Steward, C. G., Oakhill, A., & Goulden, N. J. The clinical relevance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. J Clin Pathol, 2003; 56: 249–53.

Reference Title: References

Reference Type: reference-list

Karp, J. E. & Smith, M. A. The molecular pathogenesis of treatment-induced (secondary) leukemias: foundations for treatment and prevention. Semin Oncol, 1997; 24: 103–13.
Creutzig, U., Ritter, J., Vormoor, J., et al. Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM study group. Leukemia, 1996; 10: 1677–86.
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. Pathology and genetics of tumours of haematopoietic and lymphoid tissues (Lyon, France: IARC Press, 2001).
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997; 3: 730–7.
Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science, 1997; 278: 1059–64.
de The, H., Chomienne, C., Lanotte, M., Degos, L., & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature, 1990; 347: 558–61.
Borrow, J., Goddard, A. D., Sheer, D., & Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science, 1990; 249: 1577–80.
Alcalay, M., Zangrilli, D., Pandolfi, P. P., et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc Natl Acad Sci U S A, 1991; 88: 1977–81.
de The, H., Lavau, C., Marchio, A., et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991; 66: 675–84.
Kakizuka, A., Miller, W. H. J., Umesono, K., et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell, 1991; 66: 663–74.
Grimwade, D. & Solomon, E. Characterisation of the PML/RAR alpha rearrangement associated with t(15;17) acute promyelocytic leukaemia. Curr Top Microbiol Immunol, 1997; 220: 81–112.
Biondi, A., Rambaldi, A., Pandolfi, P. P., et al. Molecular monitoring of the myl/retinoic acid receptor-α fusion gene in acute promyelocytic leukemia by polymerase chain reaction. Blood, 1992; 80: 492–7.
Pollock, J. L., Westervelt, P., Kurichety, A. K., et al. A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1999; 96: 15103–8.
He, L. Z., Bhaumik, M., Tribioli, C., et al. Two critical hits for promyelocytic leukemia. Mol Cell, 2000; 6: 1131–41.
Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J, 1996; 10: 940–54.
Borden, K. L., Boddy, M. N., Lally, J., et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J, 1995; 14: 1532–41.
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell, 2000; 102: 549–52.
Saurin, A. J., Borden, K. L., Boddy, M. N., & Freemont, P. S. Does this have a familiar RING ? Trends Biochem Sci, 1996; 21: 208–14.
Jensen, K., Shiels, C., & Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001; 20: 7223–33.
Fagioli, M., Alcalay, M., Pandolfi, P. P., et al. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene, 1992; 7: 1083–91.
Tashiro, S., Kotomura, N., Tanaka, K., et al. Identification of illegitimate recombination hot spot of the retinoic acid receptor alpha gene involved in 15:17 chromosomal translocation of acute promyelocytic leukemia. Oncogene, 1994; 9: 1939–45.
Pandolfi, P. P., Alcalay, M., Fagioli, M., et al. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J, 1992; 11: 1397–1407.
Gallagher, R. E., Li, Y. P., Rao, S., et al. Characterization of acute promyelocytic leukemia cases with PML-RAR alpha break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood, 1995; 86: 1540–7.
Fukutani, H., Naoe, T., Ohno, R., et al. Isoforms of PML-retinoic acid receptor alpha fused transcripts affect neither clinical features of acute promyelocytic leukemia nor prognosis after treatment with all-trans retinoic acid. The Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia, 1995; 9: 1478–82.
Gu, B. W., Xiong, H., Zhou, Y., et al. Variant-type PML-RAR(alpha) fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RAR(alpha) gene and identification of a new clinical subtype resistant to retinoic acid therapy. Proc Natl Acad Sci U S A, 2002; 99: 7640–5.
Pandolfi, P. P. PML, PLZF and NPM genes in the molecular pathogenesis of acute promyelocytic leukemia. Haematologica, 1996; 81: 472–82.
Leid, M., Kastner, P., Lyons, R., et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell, 1992; 68: 377–95.
Horlein, A. J., Naar, A. M., Heinzel, T., et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature, 1995; 377: 397–404.
Kurokawa, R., Soderstrom, M., Horlein, A., et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature, 1995; 377: 451–4.
Nagy, L., Kao, H. Y., Chakravarti, D., et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 1997; 89: 373–80.
Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature, 1997; 389: 349–52.
Kamei, Y., Xu, L., Heinzel, T., et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell, 1996; 85: 403–14.
Shikama, N., Lyon, J., & La Thangue, N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol, 1997; 7: 230–6.
Kawasaki, H., Eckner, R., Yao, T. P., et al. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature, 1998; 393: 284–9.
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 1996; 87: 953–9.
Chen, H., Lin, R. J., Schiltz, R. L., et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell, 1997; 90: 569–80.
Pazin, M. J. & Kadonaga, J. T. What's up and down with histone deacetylation and transcription ? Cell, 1997; 89: 325–8.
Rhodes, D. Chromatin structure. The nucleosome core all wrapped up [news]. Nature, 1997; 389: 231–3.
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 1997; 90: 595–606.
Weis, K., Rambaud, S., Lavau, C., et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell, 1994; 76: 345–56.
Dyck, J. A., Maul, G. G., Miller, W. H., et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell, 1994; 76: 333–43.
Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science, 1998; 280: 547–53.
Grotzinger, T., Sternsdorf, T., Jensen, K., & Will, H. Interferon-modulated expression of genes encoding the nuclear-dot-associated proteins Sp100 and promyelocytic leukemia protein (PML). Eur J Biochem, 1996; 238: 554–60.
Chen, Z., Brand, N. J., Chen, A., et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J, 1993; 12: 1161–7.
Koken, M. H., Reid, A., Quignon, F., et al. Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci U S A, 1997; 94: 10 255–60.
Ruthardt, M., Orleth, A., Tomassoni, L., et al. The acute promyelocytic leukaemia specific PML and PLZF proteins localize to adjacent and functionally distinct nuclear bodies. Oncogene, 1998; 16: 1945–53.
Everett, R. D., Meredith, M., Orr, A., et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J, 1997; 16: 1519–30.
Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., & Freemont, P. S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene, 1996; 13: 971–82.
Doucas, V., Tini, M., Egan, D. A., & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci U S A, 1999; 96: 2627–32.
Zhong, S., Muller, S., Ronchetti, S., et al. Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000; 95: 2748–52.
Zhong, S., Salomoni, P., & Pandolfi, P. P. The transcriptional role of PML and the nuclear body. Nat Cell Biol, 2000; 2: E85–90.
Best, J. L., Ganiatsas, S., Agarwal, S., et al. SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell, 2002; 10: 843–55.
Borden, K. L., Lally, J. M., Martin, S. R., et al. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A, 1996; 93: 1601–6.
Borden, K. L., Campbell-Dwyer, E. J., & Salvato, M. S. The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett, 1997; 418: 30–4.
Le, X. F., Yang, P., & Chang, K. S. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem, 1996; 271: 130–5.
Mu, Z. M., Chin, K. V., Liu, J. H., Lozano, G., & Chang, K. S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol, 1994; 14: 6858–67.
Liu, J. H., Mu, Z. M., & Chang, K. S. PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu. J Exp Med, 1995; 181: 1965–73.
Wang, Z. G., Delva, L., Gaboli, M., et al. Role of PML in cell growth and the retinoic acid pathway. Science, 1998; 279: 1547–51.
Ferbeyre, G., de Stanchina, E., Querido, E., et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev, 2000; 14: 2015–27.
Pearson, M., Carbone, R., Sebastiani, C., et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature, 2000; 406: 207–10.
Fang, W., Mori, T., & Cobrinik, D. Regulation of PML-dependent transcriptional repression by pRB and low penetrance pRB mutants. Oncogene, 2002; 21: 5557–65.
Alcalay, M., Tomassoni, L., Colombo, E., et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol, 1998; 18: 1084–93.
Wang, Z. G., Ruggero, D., Ronchetti, S., et al. PML is essential for multiple apoptotic pathways. Nat Genet, 1998; 20: 266–72.
Guo, A., Salomoni, P., Luo, J., et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol, 2000; 2: 730–6.
Yang, S., Kuo, C., Bisi, J. E., & Kim, M. K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 2002; 4: 865–70.
Guiochon-Mantel, A., Savouret, J. F., Quignon, F., et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol Endocrinol, 1995; 9: 1791–1803.
Grignani, F., Ferrucci, P. F., Testa, U., et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell, 1993; 74: 423–31.
Grignani, F., Testa, U., Fagioli, M., et al. Promyelocytic leukemia-specific PML-retinoic acid alpha receptor fusion protein interferes with erythroid differentiation of human erythroleukemia K562 cells. Cancer Res, 1995; 55: 440–3.
Grignani, F., Testa, U., Rogaia, D., et al. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J, 1996; 15: 4949–58.
Lin, R. J. & Evans, R. M. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell, 2000; 5: 821–30.
Minucci, S., Maccarana, M., Cioce, M., et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell, 2000; 5: 811–20.
Koken, M. H. M., Puvion-Dutilleul, F., Guillemin, M. C., et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J, 1994; 13: 1073–83.
Fu, S., Consoli, U., Hanania, E. G., et al. PML/RARalpha, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Clin Cancer Res, 1995; 1: 583–90.
Maeda, Y., Horiuchi, F., Miyatake, J., et al. Inhibition of growth and induction of apoptosis by all-trans retinoic acid in lymphoid cell lines transfected with the PML/RAR alpha fusion gene. Br J Haematol, 1996; 93: 973–6.
Rogaia, D., Grignani, F., Nicoletti, I., & Pelicci, P. G. The acute promyelocytic leukemia-specific PML/RAR alpha fusion protein reduces the frequency of commitment to apoptosis upon growth factor deprivation of GM-CSF-dependent myeloid cells. Leukemia, 1995; 9: 1467–72.
Rousselot, P., Hardas, B., Patel, A., et al. The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene, 1994; 9: 545–51.
Rego, E. M., Wang, Z. G., Peruzzi, D., et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med, 2001; 193: 521–9.
Kogan, S. C., Brown, D. E., Shultz, D. B., et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med, 2001; 193: 531–43.
Di Croce, L., Raker, V. A., Corsaro, M., et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science, 2002; 295: 1079–82.
Lane, A. A. & Ley, T. J. Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell, 2003; 115: 305–18.
Grignani, F., De Matteis, S., Nervi, C., et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature, 1998; 391: 815–18.
Lin, R. J., Nagy, L., Inoue, S., et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 1998; 391: 811–14.
He, L. Z., Guidez, F., Tribioli, C., et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet, 1998; 18: 126–35.
Raelson, J. V., Nervi, C., Rosenauer, A., et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood, 1996; 88: 2826–32.
Hong, S. H., David, G., Wong, C. W., Dejean, A., & Privalsky, M. L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1997; 94: 9028–33.
Collins, S. J. Acute promyelocytic leukemia: relieving repression induces remission. Blood, 1998; 91: 2631–3.
Tobal, K., Saunders, M. J., Grey, M. R., & Yin, J. A. Persistence of RAR alpha-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukaemia. Br J Haematol, 1995; 90: 615–18.
Nervi, C., Ferrara, F. F., Fanelli, M., et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein. Blood, 1998; 92: 2244–51.
Zhu, J., Gianni, M., Kopf, E., et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A, 1999; 96: 14 807–12.
Jing, Y., Xia, L., Lu, M., & Waxman, S. The cleavage product deltaPML-RARalpha contributes to all-trans retinoic acid-mediated differentiation in acute promyelocytic leukemia cells. Oncogene, 2003; 22: 4083–91.
Yuan, W. & Krug, R. M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J, 2001; 20: 362–71.
Kitareewan, S., Pitha-Rowe, I., Sekula, D., et al. UBE1L is a retinoid target that triggers PML/RARalpha degradation and apoptosis in acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 2002; 99: 3806–11.
Malakhova, O. A., Yan, M., Malakhov, M. P., et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev, 2003; 17: 455–60.
Dermime, S., Grignani, F., Clerici, M., et al. Occurrence of resistance to retinoic acid in the acute promyelocytic leukemia cell line NB4 is associated with altered expression of the pml/RAR alpha protein. Blood, 1993; 82: 1573–7.
Shao, W., Benedetti, L., Lamph, W. W., Nervi, C., & Miller, W. H. J. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RAR alpha mutation. Blood, 1997; 89: 4282–9.
Zhou, D. C., Kim, S. H., Ding, W., et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood, 2002; 99: 1356–63.
Tallman, M. S., Nabhan, C., Feusner, J. H., & Rowe, J. M. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood, 2002; 99: 759–67.
Shao, W., Fanelli, M., Ferrara, F. F., et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst, 1998; 90: 124–33.
Zhu, J., Koken, M. H., Quignon, F., et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1997; 94: 3978–83.
Look, A. T. Arsenic and apoptosis in the treatment of acute promyelocytic leukemia [editorial]. J Natl Cancer Inst, 1998; 90: 86–8.
Early, E., Moore, M. A., Kakizuka, A., et al. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci U S A, 1996; 93: 7900–4.
Altabef, M., Garcia, M., Lavau, C., et al. A retrovirus carrying the promyelocyte-retinoic acid receptor PML- RARalpha fusion gene transforms haematopoietic progenitors in vitro and induces acute leukaemias. EMBO J, 1996; 15: 2707–16.
Grisolano, J. L., Wesselschmidt, R. L., Pelicci, P. G., & Ley, T. J. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood, 1997; 89: 376–87.
He, L. Z., Tribioli, C., Rivi, R., et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci U S A, 1997; 94: 5302–7.
Le Beau, M. M., Davis, E. M., Patel, B., et al. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood, 2003; 102: 1072–4.
Zimonjic, D. B., Pollock, J. L., Westervelt, P., Popescu, N. C., & Ley, T. J. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A, 2000; 97: 13 306–11.
Redner, R. L., Rush, E. A., Faas, S., Rudert, W. A., & Corey, S. J. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood, 1996; 87: 882–6.
Wells, R. A., Catzavelos, C., & Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet, 1997; 17: 109–13.
Arnould, C., Philippe, C., Bourdon, V., et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet, 1999; 8: 1741–9.
Redner, R. L. Variations on a theme: the alternate translocations in APL. Leukemia, 2002; 16: 1927–32.
Avantaggiato, V., Pandolfi, P. P., Ruthardt, M., et al. Developmental analysis of murine Promyelocytic Leukemia Zinc Finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J Neurosci, 1995; 15: 4927–42.
Cook, M., Gould, A., Brand, N., et al. Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci U S A, 1995; 92: 2249–53.
Ruthardt, M., Testa, U., Nervi, C., et al. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling. Mol Cell Biol, 1997; 17: 4859–69.
Dong, S., Zhu, J., Reid, A., et al. Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger- retinoic acid receptor-alpha fusion protein. Proc Natl Acad Sci U S A, 1996; 93: 3624–9.
Melnick, A., Carlile, G., Ahmad, K. F., et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol, 2002; 22: 1804–18.
Chen, Z., Guidez, F., Rousselot, P., et al. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci U S A, 1994; 91: 1178–82.
Lo, C. F., Pisegna, S., & Diverio, D. The AML1 gene: a transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias. Haematologica, 1997; 82: 364–70.
Miyoshi, H., Shimizu, K., Kozu, T., et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A, 1991; 88: 10431–4.
Erickson, P., Gao, J., Chang, K. S., et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 1992; 80: 1825–31.
Nisson, P. E., Watkins, P. C., & Sacchi, N. Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells [published erratum appears in Cancer Genet Cytogenet, 1993; 66: 81]. Cancer Genet Cytogenet, 1992; 63: 81–8.
Miyoshi, H., Kozu, T., Shimizu, K., et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J, 1993; 12: 2715–21.
Liu, P., Tarle, S. A., Hajra, A., et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 1993; 261: 1041–4.
Berger, R., Bernheim, A., Ochoa-Noguera, M. E., et al. Prognostic significance of chromosomal abnormalities in acute nonlymphocytic leukemia: a study of 343 patients. Cancer Genet Cytogenet, 1987; 28: 293–9.
Samuels, B. L., Larson, R. A., LeBeau, M. M., et al. Specific chromosomal abnormalities in acute nonlymphocytic leukemia correlate with drug susceptibility in vivo. Leukemia, 1988; 2: 79–83.
Keating, M. J., Smith, T. L., Kantarjian, H., et al. Cytogenetic pattern in acute myelogenous leukemia: a major reproducible determinant of outcome. Leukemia, 1988; 2: 403–12.
Fenaux, P., Preudhomme, C., Lai, J. L., et al. Cytogenetics and their prognostic value in de novo acute myeloid leukemia: a report on 283 cases. Br J Haematol, 1989; 73: 61–7.
Dastugue, N., Payen, C., Lafage-Pochitaloff, M., et al. Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia, 1995; 9: 1491–8.
Nucifora, G., Birn, D. J., Espinosa, R., et al. Involvement of the AML1 gene in the t(3;21) in therapy-related leukemia and in chronic myeloid leukemia in blast crisis. Blood, 1993; 81: 2728–34.
Golub, T. R., Barker, G. F., Bohlander, S. K., et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 1995; 92: 4917–21.
Romana, S. P., Mauchauffe, M., Le Coniat, M., et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood, 1995; 85: 3662–70.
Wang, S., Wang, Q., Crute, B. E., et al. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol, 1993; 13: 3324–39.
Sun, W., O'Connell, M., & Speck, N. A. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. J Virol, 1993; 67: 1976–86.
Meyers, S., Downing, J. R., & Hiebert, S. W. Identification of AML-1 and the (8;21) translocation protein (AML- 1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein–protein interactions. Mol Cell Biol, 1993; 13: 6336–45.
Daga, A., Tighe, J. E., & Calabi, F. Leukemia/Drosophila homology. Nature, 1992; 356: 484.
Ogawa, E., Maruyama, M., Kagoshima, H., et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A, 1993; 90: 6859–63.
Levanon, D., Negreanu, V., Bernstein, Y., et al. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics, 1994; 23: 425–32.
Lorsbach, R. B., Moore, J., Ang, S. O., et al. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood, 2004; 103: 2522–9.
North, T. E., Stacy, T., Matheny, C. J., Speck, N. A., de Bruijn, M. F. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells, 2004; 22: 158–68.
Corsetti, M. T. & Calabi, F. Lineage- and stage-specific expression of runt box polypeptides in primitive and definitive hematopoiesis. Blood, 1997; 89: 2359–68.
Levanon, D., Brenner, O., Negreanu, V., et al. Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogen esis. Mech Dev, 2001; 109: 413–17.
Theriault, F. M., Roy, P., & Stifani, S. AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc Natl Acad Sci U S A, 2004; 101: 10343–8.
Ogawa, E., Inuzuka, M., Maruyama, M., et al. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 1993; 194: 314–31.
Huang, G., Shigesada, K., Ito, K., et al. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin- proteasome-mediated degradation. EMBO J, 2001; 20: 723–33.
Tanaka, Y., Watanabe, T., Chiba, N., et al. The protooncogene product, PEBP2beta/CBFbeta, is mainly located in the cytoplasm and has an affinity with cytoskeletal structures. Oncogene, 1997; 15: 677–83.
Lu, J., Maruyama, M., Satake, M., et al. Subcellular localization of the alpha and beta subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. Mol Cell Biol, 1995; 15: 1651–61.
Chiba, N., Watanabe, T., Nomura, S., et al. Differentiation dependent expression and distinct subcellular localization of the protooncogene product, PEBP2beta/CBFbeta, in muscle development. Oncogene, 1997; 14: 2543–52.
Nuchprayoon, I., Meyers, S., Scott, L. M., et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol, 1994; 14: 5558–68.
Zhang, D. E., Fujioka, K., Hetherington, C. J., et al. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol, 1994; 14: 8085–95.
Hsiang, Y. H., Spencer, D., Wang, S., Speck, N. A., & Raulet, D. H. The role of viral enhancer “core” motif-related sequences in regulating T cell receptor-γ and -δ gene expression. J Immunol, 1993; 150: 3905–16.
Shoemaker, S. G., Hromas, R., & Kaushansky, K. Transcriptional regulation of interleukin 3 gene expression in T lymphocytes [abstract]. Proc Natl Acad Sci U S A, 1990; 87: 9650–4.
Takahashi, A., Satake, M., Yamaguchi-Iwai, Y., et al. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood, 1995; 86: 607–16.
Wotton, D., Ghysdael, J., Wang, S., Speck, N. A., & Owen, M. J. Cooperative binding of Ets-1 and core binding factor to DNA. Mol Cell Biol, 1994; 14: 840–50.
Hernandez-Munain, C. & Krangel, M. S. c-Myb and core-binding factor/PEBP2 display functional synergy but bind independently to adjacent sites in the T-cell receptor delta enhancer [published erratum appears in Mol Cell Biol, 1995; 15: 4659]. Mol Cell Biol, 1995; 15: 3090–9.
Britos-Bray, M. & Friedman, A. D. Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c- Myb. Mol Cell Biol, 1997; 17: 5127–35.
Erman, B., Cortes, M., Nikolajczyk, B. S., Speck, N. A., & Sen, R. ETS-core binding factor: a common composite motif in antigen receptor gene enhancers. Mol Cell Biol, 1998; 18: 1322–30.
Carey, M. The enhanceosome and transcriptional synergy. Cell, 1998; 92: 5–8.
Giese, K., Kingsley, C., Kirshner, J. R., & Grosschedl, R. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev, 1995; 9: 995–1008.
Bruhn, L., Munnerlyn, A., & Grosschedl, R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev, 1997; 11: 640–53.
Kurokawa, M., Tanaka, T., Tanaka, K., et al. Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies. Oncogene, 1996; 12: 883–92.
Aronson, B. D., Fisher, A. L., Blechman, K., Caudy, M., & Gergen, J. P. Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol, 1997; 17: 5581–7.
Ahn, M. Y., Huang, G., Bae, S. C., et al. Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. Proc Natl Acad Sci U S A, 1998; 95: 1812– 17.
Kanno, T., Kanno, Y., Chen, L.-F., et al. Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor α subunit revealed in the presence of the β subunit. Mol Cell Biol, 1998; 18: 2444–54.
Nishimura, M., Fukushima-Nakase, Y., Fujita, Y., et al. VWRPY motif-dependent and -independent roles of AML1/Runx1 transcription factor in murine hematopoietic development. Blood, 2004; 103: 562–70.
Levanon, D., Glusman, G., Bangsow, T., et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene, 2001; 262: 23–33.
Telfer, J. C. & Rothenberg, E. V. Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development. Dev Biol, 2001; 229: 363–82.
Fujita, Y., Nishimura, M., Taniwaki, M., Abe, T., & Okuda, T. Identification of an alternatively spliced form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development. Biochem Biophys Res Commun, 2001; 281: 1248–55.
Bae, S. C., Ogawa, E., Maruyama, M., et al. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol, 1994; 14: 3242–52.
Levanon, D., Bernstein, Y., Negreanu, V., et al. A large variety of alternatively spliced and differentially expressed mRNAs are encoded by the human acute myeloid leukemia gene AML1. DNA Cell Biol, 1996; 15: 175–85.
Tanaka, T., Tanaka, K., Ogawa, S., et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J, 1995; 14: 341–50.
Zhang, Y. W., Bae, S. C., Huang, G., et al. A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol Cell Biol, 1997; 17: 4133–45.
Tanaka, T., Kurokawa, M., Ueki, K., et al. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol, 1996; 16: 3967–79.
Imai, Y., Kurokawa, M., Yamaguchi, Y., et al. The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Mol Cell Biol, 2004; 24: 1033–43.
Okuda, T., Deursen, J. van, Hiebert, S. W., Grosveld, G., & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996; 84: 321–30.
Wang, Q., Stacy, T., Binder, M., et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A, 1996; 93: 3444–9.
Wang, Q., Stacy, T., Miller, J. D., et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 1996; 87: 697–708.
Sasaki, K., Yagi, H., Bronson, R. T., et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A, 1996; 93: 12 359–63.
North, T., Gu, T. L., Stacy, T., et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development, 1999; 126: 2563–75.
Tavian, M., Hallais, M. F., & Peault, B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development, 1999; 126: 793–803.
Tavian, M., Coulombel, L., Luton, D., et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood, 1996; 87: 67–72.
Garcia-Porrero, J. A., Godin, I. E., & Dieterlen-Lievre, F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl), 1995; 192: 425–35.
Shalaby, F., Ho, J., Stanford, W. L., et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 1997; 89: 981–90.
Jaffredo, T., Gautier, R., Eichmann, A., & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development, 1998; 125: 4575–83.
North, T., Gu, T. L., Stacy, T., et al. CBFA2 is required for the emergence of definitive hematopoietic cells from hemogenic endothelium [abstract]. Blood, 1998; 92: 570a.
Kundu, M., Chen, A., Anderson, S., et al. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Blood, 2002; 100: 2449–56.
Ichikawa, M., Asai, T., Saito, T., et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med, 2004; 10: 299–304.
Taniuchi, I., Osato, M., Egawa, T., et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell, 2002; 111: 621–33.
Nakashima, K. & de Crombrugghe, B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet, 2003; 19: 458–66.
Miller, J., Horner, A., Stacy, T., et al. The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet, 2002; 32: 645–9.
Yoshida, C. A., Furuichi, T., Fujita, T., et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet, 2002; 32: 633–8.
Kundu, M., Javed, A., Jeon, J. P., et al. Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet, 2002; 32: 639–44.
Inoue, K., Ozaki, S., Shiga, T., et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci, 2002; 5: 946–54.
Levanon, D., Bettoun, D., Harris-Cerruti, C., et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J, 2002; 21: 3454–63.
Li, Q. L., Ito, K., Sakakura, C., et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 2002; 109: 113–24.
Woolf, E., Xiao, C., Fainaru, O., et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci U S A, 2003; 100: 7731–6.
Raimondi, S. C., Kalwinsky, D. K., Hayashi, Y., et al. Cytogenetics of childhood acute nonlymphocytic leukemia. Cancer Genet Cytogenet, 1989; 40: 13–27.
Arthur, D. C. & Bloomfield, C. D. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia, a new association. Blood, 1983; 61: 994–8.
Le Beau, M. M., Larson, R. A., Bitter, M. A., et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia: a unique cytogenetic-clinical pathological association. N Engl J Med, 1998; 309: 630–6.
Shurtleff, S. A., Meyers, S., Hiebert, S. W., et al. Heterogeneity in CBFbeta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogen ous leukemia. Blood, 1995; 85: 3695–703.
Costello, R., Sainty, D., Lecine, P., et al. Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia, 1997; 11: 644–50.
Hajra, A., Liu, P. P., Wang, Q., et al. The leukemic core binding factor β-smooth muscle myosin heavy chain (CBFβ-SMMHC) chimeric protein requires both CBFβ and myosin heavy chain domains for transformation of NIH 3T3 cells. Proc Natl Acad Sci U S A, 1995; 92: 1926–30.
Viswanatha, D. S., Chen, I., Liu, P. P., et al. Characterization and use of an antibody detecting the CBFbeta-SMMHC fusion protein in inv(16)/t(16;16)-associated acute myeloid leukemias. Blood, 1998; 91: 1882–90.
Adya, N., Stacy, T., Speck, N. A., & Liu, P. P. The leukemic protein core binding factor β (CBFβ)-smooth-muscle myosin heavy chain sequesters CBFα2 into cytoskeletal filaments and aggregates. Mol Cell Biol, 1998; 18: 7432–43.
Kanno, Y., Kanno, T., Sakakura, C., Bae, S. C., & Ito, Y. Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor α(CBFα) subunit by the leukemia-related PEBP2/CBFβ-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation. Mol Cell Biol, 1998; 18: 4252–61.
Lutterbach, B., Hou, Y., Durst, K. L., & Hiebert, S. W. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci U S A, 1999; 96: 12 822–7.
Durst, K. L., Lutterbach, B., Kummalue, T., Friedman, A. D., & Hiebert, S. W. The inv(16) fusion protein associates with co repressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol, 2003; 23: 607–19.
Lukasik, S. M., Zhang, L., Corpora, T., et al. Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis. Nat Struct Biol, 2002; 9: 674–9.
Castilla, L. H., Wijmenga, C., Wang, Q., et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell, 1996; 87: 687–96.
Kogan, S. C., Lagasse, E., Atwater, S., et al. The PEBP2betaMYH11 fusion created by Inv(16)(p13;q22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia. Proc Natl Acad Sci U S A, 1998; 95: 11 863–8.
Castilla, L. H., Garrett, L., Adya, N., et al. The fusion gene cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet, 1999; 23: 144–6.
Kundu, M. & Liu, P. P. Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol, 2001; 8: 201–5.
Trujillo, J. M., Cork, A., Ahearn, M. J., Youness, E. L., & McCredie, K. B. Hematologic and cytologic characterization of 8/21 translocation acute granulocytic leukemia. Blood, 1979; 53: 695–706.
Langabeer, S. E., Walker, H., Rogers, J. R., et al. Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. MRC Adult Leukaemia Working Party. Br J Haematol, 1997; 99: 925–8.
Gamou, T., Kitamura, E., Hosoda, F., et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8 (ETO) family. Blood, 1998; 91: 4028–37.
Calabi, F., Pannell, R., & Pavloska, G. Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol, 2001; 21: 5658–66.
Kitabayashi, I., Ida, K., Morohoshi, F., et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol, 1998; 18: 846–58.
Frank, R., Zhang, J., Uchida, H., et al. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene, 1995; 11: 2667–74.
Rhoades, K. L., Hetherington, C. J., Rowley, J. D., et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci U S A, 1996; 93: 11 895–900.
Westendorf, J. J., Yamamoto, C. M., Lenny, N., et al. The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol, 1998; 18: 322–33.
Lutterbach, B., Sun, D., Schuetz, J., & Hiebert, S. W. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol, 1998; 18: 3604–11.
Lenny, N., Meyers, S., & Hiebert, S. W. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene, 1995; 11: 1761–9.
Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S., & Liu, J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A, 1998; 95: 10 860–5.
Zhang, J., Hug, B. A., Huang, E. Y., et al. Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol, 2001; 21: 156–63.
Yergeau, D. A., Hetherington, C. J., Wang, Q., et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet, 1997; 15: 303–6.
Okuda, T., Cai, Z., Yang, S., et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 1998; 91: 3134–43.
Okuda, T., Takeda, K., Fujita, Y., et al. Biological characteristics of the leukemia-associated transcriptional factor AML1 disclosed by hematopoietic rescue of AML1-deficient embryonic stem cells by using a knock-in strategy. Mol Cell Biol, 2000; 20: 319–28.
Rhoades, K. L., Hetherington, C. J., Harakawa, N., et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 2000; 96: 2108–15.
Sakakura, C., Yamaguchi-Iwai, Y., Satake, M., et al. Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci U S A, 1994; 91: 11723–7.
De Guzman, C. G., Warren, A. J., Zhang, Z., et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol, 2002; 22: 5506–17.
Mulloy, J. C., Cammenga, J., MacKenzie, K. L., et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood, 2002; 99: 15–23.
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.
Miyamoto, T., Nagafuji, K., Akashi, K., et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood, 1996; 87: 4789–96.
Miyamoto, T., Weissman, I. L., & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A, 2000; 97: 7521–6.
Linggi, B., Muller-Tidow, C., van de, Locht, L., et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med, 2002; 8: 743–50.
Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev, 2003; 13: 77–83.
Higuchi, M., O'Brien, D., Kumaravelu, P., et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 2002; 1: 63–74.
Yuan, Y., Zhou, L., Miyamoto, T., et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A, 2001; 98: 10 398–403.
Nucifora, G. & Rowley, J. D. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood, 1995; 86: 1–14.
Golub, T. R., Barker, G. F., Bohlander, S. K., et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 1995; 92: 4917–21.
Shurtleff, S. A., Buijs, A., Behm, F. G., et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.
Rubnitz, J. E., Downing, J. R., Pui, C. H., et al. TEL gene re arrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.
Hiebert, S. W., Sun, W., Davis, J. N., et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol, 1996; 16: 1349–55.
Morrow, M., Horton, S., Kioussis, D., Brady, H. J., & Williams, O. TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood, 2004; 103: 3890–6.
Tsuzuki, S., Seto, M., Greaves, M., & Enver, T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci U S A, 2004; 101: 8443–8.
Imai, Y., Kurokawa, M., Izutsu, K., et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood, 2000; 96: 3154–60.
Osato, M., Asou, N., Abdalla, E., et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, 1999; 93: 1817–24.
Preudhomme, C., Warot-Loze, D., Roumier, C., et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in M0 acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood, 2000; 96: 2862–9.
Tahirov, T. H., Inoue-Bungo, T., Morii, H., et al. Structural ana lyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 2001; 104: 755–67.
Bravo, J., Li, Z., Speck, N. A., & Warren, A. J. The leukemia-associated AML1 (Runx1)–CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol, 2001; 8: 371–8.
Arepally, G., Rebbeck, T. R., Song, W., et al. Evidence for genetic homogeneity in a familial platelet disorder with predisposition to acute myelogenous leukemia (FPD/AML). Blood, 1998; 92: 2600–2.
Dowton, S. B., Beardsley, D., Jamison, D., Blattner, S., & Li, F. P. Studies of a familial platelet disorder. Blood, 1985; 65: 557–63.
Ho, C. Y., Otterud, B., Legare, R. D., et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood, 1996; 87: 5218–24.
Luddy, R. E., Champion, L. A., & Schwartz, A. D. A fatal myeloproliferative syndrome in a family with thrombocytopenia and platelet dysfunction. Cancer, 1978; 41: 1959–63.
Song, W. J., Sullivan, M. G., Legare, R. D., et al. Haplo insufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.
Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer, 2002; 2: 502–13.
Gilliland, D. G. & Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002; 100: 1532–42.
Fenski, R., Flesch, K., Serve, S., et al. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol, 2000; 108: 322–30.
Hayakawa, F., Towatari, M., Kiyoi, H., et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene, 2000; 19: 624–31.
Kelly, L. M., Liu, Q., Kutok, J. L., et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood, 2002; 99: 310–8.
Kottaridis, P. D., Gale, R. E., Frew, M. E., et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001; 98: 1752–9.
Schnittger, S., Schoch, C., Dugas, M., et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 2002; 100: 59–66.
Iwai, T., Yokota, S., Nakao, M., et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia, 1999; 13: 38–43.
Kondo, M., Horibe, K., Takahashi, Y., et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol, 1999; 33: 525–9.
Xu, F., Taki, T., Yang, H. W., et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol, 1999; 105: 155–62.
Meshinchi, S., Woods, W. G., Stirewalt, D. L., et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, 2001; 97: 89–94.
Heinrich, M. C., Blanke, C. D., Druker, B. J., & Corless, C. L. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol, 2002; 20: 1692–703.
Care, R. S., Valk, P. J., Goodeve, A. C., et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol, 2003; 121: 775–7.
Meshinchi, S., Stirewalt, D. L., Alonzo, T. A., et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood, 2003; 102: 1474–9.
Beghini, A., Peterlongo, P., Ripamonti, C. B., et al. C-kit mutations in core binding factor leukemias [letter]. Blood, 2000; 95: 726–7.
Le, D. T. & Shannon, K. M. Ras processing as a therapeutic target in hematologic malignancies. Curr Opin Hematol, 2002; 9: 308–15.
Vogelstein, B., Civin, C. I., Preisinger, A. C., et al. RAS gene mutations in childhood acute myeloid leukemia: a Pediatric Oncology Group study. Genes Chromosomes Cancer, 1990; 2: 159–62.
Sun, W., Yeoh, E. J., Williams, W. K., Shurtleff, S. A., & Downing, J. R. Pediatric core binding factor acute myeloid leukemias contain a high frequency of RAS activating mutations [abstract]. Blood, 2002; 100: 33a.
Castilla, L. H., Perrat, P., Martinez, N. J., et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A, 2004; 101: 4924–9.
Raimondi, S. C., Peiper, S. C., Kitchingman, G. R., et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood, 1989; 73: 1627–34.
Pui, C. H., Behm, F. G., Raimondi, S. C., et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.
Pui, C. H., Frankel, L. S., Carroll, A. J., et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood, 1991; 77: 440–7.
Kaneko, Y., Maseki, N., Takasaki, N., et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood, 1986; 67: 484–91.
Rowley, J. D., Diaz, M. O., Espinosa, R., et al. Mapping chromosome bank 11q23 in human acute leukemia with biotinylated probes; identification of 11q23 translocation breakpoints with a yeast artificial chromosome. Proc Natl Acad Sci U S A, 1990; 87: 9358–62.
Ziemin-van der Poel, S., McCabe, N. R., Gill, H. J., et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias [published erratum appears in Proc Natl Acad Sci U S A, 1992; 89: 4220]. Proc Natl Acad Sci U S A, 1991; 88: 10 735–9.
Cimino, G., Moir, D. T., Canaani, O., et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res, 1991; 51: 6712–14.
Tkachuk, D. C., Kohler, S., & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell, 1992; 71: 691–700.
Gu, Y., Nakamura, T., Alder, H., et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell, 1992; 71: 701–8.
McCabe, N. R., Burnett, R. C., Gill, H. J., et al. Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 translocations. Proc Natl Acad Sci U S A, 1992; 89: 11 794–8.
Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001; 20: 5695–707.
Scandura, J. M., Boccuni, P., Cammenga, J., & Nimer, S. D. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene, 2002; 21: 3422–44.
Collins, E. C. & Rabbitts, T. H. The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism. Trends Mol Med, 2002; 8: 436–42.
Downing, J. R. & Look, A. T. MLL fusion genes in the 11q23 acute leukemias. Cancer Treat Res, 1996; 84: 73–92.
Waring, P. M. & Cleary, M. L. Disruption of a homolog of trithorax by 11q23 translocations: leukemogenic and transcriptional implications. Curr Top Microbiol Immunol, 1997; 220: 1–23.
Rubnitz, J. E., Behm, F. G., & Downing, J. R. 11q23 rearrangements in acute leukemia. Leukemia, 1996; 10: 74–82.
Schichman, S. A., Caligiuri, M. A., Strout, M. P., et al. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res, 1994; 54: 4277–80.
Ingham, P. W. Genetic control of the spatial pattern of selector gene expression in Drosophila. Cold Spring Harb Symp Quant Biol, 1985; 50: 201–8.
Mazo, A. M., Huang, D. H., Mozer, B. A., & Dawid, I. B. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc Natl Acad Sci U S A, 1990; 87: 2112–16.
Jones, R. S. & Gelbart, W. M. The Drosophila Polycomb-group gene enhancer of zeste contains a region with sequence similarity to trithorax. Mol Cell Biol, 1993; 13: 6357–66.
Ma, Q., Alder, H., Nelson, K. K., et al. Analysis of the murine ALL-1 gene reveals conserved domains with human ALL-1 and identified a motif shared with DNA methyltransferases. Proc Natl Acad Sci U S A, 1993; 90: 6350–4.
Zeleznik-Le, N. J., Harden, A. M., & Rowley, J. D. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A, 1994; 91: 10610–4.
Broeker, P. L., Harden, A., Rowley, J. D., & Zeleznik-Le, N. The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA. Curr Top Microbiol Immunol, 1996; 211: 259–68.
Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P., & Korsmeyer, S. J. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol, 2003; 23: 186–94.
Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L., & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood, 2002; 100: 3710–8.
Hsieh, J. J., Cheng, E. H., & Korsmeyer, S. J. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell, 2003; 115: 293–303.
Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A., & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 1995; 378: 505–8.
Hess, J. L., Yu, B. D., Li, B., Hanson, R., & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood, 1997; 90: 1799–1806.
Simon, J. Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr Opin Cell Biol, 1995; 7: 376–85.
Schumacher, A. & Magnuson, T. Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet, 1997; 13: 167–70.
Lugt, N. M. T. van der, Domen, J., Linders, K., et al. Pos terior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev, 1994; 8: 757–69.
Kanno, M., Hasegawa, M., Ishida, A., Isono, K., & Taniguchi, M. mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J, 1995; 14: 5672–8.
Akasaka, T., Kanno, M., Balling, R., et al. A role for mel-18, a Polycomb group-related vertebrate gene, during the anteropos terior specification of the axial skeleton. Development, 1996; 122: 1513–22.
Core, N., Bel, S., Gaunt, S. J., et al. Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice. Development, 1997; 123: 721–9.
Lessard, J., Baban, S., & Sauvageau, G. Stage-specific expression of Polycomb group genes in human bone marrow cells. Blood, 1998; 91: 1216–24.
Ernst, P., Fisher, J. K., Avery, W., et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell, 2004; 6: 437–43.
Rozenblatt-Rosen, O., Rozovskaia, T., Burakov, D., et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A, 1998; 95: 4152–7.
Milne, T. A., Briggs, S. D., Brock, H. W., et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell, 2002; 10: 1107–17.
Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr Opin Cell Biol, 2002; 14: 286–98.
Xia, Z. B., Anderson, M., Diaz, M. O., & Zeleznik, L. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A, 2003; 100: 8342–7.
Thirman, M. J., Levitan, D. A., Kobayashi, H., Simon, M. C., & Rowley, J. D. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci U S A, 1994; 91: 12 110–14.
Mitani, K., Kanda, Y., Ogawa, S., et al. Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation. Blood, 1995; 85: 2017–24.
Nakamura, T., Alder, H., Gu, Y., et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci U S A, 1993; 90: 4631–5.
Rubnitz, J. E., Morrissey, J., Savage, P. A., & Cleary, M. L. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood, 1994; 84: 1747–52.
Rubnitz, J. E., Behm, F. G., Curcio-Brint, A. M., et al. Molecular analysis of t(11;19) breakpoints in childhood acute leukemias. Blood, 1996; 87: 4804–8.
Shilatifard, A., Lane, W. S., Jackson, K. W., & Conaway, R. C., & Conaway, J. W. An RNA polymerase II elongation factor encoded by the human ELL gene. Science, 1996; 271: 1873–6.
Shilatifard, A., Haque, D., Conaway, R. C., & Conaway, J. W. Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex. J Biol Chem, 1997; 272: 22 355–63.
Bernard, O. A., Mauchauffe, M., Mecucci, C., Berghe, H. van den, Berger, R. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene, 1994; 9: 1039–45.
Hillion, J., Le Coniat, M., Jonveaux, P., Berger, R., & Bernard, O. A. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood, 1997; 90: 3714–9.
Borkhardt, A., Repp, R., Haas, O. A., et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene, 1997; 14: 195–202.
Barr, F. G. Fusions involving paired box and fork head family transcription factors in the pediatric cancer alveolar rhabdomyosarcoma. Curr Top Microbiol Immunol, 1997; 220: 113–29.
Galili, N., Davis, R. J., Fredericks, W. J., et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet, 1993; 5: 230–5.
Shapiro, D. N., Sublett, J. E., Li, B., Downing, J. R., & Naeve, C. W. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res, 1993; 53: 5108–12.
Bennicelli, J. L., Edwards, R. H., & Barr, F. G. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A, 1996; 93: 5455–9.
Hjorth-Sorensen, B., Pallisgaard, N., Gronholm, M., et al. A novel MLL-AF10 fusion mRNA variant in a patient with acute myeloid leukemia detected by a new asymmetric reverse transcription PCR method. Leukemia, 1997; 11: 1588–93.
Beverloo, H. B., Le Coniat, M., Wijsman, J., et al. Breakpoint heterogeneity in t(10;11) translocation in AML-M4/M5 resulting in fusion of AF10 and MLL is resolved by fluorescent in situ hybridization analysis. Cancer Res, 1995; 55: 4220–4.
Prasad, R., Leshkowitz, D., Gu, Y., et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci U S A, 1994; 91: 8107–11.
Rowley, J. D., Reshmi, S., Sobulo, O., et al. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood, 1997; 90: 535–41.
Satake, N., Ishida, Y., Otoh, Y., et al. Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. Genes Chromosomes Cancer, 1997; 20: 60–3.
Sobulo, O. M., Borrow, J., Tomek, R., et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci U S A, 1997; 94: 8732–7.
Taki, T., Sako, M., Tsuchida, M., & Hayashi, Y. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood, 1997; 89: 3945–50.
Ida, K., Kitabayashi, I., Taki, T., et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood, 1997; 90: 4699–704.
Borrow, J., Stanton, V. P. J., Andresen, J. M., et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet, 1996; 14: 33–41.
Joh, T., Yamamoto, K., Kagami, Y., et al. Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus. Oncogene, 1997; 15: 1681–7.
Tse, W., Zhu, W., Chen, H. S., & Cohen, A. A novel gene, AF1q, fused to MLL in t(1;11) (q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood, 1995; 85: 650–6.
Corral, J., Lavenir, I., Impey, H., et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell, 1996; 85: 853–61.
Lavau, C., Szilvassy, S. J., Slany, R., & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J, 1997; 16: 4226–37.
Slany, R. K., Lavau, C., & Cleary, M. L. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol, 1998; 18: 122–9.
So, C. W., Karsunky, H., Passegue, E., et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell, 2003; 3: 161–71.
Zeisig, B. B., Garcia-Cuellar, M. P., Winkler, T. H., & Slany, R. K. The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene, 2003; 22: 1629–37.
So, C. W., Lin, M., Ayton, P. M., Chen, E. H., & Cleary, M. L. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell, 2003; 4: 99–110.
Eguchi, M., Eguchi-Ishimae, M., & Greaves, M. The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood, 2004; 103: 3876–82.
Martin, M. E., Milne, T. A., Bloyer, S., et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell, 2003; 4: 197–207.
Dobson, C. L., Warren, A. J., Pannell, R., Forster, A., & Rabbitts, T. H. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J, 2000; 19: 843–51.
Hsu, K. & Look, A. T. Turning on a dimer: new insights into MLL chimeras. Cancer Cell, 2003; 4: 81–3.
Yamamoto, K., Hamaguchi, H., Nagata, K., Kobayashi, M., & Taniwaki, M. Tandem duplication of the MLL gene in myelodysplastic syndrome- derived overt leukemia with trisomy 11. Am J Hematol, 1997; 55: 41–5.
Kwong, Y. L. Partial duplication of the MLL gene in acute myelogenous leukemia without karyotypic aberration. Cancer Genet Cytogenet, 1997; 97: 20–4.
Yu, M., Honoki, K., Andersen, J., et al. MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. Leukemia, 1996; 10: 774–80.
Park, I. K., He, Y., Lin, F., et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood, 2002; 99: 488–98.
Pineault, N., Helgason, C. D., Lawrence, H. J., & Humphries, R. K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 2002; 30: 49–57.
Akashi, K., He, X., Chen, J., et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood, 2003; 101: 383–9.
So, C. W., Karsunky, H., Wong, P., Weissman, I. L., & Cleary, M. L. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood, 2004; 103: 3192–9.
Sauvageau, G., Thorsteinsdottir, U., Hough, M. R., et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity, 1997; 6: 13–22.
Sauvageau, G., Thorsteinsdottir, U., Eaves, C. J., et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 1995; 9: 1753–65.
Perkins, A., Kongsuwan, K., Visvader, J., Adams, J. M., & Cory, S. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci U S A, 1990; 87: 8398–402.
Blatt, C., Aberdam, D., Schwartz, R., & Sachs, L. DNA rearrangement of a homeobox gene in myeloid leukaemic cells. EMBO J, 1988; 7: 4283–90.
Nakamura, T., Largaespada, D. A., Shaughnessy, J. D. J., Jenkins, N. A., & Copeland, N. G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet, 1996; 12: 149–53.
Kroon, E., Krosl, J., Thorsteinsdottir, U., et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J, 1998; 17: 3714–25.
Schnabel, C. A., Jacobs, Y., & Cleary, M. L. HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene, 2000; 19: 608–16.
Calvo, K. R., Sykes, D. B., Pasillas, M., & Kamps, M. P. Hoxa9 immortalizes a granulocyte-macrophage colony-stimulating factor-dependent promyelocyte capable of biphenotypic differentiation to neutrophils or macrophages, independent of enforced meis expression. Mol Cell Biol, 2000; 20: 3274–85.
Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev, 2003; 17: 2298–307.
Zeisig, B. B., Milne, T., Garcia-Cuellar, M. P., et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol, 2004; 24: 617–28.
Kumar, A. R., Hudson, W. A., Chen, W., et al. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood, 2004; 103: 1823–8.
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood, 1998; 91: 608–15.
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.
Zipursky, A., Poon, A., & Doyle, J. Leukemia in Down syndrome: a review. Pediatr Hematol Oncol, 1992; 9: 139–49.
Lange, B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol, 2000; 110: 512–24.
Zipursky, A. Transient leukaemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol, 2003; 120: 930–8.
Shivdasani, R. A. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells, 2001; 19: 397–407.
Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A., & Orkin, S. H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J, 1997; 16: 3965–73.
Ahmed, M., Sternberg, A., Hall, G., et al. Natural history of GATA1 mutations in Down syndrome. Blood, 2004; 103: 2480–9.
Groet, J., McElwaine, S., Spinelli, M., et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet, 2003; 361: 1617–20.
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W., & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryo blastic leukemia of Down syndrome. Blood, 2003; 101: 4301–4.
Rainis, L., Bercovich, D., Strehl, S., et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood, 2003; 102: 981–6.
Wechsler, J., Greene, M., McDevitt, M. A., et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.
Xu, G., Nagano, M., Kanezaki, R., et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood, 2003; 102: 2960–8.
Mundschau, G., Gurbuxani, S., Gamis, A. S., et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemo genesis. Blood, 2003; 101: 4298–300.
Shimada, A., Xu, G., Toki, T., et al. Fetal origin of the GATA1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Blood, 2004; 103: 366.
Chan, W. C., Carroll, A., Alvarado, C. S., et al. Acute megakaryo blastic leukemia in infants with t(1;22)(p13;q13) abnormality. Am J Clin Pathol, 1992; 98: 214–21.
Carroll, A., Civin, C., Schneider, N., et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryo blastic leukemia: a Pediatric Oncology Group Study. Blood, 1991; 78: 748–52.
Lion, T., Haas, O. A., Harbott, J., et al. The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood, 1992; 79: 3325–30.
Mercher, T., Coniat, M. B., Monni, R., et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A, 2001; 98: 5776–9.
Ma, Z., Morris, S. W., Valentine, V., et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet, 2001; 28: 220–1.

Reference Title: References

Reference Type: reference-list

Noskova, V., Dzubak, P., Kuzmina, G., et al. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma, 2002; 49: 418–25.
Bodo, A., Bakos, E., Szeri, F., Varadi, A., & Sarkadi, B. The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol Lett, 2003; 140–141: 133–43.
Ribrag, V., Massaad, L., Janot, F., et al. Main drug-metabolizing enzyme systems in human non-Hodgkin's lymphomas sensitive or resistant to chemotherapy. Leuk Lymphoma, 1995; 18: 303–10.
Yasui, K., Mihara, S., Zhao, C., et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res, 2004; 64: 1403–10.
Galmarini, C. M. P-glycoprotein expression by cancer cells affects cell cytotoxicity and cell-cycle perturbations induced by six chemotherapeutic drugs. J Exp Ther Oncol, 2002; 2: 146–52.
Galmarini, C. M., Thomas, X., Calvo, F., et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol, 2002; 117: 860–8.
Fadok, V. A., Savill, J. S., Haslett, C., et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol, 1992; 149: 4029–35.
Cohen, J. J., Duke, R. C., Fadok, V. A., & Sellins, K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol, 1992; 10: 267–93.
Parker, J. E. & Mufti, G. J. The myelodysplastic syndromes: a matter of life or death. Acta Haematol, 2004; 111: 78–99.
Stein, S. M. & Dale, D. C. Molecular basis and therapy of disorders associated with chronic neutropenia. Curr Allergy Asthma Rep, 2003; 3: 385–8.
Braess, J., Schneiderat, P., Schoch, C., et al. Functional analysis of apoptosis induction in acute myeloid leukaemia: relevance of karyotype and clinical treatment response. Br J Haematol, 2004; 126: 338–47.
Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004; 305: 626–9.
Debatin, K. M. & Krammer, P. H. Death receptors in chemotherapy and cancer. Oncogene, 2004; 23: 2950–66.
Catalfamo, M. & Henkart, P. A. Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol, 2003; 15: 522–7.
Raja, S. M., Wang, B., Dantuluri, M., et al. Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem, 2002; 277: 49 523–30.
Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science, 1998; 281: 1312–16.
Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 2004; 117: 561–74.
Shi, Y. Caspase activation: revisiting the induced proximity model. Cell, 2004; 117: 855–8.
Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int Rev Cytol, 1980; 68: 251–306.
Enari, M., Sakahira, H., Yokoyama, H., et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50.
Nicholson, D. W., Ali, A., Thornberry, N. A., et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 1995; 376: 37–43.
Fischer, U., Janicke, R. U., & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ, 2003; 10: 76–100.
Harada, K., Toyooka, S., Shivapurkar, N., et al. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res, 2002; 62: 5897–901.
Trojan, J., Brieger, A., Raedle, J., et al. BAX and caspase-5 frameshift mutations and spontaneous apoptosis in colorectal cancer with microsatellite instability. Int J Colorectal Dis, 2004; 19: 538–44.
Soung, Y. H., Lee, J. W., Kim, H. S., et al. Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene, 2003; 22: 8048–52.
Baylin, S. & Bestor, T. H. Altered methylation patterns in cancer cell genomes: cause or consequence ? Cancer Cell, 2002; 1: 299–305.
Teitz, T., Wei, T., Valentine, M. B., et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med, 2000; 6: 529–35.
Fulda, S., Kufer, M. U., Meyer, E., et al. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene, 2001; 20: 5865–77.
Yu, J., Ni, M., Xu, J., et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer, 2002; 2: 29.
Worm, J. & Guldberg, P. DNA methylation: an epigenetic pathway to cancer and a promising target for anticancer therapy. J Oral Pathol Med, 2002; 31: 443–9.
Roman-Gomez, J., Castillejo, J. A., Jimenez, A., et al. The role of DNA hypermethylation in the pathogenesis and prognosis of acute lymphoblastic leukemia. Leuk Lymphoma, 2003; 44: 1855–64.
Soengas, M. S., Alarcon, R. M., Yoshida, H., et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 1999; 284: 156–9.
Marsden, V. S., O'Connor, L., O'Reilly, L. A., et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 2002; 419: 634–7.
Schimmer, A. D., Pedersen, I. M., Kitada, S., et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient response to induction chemotherapy. Cancer Res, 2003; 63: 1242–8.
Tsujimoto, Y., Cossman, J., Jaffe, E., & Croce, C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science, 1985; 228: 1440–3.
Cleary, M. L. & Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A, 1985; 82: 7439–43.
Vaux, D. L., Cory, S., & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988; 335: 440–2.
Kirkin, V., Joos, S., & Zornig, M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta, 2004; 1644: 229–49.
Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., & Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 2003; 22: 8608–18.
Orrenius, S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett, 2004; 149: 19–23.
Scorrano, L., Oakes, S. A., Opferman, J. T., et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003; 300: 135–9.
Debatin, K. M., Poncet, D., & Kroemer, G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene, 2002; 21: 8786–803.
Zamzami, N., Marchetti, P., Castedo, M., et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med, 1995; 181: 1661–72.
Vayssiere, J. L., Petit, P. X., Risler, Y., & Mignotte, B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A, 1994; 91: 11 752–6.
Jiang, X. & Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem, 2000; 275: 31 199–203.
Susin, S. A., Lorenzo, H. K., Zamzami, N., et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999; 397: 441–6.
Iyer, N. G., Chin, S. F., Ozdag, H., et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci U S A, 2004; 101: 7386–91.
Hershko, T. & Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem, 2004; 279: 8627–34.
Maclean, K. H., Keller, U. B., Rodriguez-Galindo, C., Nilsson, J. A., & Cleveland, J. L. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-X(L). Mol Cell Biol, 2003; 23: 7256–70.
Lotem, J. & Sachs, L. Regulation by bcl-2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells. Cell Growth Differ, 1993; 4: 41–7.
Miyashita, T. & Reed, J. C. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood, 1993; 81: 151–7.
Walton, M. I., Whysong, D., O'Connor, P. M., et al. Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res, 1993; 53: 1853–61.
Sentman, C. L., Shutter, J. R., Hockenbery, D., Kanagawa, O., & Korsmeyer, S. J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell, 1991; 67: 879–88.
Strasser, A., Harris, A. W., & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell, 1991; 67: 889–99.
Nunez, G., London, L., Hockenbery, D., et al. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol, 1990; 144: 3602–10.
Adams, J. M., Harris, A. W., Pinkert, C. A., et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature, 1985; 318: 533–8.
Harris, A. W., Pinkert, C. A., Crawford, M., et al. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med, 1988; 167: 353–71.
Schmitt, C. A., Wallace-Brodeur, R. R., Rosenthal, C. T., McCurrach, M. E., & Lowe, S. W. DNA damage responses and chemosensitivity in the E mu-myc mouse lymphoma model. Cold Spring Harb Symp Quant Biol, 2000; 65: 499–510.
Kondo, S., Shinomura, Y., Miyazaki, Y., et al. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res, 2000; 60: 4328–30.
Sturm, I., Papadopoulos, S., Hillebrand, T., et al. Impaired BAX protein expression in breast cancer: mutational analysis of the BAX and the p53 gene. Int J Cancer, 2000; 87: 517–21.
Paoloni-Giacobino, A., Rey-Berthod, C., Couturier, A., Antonarakis, S. E., & Hutter, P. Differential rates of frameshift alterations in four repeat sequences of hereditary nonpolyposis colorectal cancer tumors. Hum Genet, 2002; 111: 284–9.
Mrozek, A., Petrowsky, H., Sturm, I., et al. Combined p53/Bax mutation results in extremely poor prognosis in gastric carcinoma with low microsatellite instability. Cell Death Differ, 2003; 10: 461–7.
Wani, K. M., Huilgol, N. G., Hongyo, T., et al. Genetic alterations in the coding region of the bak gene in uterine cervical carcinoma. Br J Cancer, 2003; 88: 1584–6.
Inoue, K., Kohno, T., Takakura, S., et al. Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines. Leuk Res, 2000; 24: 255–62.
Gaidano, G., Vivenza, D., Forconi, F., et al. Mutation of BAX occurs infrequently in acquired immunodeficiency syndrome-related non-Hodgkin's lymphomas. Genes Chromosomes Cancer, 2000; 27: 177–82.
Ionov, Y., Yamamoto, H., Krajewski, S., Reed, J. C., & Perucho, M. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci U S A, 2000; 97: 10 872–7.
Bosanquet, A. G., Sturm, I., Wieder, T., et al. Bax expression correlates with cellular drug sensitivity to doxorubicin, cyclophosphamide and chlorambucil but not fludarabine, cladribine or corticosteroids in B cell chronic lymphocytic leukemia. Leukemia, 2002; 16: 1035–44.
McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J., & Lowe, S. W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A, 1997; 94: 2345–9.
LeBlanc, H., Lawrence, D., Varfolomeev, E., et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med, 2002; 8: 274–81.
Wei, M. C., Zong, W. X., Cheng, E. H., et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 2001; 292: 727–30.
Kondo, E., Yoshino, T., Yamadori, I., et al. Expression of Bcl-2 protein and Fas antigen in non-Hodgkin's lymphomas. Am J Pathol, 1994; 145: 330–7.
Wilson, W. H., Teruya-Feldstein, J., Fest, T., et al. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin's lymphomas. Blood, 1997; 89: 601–9.
Matolcsy, A., Warnke, R. A., & Knowles, D. M. Somatic mutations of the translocated bcl-2 gene are associated with morphologic transformation of follicular lymphoma to diffuse large-cell lymphoma. Ann Oncol, 1997; 8(Suppl. 2): 119–22.
Ek, S., Hogerkorp, C. M., Dictor, M., Ehinger, M., & Borrebaeck, C. A. Mantle cell lymphomas express a distinct genetic signature affecting lymphocyte trafficking and growth regulation as compared with subpopulations of normal human B cells. Cancer Res, 2002; 62: 4398–405.
Camilleri-Broet, S., Davi, F., Feuillard, J., et al. High expression of latent membrane protein 1 of Epstein-Barr virus and BCL-2 oncoprotein in acquired immunodeficiency syndrome-related primary brain lymphomas. Blood, 1995; 86: 432–5.
Geelen, F. A., Vermeer, M. H., Meijer, C. J., et al. bcl-2 protein expression in primary cutaneous large B-cell lymphoma is site-related. J Clin Oncol, 1998; 16: 2080–5.
Zaja, F., Di Loreto, C., Amoroso, V., et al. BCL-2 immunohistochemical evaluation in B-cell chronic lymphocytic leukemia and hairy cell leukemia before treatment with fludarabine and 2-chloro-deoxy-adenosine. Leuk Lymphoma, 1998; 28: 567–72.
Cervero, C., Escribano, L., San Miguel, J. F., et al. Expression of Bcl-2 by human bone marrow mast cells and its overexpression in mast cell leukemia. Am J Hematol, 1999; 60: 191–5.
Campana, D., Coustan-Smith, E., Manabe, A., et al. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood, 1993; 81: 1025–31.
Pontvert-Delucq, S., Hibner, U., Vilmer, E., et al. Heterogen eity of B lineage acute lymphoblastic leukemias (B-ALL) with regard to their in vitro spontaneous proliferation, growth factor response and BCL-2 expression. Leuk Lymphoma, 1996; 21: 267–80.
Gottardi, D., Alfarano, A., De Leo, A. M., et al. Defective apoptosis due to Bcl-2 overexpression may explain why B-CLL cells accumulate in G0. Curr Top Microbiol Immunol, 1995; 194: 307–12.
Campos, L., Rouault, J. P., Sabido, O., et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood, 1993; 81: 3091–6.
Maung, Z. T., MacLean, F. R., Reid, M. M., et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia. Br J Haematol, 1994; 88: 105–9.
Karakas, T., Maurer, U., Weidmann, E., et al. High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol, 1998; 9: 159–65.
Bincoletto, C., Saad, S. T., da Silva, E. S., & Queiroz, M. L. Haematopoietic response and bcl-2 expression in patients with acute myeloid leukaemia. Eur J Haematol, 1999; 62: 38–42.
Pallis, M., Zhu, Y. M., & Russell, N. H. Bcl-x(L) is heterogenously expressed by acute myeloblastic leukaemia cells and is associated with autonomous growth in vitro and with P-glycoprotein expression. Leukemia, 1997; 11: 945–9.
Deng, G., Lane, C., Kornblau, S., et al. Ratio of bcl-xshort to bcl-xlong is different in good- and poor-prognosis subsets of acute myeloid leukemia. Mol Med, 1998; 4: 158–64.
Konopleva, M., Zhao, S., Hu, W., et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol, 2002; 118: 521–34.
Gutierrez-Castellanos, S., Cruz, M., Rabelo, L., et al. Differences in BCL-X(L) expression and STAT5 phosphorylation in chronic myeloid leukaemia patients. Eur J Haematol, 2004; 72: 231–8.
Garcia, J. F., Camacho, F. I., Morente, M., et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood, 2003; 101: 681–9.
Schlaifer, D., Krajewski, S., Galoin, S., et al. Immunodetection of apoptosis-regulating proteins in lymphomas from patients with and without human immunodeficiency virus infection. Am J Pathol, 1996; 149: 177–85.
Tu, Y., Renner, S., Xu, F., et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res, 1998; 58: 256–62.
Cho-Vega, J. H., Rassidakis, G. Z., Admirand, J. H., et al. MCL-1 expression in B-cell non-Hodgkin's lymphomas. Hum Pathol, 2004; 35: 1095–100.
Jourdan, M., Veyrune, J. L., Vos, J. D., et al. A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene, 2003; 22: 2950–9.
Rassidakis, G. Z., Jones, D., Lai, R., et al. BCL-2 family proteins in peripheral T-cell lymphomas: correlation with tumour apoptosis and proliferation. J Pathol, 2003; 200: 240–8.
Khoury, J. D., Medeiros, L. J., Rassidakis, G. Z., et al. Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state, and p53 overexpression. J Pathol, 2003; 199: 90–7.
Moshynska, O., Sankaran, K., Pahwa, P., & Saxena, A. Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst, 2004; 96: 673–82.
Kaufmann, S. H., Karp, J. E., Svingen, P. A., et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood, 1998; 91: 991–1000.
Moreb, J. S. & Zucali, J. Human A1 expression in acute myeloid leukemia and its relationship to Bcl-2 expression. Blood, 2001; 97: 578–9.
McDonnell, T. J., Deane, N., Platt, F. M., et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell, 1989; 57: 79–88.
McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature, 1991; 349: 254–6.
Linette, G. P., Hess, J. L., Sentman, C. L., & Korsmeyer, S. J. Peripheral T-cell lymphoma in lckpr-bcl-2 transgenic mice. Blood, 1995; 86: 1255–60.
Strasser, A., Harris, A. W., Bath, M. L., & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 1990; 348: 331–3.
Cheung, W. C., Kim, J. S., Linden, M., et al. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest, 2004; 113: 1763–73.
Swanson, P. J., Kuslak, S. L., Fang, W., et al. Fatal acute lymphoblastic leukemia in mice transgenic for B cell-restricted bcl-xL and c-myc. J Immunol, 2004; 172: 6684–91.
Kogan, S. C., Brown, D. E., Shultz, D. B., et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med, 2001; 193: 531–43.
Jaiswal, S., Traver, D., Miyamoto, T., et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci U S A, 2003; 100: 10 002–7.
Eischen, C. M., Woo, D., Roussel, M. F., & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol, 2001; 21: 5063–70.
Eischen, C. M., Roussel, M. F., Korsmeyer, S. J., & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol, 2001; 21: 7653–62.
Marcucci, G., Stock, W., Dai, G., et al. G3139, a BCL-2 antisense oligo-nucleotide, in AML. Ann Hematol, 2004; 83(Suppl. 1) S93–4.
Tolcher, A. W., Kuhn, J., Schwartz, G., et al. A phase I pharmacokinetic and biological correlative study of oblimersen sodium (genasense, g3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res, 2004; 10: 5048–57.
Hopkins-Donaldson, S., Cathomas, R., Simoes-Wust, A. P., et al. Induction of apoptosis and chemosensitization of mesothelioma cells by Bcl-2 and Bcl-xL antisense treatment. Int J Cancer, 2003; 106: 160–6.
Jiang, M. & Milner, J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev, 2003; 17: 832–7.
Wang, J. L., Liu, D., Zhang, Z. J., et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A, 2000; 97: 7124–9.
Tzung, S. P., Kim, K. M., Basanez, G., et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol, 2001; 3: 183–91.
Vieira, H. L., Boya, P., Cohen, I., et al. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene, 2002; 21: 1963–77.
Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 2003; 10: 26–35.
Idriss, H. T. & Naismith, J. H. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech, 2000; 50: 184–95.
Cleveland, J. L. & Ihle, J. N. Contenders in FasL/TNF death signaling. Cell, 1995; 81: 479–82.
Zimmermann, K. C., Bonzon, C., & Green, D. R. The machinery of programmed cell death. Pharmacol Ther, 2001; 92: 57–70.
Barnhart, B. C., Alappat, E. C., & Peter, M. E. The CD95 type I/type II model. Semin Immunol, 2003; 15: 185–93.
Irmler, M., Thome, M., Hahne, M., et al. Inhibition of death receptor signals by cellular FLIP. Nature, 1997; 388: 190–5.
LeBlanc, H. N. & Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ, 2003; 10: 66–75.
O'Gorman, D. M. & Cotter, T. G. Molecular signals in anti-apoptotic survival pathways. Leukemia, 2001; 15: 21–34.
Friesen, C., Herr, I., Krammer, P. H., & Debatin, K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med, 1996; 2: 574–7.
Posovszky, C., Friesen, C., Herr, I., & Debatin, K. M. Chemotherapeutic drugs sensitize pre-B ALL cells for CD95- and cytotoxic T-lymphocyte-mediated apoptosis. Leukemia, 1999; 13: 400–9.
Lam, V., Findley, H. W., Reed, J. C., Freedman, M. H., & Goldenberg, G. J. Comparison of DR5 and Fas expression levels relative to the chemosensitivity of acute lymphoblastic leukemia cell lines. Leuk Res, 2002; 26: 503–13.
Villunger, A., Egle, A., Marschitz, I., et al. Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood, 1997; 90: 12–20.
Munker, R., Lubbert, M., Yonehara, S., et al. Expression of the Fas antigen on primary human leukemia cells. Ann Hematol, 1995; 70: 15–17.
Min, Y. J., Lee, J. H., Choi, S. J., et al. Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/DR5) expression in acute myelogenous leukemia. Leuk Res, 2004; 28: 359–65.
Lacour, S., Hammann, A., Wotawa, A., et al. Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res, 2001; 61: 1645–51.
Petak, I. & Houghton, J. A. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res, 2001; 7: 95–106.
de Jong, S., Timmer, T., Heijenbrok, F. J., & de Vries, E. G. Death receptor ligands, in particular TRAIL, to overcome drug resistance. Cancer Metastasis Rev, 2001; 20: 51–6.
Mitsiades, C. S., Treon, S. P., Mitsiades, N., et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood, 2001; 98: 795–804.
Munshi, A., McDonnell, T. J., & Meyn, R. E. Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells. Cancer Chemother Pharmacol, 2002; 50: 46–52.
Johnston, J. B., Kabore, A. F., Strutinsky, J., et al. Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene, 2003; 22: 8356–69.
Shankar, S. & Srivastava, R. K. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat, 2004; 7: 139–56.
Micheau, O., Solary, E., Hammann, A., & Dimanche-Boitrel, M. T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem, 1999; 274: 7987–92.
Hofmann, W. K., de Vos, S., Tsukasaki, K., et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood, 2001; 98: 787–94.
Hopkins-Donaldson, S., Ziegler, A., Kurtz, S., et al. Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ, 2003; 10: 356–64.
Kim, C. H. & Gupta, S. Expression of TRAIL (Apo2L), DR4 (TRAIL receptor 1), DR5 (TRAIL receptor 2) and TRID (TRAIL receptor 3) genes in multidrug resistant human acute myeloid leukemia cell lines that overexpress MDR 1 (HL60/Tax) or MRP (HL60/AR). Int J Oncol, 2000; 16: 1137–9.
Thomas, R. K., Kallenborn, A., Wickenhauser, C., et al. Constitutive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol, 2002; 160: 1521–8.
Dutton, A., O'Neil, J. D., Milner, A. E., et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A, 2004; 101: 6611–6.
Mathas, S., Lietz, A., Anagnostopoulos, I., et al. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med, 2004; 199: 1041–52.
Olsson, A., Diaz, T., Aguilar-Santelises, M., et al. Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D. Leukemia, 2001; 15: 1868–77.
MacFarlane, M., Harper, N., Snowden, R. T., et al. Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene, 2002; 21: 6809–18.
Pedersen, I. M., Kitada, S., Schimmer, A., et al. The triterpenoid CDDO induces apoptosis in refractory CLL B cells. Blood, 2002; 100: 2965–72.
Aron, J. L., Parthun, M. R., Marcucci, G., et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood, 2003; 102: 652–8.
Suh, W. S., Kim, Y. S., Schimmer, A. D., et al. Synthetic triterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL. Leukemia, 2003; 17: 2122–9.
Tang, R., Faussat, A. M., Majdak, P., et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia, 2004; 18: 1246–51.
Packham, G., White, E. L., Eischen, C. M., et al. Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Genes Dev, 1998; 12: 2475–87.
Adachi, M., Torigoe, T., Takayama, S., & Imai, K. BAG-1 and Bcl-2 in IL-2 signaling. Leuk Lymphoma, 1998; 30: 483–91.
Hofmeister, R., Khaled, A. R., Benbernou, N., et al. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev, 1999; 10: 41–60.
Jeffers, J. R., Parganas, E., Lee, Y., et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell, 2003; 4: 321–8.
Shinjyo, T., Kuribara, R., Inukai, T., et al. Downregulation of Bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol Cell Biol, 2001; 21: 854–64.
Villunger, A., Michalak, E. M., Coultas, L., et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science, 2003; 302: 1036–8.
Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A, 1999; 96: 4240–5.
Chang, F., Lee, J. T., Navolanic, P. M., et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003; 17: 590–603.
Paez, J. & Sellers, W. R. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res, 2003; 115: 145–67.
Cantley, L. C. The phosphoinositide 3-kinase pathway. Science, 2002; 296: 1655–7.
Fresno Vara, J. A., Casado, E., de Castro, J., et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev, 2004; 30: 193–204.
Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004; 23: 2934–49.
Manoukian, A. S. & Woodgett, J. R. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res, 2002; 84: 203–29.
Manning, B. D. & Cantley, L. C. Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE, 2002; 162: pe49.
Jaeschke, A., Dennis, P. B., & Thomas, G. mTOR: a mediator of intracellular homeostasis. Curr Top Microbiol Immunol, 2004; 279: 283–98.
Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nat Rev Cancer, 2004; 4: 335–48.
Brunet, A., Bonni, A., Zigmond, M. J., et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999; 96: 857–68.
Burgering, B. M. & Medema, R. H. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol, 2003; 73: 689–701.
Cardone, M. H., Roy, N., Stennicke, H. R., et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998; 282: 1318–21.
Datta, S. R., Dudek, H., Tao, X., et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997; 91: 231–41.
del Peso, L., Gonzalez-Garcia, M., Page, C., & Herrera, R., & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 1997; 278: 687–9.
Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 2002; 27: 352–60.
Zha, J., Harada, H., Yang, E., Jockel, J., & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X(L). Cell, 1996; 87: 619–28.
Ali, I. U., Schriml, L. M., & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst, 1999; 91: 1922–32.
Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol, 2004; 22: 2954–63.
Nakahara, Y., Nagai, H., Kinoshita, T., et al. Mutational ana lysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma. Leukemia, 1998; 12: 1277–80.
Santos, J., Herranz, M., Fernandez, M., et al. Evidence of a possible epigenetic inactivation mechanism operating on a region of mouse chromosome 19 in gamma-radiation-induced thymic lymphomas. Oncogene, 2001; 20: 2186–9.
Butler, M. P., Wang, S. I., Chaganti, R. S., Parsons, R., & Dalla-Favera, R. Analysis of PTEN mutations and deletions in B-cell non-Hodgkin's lymphomas. Genes Chromosomes Cancer, 1999; 24: 322–7.
Scarisbrick, J. J., Woolford, A. J., Russell-Jones, R., & Whittaker, S. J. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood, 2000; 95: 2937–42.
Hyun, T., Yam, A., Pece, S., et al. Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood, 2000; 96: 3560–8.
Roman-Gomez, J., Jimenez-Velasco, A., Castillejo, J. A., et al. Promoter hypermethylation of cancer-related genes is a strong independent prognostic factor in acute lymphoblastic leukemia. Blood, 2004; 104: 2492–8.
Suzuki, A., de la Pompa, J. L., Stambolic, V., et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol, 1998; 8: 1169–78.
Wu, H., Goel, V., & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene, 2003; 22: 3113–22.
Bianco, R., Shin, I., Ritter, C. A., et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene, 2003; 22: 2812–22.
Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene, 2003; 22: 3138–51.
Zhou, M., Gu, L., Findley, H. W., Jiang, R., & Woods, W. G. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res, 2003; 63: 6357–62.
Tang, D., Okada, H., Ruland, J., et al. Akt is activated in response to an apoptotic signal. J Biol Chem, 2001; 276: 30 461–6.
Karpinich, N. O., Tafani, M., Rothman, R. J., Russo, M. A., & Farber, J. L. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem, 2002; 277: 16 547–52.
Staal, S. P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A, 1987; 84: 5034–7.
Cheng, J. Q., Godwin, A. K., Bellacosa, A., et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A, 1992; 89: 9267–71.
Bellacosa, A., de Feo, D., Godwin, A. K., et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer, 1995; 64: 280–5.
Cheng, J. Q., Ruggeri, B., Klein, W. M., et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci U S A, 1996; 93: 3636–41.
Ruggeri, B. A., Huang, L., Wood, M., Cheng, J. Q., & Testa, J. R. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog, 1998; 21: 81–6.
Arranz, E., Robledo, M., Martinez, B., et al. Incidence of homogeneously staining regions in non-Hodgkin lymphomas. Cancer Genet Cytogenet, 1996; 87: 1–3.
Mitsiades, C. S., Mitsiades, N., & Koutsilieris, M. The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets, 2004; 4: 235–56.
Tabellini, G., Cappellini, A., Tazzari, P. L., et al. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol, 2005; 202: 623–34.
Dai, Y., Rahmani, M., Pei, X. Y., Dent, P., & Grant, S. Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood, 2004; 104: 509–18.
Shayesteh, L., Lu, Y., Kuo, W. L., et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet, 1999; 21: 99–102.
Woenckhaus, J., Steger, K., Werner, E., et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol, 2002; 198: 335–42.
Byun, D. S., Cho, K., Ryu, B. K., et al. Frequent monoallelic deletion of PTEN and its reciprocal association with PIK3CA amplification in gastric carcinoma. Int J Cancer, 2003; 104: 318–27.
Mao, X., Orchard, G., Lillington, D. M., et al. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood, 2003; 101: 1513–19.
Wendel, H. G., De Stanchina, E., Fridman, J. S., et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004; 428: 332–7.
Li, Q. & Zhu, G. D. Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr Top Med Chem, 2002; 2: 939–71.
Xia, W., Mullin, R. J., Keith, B. R., et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene, 2002; 21: 6255–63.
Yang, L., Dan, H. C., Sun, M., et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res, 2004; 64: 4394–9.
Sen, R. & Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell, 1986; 47: 921–8.
Baldwin, A. S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappa B. J Clin Invest, 2001; 107: 241–6.
Chen, C., Edelstein, L. C. & Gelinas, C. The Rel/NF-kappa B family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol, 2000; 20: 2687–95.
Shishodia, S. & Aggarwal, B. B. Guggulsterone inhibits NF-kB and IkBa kinase activation, suppresses expression of antiapoptotic gene products and enhances apoptosis. J Biol Chem, 2004; 279: 47 148–58.
Chen, L., Fischle, W., Verdin, E., & Greene, W. C. Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science, 2001; 293: 1653–7.
Chen, L. F., Mu, Y., & Greene, W. C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappa B. EMBO J, 2002; 21: 6539–48.
Karin, M. & Delhase, M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol, 2000; 12: 85–98.
Yamamoto, Y. & Gaynor, R. B. Ikappa B kinases: key regulators of the NF-kappa B pathway. Trends Biochem Sci, 2004; 29: 72–9.
Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol, 2001; 11: 372–7.
Singh, H. Genetic analysis of transcription factors implicated in B lymphocyte development. Immunol Res, 1994; 13: 280–90.
Beg, A. A., Sha, W. C., Bronson, R. T., & Baltimore, D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in Ikappa B alpha-deficient mice. Genes Dev, 1995; 9: 2736–46.
Klement, J. F., Rice, N. R., Car, B. D., et al. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol, 1996; 16: 2341–9.
Ishikawa, H., Carrasco, D., Claudio, E., Ryseck, R. P., & Bravo, R. Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med, 1997; 186: 999–1014.
Ishikawa, H., Claudio, E., Dambach, D., et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-kappaB1) but expressing p50. J Exp Med, 1998; 187: 985–96.
Schwarz, E. M., Krimpenfort, P., Berns, A., & Verma, I. M. Immunological defects in mice with a targeted disruption in Bcl-3. Genes Dev, 1997; 11: 187–97.
Ouaaz, F., Li, M., & Beg, A. A. A critical role for the RelA subunit of nuclear factor kappa B in regulation of multiple immune-response genes and in Fas-induced cell death. J Exp Med, 1999; 189: 999–1004.
Takeda, K., Takeuchi, O., Tsujimura, T., et al. Limb and skin abnormalities in mice lacking IKKalpha. Science, 1999; 284: 313–16.
Rudolph, D., Yeh, W. C., Wakeham, A., et al. Severe liver degeneration and lack of NF-kappa B activation in NEMO/IKKgamma-deficient mice. Genes Dev, 2000; 14: 854–62.
Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., & Baldwin, A. S., Jr. NF-kappa B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998; 281: 1680–3.
Deveraux, Q. L., Roy, N., Stennicke, H. R., et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J, 1998; 17: 2215–23.
Notarbartolo, M., Cervello, M., Poma, P., et al. Expression of the IAPs in multidrug resistant tumor cells. Oncol Rep, 2004; 11: 133–6.
Kasibhatla, S., Genestier, L., & Green, D. R. Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappa B. J Biol Chem, 1999; 274: 987–92.
Li, N. & Karin, M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci U S A, 1998; 95: 13 012–17.
Yan, C., Wang, H., & Boyd, D. D. KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha-induced block of p65/p50 nuclear translocation. J Biol Chem, 2001; 276: 1164–72.
Wu, M., Lee, H., Bellas, R. E., et al. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J, 1996; 15: 4682–90.
Antwerp, D. J. van, Martin, S. J., Kafri, T., Green, D. R., & Verma, I. M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science, 1996; 274: 787–9.
Ehrhardt, H., Fulda, S., Schmid, I., et al. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene, 2003; 22: 3842–52.
Prasad, A. V., Mohan, N., Chandrasekar, B., & Meltz, M. L. Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation. Radiat Res, 1994; 138: 367–72.
Pahl, H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999; 18: 6853–66.
Viatour, P., Bentires-Alj, M., Chariot, A., et al. NF-kappa B2/p100 induces Bcl-2 expression. Leukemia, 2003; 17: 1349–56.
Mori, N., Fujii, M., Ikeda, S., et al. Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood, 1999; 93: 2360–8.
Garg, A. & Aggarwal, B. B. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia, 2002; 16: 1053–68.
Paillard, F. Induction of apoptosis with I-kappaB, the inhibitor of NF-kappaB. Hum Gene Ther, 1999; 10: 1–3.
Gilmore, T. D., Starczynowski, D. T., & Kalaitzidis, D. RELevant gene amplification in B-cell lymphomas ? Blood, 2004; 103: 3243–4, author reply 4–5.
Migliazza, A., Lombardi, L., Rocchi, M., et al. Heterogen eous chromosomal aberrations generate 3′ truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood, 1994; 84: 3850–60.
Thakur, S., Lin, H. C., Tseng, W. T., et al. Rearrangement and altered expression of the NFKB-2 gene in human cutaneous T-lymphoma cells. Oncogene, 1994; 9: 2335–44.
Zhang, Q., Siebert, R., Yan, M., et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet, 1999; 22: 63–8.
Cuni, S., Perez-Aciego, P., Perez-Chacon, G., et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia, 2004; 18: 1391–400.
Bueso-Ramos, C. E., Rocha, F. C., Shishodia, S., et al. Expression of constitutively active nuclear-kappa B RelA transcription factor in blasts of acute myeloid leukemia. Hum Pathol, 2004; 35: 246–53.
Birkenkamp, K. U., Geugien, M., Schepers, H., et al. Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia, 2004; 18: 103–12.
Baumgartner, B., Weber, M., Quirling, M., et al. Increased IkappaB kinase activity is associated with activated NF-kappaB in acute myeloid blasts. Leukemia, 2002; 16: 2062–71.
Kordes, U., Krappmann, D., Heissmeyer, V., Ludwig, W. D., & Scheidereit, C. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia, 2000; 14: 399–402.
Bharti, A. C., Shishodia, S., Reuben, J. M., et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood, 2004; 103: 3175–84.
Horie, R. & Watanabe, T. The biological basis of Hodgkin's lymphoma. Drug News Perspect, 2003; 16: 649–56.
Savage, K. J., Monti, S., Kutok, J. L., et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood, 2003; 102: 3871–9.
Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lo, P., & Ford, R. J. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol, 2003; 171: 88–95.
Griffin, J. D. Leukemia stem cells and constitutive activation of NF-kappaB. Blood, 2001; 98: 2291.
Weston, V. J., Austen, B., Wei, W., et al. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling. Blood, 2004; 104: 1465–73.
Hideshima, T., Chauhan, D., Richardson, P., et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem, 2002; 277: 16 639–47.
Giri, D. K. & Aggarwal, B. B. Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem, 1998; 273: 14 008–14.
Reuther, J. Y., Reuther, G. W., Cortez, D., Pendergast, A. M., & Baldwin, A. S., Jr. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev, 1998; 12: 968–81.
Flynn, V., Jr., Ramanitharan, A., Moparty, K., et al. Adenovirus-mediated inhibition of NF-kappaB confers chemo-sensitization and apoptosis in prostate cancer cells. Int J Oncol, 2003; 23: 317–23.
Cusack, J. C. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev, 2003; 29 (Suppl. 1): 21–31.
Frantz, B. & O'Neill, E. A. The effect of sodium salicylate and aspirin on NF-kappa B. Science, 1995; 270: 2017–19.
Kapahi, P., Takahashi, T., Natoli, G., et al. Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem, 2000; 275: 36 062–6.
D'Acquisto, F., Ialenti, A., Ianaro, A., Di Vaio, R., & Carnuccio, R. Local administration of transcription factor decoy oligonucleotides to nuclear factor-kappaB prevents carrageenin-induced inflammation in rat hind paw. Gene Ther, 2000; 7: 1731–7.
Orlowski, R. Z. & Baldwin, A. S., Jr. NF-kappaB as a therapeutic target in cancer. Trends Mol Med, 2002; 8: 385–9.
Epinat, J. C. & Gilmore, T. D. Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway. Oncogene, 1999; 18: 6896–909.
El-Deiry, W. S. p21/p53, cellular growth control and genomic integrity. Curr Top Microbiol Immunol, 1998; 227: 121–37.
Hollstein, M., Hergenhahn, M., Yang, Q., et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res, 1999; 431: 199–209.
El-Deiry, W. S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene, 2003; 22: 7486–95.
Fridman, J. S. & Lowe, S. W. Control of apoptosis by p53. Oncogene, 2003; 22: 9030–40.
Gasco, M. & Crook, T. p53 family members and chemoresistance in cancer: what we know and what we need to know. Drug Resist Updat, 2003; 6: 323–8.
Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P., & Harris, C. C. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ, 2004; 157: 247–70.
Peller, S. & Rotter, V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat, 2003; 21: 277–84.
Hirokawa, M., Kawabata, Y., & Miura, A. B. Dysregulation of apoptosis and a novel mechanism of defective apoptotic signal transduction in human B-cell neoplasms. Leuk Lymphoma, 2002; 43: 243–9.
Di Bacco, A., Keeshan, K., McKenna, S. L., & Cotter, T. G. Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist, 2000; 5: 405–15.
Stilgenbauer, S., Lichter, P., & Dohner, H. Genetic features of B-cell chronic lymphocytic leukemia. Rev Clin Exp Hematol, 2000; 4: 48–72.
Newcomb, E. W., el Rouby, S., & Thomas, A. A unique spectrum of p53 mutations in B-cell chronic lymphocytic leukemia distinct from that of other lymphoid malignancies. Mol Carcinog, 1995; 14: 227–32.
Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 1992; 69: 1237–45.
Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., & Ronai, Z. Mdm2 association with p53 targets its ubiquitination. Oncogene, 1998; 17: 2543–7.
Banin, S., Moyal, L., Shieh, S., et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998; 281: 1674–7.
Canman, C. E., Lim, D. S., Cimprich, K. A., et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 1998; 281: 1677–9.
Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell, 1998; 92: 713–23.
Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol, 1999; 1: 20–6.
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nat Rev Cancer, 2002; 2: 594–604.
Donehower, L. A., Harvey, M., Slagle, B. L., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 1992; 356: 215–21.
Lowe, S. W., Jacks, T., Housman, D. E., & Ruley, H. E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci U S A, 1994; 91: 2026–30.
Schmitt, C. A., Fridman, J. S., Yang, M., et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 2002; 109: 335–46.
Hainaut, P. & Hollstein, M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res, 2000; 77: 81–137.
Zheng, A., Castren, K., Saily, M., et al. p53 status of newly established acute myeloid leukaemia cell lines. Br J Cancer, 1999; 79: 407–15.
Isaacson, P. G. Gastric MALT lymphoma: from concept to cure. Ann Oncol, 1999; 10: 637–45.
Whittaker, S. Clinical and prognostic significance of molecular studies in cutaneous T-cell lymphoma. Curr Top Pathol, 2001; 94: 93–101.
Lindstrom, M. S. & Wiman, K. G. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol, 2002; 12: 381–7.
Momand, J. & Zambetti, G. P. Mdm-2: “big brother” of p53. J Cell Biochem, 1997; 64: 343–52.
Momand, J., Jung, D., Wilczynski, S., & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res, 1998; 26: 3453–9.
Ridge, S. A., Dyer, M., Greaves, M. F., & Wiedemann, L. M. Lack of MDM2 amplification in human leukaemia. Br J Haematol, 1994; 86: 407–9.
Cesarman, E., Liu, Y. F., & Knowles, D. M. The MDM2 oncogene is rarely amplified in human lymphoid tumors and does not correlate with p53 gene expression. Int J Cancer, 1994; 56: 457–8.
Huang, Y. Q., Raphael, B., Buchbinder, A., et al. Rearrangement and expression of MDM2 oncogene in chronic lymphocytic leukemia. Am J Hematol, 1994; 47: 139–41.
Merup, M., Juliusson, G., Wu, X., et al. Amplification of multiple regions of chromosome 12, including 12q13–15, in chronic lymphocytic leukaemia. Eur J Haematol, 1997; 58: 174–80.
Kupper, M., Joos, S., Bonin, F. von, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol, 2001; 112: 768–75.
Elnenaei, M. O., Gruszka-Westwood, A. M., A'Hernt, R., et al. Gene abnormalities in multiple myeloma; the relevance of TP53, MDM2, and CDKN2A. Haematologica, 2003; 88: 529–37.
Rao, P. H., Houldsworth, J., Dyomina, K., et al. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood, 1998; 92: 234–40.
Bueso-Ramos, C. E., Yang, Y., deLeon, E., et al. The human MDM-2 oncogene is overexpressed in leukemias. Blood, 1993; 82: 2617–23.
Quesnel, B., Preudhomme, C., Fournier, J., Fenaux, P., & Peyrat, J. P. MDM2 gene amplification in human breast cancer. Eur J Cancer, 1994; 30A: 982–4.
Watanabe, T., Hotta, T., Ichikawa, A., et al. The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood, 1994; 84: 3158–65.
Watanabe, T., Ichikawa, A., Saito, H., & Hotta, T. Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk Lymphoma, 1996; 21: 391–7.
Zhou, M., Yeager, A. M., Smith, S. D., & Findley, H. W. Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene. Blood, 1995; 85: 1608–14.
Kawamata, N., Miller, C., Levy, V., et al. mdm-2 oncogene expression in non-Hodgkin's lymphomas. Diagn Mol Pathol, 1996; 5: 33–8.
Capoulade, C., Bressac-de Paillerets, B., Lefrere, I., et al. Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt's lymphoma cells. Oncogene, 1998; 16: 1603–10.
Gustafsson, B., Christenson, B., Hjalmar, V., & Winiarski, J. Cellular expression of MDM2 and p53 in childhood leukemias with poor prognosis. Med Pediatr Oncol, 2000; 34: 117–24.
Quelle, D. E., Zindy, F., Ashmun, R. A., & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell, 1995; 83: 993–1000.
Honda, R. & Yasuda, H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J, 1999; 18: 22–7.
Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr Opin Genet Dev, 2000; 10: 94–9.
Kamijo, T., Zindy, F., Roussel, M. F., et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell, 1997; 91: 649–59.
Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J., & Cleveland, J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev, 1999; 13: 2658–69.
James, M. C. & Peters, G. Alternative product of the p16/CKDN2A locus connects the Rb and p53 tumor suppressors. Prog Cell Cycle Res, 2000; 4: 71–81.
Zindy, F., Eischen, C. M., Randle, D. H., et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev, 1998; 12: 2424–33.
Weber, J. D., Jeffers, J. R., Rehg, J. E., et al. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev, 2000; 14: 2358–65.
Sugimoto, M., Kuo, M. L., Roussel, M. F., & Sherr, C. J. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell, 2003; 11: 415–24.
Qi, Y., Gregory, M. A., Li, Z., et al. p19(ARF) directly and differentially controls the functions of c-Myc independently of p53. Nature, 2004; 431: 712–17.
Cayuela, J. M., Gardie, B., & Sigaux, F. Disruption of the multiple tumor suppressor gene MTS1/p16(INK4a)/CDKN2 by illegitimate V(D)J recombinase activity in T-cell acute lymphoblastic leukemias. Blood, 1997; 90: 3720–6.
Cayuela, J. M., Hebert, J., & Sigaux, F. Homozygous MTS1 (p16INK4A) deletion in primary tumor cells of 163 leukemic patients. Blood, 1995; 85: 854.
Cayuela, J. M., Madani, A., Sanhes, L., Stern, M. H., & Sigaux, F. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood, 1996; 87: 2180–6.
Faderl, S., Kantarjian, H. M., Estey, E., et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer, 2000; 89: 1976–82.
Hernandez-Boluda, J. C., Cervantes, F., Colomer, D., et al. Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients. Exp Hematol, 2003; 31: 204–10.
Pinyol, M., Hernandez, L., Martinez, A., et al. INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene. Am J Pathol, 2000; 156: 1987–96.
Nakamura, M., Sakaki, T., Hashimoto, H., et al. Frequent alterations of the p14(ARF) and p16(INK4a) genes in primary central nervous system lymphomas. Cancer Res, 2001; 61: 6335–9.
Hayashi, Y., Iwato, M., Arakawa, Y., et al. Homozygous deletion of INK4a/ARF genes and overexpression of bcl-2 in relation with poor prognosis in immunocompetent patients with primary central nervous system lymphoma of the diffuse large B-cell type. J Neurooncol, 2001; 55: 51–8.
Maloney, K. W., McGavran, L., Odom, L. F., & Hunger, S. P. Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood, 1999; 93: 2380–5.
Carter, T. L., Reaman, G. H., & Kees, U. R. INK4A/ARF deletions are acquired at relapse in childhood acute lymphoblastic leukaemia: a paired study on 25 patients using real-time polymerase chain reaction. Br J Haematol, 2001; 113: 323–8.
Carter, T. L., Watt, P. M., Kumar, R., et al. Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. Blood, 2001; 97: 572–4.
Duro, D., Bernard, O., Della Valle, V., et al. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21–22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res, 1996; 56: 848–54.
Baur, A. S., Shaw, P., Burri, N., et al. Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood, 1999; 94: 1773–81.
Taniguchi, T., Chikatsu, N., Takahashi, S., et al. Expression of p16INK4A and p14ARF in hematological malignancies. Leukemia, 1999; 13: 1760–9.
Christiansen, D. H., Andersen, M. K., & Pedersen-Bjergaard, J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 2003; 17: 1813–19.
Gonzalez-Gomez, P., Bello, M. J., Arjona, D., et al. CpG island methylation of tumor-related genes in three primary central nervous system lymphomas in immunocompetent patients. Cancer Genet Cytogenet, 2003; 142: 21–4.
Kastan, M. B., Lim, D. S., Kim, S. T., Xu, B., & Canman, C. Mul tiple signaling pathways involving ATM. Cold Spring Harb Symp Quant Biol, 2000; 65: 521–6.
Melino, G., Lu, X., Gasco, M., Crook, T., & Knight, R. A. Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci, 2003; 28: 663–70.
Westfall, M. D. & Pietenpol, J. A. p63: molecular complexity in development and cancer. Carcinogenesis, 2004; 25: 857–64.
Gumy-Pause, F., Wacker, P., & Sappino, A. P. ATM gene and lymphoid malignancies. Leukemia, 2004; 18: 238–42.
Camacho, E., Hernandez, L., Hernandez, S., et al. ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood, 2002; 99: 238–44.
Pettitt, A. R., Sherrington, P. D., Stewart, G., et al. p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood, 2001; 98: 814–22.
Gronbaek, K., Worm, J., Ralfkiaer, E., et al. ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood, 2002; 100: 1430–7.
Irwin, M. S. Family feud in chemosensitivity: p73 and mutant p53. Cell Cycle, 2004; 3: 319–23.
Irwin, M. S., Kondo, K., Marin, M. C., et al. Chemosensitivity linked to p73 function. Cancer Cell, 2003; 3: 403–10.
Di Como, C. J., Gaiddon, C., & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol, 1999; 19: 1438–49.
Strano, S., Munarriz, E., Rossi, M., et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem, 2000; 275: 29 503–12.
Martinez-Delgado, B., Melendez, B., Cuadros, M., et al. Frequent inactivation of the p73 gene by abnormal methylation or LOH in non-Hodgkin's lymphomas. Int J Cancer, 2002; 102: 15–19.
Leupin, N., Luthi, A., Novak, U., et al. P73 status in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma, 2004; 45: 1205–7.
Wang, M. L., Tuli, R., Manner, P. A., et al. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J Orthop Res, 2003; 21: 697–707.
Lane, D. P. & Hupp, T. R. Drug discovery and p53. Drug Discov Today, 2003; 8: 347–55.
Zhang, W., Kornblau, S. M., Kobayashi, T., et al. High levels of constitutive WAF1/Cip1 protein are associated with chemo resistance in acute myelogenous leukemia. Clin Cancer Res, 1995; 1: 1051–7.
Steinman, R. A. & Johnson, D. E. p21WAF1 prevents down-modulation of the apoptotic inhibitor protein c-IAP1 and inhibits leukemic apoptosis. Mol Med, 2000; 6: 736–49.
Roman-Gomez, J., Castillejo, J. A., Jimenez, A., et al. 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood, 2002; 99: 2291–6.
Raveh, T., Droguett, G., Horwitz, M. S., DePinho, R. A., & Kimchi, A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol, 2001; 3: 1–7.
Shohat, G., Spivak-Kroizman, T., Eisenstein, M., & Kimchi, A. The regulation of death-associated protein (DAP) kinase in apoptosis. Eur Cytokine Netw, 2002; 13: 398–400.
Ng, M. H. Death associated protein kinase: from regulation of apoptosis to tumor suppressive functions and B cell malignancies. Apoptosis, 2002; 7: 261–70.
Katzenellenbogen, R. A., Baylin, S. B., & Herman, J. G. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood, 1999; 93: 4347–53.
Shiramizu, B. & Mick, P. Epigenetic changes in the DAP-kinase CpG island in pediatric lymphoma. Med Pediatr Oncol, 2003; 41: 527–31.
Galm, O., Wilop, S., Reichelt, J., et al. DNA methylation changes in multiple myeloma. Leukemia, 2004; 18: 1687–92.
Nakatsuka, S., Takakuwa, T., Tomita, Y., et al. Hypermethylation of death-associated protein (DAP) kinase CpG island is frequent not only in B-cell but also in T- and natural killer (NK)/T-cell malignancies. Cancer Sci, 2003; 94: 87–91.
Voso, M. T., Scardocci, A., Guidi, F., et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood, 2004; 103: 698–700.
Cheok, M. H., Yang, W., Pui, C. H., et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet, 2003; 34: 85–90.

Reference Title: References

Reference Type: reference-list

Easton, D. & Peto, J. The contribution of inherited predisposition to cancer incidence. Cancer Surv, 1990; 9: 395–416.
Draper, G. J., Sanders, B. M., Lennox, E. L., & Brownbill, P. A. Patterns of childhood cancer among siblings. Br J Cancer, 1996; 74: 152–8.
Luna-Fineman, S., Shannon, K. M., & Lange, B. J. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.
Lange, B. J. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematology, 2000; 110: 512–24.
Shapiro, L. J. Signs and symptoms of inborn errors of metabolism. In F. A. Oski, ed., Principles and Practice of Pediatrics, 2nd edition (J. B. Lippincott, Philadelphia, PA, 1992), pp. 2173–4.
Murphy, M. & Epstein, L. B. Down syndrome (DS) peripheral blood contains phenotypically mature CD3+TCR alpha, beta+ cells but abnormal proportions of TCR alpha, beta+, TCR gamma, delta+, and CD4+ CD45RA+ cells: evidence for an inefficient release of mature T cells by the DS thymus. Clin Immunol Immunopathol, 1992; 62: 245–51.
Whittingham, S., Pitt, D. B., Sharma, D. L., & Mackay, I. R. Stress deficiency of the T-lymphocyte system exemplified by Down syndrome. Lancet, 1977; 1(8004): 163–6.
Barkin, R. M., Weston, W. L., Humbert J. R., & Marie, F. Phagocytic function in Down syndrome – I. Chemotaxis. J Ment Defic Res, 1980; 24: 243–9.
May, P. & Kawanishi, H. Chronic hepatitis B infection and autoimmune thyroiditis in Down syndrome. J Clin Gastroenterol, 1996; 23: 181–4.
Levin, S. The immune system and susceptibility to infections in Down's Syndrome. In E. E. McCoy & C. J. Epstein, eds., Oncology and Immunology of Down Syndrome (New York: Alan Liss, 1987), pp. 143–62.
Csizmadia, C. G., Mearin, M. L., Oren, A., et al. Accuracy and cost-effectiveness of a new strategy to screen for celiac disease in children with Down syndrome. J Pediatr, 2000; 137: 756–61.
Yang, Q., Rasmussen, S. A., & Friedman, J. M. Mortality associated with Down's syndrome in the U S A from 1983 to 1997: a population-based study. Lancet, 2002; 359: 1019–25.
Zipursky, A., Poon, A., & Doyle, J. Hematologic and oncologic disorders in Down syndrome. In I. T. Lott & E. E. McCoy, eds., Down Syndrome: Advances in Medical Care (New York: Wiley-Liss, 1992), pp. 93–101.
Avet-Loiseau, H., Mechinaud, F., & Harousseau, J. L. Clonal hematologic disorders in Down syndrome. J Ped Hem/Onc, 1995; 17: 19–24.
Hasle, H. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol, 2001; 2: 429–36.
Hassold, T., Sherman, S., & Hunt, P. A. The origin of trisomy 21 in humans: etiology and pathogenesis of Down syndrome. Prog Clin Biol Res, 1995; 393: 1–12.
Fong, C.& Brodeur, G. M. Down's syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet, 1987; 28: 55–76.
Niebuhr, E. Down's syndrome: the possibility of a pathogenetic segment of chromosome 21. Humangenetik, 1974; 21: 99–101.
Yamakawa, K., Huo, Y.-K., Haendel, M. A., et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Mol Genet, 1998; 7: 227–37.
Druzhyna, N., Nair, R. G., LeDoux, S. P., & Wilson, G. L. Defective repair of oxidative damage in mitochondrial DNA in Down's syndrome [meeting abstract]. Proc Annu Meet Am Assoc Cancer Res, 1997; 38: A880.
Kempski, H. M., Chessells, J. M., & Reeves, B. R. Deletions of chromosome 21 restricted to the leukemic cells of children with Down syndrome and leukemia. Leukemia, 1997; 11: 1973–7.
Cavani, S., Perfumo, C., Argusti, A., et al. Cytogenetic and molecular study of 32 Down syndrome families: potential leukaemia predisposing role of the most proximal segment of chromosome 21q. Br J Haematol, 1998; 103: 213–6.
Seghezzi, L., Dellavecchia, C., Maserati, E., et al. Ph-positive CML in blastic phase with monosomy 7 in a Down syndrome patient. Monitoring by interphase cytogenetics and demonstration of maternal allelic loss. Cancer Genet Cytogene, 1997; 99: 77–80.
Downing, J. R. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999; 106: 296–308.
Legare, R. D., Lu, D., Gallagher, M., et al. CBFA21, frequently rearranged in leukemia is not responsible for a familial leukemia syndrome. Leukemia, 1997; 11: 2111–19.
Song, W. J., Sullivan, M. G., Legare, R. D., et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nat Genet, 1999; 23: 166–74.
Wechsler, J., Greene, M., McDevitt, M. A., et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.
Mundschau, G., Gurbuxani, S., Gamis, A. S., et al. Mutagenesis of GATA1 in an initiating event in Down syndrome leukemogenesis. Blood, 2003; 101: 4298–300.
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W., & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood, 2003; 101: 4301–4.
Ahmed, M., Sternberg, A., Hall, G., et al. Natural history of GATA1 mutations in Down syndrome. Blood, 2004; 103: 2480–9.
Alimena, G., Billstrom, R., Casalone, R., et al. Cytogenetic pattern in leukemic cells of patients with constitutional chromosome anomalies. Cancer Genet Cytogenet, 1985; 16: 207–18.
Hecht, F., Hecht, B. K., Morgan, R., Sandberg, A. A., & Link, M. P. Chromosome clues to acute leukemia in Down's syndrome. Cancer Genet Cytogenet, 1986; 21: 93–8.
Groupe Français de Cytogénétique Hématologique. Cytogenetic findings in leukemic cells of 56 patients with constitutional chromosome abnormalities. A cooperative study. Can Genet Cytogenet, 1988; 35: 243–52.
Kalwinsky, D. K., Raimondi, S. C., Bunin, N. J., et al. Clinical and biological characteristics of acute lymphocytic leukemia in children with Down syndrome. Am J Med Genet Suppl, 1990; 7: 267–71.
Pui, C., Raimondi, S. C., Borowitz, M. J., et al. Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukemia. J Clin Oncol, 1993; 11: 1361–7.
Watson, M. S., Carroll, A. J., Shuster, J. J., et al. Trisomy 21 in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study (8062). Blood, 1993; 82: 3098–102.
Lanza, C., Volpe, G., Basso, G., et al. The common TEL/AML 1 rearrangement does not represent a frequent event in acute lymphoblastic leukaemia occuring in children with Down syndrome. Leukemia, 1997; 11: 820–1.
Robison, L. L., Nesbit, M. E., Sather, H. N., et al. Down syndrome and acute leukemia in children: a 10-year retrospective survey from Children's Cancer Study Group. J Pediatr, 1984; 105: 235–42.
Belkov, V. M., Krynetski, E. Y., Scheutz, J. D., et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 1999; 93: 1643–50.
Kojima, S., Matsuyama, T., Sato, T., et al. Down syndrome and acute leukemia in children: an analysis of phenotype by use of monoclonal antibodies and electron miroscopic platelet peroxidase. Blood, 1990; 76: 2348.
Ravindranath, Y., Abella, E., Krischer, J., et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience of Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.
Lie, S. O., Jonmundsson, G., Mellander, L., et al. A population-based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down's syndrome. Br J Haematol, 1996; 94: 82–8.
Wells, R. J., Woods, W. G., Buckley, J. D., et al. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Children's Cancer Group study. J Clin Oncol, 1994; 12: 2367–77.
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group studies 2861 and 2891. Blood, 1998; 91: 608–15.
Taub, J. W., Matherly, L. H., Stout, M. L., et al. Enhanced metabolism of 1-B-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood, 1996; 87: 3395–403.
Creutzig, U., Vormoor, R. J., Ludwig, W. D., et al. Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia, 1996; 10: 1677–86.
Gamis, A. S., Woods, W. G., Alonzo, T. A., et al. Increasing age at diagnosis has a significantly negative impact upon outcome in children with Down syndrome and acute myeloid leukemia – a report from the Children's Cancer Group Study, CCG–2891. J Clin Oncol, 2003; 21: 3415–22.
Ge, Y., Jensen, T. L., Matherly, L. H., & Taub, J. W. Transcriptional regulation of the cystathionine–synthase gene in Down syndrome and non-Down syndrome megakaryocytic leukemia cell lines. Blood, 2003; 101: 1551–7.
Zipursky, A., Brown, E., Christensen, H., Sutherland, R., & Doyle, J. Leukemia and/or myeloproliferative syndrome in neonates with Down syndrome. Semin Perinatol, 1997; 21: 97–101.
Zipursky, A., Brown, E. J., Christensen, H., & Doyle, J. Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Clin Lab Med, 1999; 19: 157–67.
Gamis, A. S., & Hilden, J. M. Transient myeloproliferative disorder, a disorder with too few data and many unanswered questions: does it contain an important piece of the puzzle to understanding hematopoiesis and acute myelogenous leukemia ? J Pediatric Hematol Oncol, 2002; 24: 2–5.
Taub, J. W. & Ravindranath, Y. Down syndrome and the transient myeloproliferative disorder: why is it transient ? J Pediatric Hematol Oncol, 2002; 24: 6–8.
Kurahashi, H., Hara, J., Yumura-Yagi, K., et al. Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood, 1991; 77: 1161–3.
Miyashita, T., Asada, M., Fujimoto, J., et al. Clonal analysis of transient myeloproliferative disorder in Down's syndrome. Leukemia, 1991; 5: 56–9.
Rosner, F. & Lee, S. L. for Acute Leukemia Group B. Down's syndrome and acute leukemia: myeloblastic or lymphoblastic ? Am J Med, 1972; 53: 203–18.
Homans, A., Verissimo, A. & Vlacha, V. Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol, 1993; 15: 392–9.
Barnett, P. L. J., Clark, A. C. L., & Garson, O. M. Acute nonlymphocytic leukemia after transient myeloproliferative disorder in a patient with Down syndrome. Med Pediat Onc, 1990; 18: 347–53.
Becroft, D. M. O. & Zwi, L. J. Perinatal visceral fibrosis accompanying the megakaryoblastic leukemoid reaction of Down syndrome. Ped Pathol, 1990; 10: 397–406.
Ruchelli, E. D., Uri, A., Dimmick, J. E., et al. Severe perinatal liver disease and Down syndrome: an apparent relationship. Hum Pathol, 1991; 22: 1274–80.
Miyauchi, J., Ito, Y., Kawano, T., Tsunematsu, Y., & Shimizu, K. Usual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood, 1992; 80: 1521–7.
Al-Kasim, F., Doyle, J. J., Massey, G. V., Weinstein, H. J., & Zipursky, A., Pediatric Oncology Group. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J Pediatr Hematol Oncol, 2002; 24: 9–13.
Rizzari, C., Malberti, R., Dell'Orto, M., et al. Transient myeloproliferative disorder associated with trisomy 21: is a short course of chemotherapy indicated in patients with liver impairment and severe clinical problems ? Med Pediatr Oncol, 1999; 32: 453–4.
Side, L. E. & Shannon, K. M. The NF1 gene as a tumor suppressor. In M. Upashyaya & D. N. Cooper, eds., Neurofibromatosis Type 1. (Oxford, UK: Bios Scientific Publishers, 1998), pp. 133–52.
Bader, J. L. & Miller, R. W. Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.
Shannon, K. M., Turhan, A. G., Rogers, P. C., & Kan, Y. W. Evidence implicating heterozygous deletion of chromosome 7 in the pathogenesis of familial leukemia associated with monosomy 7. Genomics, 1992; 14: 121–5.
Stiller, C. A., Chessells, J. M., & Fitchett, M. Neurofibromatosis and childhood leukemia/lymphoma: a population-based UKCCSG study. Br J Cancer, 1994; 70: 969–72.
Maris, J. M., Wiersma, S. R., Mahgoub, N., et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer, 1997; 79: 1438–46.
Boguski, M. & McCormick, F. Proteins regulating Ras and its relatives. Nature, 1993; 366: 643–53.
Donovan, S., See, W., Bonifas, J., Stokoe, D., & Shannon, K. M. Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2002; 2: 507–14.
Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res, 1989; 49: 4682–9.
Shannon, K. M., O'Connell, P., Martin, G. A., et al. Loss of the normal NF1 allele from the bonemarrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med, 1994; 330: 597–601.
Bollag, G., Clapp, D. W., Shih, S., et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in murine and human hematopoietic cells. Nat Genet, 1996; 12: 144–8.
Kalra, R., Paderanga, D., Olson, K., & Shannon, K. M. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood, 1994; 84: 3435–9.
Brannan, C. I., Perkins, A. S., Vogel, K. S., et al. Targeted disruption of the neurofibromatosis type 1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Develop, 1994; 8: 1019–29.
Jacks, T., Shih, S., Schmitt, E. M., et al. Tumorigenic and developmental consequences of a targeted Nf1 mutation in the mouse. Nat Genet, 1994; 7: 353–61.
Largaespada, D. A., Brannan, C. I., Jenkins, N. A., & Copeland, N. G. Nf1 deficiency causes Ras-mediated granulocyte-macrophage colony stimulating factor hypersensitivity and chronic myeloid leukemia. Nat Genet, 1996; 12: 137–43.
Mahgoub, N., Taylor, B., LeBeau, M., et al. Myeloid malignancies induced by alkylating agents in NF1 mice. Blood, 1999; 93: 3617–23.
Tartaglia, M., Kalidas, K., Shaw, A., et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet, 2002; 70: 1555–63.
Tartaglia, M., Mehler, E. L., Goldberg, R., et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet, 2001; 29: 465–8.
Bader-Meunier, B., Tchernia, G., Miélot, F., et al. Occurrence of myeloproliferative disorder in patients with the Noonan syndrome. J Pediatr, 1997; 130: 885–9.
Choong, K., Freedman, M. H., Chitayat, D., et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol, 1999; 21: 523–7.
Barford, D. & Neel, B. G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 1998; 6: 249–54.
Neel, B. G., Gu, H., & Pao, L. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci, 2003; 28: 284–93.
Feng, G. S. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res, 1999; 253: 47–54.
Vactor, D. van, O'Reilly, A. M., & Neel, B. G. Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev, 1998; 8: 112–26.
Chen, B., Bronson, R. T., Klaman, L. D., et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet, 2000; 24: 296–9.
Loh, M. L., Vattikuti, S., Schubbert, S., et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 2004; 103: 2325–31.
Tartaglia, M., Niemeyer, C. M., Fragale, A., et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet, 2003; 34: 148–50.
Shwachman, H., Diamond, L. K., Oski, F. A., & Khaw, K. T. The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr, 1964; 65: 645–63.
Bodian, M., Sheldon, W., & Lightwood, R. Congenital hypoplasia of the exocrine pancreas. Acta Paediatr, 1964; 53: 282–93.
Aggett, P. J., Cavanaugh, N. P., Matthew, D. J., et al. Shwachman's syndrome. A review of 21 cases. Arch Dis Child, 1980; 55: 331–47.
Rothbaum, R., Perrault, J., Vlachos, A., et al. Shwachman-Diamond syndrome: report from an international conference. J Pediatrics, 2002; 141: 266–70.
Mack, D. R. Shwachman-Diamond syndrome. J Pediatr, 2002; 141: 164–5.
Ip, W. F., Dupuis, A., Ellis, L., et al. Serum pancreatic enzymes define the pancreatic phenotype in patients with Shwachman–Diamond syndrome. J Pediatr, 2002; 141: 259–65.
Mack, D. R., Forstner, G. G., Wilschanski, M., et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology, 1996; 111: 1593–602.
Ginzberg, H., Shin, J., Ellis, L., et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr, 1999; 135: 81–8.
Smith, O. P., Hann, I. M., Chessells, J. M., Reeves, B. R., & Milla, P. Haematological abnormalities in Shwachman–Diamond syndrome. Br J Haematol, 1996; 94: 279–84.
Dror, Y. & Freedman, M. H. Shwachman–Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. Blood, 2001; 97: 3011–16.
Dror, Y., Durie, P., Ginzberg, H., et al. Clonal evolution in marrows of patients with Shwachman–Diamond syndrome: a prospective 5-year follow-up study. Exp Hematol, 2002; 30: 659–69.
Woods, W. G., Krivit, W., Lubin, B. H., & Ramsay, N. K. Aplastic anemia associated with the Shwachman syndrome: in vivo and in vitro observations. Am J Pediatr Hematol Oncol, 1981; 3: 347–51.
Smith, O. P., Hann, I. M., Chessells, J. M., Reeves, B. R., & Milla, P. Haematological abnormalities in Shwachman–Diamond syndrome. Br J Haematol, 1996; 94: 279–84.
Dokal, I., Rule, S., Chen, F., Potter, M., & Goldman, J. Adult onset of acute myeloid leukaemia (M6) in patients with Shwachman–Diamond syndrome. Br J Haematol, 1997; 99: 171–3.
Dror, Y., Squire, J., Durie, P., & Freedman, M. H. Malignant myeloid transformation with isochromosome 7q in Shwachman–Diamond syndrome. Leukemia, 1998; 12: 1591–5.
Freedman, M. H. & Alter, B. P. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol, 2002; 39: 128–33.
Popovic, M., Goobie, S., Morrison, J., et al. Fine mapping of the locus for Shwachman–Diamond syndrome at 7q11, identification of shared disease haplotypes, and exclusion of TPST1 as a candidate gene. Eur J Human Genet, 2002; 10: 250–8.
Boocock, G. R. B., Morrison, J. A., Popovic, M., et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet, 2003; 33: 97–101.
Tada, H., Ri, T., Yasheda, H., et al. A case of Shwachman syndrome with increased spontaneous chromosome breakage. Hum Genet, 1987; 77: 289–91.
Smith, A., Shaw, P. J., Webster, B., et al. Intermittent 20q- and consistent i(7q) in a patient with Shwachman–Diamond syndrome. Pediatr Hematol Oncol, 2002; 19: 525–8.
Imashuku, S., Hibi, S., Nakajima, F., et al. A review of 125 cases to determine the risk of myelodysplasia and leukemia in pediatric neutropenic patients after treatment with recombinant human granulocyte colony-stimulating factor. Blood, 1994; 84: 2380–1.
Park, S. Y., Chase, M. B., Kwack, Y. G., et al. Allogeneic bone marrow transplantation in Shwachman–Diamond syndrome with malignant myeloid transformation. A case report. Korean J Intern Med, 2002; 17: 204–6.
Lindor, N. M., & Greene, M. H. The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J. Natl Cancer Inst, 1998; 90: 1039–71.
Alter, B. P. Fanconi's anemia and malignancies. Am J Hematol, 1996; 53: 99–110.
Auerbach, A. D. & Allen, R. G. Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet, 1991; 51: 1–12.
Gyger, M., Perreault, C., Belanger, R., et al. Unsuspected Fanconi's anemia and bone marrow transplantation in cases of acute myelomonocytic leukemia. N Engl J Med, 1989; 321: 120–1.
Kutler, D. I., Singh, B., Satagopan, J., et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood, 2003; 101: 1249–56.
Taniguchi, T. & Dandrea, A. D. Molecular pathogenesis of Fanconi anemia. Int J Hematol, 2002; 75: 123–8.
Stewart, G. & Elledge, S. J. The two faces of BRCA2, a FANCtastic discovery. Mol Cell, 2002; 10: 2–4.
Garcia-Higuera, I., Taniguchi, T., Ganesan, S., et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell, 2001; 7: 249–62.
Howlett, N. G., Taniguchi, T., Olson, S., et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science, 2002; 297: 606–9.
Davies, S. M., Khan, S., Wagner, J. E., et al. Unrelated donor bone marrow transplantation for Fanconi anemia. Bone Marrow Transplant, 1996; 17: 43–7.
Guardiola, P., Pasquini, R., Dokal, I., et al. Outcome of 69 allogeneic stem cell transplantations for Fanconi anemia using HLA-matched unrelated donors: a study on behalf of the European Group for Blood and Marrow Transplantation. Blood, 2000; 95: 422–9.
MacMillan, M. L., Auerbach, A. D., Davies, S. M., et al. Haematopoietic cell transplantation in patients with Fanconi anaemia using alternate donors: results of a total body irradiation dose escalation trial. Br J Haematol, 2000; 109: 121–9.
D'Andrea, A. D., Dahl, N., Guinan, E. C., & Shimamura, A. Marrow failure. Hematology (Am Soc Hematol Educ Program), 2002: 58–72.
Zeidler, C. & Welte, K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol, 2002; 39: 82–8.
Banerjee, A. & Shannon, K. M. Leukemic transformation in patients with severe congenital neutropenia. J Pediatr Hematol Oncol, 2001; 23: 487–95.
Aprikyan, A. A., Liles, W. C., & Dale, D. C. Emerging role of apoptosis in the pathogenesis of severe neutropenia. Curr Opin Hematol, 2000; 7: 131–2.
Kobayashi, M., Yumiba, C., Kawaguchi, Y., et al. Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia. Blood, 1990; 75: 2143–9.
Hestdal, K., Welte, K., Lie, S. O., et al. Severe congenital neutropenia: abnormal growth and differentiation of myeloid progenitors to granulocyte colony-stimulating factor (G-CSF) but normal response to G-CSF plus stem cell factor. Blood, 1993; 82: 2991–7.
Bernhardt, T. M., Burchardt, E. R., & Welte, K. Assessment of G-CSF and GM-CSF mRNA expression in peripheral blood mononuclear cells from patients with severe congenital neutropenia and in human myeloid leukemic cell lines. Exp Hematol, 1993; 21: 163–8.
Guba, S. C., Sartor, C. A., Hutchinson, R., Boxer, L. A., & Emerson, S. G. Granulocyte colony-stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood, 1994; 83: 1486–92.
Mempel, K., Pietsch, T., Menzel, T., Zeidler, C., & Welte, K. Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood, 1991; 77: 1919–22.
Horwitz, M., Benson, K. F., Person, R. E., Aprikyan, A. G., & Dale, D. C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet, 1999; 23: 433–6.
Dale, D. C., Person, R. E., Bolyard, A. A., et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood, 2000; 96: 2317–22.
Aprikyan, A. A., Liles, W. C., Boxer, L. A., & Dale, D. C. Mutant elastase in pathogenesis of cyclic and severe congenital neutropenia. J Pediatr Hematol Oncol, 2002; 24: 784–6.
Dong, F., Brynes, R., Tidow, N., et al. Mutations in the gene for the granulocyte colony stimulating factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med, 1995; 333: 487–93.
Hunter, M. G. & Avalos, B. R. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood, 2000; 95: 2132–7.
Kalra, R., Dale, D., Freedman, M., et al. Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congential neutropenia. Blood, 1995; 86: 4579–86.
Grenda, D. S., Johnson, S. E., Mayer, J. R., et al. Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis. Blood, 2002; 100: 3221–8.
Dale, D., Bonilla, M. A., Davis, M., et al. A randomized controlled phase II trial of recombinant human granulocyte colony stimulating factor for treatment of severe chronic neutropenia. Blood, 1993; 81: 2496–502.
Zeidler, C., Welte, K., Barak, Y., et al. Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood, 2000; 95: 1195–8.
Ancliff, P. J., Gale, R. E., Liesner, R., Hann, I., & Linch, D. C. Long-term follow-up of granulocyte colony-stimulating factor receptor mutations in patients with severe congenital neutropenia: implications for leukaemogenesis and therapy. Br J Haematol, 2003; 120: 685–90.
Carroll, W. L., Morgan, R., & Glader, B. E. Childhood monosomy 7 syndrome: a familial disorder. J Pediatr, 1985; 107: 578–80.
Shannon, K. M., Turhan, A. G., Chang, S. S. Y., et al. Familial bone marrow monosomy 7: evidence that the predisposing locus is not on the long arm of chromosome 7. J Clin Invest, 1989; 84: 984–9.
Kwong, Y. L., Ng, M. H., & Ma, S. K. Familial acute myeloid leukemia with monosomy 7: late onset and involvement of a multipotential progenitor cell. Cancer Genet Cytogenet, 2000; 116: 170–3.
Daghistani, D., Curless, R., Toledano, S. R., & Ayyar, D. R. Ataxia-pancytopenia and monosomy 7 syndrome. J Pediatr, 1989; 115: 108–10.
Li, F. P., Hecht, F., Kaiser-McCaw, B., Baranko, P. V., & Potter, N. U. Ataxia-pancytopenia: syndrome of cerebellar ataxia, hypoplastic anemia, monosomy 7, and acute myelogenous leukemia. Cancer Genet Cytogenet, 1981; 4: 189–96.
Ho, C. Y., Otterud, B., Legare, R. D., et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood, 1996; 87: 5218–24.
Walker, L. C., Stevens, J., Campbell, H., et al. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol, 2002; 117: 878–81.
Michaud, J., Wu, F., Osato, M., et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 2002; 99: 1364–72.
Buijs, A., Poddighe, P., Wijk, R. van, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood, 2001; 98: 2856–8.
Swift, M., Morrell, D., Cromartie, E., et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet, 1986; 39: 573–83.
Telatar, M., Teraoka, S., Wang, Z., et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet, 1998; 62: 86–97.
Gatti, R. A. Ataxia-telangiectasia. Gene Reviews, 2002. http://geneclinics.org(10/28/2002).
Morrell, D., Cromartie, E., & Swift, M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst,